1
|
Oger F, Bourouh C, Friano ME, Courty E, Rolland L, Gromada X, Moreno M, Carney C, Rabhi N, Durand E, Amanzougarene S, Berberian L, Derhourhi M, Blanc E, Hannou SA, Denechaud PD, Benfodda Z, Meffre P, Fajas L, Kerr-Conte J, Pattou F, Froguel P, Pourcet B, Bonnefond A, Collombat P, Annicotte JS. β-Cell-Specific E2f1 Deficiency Impairs Glucose Homeostasis, β-Cell Identity, and Insulin Secretion. Diabetes 2023; 72:1112-1126. [PMID: 37216637 DOI: 10.2337/db22-0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
The loss of pancreatic β-cell identity has emerged as an important feature of type 2 diabetes development, but the molecular mechanisms are still elusive. Here, we explore the cell-autonomous role of the cell-cycle regulator and transcription factor E2F1 in the maintenance of β-cell identity, insulin secretion, and glucose homeostasis. We show that the β-cell-specific loss of E2f1 function in mice triggers glucose intolerance associated with defective insulin secretion, altered endocrine cell mass, downregulation of many β-cell genes, and concomitant increase of non-β-cell markers. Mechanistically, epigenomic profiling of the promoters of these non-β-cell upregulated genes identified an enrichment of bivalent H3K4me3/H3K27me3 or H3K27me3 marks. Conversely, promoters of downregulated genes were enriched in active chromatin H3K4me3 and H3K27ac histone marks. We find that specific E2f1 transcriptional, cistromic, and epigenomic signatures are associated with these β-cell dysfunctions, with E2F1 directly regulating several β-cell genes at the chromatin level. Finally, the pharmacological inhibition of E2F transcriptional activity in human islets also impairs insulin secretion and the expression of β-cell identity genes. Our data suggest that E2F1 is critical for maintaining β-cell identity and function through sustained control of β-cell and non-β-cell transcriptional programs. ARTICLE HIGHLIGHTS β-Cell-specific E2f1 deficiency in mice impairs glucose tolerance. Loss of E2f1 function alters the ratio of α- to β-cells but does not trigger β-cell conversion into α-cells. Pharmacological inhibition of E2F activity inhibits glucose-stimulated insulin secretion and alters β- and α-cell gene expression in human islets. E2F1 maintains β-cell function and identity through control of transcriptomic and epigenetic programs.
Collapse
Affiliation(s)
- Frédérik Oger
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Cyril Bourouh
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Marika Elsa Friano
- INSERM, CNRS, Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
| | - Emilie Courty
- INSERM, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Laure Rolland
- INSERM, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Xavier Gromada
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Maeva Moreno
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Charlène Carney
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Emmanuelle Durand
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Souhila Amanzougarene
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Lionel Berberian
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Mehdi Derhourhi
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Etienne Blanc
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Sarah Anissa Hannou
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | | | | | | | - Lluis Fajas
- Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Julie Kerr-Conte
- INSERM, U1190 - EGID, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - François Pattou
- INSERM, U1190 - EGID, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Philippe Froguel
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
- Department of Metabolism, Hammersmith Hospital, Imperial College London, London, U.K
| | - Benoit Pourcet
- INSERM, U1011 - EGID, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Amélie Bonnefond
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
- Department of Metabolism, Hammersmith Hospital, Imperial College London, London, U.K
| | - Patrick Collombat
- INSERM, CNRS, Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
| | - Jean-Sébastien Annicotte
- INSERM, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| |
Collapse
|
2
|
Oudbor L, Mokhtari Z, Dastghaib S, Mokarram P, Rajani HF, Barazesh M, Salami S. Aqueous extract of Stevia rebaudiana (Bertoni) Bertoni abrogates death-related signaling pathways via boosting the expression profile of oxidative defense systems. J Food Biochem 2022; 46:e14151. [PMID: 35365911 DOI: 10.1111/jfbc.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
Indigenous inhabitants of South America and other areas have been using stevia as a traditional medicine for years, but its impact on cell signaling pathways has not been well studied yet. We evaluated the impacts of aqueous extract of Stevia rebaudiana (Bertoni) Bertoni on the expression of the selected genes involved in significant cell death modalities, including p53-DNA damage and the cellular antioxidative defense in pancreatic tissues in STZ-induced diabetic rats and murine pancreatic cell lines. The in vivo study revealed that aqueous extract of Stevia significantly upregulated the expression of GSTM1 and P1 and GPX (4.67, 12.08, and 2.81 fold, respectively; all p < .05) along with significant downregulation of the genes which were upregulated by STZ, including apoptotic genes caspase-3 and -9 (-9.80 and -4.16 fold, p < .05, respectively) and necroptotic genes, RIP1K, 2 K, and 3 K (-9.48, -2.70, and -12.9 fold, respectively, all p < .05). In vitro studies also revealed comparable results. In conclusion, the observed clinical improvements in diabetic rats are the result of overexpression of major genes of antioxidative defense systems in the course of a significant downregulation of major cell death modalities. PRACTICAL APPLICATIONS: The popularity of noncaloric sweeteners, including stevia, has rocketed in recent years, but the consumption of stevia as traditional medicine has a long history. The findings of the current study provide strong mechanistic lines of evidence supporting the beneficial biological effects of stevia as a noncaloric sweetener in diabetes.
Collapse
Affiliation(s)
- Leila Oudbor
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mokhtari
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Dastghaib
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Huda Fatima Rajani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash Faculty of Medical Sciences, Gerash, Iran
| | - Siamak Salami
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Shcheglova E, Blaszczyk K, Borowiak M. Mitogen Synergy: An Emerging Route to Boosting Human Beta Cell Proliferation. Front Cell Dev Biol 2022; 9:734597. [PMID: 35155441 PMCID: PMC8829426 DOI: 10.3389/fcell.2021.734597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Decreased number and function of beta cells are a key aspect of diabetes mellitus (diabetes), a disease that remains an onerous global health problem. Means of restoring beta cell mass are urgently being sought as a potential cure for diabetes. Several strategies, such as de novo beta cell derivation via pluripotent stem cell differentiation or mature somatic cell transdifferentiation, have yielded promising results. Beta cell expansion is another promising strategy, rendered challenging by the very low proliferative capacity of beta cells. Many effective mitogens have been identified in rodents, but the vast majority do not have similar mitogenic effects in human beta cells. Extensive research has led to the identification of several human beta cell mitogens, but their efficacy and specificity remain insufficient. An approach based on the simultaneous application of several mitogens has recently emerged and can yield human beta cell proliferation rates of up to 8%. Here, we discuss recent advances in restoration of the beta cell population, focusing on mitogen synergy, and the contribution of RNA-sequencing (RNA-seq) to accelerating the elucidation of signaling pathways in proliferating beta cells and the discovery of novel mitogens. Together, these approaches have taken beta cell research up a level, bringing us closer to a cure for diabetes.
Collapse
Affiliation(s)
- Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Malgorzata Borowiak, ;
| |
Collapse
|
4
|
Paredes-Céspedes DM, Bernal-Hernández YY, Herrera-Moreno JF, Rojas-García AE, Medina-Díaz IM, González-Arias CA, Barrón-Vivanco BS. Methylation patterns of the CDKN2B and CDKN2A genes in an indigenous population exposed to pesticides. Hum Exp Toxicol 2022; 41:9603271211063161. [DOI: 10.1177/09603271211063161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The INK4 -ARF locus includes the CDKN2B and CDKN2A genes and is functionally relevant in the regulation of both cell proliferation and senescence. Studies have reported modifications of DNA methylation in this locus by exposure to environmental contaminants including pesticides; however, until now, specific methylation profiles have not been reported in genetically conserved populations exposed to occupational pesticides. The aim of this study was to determine the methylation profiles of the CDKN2B and CDKN2A genes in a genetically conserved population exposed to pesticides. A cross-sectional and analytical study was carried out in 190 Huichol indigenous persons. Information related to pesticide exposure, diet and other variables were obtained through the use of a structured questionnaire. Blood and urine samples were collected for methylation test and dialkylphosphates (DAP) determination, respectively. DNA methylation was measured by the pyrosequencing of bisulfite-treated DNA and DAP concentrations by gas chromatography-tandem mass spectrometry (GC/MS). The most frequent metabolite in the population was dimethylthiophosphate. The farmer group presented a higher methylation percentage of CDKN2B than the non-farmer group, but no differences in CDKN2A were observed between groups. A positive correlation between methylation of CpG site 3 of CDKN2B and time working in the field was observed in the farmer group. An association between methylation percentage of CDKN2B and age was also observed in the non-farmer group. These results suggest that pesticide exposure and exposure time in Huichol indigenous individuals could modify the methylation pattern of the CDKN2B gene.
Collapse
Affiliation(s)
- Diana M Paredes-Céspedes
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - José Francisco Herrera-Moreno
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Cyndia A González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| |
Collapse
|
5
|
Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, Kandimalla R. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021; 10:1340. [PMID: 34071497 PMCID: PMC8228721 DOI: 10.3390/cells10061340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate β cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | - Moumita Gangopadhyay
- School of Life Science and Biotechnology, ADAMAS University, Barasat, Kolkata 700126, West Bengal, India;
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India;
| | - Vijaykrishna Medala
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| |
Collapse
|
6
|
Rabhi N, Hannou SA, Gromada X, Salas E, Yao X, Oger F, Carney C, Lopez-Mejia IC, Durand E, Rabearivelo I, Bonnefond A, Caron E, Fajas L, Dani C, Froguel P, Annicotte JS. Cdkn2a deficiency promotes adipose tissue browning. Mol Metab 2017; 8:65-76. [PMID: 29237539 PMCID: PMC5985036 DOI: 10.1016/j.molmet.2017.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 01/01/2023] Open
Abstract
Objectives Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis. Methods We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients. Results We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression. Conclusion Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders. Cdkn2a deficiency protects mice against high fat diet-induced obesity. Cdkn2a modulates brown-like/beige fat gene networks involved in energy production and lipid metabolism. Increased CDKN2A expression in human obese adipocytes. Increased UCP1 levels in adipocytes differentiated from CDKN2A-silenced hiPS cells.
Collapse
Affiliation(s)
- Nabil Rabhi
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Sarah Anissa Hannou
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Xavier Gromada
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Elisabet Salas
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Xi Yao
- Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, F-06107 Nice Cedex 2, France
| | - Frédérik Oger
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Charlène Carney
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Isabel C Lopez-Mejia
- Center for Integrative Genomics, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Emmanuelle Durand
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Iandry Rabearivelo
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Amélie Bonnefond
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Emilie Caron
- INSERM, UMR S-1172, Development and Plasticity of Postnatal Brain, F-59000 Lille, France
| | - Lluis Fajas
- Center for Integrative Genomics, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Dani
- Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, F-06107 Nice Cedex 2, France
| | - Philippe Froguel
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France; Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | - Jean-Sébastien Annicotte
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France.
| |
Collapse
|
7
|
Kong Y, Sharma RB, Nwosu BU, Alonso LC. Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia 2016; 59:1579-93. [PMID: 27155872 PMCID: PMC4930689 DOI: 10.1007/s00125-016-3967-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes, fuelled by the obesity epidemic, is an escalating worldwide cause of personal hardship and public cost. Diabetes incidence increases with age, and many studies link the classic senescence and ageing protein p16(INK4A) to diabetes pathophysiology via pancreatic islet biology. Genome-wide association studies (GWASs) have unequivocally linked the CDKN2A/B locus, which encodes p16 inhibitor of cyclin-dependent kinase (p16(INK4A)) and three other gene products, p14 alternate reading frame (p14(ARF)), p15(INK4B) and antisense non-coding RNA in the INK4 locus (ANRIL), with human diabetes risk. However, the mechanism by which the CDKN2A/B locus influences diabetes risk remains uncertain. Here, we weigh the evidence that CDKN2A/B polymorphisms impact metabolic health via islet biology vs effects in other tissues. Structured in a bedside-to-bench-to-bedside approach, we begin with a summary of the evidence that the CDKN2A/B locus impacts diabetes risk and a brief review of the basic biology of CDKN2A/B gene products. The main emphasis of this work is an in-depth look at the nuanced roles that CDKN2A/B gene products and related proteins play in the regulation of beta cell mass, proliferation and insulin secretory function, as well as roles in other metabolic tissues. We finish with a synthesis of basic biology and clinical observations, incorporating human physiology data. We conclude that it is likely that the CDKN2A/B locus influences diabetes risk through both islet and non-islet mechanisms.
Collapse
Affiliation(s)
- Yahui Kong
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Rohit B Sharma
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Benjamin U Nwosu
- Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
8
|
Ackermann AM, Wang Z, Schug J, Naji A, Kaestner KH. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol Metab 2016; 5:233-244. [PMID: 26977395 PMCID: PMC4770267 DOI: 10.1016/j.molmet.2016.01.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 01/20/2023] Open
Abstract
Objective Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. Methods We sorted human α- and β-cells and performed the “Assay for Transposase-Accessible Chromatin with high throughput sequencing” (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. Results We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The “group specific protein” (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. Conclusions We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion. Defined open chromatin regions in sorted human α- and β-cells using ATAC-seq. Detected type 2 diabetes-associated risk loci in human α- and β-cell open chromatin. Classified human α- and β-cell-specific transcripts using mRNA-seq. Discovered novel human α- and β-cell signature proteins. Identified potential gene regulatory regions by integrating ATAC- and mRNA-seq data.
Collapse
Key Words
- ARX, aristaless related homeobox
- ATAC-seq, Assay for Transposase-Accessible Chromatin with high throughput sequencing
- Alpha cell
- Beta cell
- CHODL, chondrolectin
- ChIP-seq, Chromatin Immunoprecipitation followed by high throughput sequencing
- DAPI, 4′,6-diamidino-2-phenylindole
- DPP4, dipeptidyl-peptidase 4
- Diabetes
- Epigenetics
- FACS, fluorescence-activated cell sorting
- FAIRE-seq, Formaldehyde-Assisted Isolation of Regulatory Elements followed by high throughput sequencing
- GC, group-specific protein
- GCG, glucagon
- GHRL, ghrelin
- IGF2, insulin like growth factor 2
- INS, insulin
- IRX2, iroquois homeobox 2
- Islet
- MAFA, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A
- NEUROD1, neuronal differentiation 1
- Open chromatin
- PP, pancreatic polypeptide
- SNP, single nucleotide polymorphism
- SST, somatostatin
Collapse
Affiliation(s)
- Amanda M Ackermann
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Zhiping Wang
- Institute for Biomedical Informatics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Jonathan Schug
- Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Department of Genetics, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Department of Genetics, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| |
Collapse
|
9
|
Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab 2015; 26:176-84. [PMID: 25744911 DOI: 10.1016/j.tem.2015.01.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies (GWASs) provide an unprecedented opportunity to examine, on a large scale, the association of common genetic variants with complex diseases like type 2 diabetes (T2D) and cardiovascular disease (CVD), thus allowing the identification of new potential disease loci. Using this approach, numerous studies have associated SNPs on chromosome 9p21.3 situated near the cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) locus with the risk for coronary artery disease (CAD) and T2D. However, identifying the function of the nearby gene products (CDKN2A/B and ANRIL) in the pathophysiology of these conditions requires functional genomic studies. We review the current knowledge, from studies using human and mouse models, describing the function of CDKN2A/B gene products, which may mechanistically link the 9p21.3 risk locus with CVD and diabetes.
Collapse
Affiliation(s)
- Sarah Anissa Hannou
- University of Lille, F-59000, Lille, France; Inserm, U1011, F-59000, Lille, France; European Genomic Institute for Diabetes (EGID), FR3508, Lille, France; Institut Pasteur de Lille, F-59019, Lille, France; Centre National de la Recherche Scientifique (CNRS), UMR 8199, Lille, France
| | - Kristiaan Wouters
- Cardiovascular Research Institute Maastricht (CARIM), Department of Internal Medicine, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
| | - Réjane Paumelle
- University of Lille, F-59000, Lille, France; Inserm, U1011, F-59000, Lille, France; European Genomic Institute for Diabetes (EGID), FR3508, Lille, France; Institut Pasteur de Lille, F-59019, Lille, France
| | - Bart Staels
- University of Lille, F-59000, Lille, France; Inserm, U1011, F-59000, Lille, France; European Genomic Institute for Diabetes (EGID), FR3508, Lille, France; Institut Pasteur de Lille, F-59019, Lille, France.
| |
Collapse
|