1
|
Almukainzi M, El-Masry TA, Ibrahim HA, Saad HM, El Zahaby EI, Saleh A, El-Nagar MMF. New insights into the potential cardioprotective effects of telmisartan and nanoformulated extract of Spirulina platensis via regulation of oxidative stress, apoptosis, and autophagy in an experimental model. Front Pharmacol 2024; 15:1380057. [PMID: 38783939 PMCID: PMC11112102 DOI: 10.3389/fphar.2024.1380057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background Cardiotoxicity is one of the limiting side effects of the commonly used anticancer agent cyclophosphamide (Cyclo). Materials and methods The possible protective effects of telmisartan and nanoformulated Spirulina platensis (Sp) methanolic extract against Cyclo-induced cardiotoxicity were examined in this study. Experimental groups of rats were randomly divided into nine groups as control vehicle, control polymer, telmisartan (TEL, 10 mg/kg), free Sp extract (300 mg/kg), nano Sp extract (100 mg/kg), Cyclo (200 mg/kg), TEL + Cyclo, free Sp + Cyclo, and nano Sp + Cyclo. The groups with Cyclo combinations were treated in the same manner as their corresponding ones without Cyclo, with a single dose of Cyclo on day 18. Results The results indicate that Cyclo causes significant cardiotoxicity, manifesting in the form of notable increases of 155.49%, 105.74%, 451.76%, and 826.07% in the serum levels of glutamic oxaloacetic transaminase (SGOT), lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), and cardiac troponin I (cTnI) enzyme activities, respectively, as compared to the control. In addition, the cardiac glutathione (GSH) content and activity of glutathione peroxidase-1 (GPX-1) enzyme decreased by 65.94% and 73.85%, respectively. Treatment with nano Sp extract showed the most prominent restorations of the altered biochemical, histopathological, and immunohistochemical features as compared with those by TEL and free Sp; moreover, reductions of 30.64% and 43.02% in the p-AKT content as well as 60.43% and 75.30% of the endothelial nitric oxide synthase (eNOS) immunoreactivity were detected in the TEL and free Sp treatment groups, respectively. Interestingly, nano Sp boosted the autophagy signal via activation of beclin-1 (36.42% and 153.4%), activation of LC3II (69.13% and 195%), downregulation of p62 expressions (39.68% and 62.45%), and increased gene expressions of paraoxonase-1 (PON-1) (90.3% and 225.9%) compared to the TEL and free Sp treatment groups, respectively. Conclusion The findings suggest the protective efficiency of telmisartan and nano Sp extract against cardiotoxicity via activations of the antioxidant, antiapoptotic, and autophagy signaling pathways.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Tao Y, Yang Y, Zhu F, Wu M, Kong X, Wang P. Serum metabolome profiling, network pharmacology analysis, and experimental validation of Anoectochilus roxburghii in the treatment of carbon tetrachloride-induced liver injury. Biomed Chromatogr 2023; 37:e5706. [PMID: 37491783 DOI: 10.1002/bmc.5706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
Anoectochilus roxburghii (Wall.) Lindl. (AR) has been traditionally used to treat inflammatory diseases, but the specific mechanism underlying its hepatoprotective effect remains unclear. Here, serum metabolomics and network pharmacology were employed to investigate the hepatoprotective mechanism of AR. Thirty male Sprague-Dawley rats were divided into six groups: normal, model, positive, high-dose AR, middle-dose AR, and low-dose AR. The positive group received therapeutic doses of silibinin, whereas the AR-treated groups received different doses of AR extract once daily. After 10 days of intragastric administration, the rats were intraperitoneally injected with a 50% CCl4 olive oil solution (2 mL/kg) to induce liver injury. Serum and liver samples were obtained, and GC-MS was utilized to monitor changes in serum metabolome. The levels of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and hydrooxproline in serum significantly increased in the model group. On the contrary, AR-treated group showed a significant decrease in the levels of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and hydrooxproline. Histopathological observation also revealed that the extent of liver injury was alleviated in the AR-treated group. Fifty differential metabolites were identified, suggesting that AR may prevent liver damage by modulating carbohydrate and amino acid metabolism.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Ying Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Fei Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Mei Wu
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Xiangjun Kong
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Bobrov N, Zagainov V, Zagaynova E, Kuznetsova D. Effect of Hepatic Pathology on Liver Regeneration: The Main Metabolic Mechanisms Causing Impaired Hepatic Regeneration. Int J Mol Sci 2023; 24:ijms24119112. [PMID: 37298064 DOI: 10.3390/ijms24119112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Liver regeneration has been studied for many decades, and the mechanisms underlying regeneration of normal liver following resection are well described. However, no less relevant is the study of mechanisms that disrupt the process of liver regeneration. First of all, a violation of liver regeneration can occur in the presence of concomitant hepatic pathology, which is a key factor reducing the liver's regenerative potential. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or to directly stimulate liver regeneration. This review describes the known mechanisms of normal liver regeneration and factors that reduce its regenerative potential, primarily at the level of hepatocyte metabolism, in the presence of concomitant hepatic pathology. We also briefly discuss promising strategies for stimulating liver regeneration and those concerning methods for assessing the regenerative potential of the liver, especially intraoperatively.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Artem Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Nikolai Bobrov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, Delovaya St., 11/1, 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Huang X, Chu X, Tian Y, Xue Y, Zhang L, Li J, Hou H, Dong P, Wang J. Preventive effect of salmon sperm DNA on acute carbon tetrachloride-induced liver injury in mice through Nrf2/ARE and mitochondrial apoptosis pathway. Food Sci Nutr 2023; 11:733-742. [PMID: 36789059 PMCID: PMC9922120 DOI: 10.1002/fsn3.3109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/14/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Liver injury refers to the damage of liver function, which will seriously harm the body's health if it is not prevented and treated in time. Sporadic researches have reported that ingestion of DNA has a hepatoprotective effect, but its effect and mechanism were not clarified. The purpose of this study was to explore the preventive effect and mechanism of salmon sperm DNA on acute liver injury in mice induced by carbon tetrachloride (CCl4). Six-week-old ICR (Institute of Cancer Research) male mice were used to establish a liver injury model by injecting with 4% CCl4, silymarin, and three different concentrations of DNA solutions were given to mice by gavage for 14 days. The histological and pathological changes in the liver were observed. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and the levels of oxidative and antioxidant markers such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) in liver tissue were determined. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA), and hepatic oxidative stress and apoptosis-related markers were determined by western blotting. The results showed that compared with the model group, the DNA test group significantly improved the liver pathological changes and the level of liver function, regulated liver oxidative stress, reduced hepatocyte apoptosis, and decreased the levels of inflammatory factors such as TNF-α and IL-6. Compared with the silymarin group, the high dose of DNA was even more effective in preventing liver injury. In conclusion, salmon sperm DNA has a potential protective effect against acute liver injury induced by CCl4, which is achieved by regulating the Nrf2/ARE (nuclear factor erythroid 2 (NF-E2)-related factor 2/antioxidant responsive element) oxidative stress pathway and mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Xinyi Huang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Xu Chu
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Yingying Tian
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Yuhan Xue
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Lei Zhang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Jing Li
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Hu Hou
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Ping Dong
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Jingfeng Wang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| |
Collapse
|
5
|
Rahmani S, Naraki K, Roohbakhsh A, Hayes AW, Karimi G. The protective effects of rutin on the liver, kidneys, and heart by counteracting organ toxicity caused by synthetic and natural compounds. Food Sci Nutr 2023; 11:39-56. [PMID: 36655104 PMCID: PMC9834893 DOI: 10.1002/fsn3.3041] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023] Open
Abstract
Rutin is a flavonoid present in many plant species. Because of its antioxidant, anti-inflammatory, and antiapoptotic properties, rutin is of interest for its potential protective effects against toxic agents. The hepatoprotective, renoprotective, and cardioprotective effects of rutin are reviewed. The antioxidant effects of rutin are elicited by enhancing antioxidant enzymes such as GST, GGT, CAT, GPx, SOD, and GR, activating the Nrf2/HO-1 pathway, elevating GSH content, and the reduction in MDA. The anti-inflammatory effects of rutin are mediated by the inhibition of IL-1β, IL-6, TGF-β1, COX-2, iNOS, TLR4, and XO. Rutin exerted its antiapoptotic effects by inhibition of free radicals, caspase-3/-7/-9, hsp70, HMGB1, and p53, and the elevation of the antiapoptotic protein Bcl-2. Rutin has potential therapeutic effectiveness against several toxicants, and its beneficial effects are more than likely mediated by its antioxidant, anti-inflammatory, and/or antiapoptotic property.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Karim Naraki
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| | - A. Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public HealthUniversity of South FloridaTampaFloridaUSA
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMichiganUSA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
6
|
Alipour M, Hajipour-Verdom B, Javan M, Abdolmaleki P. Static and Electromagnetic Fields Differently Affect Proliferation and Cell Death Through Acid Enhancement of ROS Generation in Mesenchymal Stem Cells. Radiat Res 2022; 198:384-395. [PMID: 35867630 DOI: 10.1667/rade-21-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Magnetic fields remotely influence cellular homeostasis as a physical agent through the changes in cell physicochemical reactions. Magnetic fields affect cell fate, which may provide an important and interesting challenge in stem cell behaviors. Here, we investigated the effects of the static magnetic field (SMF, 20 mT) and electromagnetic field (EMF, 20 mT-50 Hz) on reactive oxygen species (ROS) production and the acidic pH conditions as stimuli to change cell cycle progression and cell death in mesenchymal stem cells. Results show that SMF, EMF, and their simultaneous (SMF+EMF) administration increase ROS and expression of nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2), and glutathione-S-transferase (GST) as an antioxidant defense system. Besides, intracellular pH (pHi) decreases in presence of either EMF or SMF+EMF, but not SMF. Decreased ROS content using ascorbic acid in these treatments leads to increased pH compared to the magnetic field treatments alone. Furthermore, each magnetic field has different effects on the cellular process of stem cells, including cell cycle, apoptosis and necrosis. Moreover, treatment by SMF enhances the cell viability after 24 h, while EMF or SMF+EMF decreases it. These observations indicate that fluctuations of ROS generation and acid enhancement during SMF and EMF treatments may reveal their beneficial and adverse effects on the molecular and cellular mechanisms involved in the growth, death, and differentiation of stem cells.
Collapse
Affiliation(s)
| | | | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | | |
Collapse
|
7
|
Nwaechefu OO, Olaolu TD, Akinwunmi IR, Ojezele OO, Olorunsogo OO. Cajanus cajan ameliorated CCl 4-induced oxidative stress in Wistar rats via the combined mechanisms of anti-inflammation and mitochondrial-membrane transition pore inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:114920. [PMID: 35032580 DOI: 10.1016/j.jep.2021.114920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver diseases is a public health issue in sub-saharan Africa and has been reported to be the major cause of many hospital admissions. Oxidative stress, mitochondrial dysfunction and inflammation play important roles in several diseases including liver injury. Cajanus cajan is an indigenous medicinal plant useful in the traditional treatment of jaundice, inflammation and liver injury. AIM OF STUDY This study assessed the effects of methanol extract Cajanus cajan (MECC) on mitochondrial permeability transition (mPT) pore opening, biomarkers of oxidative stress and inflammation in CCl4-induced liver injury in rats. METHODS Wistar albino rats (200-210g) were completely randomized into five (5) groups of six animals each. Group I (control) was given distilled water orally once daily. Animals in group II were administered CCl4 in parafin (1:1) at a dose of 0.5 mL/kg i.p on the seventh day. Animals in groups III, IV and V were administered methanol extract of Cajanus cajan (MECC) at doses of 100, 200 mg/kg and silymarin (100 mg/kg) respectively for 7 days prior to a single intraperitoneal dose of CCl4. After 24 h of CCl4 treatment, serum and liver tissues were collected. Mitochondrial permeability transition (mPT) pore opening, mitochondrial ATPase activities and biomarkers of oxidative stress were determined spectrophotometrically. Tumor necrosis factor (TNFα), NF-κB and COX-2 were determined by immunohistochemistry and the phytochemicals present in the extract were determined by GC-MS. RESULTS Liver enzyme (AST, ALP, ALT and γGT) activities and MDA levels were significantly decreased in rats pretreated with MECC at the dose of 100, 200 and silymarin (100 mg/kg) when compared to the rats administered CCl4 alone (p < 0.05). GSH, GST, CAT and SOD increased and the expressions of TNFα, NF-κB and COX- 2 were also reduced when compared to the CCl4- treated animals. In addition, the liver histopathological analyses revealed that MECC markedly alleviated inflammatory cell infiltration, hepatic fibrosis, hepatocyte ballooning, necrosis and severe apoptosis of hepatocytes induced by CCl4. GC-MS analysis yielded 23 compounds including flavonoids, terpenoids and fatty acids. CONCLUSION Cajanus cajan leaf extract elicited hepatoprotective action on CCl4-induced liver injury via inhibition of mPT pore opening, prevention of CCl4-induced hepatic oxidative stress and suppression of inflammatory response thus it may become useful for chemoprevention of liver injury. This supports its traditional use.
Collapse
Affiliation(s)
- Olajumoke Olufunlayo Nwaechefu
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria; Department of Biochemistry, Lead City University, Ibadan, Nigeria.
| | - Tomilola Debby Olaolu
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria; Department of Biochemistry, Landmark University, Omu-aran, Nigeria
| | - Ifeoluwa Racheal Akinwunmi
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria; Department of Biochemistry, University of Lagos, Nigeria
| | - Omotunde Oluwaseyi Ojezele
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
8
|
Omage SO, Orhue NE, Omage K. Dennettia tripetala Relieves Chronic Hepatorenal Injuries in Rats by Altering fas, sod-1, and tnf-α Expression. Prev Nutr Food Sci 2022; 27:89-98. [PMID: 35465114 PMCID: PMC9007709 DOI: 10.3746/pnf.2022.27.1.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/03/2022] Open
Abstract
The effectiveness of Dennettia tripetala extracts was compared to that of the standard drug, silymarin, in reducing chronic liver and kidney anomalies. Male albino Wistar rats were grouped in tens. Carbon tetrachloride was dissolved in olive oil (1:4) and administered to specific groups at a dose of 3 mL/kg body weight (bw) twice a week for six weeks. From week five, the extracts and silymarin were administered in distilled water daily for two weeks at doses of 250 mg/kg bw and 6 mg/kg bw, respectively, to specific groups. All administrations were carried out using a gavage, with appropriate controls. These results showed that the plant extracts decreased the serum activity of liver marker enzymes, restored the liver and serum lipid profiles as well as serum protein profile, reduced serum, urea, and creatinine, and restored superoxide dismutase and catalase activities in the liver and kidneys, which carbon tetrachloride had altered. The extracts also decreased steatosis and centriole congestion in the liver as well as necrosis and structural damage in the kidneys, which carbon tetrachloride caused, and the extracts proved to be as potent as silymarin. The extracts also decreased the expression of fas (P<0.05), sod-1 (P<0.05), and tnf-α (P>0.05) in the liver, which carbon tetrachloride had increased. Conclusively, D. tripetala reduced chronic liver and kidney damage induced by carbon tetrachloride; it reduced the expression of fas, sod-1, and tnf-α in the liver to levels similar to that of the control group, and it was as effective as silymarin.
Collapse
Affiliation(s)
- Sylvia Oghogho Omage
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin 300213, Nigeria
| | - Noghayin E.J. Orhue
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin 300213, Nigeria
| | - Kingsley Omage
- Department of Biochemistry, College of Health Sciences, School of Basic Medical Sciences, Igbinedion University Okada, Benin 300251, Nigeria
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen 72076, Germany
| |
Collapse
|
9
|
Mohammed CJ, Lamichhane S, Connolly JA, Soehnlen SM, Khalaf FK, Malhotra D, Haller ST, Isailovic D, Kennedy DJ. A PON for All Seasons: Comparing Paraoxonase Enzyme Substrates, Activity and Action including the Role of PON3 in Health and Disease. Antioxidants (Basel) 2022; 11:antiox11030590. [PMID: 35326240 PMCID: PMC8945423 DOI: 10.3390/antiox11030590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
Abstract
Paraoxonases (PONs) are a family of hydrolytic enzymes consisting of three members, PON1, PON2, and PON3, located on human chromosome 7. Identifying the physiological substrates of these enzymes is necessary for the elucidation of their biological roles and to establish their applications in the biomedical field. PON substrates are classified as organophosphates, aryl esters, and lactones based on their structure. While the established native physiological activity of PONs is its lactonase activity, the enzymes’ exact physiological substrates continue to be elucidated. All three PONs have antioxidant potential and play an important anti-atherosclerotic role in several diseases including cardiovascular diseases. PON3 is the last member of the family to be discovered and is also the least studied of the three genes. Unlike the other isoforms that have been reviewed extensively, there is a paucity of knowledge regarding PON3. Thus, the current review focuses on PON3 and summarizes the PON substrates, specific activities, kinetic parameters, and their association with cardiovascular as well as other diseases such as HIV and cancer.
Collapse
Affiliation(s)
- Chrysan J. Mohammed
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Sabitri Lamichhane
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (S.L.); (D.I.)
| | - Jacob A. Connolly
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Sophia M. Soehnlen
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Fatimah K. Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
- Department of Clinical Pharmacy, College of Pharmacy, University of Alkafeel, Najaf 61001, Iraq
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (S.L.); (D.I.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
- Correspondence: ; Tel.: +1-419-383-6822
| |
Collapse
|
10
|
Aramjoo H, Mohammadparast-Tabas P, Farkhondeh T, Zardast M, Makhdoumi M, Samarghandian S, Kiani Z. Protective effect of Sophora pachycarpa seed extract on carbon tetrachloride-induced toxicity in rats. BMC Complement Med Ther 2022; 22:76. [PMID: 35300676 PMCID: PMC8932233 DOI: 10.1186/s12906-022-03554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to investigate the protective effect of the Sophora pachycarpa (S. pachycarpa) seed extract against carbon tetrachloride-induced toxicity on body organs, blood, and biochemical factors. In this investigation, 40 male Wistar rats weighing 200–250 g were randomly divided into 5 groups: group I was used as control, group II received carbon tetrachloride (CCl4) (IP, 1 mL/kg) on day 21, group III and group IV received S. pachycarpa seed extract at doses of 150 mg/kg and 300 mg/kg, respectively for 21 days by oral gavage and CCl4 on day 21, group V received silymarin (300 mg/kg) for 21 days by oral gavage and CCl4 on day 21. CCl4 showed an increase of serum renal and hepatic markers creatinine, urea, blood urea nitrogen (BUN), and uric acid, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Also, it significantly increased MDA level, and decreased CAT, FRAP, GSH, and SOD in the liver and kidney tissues. These changes and also hematological and histopathological alterations were significantly ameliorated by S. pachycarpa seed extract before CCl4 administration. In conclusion, the data obtained in our investigation confirm the protective effect of S. pachycarpa against acute exposure to CCl4-induced organ toxicity in rats.
Collapse
Affiliation(s)
- Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.,Department of Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Zardast
- Department of Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Marzieh Makhdoumi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zahra Kiani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran. .,Department of Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
11
|
Zargar S, Wani TA. Protective Role of Quercetin in Carbon Tetrachloride Induced Toxicity in Rat Brain: Biochemical, Spectrophotometric Assays and Computational Approach. Molecules 2021; 26:molecules26247526. [PMID: 34946608 PMCID: PMC8709345 DOI: 10.3390/molecules26247526] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Carbon tetrachloride (CCL4) induces oxidative stress by free radical toxicities, inflammation, and neurotoxicity. Quercetin (Q), on the other hand, has a role as anti-inflammatory, antioxidant, antibacterial, and free radical-scavenging. This study explored protection given by quercetin against CCL4 induced neurotoxicity in rats at given concentrations. Male Wistar rats were divided into four groups Group C: control group; Group CCL4: given a single oral dose of 1 mL/kg bw CCL4; Group Q: given a single i.p injection of 100 mg/kg bw quercetin; and Group Q + CCL4: given a single i.p injection of 100 mg/kg bw quercetin before two hours of a single oral dose of 1 mL/kg bw CCL4. The results from brain-to-body weight ratio, morphology, lipid peroxidation, brain urea, ascorbic acid, reduced glutathione, sodium, and enzyme alterations (aspartate aminotransferase (AST), alanine aminotransferase (ALT), catalase, and superoxide dismutase) suggested alterations by CCL4 and a significant reversal of these parameters by quercetin. In silico analysis of quercetin with various proteins was conducted to understand the molecular mechanism of its protection. The results identified by BzScore4 D showed moderate binding between quercetin and the following receptors: glucocorticoids, estrogen beta, and androgens and weak binding between quercetin and the following proteins: estrogen alpha, Peroxisome proliferator-activated receptors (PPARγ), Herg k+ channel, Liver x, mineralocorticoid, progesterone, Thyroid α, and Thyroid β. Three-dimensional/four-dimensional visualization of binding modes of quercetin with glucocorticoids, estrogen beta, and androgen receptors was performed. Based on the results, a possible mechanism is hypothesized for quercetin protection against CCL4 toxicity in the rat brain.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence:
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
12
|
Dehpour AR, Yousefi-Manesh H, Sheibani M, Sadeghi MA, Hemmati S, Noori T, Shirooie S. Evaluation of Anti-inflammatory and Antioxidant Effects of Sumatriptan on Carbon Tetrachloride-induced Hepatotoxicity in Rats. Drug Res (Stuttg) 2021; 72:41-46. [PMID: 34500479 DOI: 10.1055/a-1589-5395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The liver detoxifies and metabolizes many drugs and xenobiotics which may cause hepatotoxicity due to some toxic agents. Carbon tetrachloride (CCl4) is metabolized in cytochrome P450 and its reactive radical metabolites cause lipid peroxidation, cellular injury, and apoptosis. Sumatriptan (SUM), 5-HT1B/1D receptor agonist, had anti-inflammatory and anti-oxidant effects. In this research the effect of SUM pre-treatment against CCl4-induced hepatotoxicity was examined. Adult rats received SUM (0.1, 0.3 and 1 mg/kg; i.p.) for 3 consecutive days before CCl4 (2 ml/kg; i.p. on the 3rd day). The aminotransferases serum levels, tissue levels of anti-oxidant and pro-inflammatory markers and histopathological examination were evaluated. SUM (0.3 mg/kg) prevented significantly the elevation of aminotransferases versus the control group (CCl4 group) (P<0.0001) and also, reversed meaningfully the changes of the MPO, MDA, SOD and CAT, IL-1β and TNF-α levels. Additionally, CCl4-intoxication resulted to the disruption of lobular and cellular structures and inflammation in histopathological evaluation which is prevented by SUM (0.3 mg/kg). These data revealed that SUM (0.3 mg/kg), but no at doses 0.1 and 1 mg/kg, decreases the hepatotoxicity of induced by CCl4 in rats.
Collapse
Affiliation(s)
- Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Sadeghi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Hemmati
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Ibrahim KA, Eleyan M, Khwanes SA, Mohamed RA, Abd El-Rahman HA. Quercetin ameliorates the hepatic apoptosis of foetal rats induced by in utero exposure to fenitrothion via the transcriptional regulation of paraoxonase-1 and apoptosis-related genes. Biomarkers 2021; 26:152-162. [PMID: 33439051 DOI: 10.1080/1354750x.2021.1875505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & PURPOSE Exposure to organophosphorus during different phases of pregnancy induces many adverse impacts on the developing foetuses due to their immature detoxification system. We have estimated the potential amelioration role of quercetin against hepatic injury-induced apoptosis in rat foetuses following gestational exposure to fenitrothion and probable involvement of paraoxonase-1. METHODS Forty pregnant rats were allocated into four groups; the first one kept as control, the second intubated with quercetin (100 mg/kg), the third orally administrated fenitrothion (4.62 mg/kg) and the last group received quercetin two hours before fenitrothion intoxication. RESULTS Fenitrothion significantly elevated the foetal hepatic levels of thiobarbituric acid reactive substances, protein carbonyl, and nitric oxide, but it reduced the enzymatic activities of glutathione-S-transferase, superoxide dismutase, catalase, and acetylcholinesterase. Furthermore, fenitrothion provoked many histopathological changes in the foetal liver and markedly up-regulated the mRNA gene expression of p53, caspase-9 along with elevation in the immunoreactivity of Bax and caspase-3, but it down-regulated the expression level of paraoxonase-1. Remarkably, quercetin co-treatment successfully ameliorated the hepatic oxidative injury and apoptosis prompted by fenitrothion. CONCLUSIONS Dietary supplements with quercetin can be used to reduce the risk from organophosphorus exposure probably through paraoxonase-1 up-regulation and enhancement of the cellular antioxidant system.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mohammed Eleyan
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, Palestine
| | - Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | | |
Collapse
|
14
|
Pan S, Wang L, Xin J. Combining 18F-FDG PET and Gd-EOB-DTPA-enhanced MRI for staging liver fibrosis. Life Sci 2021; 269:119086. [PMID: 33476634 DOI: 10.1016/j.lfs.2021.119086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
AIM To evaluate the diagnostic performance of combining 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (18F-FDG PET) and gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for liver fibrosis staging. MATERIALS AND METHODS Male New Zealand white rabbits (n = 48) were treated with carbon tetrachloride (CCl4) to induce liver fibrosis, while control group rabbits (n = 8) received normal saline. The liver tissues of rabbits were histopathologically examined (classified according to the METAVIR classification system) for liver fibrosis staging and real-time polymerase chain reaction (RT-PCR) was used to ensure diagnostic accuracy. Integrated PET/MRI was performed. The mean standardised uptake value (SUVmean) and relative enhancement (RE) were evaluated for different liver fibrosis stages using a Mann-Whitney U test. The performance of PET/MRI was evaluated by using the receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC). KEY FINDINGS In total, 10, 16, and 8 rabbits classified into no fibrosis (F0), mild fibrosis (F1-2), and severe fibrosis (F3-4) categories, respectively. There were significant differences in SUVmean and RE between F0 and F3-4 and between F1-2 and F3-4 (p < 0.01), but no significance between F0 and F1-2 (p > 0.5). Combined SUVmean and RE performed well in staging liver fibrosis, with AUC of 0.8 for F0 or greater, 0.744 for F0 or F1-2, 0.945 for F1-2 or F3-4, and 0.962 for F3-4. SIGNIFICANCE Combining SUVmean and RE provides high accuracy for grading liver fibrosis, especially in the differentiation between F1-2 and F3-4. 18F-FDG and Gd-EOB-DTPA-enhanced PET/MRI could be a non-invasive diagnostic method to guide the selection of clinical treatment options.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lu Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Xin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
15
|
Khodarahmi A, Javidmehr D, Eshaghian A, Ghoreshi ZAS, Karimollah A, Yousefi H, Moradi A. Curcumin exerts hepatoprotection via overexpression of Paraoxonase-1 and its regulatory genes in rats undergone bile duct ligation. J Basic Clin Physiol Pharmacol 2020; 32:969-977. [PMID: 34592082 DOI: 10.1515/jbcpp-2020-0067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Curcumin is described as an antioxidant, hepato-protective and antifibrotic in liver fibrosis, although its mechanism is still not known. One of the models of the chronic liver disease stemming from oxidative stress and the generation of free radical has been considered to be bile duct ligation (BDL). Paraoxonase 1 (PON1) is a prominent antioxidant enzyme. Therefore, the objective of the present research is to assess the effects of curcumin on upregulation of PON1 in BDL rats. METHODS As predicted, the rats have been divided into the four groups of Sham, Sham + Cur (curcumin), BDL and BDL + Cur. We evaluated the efficacy of curcumin (100 mg/kg/day) on protein and gene expression of PON1 and regulatory genes contributed to the gene expression PON1 such as Sp1, PKCα, SREBP-2, AhR, JNK and regulation PON1 activity gene expression of Apo A1. RESULTS Curcumin attenuated alterations in liver histology, hepatic enzymes and the mRNA expression of fibrotic markers (p<0.05). In addition, curcumin increased significantly mRNA, protein expression of PON1 and mRNA of the genes that are contributed to the expression of PON1 such as Sp1, PKCα, SREBP-2, AhR, JNK and increased PON1 activity through upregulation of Apo A1 (p<0.05). CONCLUSIONS Cirrhosis progression may be inhibited by treatment with curcumin through the increased influence the expression and activity of PON1.
Collapse
Affiliation(s)
- Ameneh Khodarahmi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Davoud Javidmehr
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Azam Eshaghian
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Zohreh-Al-Sadat Ghoreshi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Alireza Karimollah
- Department of Pharmacology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamidreza Yousefi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Moradi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
16
|
Ibrahim KA, Abdelgaid HA, El-Desouky MA, Fahmi AA, Abdel-Daim MM. Modulation of Paraoxonase-1 and Apoptotic Gene Expression Involves in the Cardioprotective Role of Flaxseed Following Gestational Exposure to Diesel Exhaust Particles and/or Fenitrothion Insecticide. Cardiovasc Toxicol 2020; 20:604-617. [PMID: 32572764 DOI: 10.1007/s12012-020-09585-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The developmental exposure to a single chemical may elicit apoptosis in the different fetal organs, while the combined effects are restricted. We have examined the protective role of flaxseed (FS) against diesel exhaust particles (DEPs)- and/or fenitrothion (FNT)-induced fetal cardiac oxidative stress and apoptosis. A total of 48 timed pregnant rats were divided into eight groups (n = 6). The first group was saved as the control and the second fed on 20% FS diet. Animals in the third, fourth, and fifth groups were administered with DEPs (2.0 mg/kg), FNT (3.76 mg/kg), and their combination, respectively, while the sixth, seventh, and eighth groups were supplemented with 20% FS through intoxication with DEPs, FNT, and their combination, respectively. Our results revealed that DEPs and/or FNT significantly elevated the level of protein carbonyl and superoxide dismutase activity in the fetal cardiac tissues. However, the catalase activity and total thiol level were decreased; besides the histopathological alterations were remarked. Moreover, DEPs and/or FNT exhibited significant down-regulation in the anti-apoptotic (Bcl-2) and paraoxonase-1 gene expression, and up-regulation in the apoptotic (Bax and caspase-3) gene expression along with DNA fragmentation. Remarkably, FS supplementation significantly ameliorated the fetal cardiac oxidative injury, down-regulated the expression of the apoptotic genes, up-regulated the anti-apoptotic and paraoxonase-1 gene expression, reduced DNA fragmentation, and alleviated the myocardial cell architectures. These findings revealed that FS attenuates DEPs- and/or FNT-induced apoptotic cell death by repairing the disturbance in the anti-apoptotic/pro-apoptotic gene balance toward cell survival in the fetal myocardial cells.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt.
| | - Hala A Abdelgaid
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | | | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
17
|
Wang Y, Jiang W, Dong Q, Zhao Y, Chen Y, Sun C, Sun G. Fetal exposure to dichloroacetic acid and impaired cognitive function in the adulthood. Brain Behav 2020; 10:e01801. [PMID: 32841551 PMCID: PMC7559617 DOI: 10.1002/brb3.1801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/22/2020] [Accepted: 07/28/2020] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Dichloroacetic acid (DCA), a by-product of disinfection in drinking water, is a multiple organ carcinogen in humans and animals. Still, little research on its neurotoxicity and its underlying mechanism has not been elucidated. METHODS Sprague Dawley rats were intragastrically treated with DCA at 10, 30, 90 mg/kg body weight from pregnancy till delivery. At eight weeks of age of pups, we assessed cognitive performance using the standard behavioral tests. And the hippocampus structure and ultrastructure were evaluated using light and electron microscope. The oxidative stress indicators and neuroinflammation factors were measured with the corresponding kits. The mRNA and protein of synaptic factors were detected using RT-PCR and Western blot. RESULTS The results indicated that maternal weight gain and offspring birthweight were not significantly affected by DCA. However, behavioral tests, including morris water maze and step down, showed varying degrees of changes in DCA-treated pups. Additionally, we found significant differences in hippocampal neurons by histomorphological observation. Biochemical analysis results indicated superoxide dismutase (SOD) and catalase (CAT) activities, as well as reactive oxygen species (ROS), nitric oxide (NO), and reduced glutathione (GSH) levels, were affected by DCA accompanying with DNA damage. Moreover, the results showed that the neuroinflammation factors (TNF-α, IL-6, IL-1β) in DCA treatment groups increased significantly compared with the control pups. And we also found that DCA treatment caused a differential modulation of proteins (BDNF, cAMP-response element-binding protein1 (CREB1), p-CREB1, postsynaptic density-95 (PSD-95), synapsin I, p-synapsin I), and mRNA (BDNF, PSD-95). CONCLUSIONS Taken together, these results above showed that oxidative stress, neuroinflammation response, and weakened synaptic plasticity in pups hippocampus induced by fetal exposure to DCA could damage the function of memory and cognition in the adulthood.
Collapse
Affiliation(s)
- Yue Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Qiuying Dong
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Yue Zhao
- Department of Experimental Center, The First Hospital of Harbin City, Harbin, P. R. China
| | - Yingying Chen
- The first Psychiatric Hospital of Harbin, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Guoli Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, P. R. China.,Department of Experimental Center, The First Hospital of Harbin City, Harbin, P. R. China
| |
Collapse
|
18
|
Özkoç M, Karimkhani H, Kanbak G, Burukoğlu Dönmez D. Hepatotoxicity and nephrotoxicity following long-term prenatal exposure of paracetamol in the neonatal rat: is betaine protective? TURKISH JOURNAL OF BIOCHEMISTRY 2020; 45:99-107. [DOI: 10.1515/tjb-2018-0307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Abstract
Background
Paracetamol is one of the widely used antipyretic and analgesic drug around the world. Many researchers showed that paracetamol caused to hepatotoxicity or nephrotoxicity.
Objective
In the present study, we aimed to determine whether betaine has protective effects on hepatotoxicity and nephrotoxicity in neonate rats, following to long term maternal paracetamol exposure.
Materials and methods
Randomly chosen neonates, from the neonate pools, were divided into three groups; Control (n=13), APAP (n=13), and APAP+Betaine (n=13). Physiological saline, paracetamol (30 mg/kg/day), and paracetamol (30 mg/kg/day)+betaine (800 mg/kg/day) were orally administered to the relevant groups during the pregnancy period (approximately 21 day). Following to the birth, neonates were decapitated under anaesthesia and tissue samples were taken for biochemical and histological analyses.
Results
The statistical analysis showed that, malondialdehyde and nitric oxide levels increase significantly in APAP group, while paraoxonase, arylesterase activity and glutathione levels decrease. After the betaine administration, glutathione levels, paraoxonase and arylesterase activities increased while malondialdehyde and nitric oxide levels decreased in APAP+betaine group. These biochemical findings also were supported by histological results.
Conclusion
In this study, our biochemical and histological findings indicate that betaine can protect the tissue injury caused by paracetamol.
Collapse
Affiliation(s)
- Mete Özkoç
- Department of Biochemistry, Faculty of Medicine , Eskişehir Osmangazi University , Eskişehir 26480 , Turkey
| | - Hadi Karimkhani
- Department of Biochemistry, Faculty of Medicine , Eskişehir Osmangazi University , Eskişehir , Turkey
| | - Güngör Kanbak
- Department of Biochemistry, Faculty of Medicine , Istanbul Okan University , Istanbul , Turkey
| | - Dilek Burukoğlu Dönmez
- Department of Histology and Embryology, Faculty of Medicine , Eskişehir Osmangazi University , Eskişehir , Turkey
| |
Collapse
|
19
|
Ibrahim KA, Khwanes SA, El-Desouky MA, Elhakim HKA. Propolis relieves the cardiotoxicity of chlorpyrifos in diabetic rats via alleviations of paraoxonase-1 and xanthine oxidase genes expression. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:127-135. [PMID: 31400774 DOI: 10.1016/j.pestbp.2019.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Pesticides cardiotoxicity in case of diabetic-induced cardiac complications is unidentified. The probable amelioration role of propolis is gauged against the cardiotoxic effects of chlorpyrifos in the diabetic rats through paraoxonase-1 (PON1) and xanthine oxidase (XO) genes dysregulation. Fifty-six male rats were distributed (n = 7) into eight groups. The first one saved as control whereas the 2nd, 3rd, and 4th were kept for propolis aqueous extract (100 mg/kg), diabetes (60 mg/kg streptozotocin) and chlorpyrifos (2.5 mg/kg), respectively. The 5th was diabetes/chlorpyrifos combination, while 6th, 7th, and 8th were intubated with propolis for four weeks after diabetic induction, chlorpyrifos intoxication, and their combination, respectively. The plasma glucose, lipid profiles, cardiac enzymes and interleukin-6 (IL-6) significantly elevated, while insulin decreased in the diabetic and combination groups. Although the cardiac acetylcholinesterase, total thiols, and PON1 significantly reduced after diabetic and/or chlorpyrifos gavage, the protein carbonyl, superoxide dismutase, catalase, and XO significantly elevated. The mRNA genes expression of PON1 and XO have also confirmed the enzymatic activities. Interestingly, propolis significantly restored the hyperglycemia, hypoinsulinemia, hyperlipidemia, IL-6 elevations, and antioxidant defense system disorder. These records revealed that the immunomodulatory, anti-diabetic and antioxidant tasks are fine pointers for the cardiovascular defender of propolis especially during diabetes and/or pesticides exposure.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt.
| | - Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | | | - Heba K A Elhakim
- Biochemistry Division, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
20
|
Lin SY, Dan X, Du XX, Ran CL, Lu X, Ren SJ, Tang ZT, Yin LZ, He CL, Yuan ZX, Fu HL, Zhao XL, Shu G. Protective Effects of Salidroside against Carbon Tetrachloride (CCl 4)-Induced Liver Injury by Initiating Mitochondria to Resist Oxidative Stress in Mice. Int J Mol Sci 2019; 20:E3187. [PMID: 31261843 PMCID: PMC6651463 DOI: 10.3390/ijms20133187] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
The antioxidant effect of salidroside has been proven, but its role in liver injury is poorly understood. In this study, we aimed to evaluate the protective effects and mechanism of salidroside on liver injury induced by carbon tetrachloride (CCl4) in vivo. Mice were pretreated with salidroside (60 mg/kg, intraperitoneally injected, i.p.) once per day for 14 consecutive days and then administered with CCl4 (15.95 g/kg, i.p.) for 24 h to produce a liver injury model. Salidroside attenuated hepatic transaminase elevation in serum and ameliorated liver steatosis and necrosis, thereby suggesting its protective effect on the liver. Salidroside antagonized CCl4-induced toxicity by equilibrating antioxidation system, thereby inhibiting reactive oxygen species accumulation, and restoring mitochondrial structure and function. Salidroside exerts antioxidant and liver-protective effects by selectively inhibiting the activation of genes, including growth arrest and DNA -damage-inducible 45 α (Gadd45a), mitogen-activated protein kinase 7 (Mapk7), and related RAS viral oncogene homolog 2 (Rras2), which induce oxidative stress in the mitogen-activated protein kinase pathway. These results revealed that salidroside can protect the liver from CCl4-induced injury by resisting oxidative stress and protecting mitochondrial function.
Collapse
Affiliation(s)
- Shi-Yu Lin
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Dan
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Xia-Xia Du
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Chong-Lin Ran
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Lu
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Shao-Jun Ren
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Zi-Ting Tang
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Li-Zi Yin
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Chang-Liang He
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xiang Yuan
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Hua-Lin Fu
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Ling Zhao
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Shu
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
21
|
Elsawy H, Badr GM, Sedky A, Abdallah BM, Alzahrani AM, Abdel-Moneim AM. Rutin ameliorates carbon tetrachloride (CCl 4)-induced hepatorenal toxicity and hypogonadism in male rats. PeerJ 2019; 7:e7011. [PMID: 31179192 PMCID: PMC6545103 DOI: 10.7717/peerj.7011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Rutin, a food derived-polyphenolic bioflavonoid, has been acknowledged for several health benefits. This study aims to explore the ameliorative effects of rutin against carbon tetrachloride (CCl4) toxicity in male rats. Adult male rats were given either CCl4 (30% in olive oil, 3 ml/kg b.w. intraperitoneally) alone or in combination with rutin (70 mg/kg intragastrically) twice a week for 4 weeks. Our data showed that rutin mitigated CCl4 hepatorenal damage, as indicated by diagnostic markers (i.e., transaminases, alkaline phosphatase, total bilirubin, total protein, albumin, urea, uric acid and creatinine), and histopathological findings. In addition, CCl4 induced profound elevation of free radical generation and oxidative stress, as evidenced by increasing lipid peroxidation and reducing catalase, superoxide dismutase and glutathione peroxidase activities in liver, kidney and testicular tissues; these effects were suppressed by coexposure with rutin. Moreover, the increase in the levels of serum triglycerides, cholesterol, low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol induced by CCl4 was effectively counteracted by rutin. The decrease in the level of high-density lipoprotein cholesterol in the CCl4 group was also counteracted by rutin treatment. Interestingly, the decreased levels of hormonal mediators associated with sperm production, including serum testosterone, luteinizing hormone and follicle-stimulating hormone, and the impaired sperm quality induced by CCl4 were reversed by rutin. Data from the current study clearly demonstrated that rutin supplementation could at least partly overcome CCl4-induced hepatotoxicity, nephrotoxicity and reproductive toxicity by antioxidant and antidyslipidemic effects.
Collapse
Affiliation(s)
- Hany Elsawy
- Department of Chemistry, Faculty of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Gehan M. Badr
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Azza Sedky
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Basem M. Abdallah
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Abdullah M. Alzahrani
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ashraf M. Abdel-Moneim
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Levy D, Reichert CO, Bydlowski SP. Paraoxonases Activities and Polymorphisms in Elderly and Old-Age Diseases: An Overview. Antioxidants (Basel) 2019; 8:antiox8050118. [PMID: 31052559 PMCID: PMC6562914 DOI: 10.3390/antiox8050118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the accumulation of progressive organ dysfunction. There is much evidence linking the involvement of oxidative stress in the pathogenesis of aging. With increasing age, susceptibility to the development of diseases related to lipid peroxidation and tissue injury increases, due to chronic inflammatory processes, and production of reactive oxygen species (ROS) and free radicals. The paraoxonase (PON) gene family is composed of three members (PON1, PON2, PON3) that share considerable structural homology and are located adjacently on chromosome 7 in humans. The most studied member product is PON1, a protein associated with high-density lipoprotein with paraoxonase/esterase activity. Nevertheless, all the three proteins prevent oxidative stress. The major aim of this review is to highlight the importance of the role of PON enzymes in the aging process, and in the development of the main diseases present in the elderly: cardiovascular disease, diabetes mellitus, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Débora Levy
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Sérgio Paulo Bydlowski
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Center of Innovation and Translacional Medicine (CIMTRA), Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil.
| |
Collapse
|
23
|
Farid AS, El Shemy MA, Nafie E, Hegazy AM, Abdelhiee EY. Anti-inflammatory, anti-oxidant and hepatoprotective effects of lactoferrin in rats. Drug Chem Toxicol 2019; 44:286-293. [PMID: 30938206 DOI: 10.1080/01480545.2019.1585868] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carbon tetrachloride (CCl4) is a strong hepatotoxic agent. The ability of the anti-inflammatory agent, lactoferrin (LF), to alleviate hepatic inflammation in a Wistar rat model administered with carbon tetrachloride (CCl4) was examined. Thirty male Wistar rats were segregated into 5 groups (6 rats per group): Control group, LF group (300 mg LF/kg b. wt daily for three weeks), CCl4 group (1 ml CCl4/kg b. wt once orally), LF-protected group (300 mg LF/kg b. wt daily for 3 weeks followed by 1 mL CCl4/kg b. wt once orally), and LF-treated group (1 mL CCl4/kg b.wt once orally followed by 300 mg LF/kg b. wt orally every day for three weeks). Erythrogram, leukogram, activity of oxidative stress markers (Superoxide dismutase [SOD], Glutathione peroxidase [GPx], and Malondialdehyde [MDA]), and expression of hepatic paraoxonase-1 (PON1), interleukin (IL)-1β, and IL-10 mRNA were determined. Histopathological examination of the hepatic tissue was carried out. CCl4 caused liver injury, loss of liver antioxidant activity of SOD and GPx, and a significant increase in the level of malondialdehyde in the serum. Moreover, CCl4 induced up-regulation of hepatic pro-inflammatory (IL-1β) factors, and down-regulation of anti-inflammatory (IL-10 and PON1) factors. Based on histopathological examination, the hepatic tissues had severe inflammation and were damaged. However, LF mitigated the liver damage, oxidative stress, and hepatotoxicity caused by CCl4. Overall, these results suggest that LF-mediated immunological mechanisms alleviate CCl4-induced hepatic toxicity and provide a novel perspective on the potential use of LF for prophylactic and therapeutic applications in treating liver diseases.
Collapse
Affiliation(s)
- Ayman Samir Farid
- Faculty of Veterinary Medicine, Department of Clinical Pathology, Benha University, Toukh, Egypt
| | - Mona A El Shemy
- Faculty of Veterinary Medicine, Department of Clinical Pathology, Benha University, Toukh, Egypt
| | - Ebtesam Nafie
- Faculty of Science, Zoology Department, Benha University, Benha, Egypt
| | - Ahmed Medhat Hegazy
- Faculty of Veterinary Medicine, Department of Forensic Medicine and Toxicology, Aswan University, Sahari, Egypt
| | - Ehab Yahya Abdelhiee
- Faculty of Veterinary Medicine, Department of Toxicology and Forensic Medicine, Matrouh University, Mersa Matruh, Egypt
| |
Collapse
|
24
|
Gao Y, Fang L, Wang X, Lan R, Wang M, Du G, Guan W, Liu J, Brennan M, Guo H, Brennan C, Zhao H. Antioxidant Activity Evaluation of Dietary Flavonoid Hyperoside Using Saccharomyces Cerevisiae as a Model. Molecules 2019; 24:molecules24040788. [PMID: 30813233 PMCID: PMC6412469 DOI: 10.3390/molecules24040788] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress leads to various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and even cancer. The dietary flavonol glycoside, hyperoside (quercetin-3-O-galactoside), exerts health benefits by preventing oxidative damage. To further understand its antioxidative defence mechanisms, we systemically investigated the regulation of hyperoside on oxidative damage induced by hydrogen peroxide, carbon tetrachloride, and cadmium in Saccharomyces cerevisiae. Hyperoside significantly increased cell viability, decreased lipid peroxidation, and lowered intracellular reactive oxygen species (ROS) levels in the wild-type strain (WT) and mutants gtt1∆ and gtt2∆. However, the strain with ctt1∆ showed variable cell viability and intracellular ROS-scavenging ability in response to the hyperoside treatment upon the stimulation of H2O2 and CCl4. In addition, hyperoside did not confer viability tolerance or intercellular ROS in CdSO4-induced stress to strains of sod1∆ and gsh1∆. The results suggest that the antioxidative reactions of hyperoside in S. cerevisiae depend on the intercellular ROS detoxification system.
Collapse
Affiliation(s)
- Yuting Gao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Lianying Fang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Xiangxing Wang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Ruoni Lan
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Meiyan Wang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Gang Du
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Jianfu Liu
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Margaret Brennan
- Centre for Food Research and Innovation, Department of Wine, Food and Molecular Bioscience, Lincoln University, Lincoln 7647, New Zealand.
| | - Hongxing Guo
- The Third Central Clinical College, Tianjin Medical University, Jintang Road, Hedong, Tianjin 300170, China.
| | - Charles Brennan
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
- Centre for Food Research and Innovation, Department of Wine, Food and Molecular Bioscience, Lincoln University, Lincoln 7647, New Zealand.
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| |
Collapse
|
25
|
Lin TA, Ke BJ, Cheng CS, Wang JJ, Wei BL, Lee CL. Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-β1 Pathway. Nutrients 2019; 11:nu11020395. [PMID: 30781895 PMCID: PMC6412755 DOI: 10.3390/nu11020395] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
The late stages of liver fibrosis are considered to be irreversible. Red quinoa (Chenopodium formosanum Koidz), a traditional food for Taiwanese aborigines, was gradually developed as a novel supplemental food due to high dietary fibre and polyphenolic compounds. Its bran was usually regarded as the agricultural waste, but it contained a high concentration of rutin known as an antioxidant and anti-inflammatory agent. This study is to explore the effect of red quinoa bran extracts on the prevention of carbon tetrachloride (CCl4)-induced liver fibrosis. BALB/c mice were intraperitoneally injected CCl4 to induce liver fibrosis and treated with red quinoa whole seed powder, bran ethanol extracts, bran water extracts, and rutin. In the results, red quinoa powder provided more protection than rutin against CCl4-induced oxidative stress, pro-inflammatory factor expression and fibrosis development. However, the bran ethanol extract with high rutin content provided the most liver protection and anti-fibrosis effect via blocking the tumor necrosis factor alpha (TNF-α)/interleukin 6 (IL-6) pathway and transforming growth factor beta 1 (TGF-β1) pathway.
Collapse
Affiliation(s)
- Ting-An Lin
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | - Bo-Jun Ke
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | | | - Jyh-Jye Wang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 831, Taiwan.
| | - Bai-Luh Wei
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | - Chun-Lin Lee
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| |
Collapse
|
26
|
Huang ZQ, Chen P, Su WW, Wang YG, Wu H, Peng W, Li PB. Antioxidant Activity and Hepatoprotective Potential of Quercetin 7-Rhamnoside In Vitro and In Vivo. Molecules 2018; 23:molecules23051188. [PMID: 29772655 PMCID: PMC6100316 DOI: 10.3390/molecules23051188] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/28/2022] Open
Abstract
Hypericum japonicum is traditionally used as a folk medicine to treat cholestasis and hepatitis. Quercetin 7-rhamnoside (Q7R) is one of the main flavonoid components of Hypericum japonicum and has been rarely studied. The aim of the present study was to evaluate the antioxidant activity and hepatoprotective potential of Q7R. In the in vitro experiments, DPPH, ABTS and ferric reducing antioxidant power (FRAP) assays were first performed to assess the antioxidant properties of Q7R, and then a H₂O₂-induced oxidative damage cellular model was used to determine the cytoprotective and antioxidant properties of Q7R in human liver L-02 cells. In the in vivo experiment, the hepatoprotective activity of Q7R was evaluated by carbon tetrachloride (CCl₄)-induced liver damage model in mice. The results of the three in vitro assays (DPPH, ABTS and FRAP) demonstrated that Q7R significantly exhibited antioxidant activity. The cell experiment results showed that Q7R possessed cytoprotective and antioxidant effects on H₂O₂-treated L-02 cells. In the in vivo experiments, Q7R suppressed the up-regulation of serum activities of ALT, AST, LDH and triglyceride (TG) levels with dose-dependency. Q7R down-regulated the production of MDA and increased the hepatic GSH content and antioxidant enzymes CAT activities. Hepatic morphological analysis was also performed to confirm the biochemical changes. In summary, these results suggested that Q7R could be considered as a potential source of natural antioxidants, and may become a promising candidate for the treatment of liver injury in the future.
Collapse
Affiliation(s)
- Zhi-Qiang Huang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Pan Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wei-Wei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yong-Gang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wei Peng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Pei-Bo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
27
|
Alotaibi MR, Hassan ZK, Al-Rejaie SS, Alshammari MA, Almutairi MM, Alhoshani AR, Alanazi WA, Hafez MM, Al-Shabanah OA. Characterization of Apoptosis in a Breast Cancer Cell Line after IL-10 Silencing. Asian Pac J Cancer Prev 2018; 19:777-783. [PMID: 29582634 PMCID: PMC5980855 DOI: 10.22034/apjcp.2018.19.3.777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Breast cancer is affected by the immune system in that different cytokines play roles in its initiation
and progression. Interleukin-10 (IL-10), an anti-inflammatory cytokine, is an immunosuppressive factor involved in
tumorigenesis. The present study was conducted to investigate the gene silencing effect of a small interference RNA
(siRNA) targeting IL-10 on the apoptotic pathway in breast cancer cell line. Methods: The siRNA targeting IL-10 and
a glyceraldehyde 3-phosphate dehydrogenase (GAPDH) clone were introduced into MDA-MB-231 cells. Real-time
PCR assays were used to determine IL-10 and GAPDH gene expression levels, in addition to those for protein kinase
B (AKT), phosphoinositide 3-kinase (PI3K), B-cell lymphoma 2 (Bcl2), caspase-3 and caspase-9 genes related to
apoptosis. Results: Inhibition of IL-10 by the siRNA accelerated apoptosis and was accompanied by significant
increase in caspase-3 and caspase-9 and a significant decrease in PI3K, AKT and Bcl2 expression levels compared to
the non-transfected case. Conclusions: In conclusion, the production of IL-10 may represent a new escape mechanism
by breast cancer cells to evade destruction by the immune system. IL-10 gene silencing causes down regulation of both
PI3K/AKT and Bcl2 gene expression and also increases the Bbc3, BAX caspase3, and caspase 3 cleavage expression
levels. IL–10 might represent a promising new target for therapeutic strategies.
Collapse
Affiliation(s)
- Moureq R Alotaibi
- College of Pharmacy, Pharmacology and Toxicology Department, Kind Saud University, Riyadh, kingdom of Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hassani S, Maqbool F, Salek-Maghsoudi A, Rahmani S, Shadboorestan A, Nili-Ahmadabadi A, Amini M, Norouzi P, Abdollahi M. Alteration of hepatocellular antioxidant gene expression pattern and biomarkers of oxidative damage in diazinon-induced acute toxicity in Wistar rat: A time-course mechanistic study. EXCLI JOURNAL 2018; 17:57-71. [PMID: 29383019 PMCID: PMC5780620 DOI: 10.17179/excli2017-760] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Abstract
In the present survey, the plasma level of diazinon after acute exposure was measured by HPLC method at a time-course manner. In addition, the impact of diazinon on the expression of the key genes responsible for hepatocellular antioxidative defense, including PON1, GPx and CAT were investigated. The increase in oxidative damages in treated rats was determined by measuring LPO, protein carbonyl content and total antioxidant power in plasma. After administration of 85 mg/kg diazinon in ten groups of male Wistar rats at different time points between 0-24 hours, the activity of AChE enzyme was inhibited to about 77.94 %. Significant increases in carbonyl groups and LPO after 0.75 and 1 hours were also observed while the plasma antioxidant power was significantly decreased. Despite the dramatic reduction of GPX and PON1 gene expression, CAT gene was significantly upregulated in mRNA level by 1.1 fold after 4 hours and 1.5-fold after 24 hours due to diazinon exposure, compared to control group. Furthermore, no significant changes in diazinon plasma levels were found after 4 hours in the treated rats. The limits of detection and quantification were 137.42 and 416.52 ng/mL, respectively. The average percentage recoveries from plasma were between 90.62 % and 95.72 %. In conclusion, acute exposure to diazinon increased oxidative stress markers in a time-dependent manner and the changes were consistent with effects on hepatic antioxidant gene expression pattern. The effect of diazinon even as a non-lethal dose was induced on the gene expression of antioxidant enzymes. The change in antioxidant defense system occurs prior to diazinon plasma peak time. These results provide biochemical and molecular evidence supporting potential acute toxicity of diazinon and is beneficial in the evaluation of acute toxicity of other organophosphorus pesticides as well.
Collapse
Affiliation(s)
- Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Salek-Maghsoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Rahmani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Amini
- Cancer Therapy Group, Pharmaceutical Sciences Research Center, and Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran.,Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Jiang W, Li B, Chen Y, Gao S. The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress. Metab Brain Dis 2017; 32:2009-2019. [PMID: 28844098 DOI: 10.1007/s11011-017-0095-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects. Results indicated that animals weight gain and food consumption were not significantly affected by DBA. However, morris water maze test showed varying degrees of changes between control and high-dose group. Additionally, the level of malondialdehyde (MDA) and generation of reactive oxygen species (ROS) in the hippocampus and pre-frontal cortex of rats increased significantly. The activities of total superoxide dismutase (SOD) and the glutathione (GSH) content in the hippocampus and pre-frontal cortex of rats decreased significantly after treatment with DBA. Treatment with DBA increased the protein and mRNA expression of Iba-1, NF-κB, TNF-α, IL-6, IL-1β and HO-1 in the hippocampus and pre-frontal cortex of rats. These data suggested that DBA had a toxic influence on the hippocampus and pre-frontal cortex of rats, and that the mechanism of toxicity might be associated with the neuroinflammation response and oxidative stress.
Collapse
Affiliation(s)
- Wenbo Jiang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Bai Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yingying Chen
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Shuying Gao
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| |
Collapse
|
30
|
Hussain F, Malik A, Ayyaz U, Shafique H, Rana Z, Hussain Z. Efficient hepatoprotective activity of cranberry extract against CCl 4 -induced hepatotoxicity in Wistar albino rat model: Down-regulation of liver enzymes and strong antioxidant activity. ASIAN PAC J TROP MED 2017; 10:1054-1058. [DOI: 10.1016/j.apjtm.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/25/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022] Open
|
31
|
Martini D, Del Bo’ C, Porrini M, Ciappellano S, Riso P. Role of polyphenols and polyphenol-rich foods in the modulation of PON1 activity and expression. J Nutr Biochem 2017. [DOI: 10.1016/j.jnutbio.2017.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Almutairi MM, Alanazi WA, Alshammari MA, Alotaibi MR, Alhoshani AR, Al-Rejaie SS, Hafez MM, Al-Shabanah OA. Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:472. [PMID: 28962559 PMCID: PMC5622464 DOI: 10.1186/s12906-017-1976-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/14/2017] [Indexed: 12/27/2022]
Abstract
Background Cisplatin is widely used chemotherapeutic agent for cancer treatment with limited uses due to its neurotoxic side effect. The aim of this study was to determine the potential preventive effects of rutin on the brain of cisplatin- neurotoxic rat model. Methods Forty rats were divided into four groups. Group-1 (control group) was intra-peritoneal (IP) injected with 2.5 ml/kg saline. Group-2 (rutin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days. Group-3 (cisplatin group) was IP received 5 mg/kg cisplatin single dose. Group-4 (rutin and cisplatin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days with a single dose of 5 mg/kg cisplatin IP on day ten. Brain tissues from frontal cortex was used to extract RNA, the gene expression levels of paraoxonase-1 (PON-1), PON-2, PON-3, peroxisome proliferator-activated receptor delta (PPAR-δ), and glutathione peroxidase (GPx) was investigated by Real-time PCR. Results Cisplatin significantly decreased the expression levels of PON-1, PON-3, PPAR-δ and GPX whereas significantly increased PON-2 expression levels. Co-administration of Rutin prevented the cisplatin-induced toxicity by restoring the alteration in the studied genes to normal values as in the control group. Conclusion This study showed that Rutin has neuroprotective effect and reduces cisplatin- neurotoxicity with possible mechanism via the antioxidant pathway.
Collapse
|
33
|
Li H, Ding F, Xiao L, Shi R, Wang H, Han W, Huang Z. Food-Derived Antioxidant Polysaccharides and Their Pharmacological Potential in Neurodegenerative Diseases. Nutrients 2017; 9:E778. [PMID: 28753972 PMCID: PMC5537892 DOI: 10.3390/nu9070778] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress is known to impair architecture and function of cells, which may lead to various chronic diseases, and therefore therapeutic and nutritional interventions to reduce oxidative damages represent a viable strategy in the amelioration of oxidative stress-related disorders, including neurodegenerative diseases. Over the past decade, a variety of natural polysaccharides from functional and medicinal foods have attracted great interest due to their antioxidant functions such as scavenging free radicals and reducing oxidative damages. Interestingly, these antioxidant polysaccharides are also found to attenuate neuronal damages and alleviate cognitive and motor decline in a range of neurodegenerative models. It has recently been established that the neuroprotective mechanisms of polysaccharides are related to oxidative stress-related pathways, including mitochondrial function, antioxidant defense system and pathogenic protein aggregation. Here, we first summarize the current status of antioxidant function of food-derived polysaccharides and then attempt to appraise their anti-neurodegeneration activities.
Collapse
Affiliation(s)
- Haifeng Li
- Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Fei Ding
- Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lingyun Xiao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Ruona Shi
- Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hongyu Wang
- Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Wenjing Han
- Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zebo Huang
- Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
34
|
Iseghohi SO, Orhue NEJ. Aqueous extract of Dennettia tripetala ameliorates liver and kidney damage caused by multiple exposures to carbon tetrachloride. CLINICAL PHYTOSCIENCE 2017. [DOI: 10.1186/s40816-017-0043-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
Hafez MM, Hamed SS, El-Khadragy MF, Hassan ZK, Al Rejaie SS, Sayed-Ahmed MM, Al-Harbi NO, Al-Hosaini KA, Al-Harbi MM, Alhoshani AR, Al-Shabanah OA, Alsharari SD. Effect of ginseng extract on the TGF-β1 signaling pathway in CCl 4-induced liver fibrosis in rats. Altern Ther Health Med 2017; 17:45. [PMID: 28086769 PMCID: PMC5237131 DOI: 10.1186/s12906-016-1507-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022]
Abstract
Background Liver diseases are major global health problems. Ginseng extract has antioxidant, immune-modulatory and anti-inflammatory activities. This study investigated the effect of ginseng extract on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Methods Male Wistar rats were divided into four groups: control group, ginseng group, CCl4 group and CCl4 + ginseng group. Liver injury was induced by the intraperitoneal (I.P) injection of 3 ml/kg CCl4 (30% in olive oil) weekly for 8 weeks. The control group was I.P injected with olive oil. The expression of genes encoding transforming growth factor beta (TGF-β), type I TGF-β receptor (TβR-1), type II TGF-β receptor (TβR-II), mothers against decapentaplegic homolog 2 (Smad2), Smad3, Smad4, matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor matrix metalloproteinase-1 (TIMP-1), Collagen 1a2 (Col1a2), Collagen 3a1 (Col3a1), interleukin-8 (IL-8) and interleukin -10 (IL-10) were measured by real-time PCR. Results Treatment with ginseng extract decreased hepatic fat deposition and lowered hepatic reticular fiber accumulation compared with the CCl4 group. The CCl4 group showed a significant increase in hepatotoxicity biomarkers and up-regulation of the expression of genes encoding TGF-β, TβR-I, TβR-II, MMP2, MMP9, Smad-2,-3, -4, and IL-8 compared with the control group. However, CCl4 administration resulted in the significant down-regulation of IL-10 mRNA expression compared with the control group. Interestingly, ginseng extract supplementation completely reversed the biochemical markers of hepatotoxicity and the gene expression alterations induced by CCl4. Conclusion ginseng extract had an anti‐fibrosis effect via the regulation of the TGF‐β1/Smad signaling pathway in the CCl4‐induced liver fibrosis model. The major target was the inhibition of the expression of TGF‐β1, Smad2, and Smad3.
Collapse
|
36
|
Yan Y, Jiang W, Tan Y, Zou S, Zhang H, Mao F, Gong A, Qian H, Xu W. hucMSC Exosome-Derived GPX1 Is Required for the Recovery of Hepatic Oxidant Injury. Mol Ther 2017; 25:465-479. [PMID: 28089078 DOI: 10.1016/j.ymthe.2016.11.019] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/26/2016] [Accepted: 11/27/2016] [Indexed: 12/13/2022] Open
Abstract
Exosomes are small biological membrane vesicles secreted by various cells, including mesenchymal stem cells (MSCs). We previously reported that MSC-derived exosomes (MSC-Ex) can elicit hepatoprotective effects against toxicant-induced injury. However, the success of MSC-Ex-based therapy for treatment of liver diseases and the underlying mechanisms have not been well characterized. We used human umbilical cord MSC-derived exosome (hucMSC-Ex) administrated by tail vein or oral gavage at different doses and, in engrafted liver mouse models, noted antioxidant and anti-apoptotic effects and rescue from liver failure. A single systemic administration of hucMSC-Ex (16 mg/kg) effectively rescued the recipient mice from carbon tetrachloride (CCl4)-induced liver failure. Moreover, hucMSC-Ex-derived glutathione peroxidase1 (GPX1), which detoxifies CCl4 and H2O2, reduced oxidative stress and apoptosis. Knockdown of GPX1 in hucMSCs abrogated antioxidant and anti-apoptotic abilities of hucMSC-Ex and diminished the hepatoprotective effects of hucMSC-Ex in vitro and in vivo. Thus, hucMSC-Ex promote the recovery of hepatic oxidant injury through the delivery of GPX1.
Collapse
Affiliation(s)
- Yongmin Yan
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China.
| | - Wenqian Jiang
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Youwen Tan
- The Affiliated Third Hospital of Zhenjiang, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Shengqiang Zou
- The Affiliated Third Hospital of Zhenjiang, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Hongguang Zhang
- The Affiliated Third Hospital of Zhenjiang, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Fei Mao
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Aihua Gong
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Hui Qian
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China; Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Wenrong Xu
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China; Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
The Antiapoptosis Effect of Glycyrrhizate on HepG2 Cells Induced by Hydrogen Peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6849758. [PMID: 27891207 PMCID: PMC5116359 DOI: 10.1155/2016/6849758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/25/2016] [Accepted: 09/28/2016] [Indexed: 01/26/2023]
Abstract
This study demonstrated that glycyrrhizate (GAS) could protect HEPG2 cells against damage and apoptosis induced by H2O2 (1600 μM, 4 h). Cell viability assay revealed that GAS was noncytotoxity at concentration 125 µg/mL, and GAS (5 μg/mL, 25 μg/mL, and 125 μg/mL) protected HepG2 cells against H2O2-induced cytotoxicity. H2O2 induced the HepG2 cells apoptosis, obvious morphologic changes were observed after Hochest 33258 staining, and more apoptotic cells were counted in flow cytometry assay compared to that of the natural group. Pretreatment GAS (5 μg/mL, 25 μg/mL, and 125 μg/mL) prior to H2O2 reverses the morphologic changes and reduced the apoptotic cells in HepG2 cells. GAS reduced the release of MDA, increased the activities of superoxide dismutase, and diminished the release of ALT and AST during oxidative stress in HepG2 cells. After Elisa kit detecting, GAS inhibited the caspase activity induced by H2O2, GAS decreased the level of caspase-3 and caspase-9 from mitochondria in dose-dependent manner. Western blot results showed that pretreatment GAS upregulated the expression of Bcl-2 and decreased the expression of Bax. These results reveal that GAS has the cytoprotection in HepG2 cells during ROS exposure by inhibiting the caspase activity in the mitochondria and influencing apoptogenic factors of the expression of Bax and Bcl-2.
Collapse
|
38
|
Liang YH, Tang CL, Lu SY, Cheng B, Wu F, Chen ZN, Song F, Ruan JX, Zhang HY, Song H, Zheng H, Su ZH. Serum metabonomics study of the hepatoprotective effect of Corydalis saxicola Bunting on carbon tetrachloride-induced acute hepatotoxicity in rats by 1 H NMR analysis. J Pharm Biomed Anal 2016; 129:70-79. [DOI: 10.1016/j.jpba.2016.06.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/27/2016] [Accepted: 06/19/2016] [Indexed: 11/27/2022]
|
39
|
Salvianolate Protects Hepatocytes from Oxidative Stress by Attenuating Mitochondrial Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5408705. [PMID: 27340417 PMCID: PMC4909905 DOI: 10.1155/2016/5408705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 11/18/2022]
Abstract
Salvianolate is widely used to treat angiocardiopathy in clinic in China, but its application in liver diseases remains unclear. Our study aims to investigate the effect of Salvianolate on rat hepatic injury by protecting hepatocyte mitochondria. To evaluate the effects of Salvianolate on injured hepatocytes, alpha mouse liver 12 (AML-12) cells were induced with hydrogen peroxide (H2O2) and treated with Salvianolate. Cell viability and MitoTracker Green for mitochondria and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazole-carbocyanide iodine (JC-1) levels and cytochrome C (Cyto-C) expressions were detected in vitro. To identify the effect of Salvianolate on protecting against mitochondria injury, male Wistar rats were injected with carbon tetrachloride (CCl4) and treated with Salvianolate (40 mg·kg−1). Serum liver function, parameters for peroxidative damage, hematoxylin and eosin (H&E) staining, and transmission electron microscope (TEM) of hepatocyte mitochondria were assayed. Our results showed that Salvianolate effectively protected hepatocytes, increased mitochondria vitality, and decreased Cyto-C expressions in vitro. Besides, Salvianolate alleviated the liver function, attenuated the indicators of peroxidation, and relieved the mitochondria injury in vivo. In conclusion, Salvianolate is effective in protecting hepatocytes from injury in vitro and in vivo, and the mechanism might be related to its protective effect on hepatocyte mitochondria against oxidative stress.
Collapse
|
40
|
Chen X, Gong X, Jiang R, Wang B, Kuang G, Li K, Wan J. Resolvin D1 attenuates CCl4-induced acute liver injury involving up-regulation of HO-1 in mice. Immunopharmacol Immunotoxicol 2015; 38:61-7. [DOI: 10.3109/08923973.2015.1115517] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Marinho AT, Dias CG, Pinheiro PF, Lemos AR, Antunes AMM, Marques MM, Monteiro EC, Miranda JP, Pereira SA. Nevirapine modulation of paraoxonase-1 in the liver: An in vitro three-model approach. Eur J Pharm Sci 2015; 82:147-53. [PMID: 26620700 DOI: 10.1016/j.ejps.2015.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Nevirapine is associated with severe hepatotoxicity, through the formation of reactive metabolites. Paraoxonase-1 (PON-1) is a promiscuous enzyme involved in the metabolism of xeno- and endobiotics and proposed as a biomarker of hepatotoxicity. The aim of this work was to explore the effects of nevirapine and its phase I metabolites, 2-hydroxy-nevirapine and 12-hydroxy-nevirapine, on PON-1 activities. MATERIAL AND METHODS 2D and 3D primary cultures of rat hepatocytes, and also HepG2 2D cell cultures, were exposed to nevirapine, 2-hydroxy-nevirapine, and 12-hydroxy-nevirapine. The paraoxonase (POase), arylesterase (AREase) and lactonase (LACase) activities of PON-1 were quantified. RESULTS Effects of nevirapine and its metabolites were only observed in the 3D cell model. Both nevirapine and 12-hydroxy-nevirapine increased POase (p<0.05, p<0.01) and LACase activities (p<0.05, p<0.001). The AREase activity was increased only upon 12-hydroxy-nevirapine exposure (p<0.01). These modulatory effects were observed at 300μM concentrations of nevirapine and 12-hydroxy-nevirapine. CONCLUSIONS The formation of 12-hydroxy-nevirapine seems to be the main factor responsible for the increase of PON-1 activities induced by nevirapine exposure. This effect was only observed in the 3D model, suggesting that an in vivo-like system is necessary for this modulation to occur. The present data suggest that the 3D model is a more suitable in vitro model than the conventional ones to explore drug effects on PON-1.
Collapse
Affiliation(s)
- Aline T Marinho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Clara G Dias
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Pedro F Pinheiro
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Ana Rita Lemos
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - M Matilde Marques
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Emília C Monteiro
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Sofia A Pereira
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| |
Collapse
|
42
|
Elgawish RAR, Rahman HGA, Abdelrazek HMA. Green tea extract attenuates CCl4-induced hepatic injury in male hamsters via inhibition of lipid peroxidation and p53-mediated apoptosis. Toxicol Rep 2015; 2:1149-1156. [PMID: 28962456 PMCID: PMC5598372 DOI: 10.1016/j.toxrep.2015.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Keeping in mind the beneficial effects of GTE administration on liver damage, the present study was undertaken to evaluate the hepatoprotective effect of green tea extract (GTE) against carbon tetrachloride (CCl4)-induced liver injuries in male hamsters for 8 weeks. Twenty hamsters were equally divided into 4 groups, the control ones (group I) received only dis. water. Hamsters of group II had free access to 10% of GTE, while hamsters of group III received 1 ml/kg of 50% CCl4 in corn oil via gavage daily. Hamsters of group IV (GTE + CCl4) received a free access to GTE supplementation in combination with 1 ml/kg of 50% CCl4 in corn oil via gavage daily. Lipid profile, hepatic enzyme levels and apoptosis molecular marker (p53) were investigated in hamsters. GTE + CCl4 treated hamsters showed lower levels of hepatic malondialdehyde (MDA) than CCl4 exposed hamsters. Hepatic activity levels of GSH, ALD and cytochrome 450 reductase were declined after CCl4 administration while they were remarkably improved with GTE administration. Serum lipid profiles as T-cholesterol (TC), triglyceride (TG) and low density lipoproteins (LDL) were improved in GTE and CCl4 treated hamsters than CCl4 group. Moreover, hepatic tissue damage and p53 expression induced with CCl4 were improved with the treatment of GTE. These results suggested that GTE possesses hepatoprotective properties against the effect of CCl4.
Collapse
Affiliation(s)
- Rania Abdel Rahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Haidy G Abdel Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
43
|
Liquiritigenin Protects Rats from Carbon Tetrachloride Induced Hepatic Injury through PGC-1α Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26199636 PMCID: PMC4496487 DOI: 10.1155/2015/649568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lack of effective treatment for liver cirrhosis and hepatocellular carcinomas imposes serious challenges to the healthcare system. Here, we investigated the efficacy and mechanism of liquiritigenin involved in preventing or retarding the progression of liver diseases in a rat model with chronic carbon tetrachloride (CCl4) exposure. Sprague Dawley rats were given CCl4 and lliquiritigenin alone or simultaneously for 8 weeks before liver was harvested to check histological changes by Hematoxylin and Eosin (H&E) staining, apoptosis by TUNEL assay, ROS by dihydroethidium staining, antioxidant enzyme activities and malondialdehyde using specific kits, and gene expression by quantitative real-time PCR and western blot. Chronic CCl4 exposure caused profound changes in liver histology with extensive hepatocyte death (necrosis and apoptosis), fat accumulation, and infiltration of inflammatory cells, accompanied by depressed activities of antioxidant enzymes, increased oxidative stress, elevated expression of inflammation and fibrotic genes, and downregulation of PGC-1α, ND1, and Bcl-x in rat liver. All these changes were abolished or alleviated by lliquiritigenin. The results demonstrated that liquiritigenin is effective in protecting liver from injury or treating chronic liver diseases. The modulation of PGC-1α and its downstream genes might play a critical role in relieving CCl4-induced hepatic pathogenesis by liquiritigenin.
Collapse
|
44
|
Hafez MM, Al-Harbi NO, Al-Hoshani AR, Al-Hosaini KA, Al Shrari SD, Al Rejaie SS, Sayed-Ahmed MM, Al-Shabanah OA. Hepato-protective effect of rutin via IL-6/STAT3 pathway in CCl4-induced hepatotoxicity in rats. Biol Res 2015; 48:30. [PMID: 26062544 PMCID: PMC4477598 DOI: 10.1186/s40659-015-0022-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 06/03/2015] [Indexed: 01/20/2023] Open
Abstract
Background Carbon tetrachloride (CCl4) induces hepatotoxicity in animal models, including the increased blood flow and cytokine accumulation that are characteristic of tissue inflammation. The present study investigates the hepato-protective effect of rutin on CCl4-induced hepatotoxicity in rats. Results Forty male Wistar rats were divided into four groups. Group I (control group) received 1 mL/kg of dimethyl sulfoxide intragastrically and 3 mL/kg olive oil intraperitoneally twice a week for 4 weeks. Group II received 70 mg/kg rutin intragastrically. Groups III and IV received CCl4 (3 mL/kg, 30 % in olive oil) intraperitoneally twice a week for 4 weeks. Group IV received 70 mg/kg rutin intragastrically after 48 h of CCl4 treatment. Liver enzyme levels were determined in all studied groups. Expression of the following genes were monitored with real-time PCR: interleukin-6 (IL-6), dual-specificity protein kinase 5 (MEK5), Fas-associated death domain protein (FADD), epidermal growth factor (EGF), signal transducer and activator of transcription 3 (STAT3), Janus kinase (JAK), B-cell lymphoma 2 (Bcl2) and B-cell lymphoma-extra-large (Bcl-XL). The CCl4 groups showed significant increases in biochemical markers of hepatotoxicity and up-regulation of expression levels of IL-6, Bcl-XL, MEK5, FADD, EGF, STAT3 and JAK compared with the control group. However, CCl4 administration resulted in significant down-regulation of Bcl2 expression compared with the control group. Interestingly, rutin supplementation completely reversed the biochemical markers of hepatotoxicity and the gene expression alterations induced by CCl4. Conclusion CCl4 administration causes alteration in expression of IL-6/STAT3 pathway genes, resulting in hepatotoxicity. Rutin protects against CCl4-induced hepatotoxicity by reversing these expression changes.
Collapse
Affiliation(s)
- Mohamed M Hafez
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Ali Rashed Al-Hoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Khaled A Al-Hosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Shakir D Al Shrari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Salim S Al Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Mohamed M Sayed-Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Othman A Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| |
Collapse
|