1
|
Papa V, Li Pomi F, Minciullo PL, Borgia F, Gangemi S. Skin Disorders and Osteoporosis: Unraveling the Interplay Between Vitamin D, Microbiota, and Epigenetics Within the Skin-Bone Axis. Int J Mol Sci 2024; 26:179. [PMID: 39796035 PMCID: PMC11720247 DOI: 10.3390/ijms26010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Growing scientific evidence suggests a strong interconnection between inflammatory skin diseases and osteoporosis (OP), a systemic condition characterized by decreased bone density and structural fragility. These conditions seem to share common pathophysiological mechanisms, including immune dysregulation, chronic inflammation, and vitamin D deficiency, which play a crucial role in both skin and bone health. Additionally, the roles of gut microbiota (GM) and epigenetic regulation via microRNAs (miRNAs) emerge as key elements influencing the progression of both conditions. This review aims to examine the skin-bone axis, exploring how factors such as vitamin D, GM, and miRNAs interact in a subtle pathophysiological interplay driving skin inflammation and immune-metabolic bone alterations. Recent research suggests that combined therapeutic approaches-including vitamin D supplementation, targeted microbiota interventions, and miRNA-based therapies-could be promising strategies for managing comorbid inflammatory skin diseases and OP. This perspective highlights the need for multidisciplinary approaches in the clinical management of conditions related to the skin-bone axis.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Paola Lucia Minciullo
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| |
Collapse
|
2
|
Lu Y, Cui Y, Hou L, Jiang Y, Shang J, Wang L, Xu H, Ye W, Qiu Y, Guo B. Optimized automated radiosynthesis of 18F-JNJ64413739 for purinergic ion channel receptor 7 (P2X7R) imaging in osteoporotic model rats. Front Pharmacol 2024; 15:1517127. [PMID: 39726781 PMCID: PMC11669691 DOI: 10.3389/fphar.2024.1517127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Objective To optimize the automated radiosynthesis of the purinergic ion channel receptor 7 (P2X7R) imaging agent 18F-JNJ64413739 and evaluate its potential for brain imaging in osteoporotic model rats. Methods A more electron-deficient nitropyridine was employed as the labeling precursor to facilitate the 18F-labeling. The radiosynthesis was conducted on an AllinOne synthesis module, and followed by purification via high-performance liquid chromatography (HPLC). The resulting 18F-JNJ64413739 was subjected to quality control tests. Small-animal PET/CT imaging studies were performed in sham and osteoporotic model rats. Results The optimized automated radiossynthesis of 18F-JNJ64413739 was successfully completed in approximately 100 min with non-decay-corrected radiochemical yield of 6.7% ± 3.8% (n = 3), >97% radiochemical purity and >14.3 ± 1.3 GBq/μmol molar activity. The product met all clinical quality requirements. 18F-JNJ64413739 PET/CT imaging showed revealed significantly higher radioactivity uptake in various brain regions of the osteoporotic model rats compared to sham control group. Conclusion We successfully optimized the automated radiosynthesis of 18F-JNJ64413739. The resulting tracer not only met clinical quality requirements but also demonstrated potential for clinical application in the diagnosis of osteoporosis, as evidenced by higher radioactivity uptake in various brain regions of osteoporotic model rats compared to normal controls.
Collapse
Affiliation(s)
- Yingtong Lu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan Cui
- Traditional Chinese Medicine Department, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lu Hou
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuanfang Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingjie Shang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hao Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Weijian Ye
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yang Qiu
- Department of Gynecology, Jiangmen Wuyi Traditional Chinese Medicine Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Bin Guo
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Wang W, Zhang H, Sandai D, Zhao R, Bai J, Wang Y, Wang Y, Zhang Z, Zhang HL, Song ZJ. ATP-induced cell death: a novel hypothesis for osteoporosis. Front Cell Dev Biol 2023; 11:1324213. [PMID: 38161333 PMCID: PMC10755924 DOI: 10.3389/fcell.2023.1324213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
ATP-induced cell death has emerged as a captivating realm of inquiry with profound ramifications in the context of osteoporosis. This study unveils a paradigm-shifting hypothesis that illuminates the prospective involvement of ATP-induced cellular demise in the etiology of osteoporosis. Initially, we explicate the morphological attributes of ATP-induced cell death and delve into the intricacies of the molecular machinery and regulatory networks governing ATP homeostasis and ATP-induced cell death. Subsequently, our focus pivots towards the multifaceted interplay between ATP-induced cellular demise and pivotal cellular protagonists, such as bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts, accentuating their potential contributions to secondary osteoporosis phenotypes, encompassing diabetic osteoporosis, glucocorticoid-induced osteoporosis, and postmenopausal osteoporosis. Furthermore, we probe the captivating interplay between ATP-induced cellular demise and alternative modalities of cellular demise, encompassing apoptosis, autophagy, and necroptosis. Through an all-encompassing inquiry into the intricate nexus connecting ATP-induced cellular demise and osteoporosis, our primary goal is to deepen our comprehension of the underlying mechanisms propelling this malady and establish a theoretical bedrock to underpin the development of pioneering therapeutic strategies.
Collapse
Affiliation(s)
- Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Haolong Zhang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Doblin Sandai
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jinxia Bai
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanfei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yong Wang
- Pathology Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongwen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Hao-Ling Zhang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Huang H, He YM, Lin MM, Wang Y, Zhang X, Liang L, He X. P2X7Rs: new therapeutic targets for osteoporosis. Purinergic Signal 2023; 19:207-219. [PMID: 35106736 PMCID: PMC9984661 DOI: 10.1007/s11302-021-09836-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence suggests that both the occurrence and progression of osteoporosis are associated with inflammation, especially in primary osteoporosis. The maintenance of skeletal homeostasis is dependent on the complex regulation of bone metabolism. Numerous evidence suggested that purinoceptor networks are essential for bone homeostasis. In this review, the relationship between inflammation and the development of osteoporosis and the role of P2X7 receptor (P2X7R) in regulating the dynamic regulation of bone reconstruction were covered. We also discussed how P2X7R regulates the balance between resorption and bone formation by osteoblasts and reviewed the relevance of P2X7R polymorphisms in skeletal physiology. Finally, we analyzed potential targets of P2X7R for osteoporosis.
Collapse
Affiliation(s)
- Haoyun Huang
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yu-Mei He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Miao-Miao Lin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaomei Zhang
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China
| | - Li Liang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Association of P2X7 receptor genetic polymorphisms and expression with rheumatoid arthritis susceptibility in a sample of the Iranian population: a case-control study. Clin Rheumatol 2021; 40:3115-3126. [PMID: 33580375 DOI: 10.1007/s10067-021-05645-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a complex inflammatory autoimmune disease with joint eruption, systemic manifestation, and numerous predisposing genetic factors. The P2X7 receptor is an essential ligand-gated channel that contributes to many physiological processes, especially inflammation. However, genetic variations can alter the P2X7 receptor function. Therefore, the present study aimed to explore the impact of P2X7 genetic polymorphisms and expression on susceptibility to RA in a sample of the Iranian population. METHODS We enrolled 160 (145 female, 15 male) RA patients and 160 (142 female, 18 male) healthy individuals in this study. Genotyping was performed using tetra amplification refractory mutation system-polymerase chain reaction (TARMS-PCR) for rs1718119, rs2230912, rs2393799, rs28360457, rs35933842, and allele-specific PCR for rs1653624 and rs3751143. Furthermore, 44 new cases of RA and 48 healthy controls were recruited to investigate whether P2X7 mRNA expression is associated with RA susceptibility. RESULTS The results revealed that the rs2393799 significantly increased the risk of RA in all genetic models (p<0.05), while rs3751143 in codominant (CC vs. AA, OR=0.49, 95% CI=0.26-0.92), dominant (AC+CC, OR=0.59, 95% CI=0.37-0.94), C allele (OR=0.63, 95% CI=0.46-0.88), and rs2230912 in codominant (AG vs. AA, OR=0.56, 95% CI=0.34-0.94), dominant (AG+GG vs. AA, OR=0.59, 95% CI=0.35-0.99), and overdominant (AG vs. AA+GG, OR=0.57, 95% CI=0.33-0.98) significantly decreased the RA risk (p<0.05). Furthermore, the rs1718119 and rs1653624 were not associated with susceptibility of RA (p>0.05), and rs28360457 and rs35933842 were not polymorphic in our study. The mRNA expression level of P2X7 in both groups revealed that the P2X7 gene was significantly upregulated in RA (3.18±0.43) compared to healthy subjects (1.47±0.15, p<0.001). CONCLUSION Our results suggest that rs2393799, rs3751143, and rs2230912 variants of the P2X7 gene are associated with RA's susceptibility in a sample of the Iranian population. Also, P2X7 mRNA expression was higher in our new RA patients. The P2X7 receptor has been considered as a potential pharmacologic target in RA. Key Points • P2X7 variants (rs2393799, rs2230912, rs3751143) were associated with RA susceptibility in a sample of the Iranian population. • rs2393799 increases the risk of RA, while rs2230912 and rs3751143 decrease the risk of RA. • P2X7 expression was significantly upregulated in new RA patients compared to controls.
Collapse
|
6
|
Ciurla A, Szymańska J, Płachno BJ, Bogucka-Kocka A. Polymorphisms of Encoding Genes IL1RN and P2RX7 in Apical Root Resorption in Patients after Orthodontic Treatment. Int J Mol Sci 2021; 22:ijms22020777. [PMID: 33466672 PMCID: PMC7828778 DOI: 10.3390/ijms22020777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
External apical root resorption (EARR) is one of the most serious complications associated with orthodontic treatment. The aim of the study was to analyze the relationships between selected single nucleotide polymorphisms (SNPs) in Interleukin 1 receptor antagonist (IL1RN), purinoreceptor P2X7 (P2RX7) and EARR in patients after orthodontic treatment. The study comprised 101 patients who underwent a complex orthodontic treatment with a combination of fixed appliances. Roots were measured based on orthopantomograms and lateral cephalometric radiographs taken before and at the end of the treatment using diagnostic software. Proportional measurements of selected teeth were made using the modified Linge and Linge methods. Based on the presence or absence of EARR, patients were divided into two groups: control group, 61 patients without EARR (with 0.90 ≤ rRCR ≤ 1.00), and EARR group, 40 patients with EARR (rRCR < 0.90). Root resorption in selected groups was also evaluated with the scores of Malmgren and Levander. SNP analysis was performed using the real-time polymerase chain reaction (PCR) method. The analysis indicated that a specific haplotype of P2RX7 (rs208294) and IL1RN (rs419598) modified the risk of EARR development (p < 0.05), with a Bonferroni correction. The analysis of the P2RX7 and IL1RN gene polymorphisms showed that the presence of SNPs of these genes may predispose individuals to EARR. These findings indicate that EARR is a complex condition influenced not only by environmental factors and needs further study on the genetic risk factors.
Collapse
Affiliation(s)
- Agata Ciurla
- Dentist’s Office ORTO-PUNKT, Mościckiego St. 72/1, 33-100 Tarnów, Poland;
| | - Jolanta Szymańska
- Department of Integrated Pediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, 20-059 Lublin, Poland
- Correspondence:
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland;
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
7
|
Gratal P, Lamuedra A, Medina JP, Bermejo-Álvarez I, Largo R, Herrero-Beaumont G, Mediero A. Purinergic System Signaling in Metainflammation-Associated Osteoarthritis. Front Med (Lausanne) 2020; 7:506. [PMID: 32984382 PMCID: PMC7485330 DOI: 10.3389/fmed.2020.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation triggered by metabolic imbalance, also called metainflammation, is low-grade inflammation caused by the components involved in metabolic syndrome (MetS), including central obesity and impaired glucose tolerance. This phenomenon is mainly due to excess nutrients and energy, and it contributes to the pathogenesis of osteoarthritis (OA). OA is characterized by the progressive degeneration of articular cartilage, which suffers erosion and progressively becomes thinner. Purinergic signaling is involved in several physiological and pathological processes, such as cell proliferation in development and tissue regeneration, neurotransmission and inflammation. Adenosine and ATP receptors, and other members of the signaling pathway, such as AMP-activated protein kinase (AMPK), are involved in obesity, type 2 diabetes (T2D) and OA progression. In this review, we focus on purinergic regulation in osteoarthritic cartilage and how different components of MetS, such as obesity and T2D, modulate the purinergic system in OA. In that regard, we describe the critical role in this disease of receptors, such as adenosine A2A receptor (A2AR) and ATP P2X7 receptor. Finally, we also assess how nucleotides regulate the inflammasome in OA.
Collapse
Affiliation(s)
- Paula Gratal
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Ana Lamuedra
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Juan Pablo Medina
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
8
|
Sanz JM, Falzoni S, Morieri ML, Passaro A, Zuliani G, Di Virgilio F. Association of Hypomorphic P2X7 Receptor Genotype With Age. Front Mol Neurosci 2020; 13:8. [PMID: 32116543 PMCID: PMC7029736 DOI: 10.3389/fnmol.2020.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
One of the main risk factors for brain diseases is aging. Recent studies have shown that aging is a progressive degenerative process associated with chronic low-level inflammation. The ATP-gated P2X7 receptor (P2X7R) plays an important role in inflammation and has been associated with different brain (e.g., Alzheimer’s and Parkinson’s) or other age-related (osteoporosis, arthritis, cancer) diseases. Several single nucleotide polymorphisms (SNPs) in the P2RX7 gene have been identified, including the loss-of-function 1513A>C and 1405A>G SNPs, and the gain-of-function 489C>T and 1068G>A SNPs. We carried out a literature analysis to verify an association between P2RX7 SNPs’ frequency and age. In 34 worldwide eligible studies (11.858 subjects) no correlation between 1513CC genotype frequency and age emerged. On the contrary, analysis of European Caucasian cohorts (7.241 subjects) showed a significant increase in 1513CC frequency with age (P = 0.027). In agreement with these findings, analysis of two publicly available datasets, including USA Caucasian cohorts, unveiled an increased frequency of 1513CC and 489CC genotypes with age (P = 0.0055 and P = 0.0019, respectively). Thus, hypomorphic P2RX7 genotypes may be positively selected with age in European and North American Caucasian populations. We hypothesize that Caucasian individuals bearing an anti-inflammatory P2X7R phenotype and living in high-income countries may have a longer life expectancy.
Collapse
Affiliation(s)
- Juana Maria Sanz
- Section of Internal and Cardiorespiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Mario Luca Morieri
- Section of Internal and Cardiorespiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Angelina Passaro
- Section of Internal and Cardiorespiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Zuliani
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Ruchel JB, Bernardes VM, Braun JBS, Manzoni AG, Passos DF, Castilhos LG, Abdalla FH, de Oliveira JS, de Andrade CM, Casali EA, da Cruz IBM, Leal DBR. Lipotoxicity-associated inflammation is prevented by guarana ( Paullinia cupana) in a model of hyperlipidemia. Drug Chem Toxicol 2019; 44:524-532. [PMID: 31195840 DOI: 10.1080/01480545.2019.1624767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyperlipidemia causes lipotoxicity which prompts an inflammatory response linked to the development of cardiovascular diseases. Natural compounds have been receiving special attention for its potential to treat diseases, inexpensiveness, and safety. Guarana (Paullinia cupana) has demonstrated notable anti-inflammatory and antioxidant effects, which may prevent chronic diseases caused by changes in lipid profile. Thus, this study aims to evaluate the effect of guarana powder (Paullinia cupana) in the purine metabolism and inflammatory profile in lymphocytes and serum of rats with Poloxamer-407-induced hyperlipidemia. Pretreatment with guarana 12.5, 25, and 50 mg/kg/day or caffeine (0.2 mg/kg/day) by gavage was applied to adult male Wistar rats for a period of 30 days. As a comparative standard, we used simvastatin (0.04 mg/kg) post-induction. Hyperlipidemia was acutely induced with intraperitoneally injection of Poloxamer-407 (500 mg/kg). Guarana powder and caffeine increased the activity of the E-NTPDase (ecto-apyrase), and all pretreatments decreased the E-ADA (ecto-adenosine deaminase) activity, reducing the inflammatory process caused by lipotoxicity. In hyperlipidemic rats, ATP levels were increased while adenosine levels were decreased, guarana and caffeine reverted these changes. Guarana powder, caffeine, and simvastatin also prevented the increase in INF-γ and potentiated the increase in IL-4 levels, promoting an anti-inflammatory profile. Guarana promoted a more robust effect than caffeine. Our results show that guarana powder and caffeine have an anti-inflammatory as seen by the shift from a proinflammatory to an anti-inflammatory profile. The effects of guarana were more pronounced, suggesting that guarana powder may be used as a complementary therapy to improve the lipotoxicity-associated inflammation.
Collapse
Affiliation(s)
- Jader B Ruchel
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Viviane M Bernardes
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Josiane B S Braun
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Alessandra G Manzoni
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniela F Passos
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Lívia G Castilhos
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fátima H Abdalla
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Juliana S de Oliveira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cinthia M de Andrade
- Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Emerson A Casali
- Departamento de Ciências Morfológicas, Laboratório de Estudos Sobre as Alterações Celulares e Teciduais, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ivana B M da Cruz
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniela B R Leal
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
10
|
The therapeutic potential of purinergic signalling. Biochem Pharmacol 2018; 151:157-165. [DOI: 10.1016/j.bcp.2017.07.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023]
|
11
|
Burnstock G, Knight GE. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 2018; 14:1-18. [PMID: 29164451 PMCID: PMC5842154 DOI: 10.1007/s11302-017-9593-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Seven P2X ion channel nucleotide receptor subtypes have been cloned and characterised. P2X7 receptors (P2X7R) are unusual in that there are extra amino acids in the intracellular C terminus. Low concentrations of ATP open cation channels sometimes leading to cell proliferation, whereas high concentrations of ATP open large pores that release inflammatory cytokines and can lead to apoptotic cell death. Since many diseases involve inflammation and immune responses, and the P2X7R regulates inflammation, there has been recent interest in the pathophysiological roles of P2X7R and the potential of P2X7R antagonists to treat a variety of diseases. These include neurodegenerative diseases, psychiatric disorders, epilepsy and a number of diseases of peripheral organs, including the cardiovascular, airways, kidney, liver, bladder, skin and musculoskeletal. The potential of P2X7R drugs to treat tumour progression is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
12
|
Braun JBS, Ruchel JB, Manzoni AG, Abdalla FH, Casalli EA, Castilhos LG, Passos DF, Leal DBR. Pretreatment with quercetin prevents changes in lymphocytes E-NTPDase/E-ADA activities and cytokines secretion in hyperlipidemic rats. Mol Cell Biochem 2017; 444:63-75. [PMID: 29188537 DOI: 10.1007/s11010-017-3231-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
Abstract
Hyperlipidemia (HL) is a condition associated with endothelial dysfunction and inflammatory disorders. Purinergic system ectoenzymes play an important role in modulating the inflammatory and immune response. This study investigated whether the preventive treatment with quercetin is able to prevent changes caused by hyperlipidemia in the purinergic system, through the activities of E-NTPDase and E-ADA in lymphocytes, and quantify the nucleotides and nucleoside, and the secretion of anti- and proinflammatory cytokines. Animals were divided into saline/control, saline/quercetin 5 mg/kg, saline/quercetin 25 mg/kg, saline/quercetin 50 mg/kg, saline/simvastatin (0.04 mg/kg), hyperlipidemia, hyperlipidemia/quercetin 5 mg/kg, hyperlipidemia/quercetin 25 mg/kg, hyperlipidemia/quercetin 50 mg/kg, and hyperlipidemia/simvastatin. Animals were pretreated with quercetin for 30 days and hyperlipidemia was subsequently induced by intraperitoneal administration of 500 mg/kg of poloxamer-407. Simvastatin was administered after the induction of hyperlipidemia. Lymphocytes were isolated and E-NTPDase and E-ADA activities were determined. Serum was separated for the cytokines and nucleotide/nucleoside quantification. E-NTPDase and E-ADA activities were increased in lymphocytes from hyperlipidemic rats and pretreatment with quercetin was able to prevent the increase in the activities of these enzymes caused by hyperlipidemia. Hyperlipidemic rats when receiving pretreatment with quercetin and treatment with simvastatin showed decreased levels of ATP and ADP when compared to the untreated hyperlipidemic group. The IFN-γ and IL-4 cytokines were increased in the hyperlipidemic group when compared with control group, and decreased when hyperlipidemic rats received the pretreatment with quercetin. However, pretreatment with quercetin was able to prevent the alterations caused by hyperlipidemia probably by regulating the inflammatory process. We can suggest that the quercetin is a promising compound to be used as an adjuvant in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Josiane B S Braun
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil. .,Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil.
| | - Jader B Ruchel
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.,Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil
| | - Alessandra G Manzoni
- Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil
| | - Fátima H Abdalla
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Emerson A Casalli
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lívia G Castilhos
- Programa de Pós Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Daniela F Passos
- Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil.
| | - Daniela B R Leal
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.,Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil.,Programa de Pós Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
13
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
14
|
Borilova Linhartova P, Cernochova P, Kastovsky J, Vrankova Z, Sirotkova M, Izakovicova Holla L. Genetic determinants and postorthodontic external apical root resorption in Czech children. Oral Dis 2016; 23:29-35. [PMID: 27493142 DOI: 10.1111/odi.12564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Genes, involved in the modulation of inflammatory response and bone remodeling, play a role in the development of postorthodontic external apical root resorption (EARR). The aim of our study was to analyze possible associations between seven single nucleotide polymorphisms (SNPs) in interleukin-17A (IL-17), osteopontin (SPP1), purinoreceptor P2X7 (P2RX7), and tumor necrosis factor receptor superfamily member 11B (TNFRSF11B) genes and EARR in children after orthodontic treatment. SUBJECTS AND METHODS This case-control study comprised 99 orthodontically treated patients (69 controls and 30 subjects with EARR). Genotype determinations of rs2275913, rs11730582, rs9138, rs208294, rs1718119, rs3102735, and rs2073618 were based on polymerase chain reaction using 5' nuclease TaqMan® assays. RESULTS While no significant differences were observed in allele or genotype frequencies of all seven studied SNPs, specific haplotype of P2RX7 (rs208294 and rs1718119) modified the risk of EARR development (P < 0.05). In addition, the length of treatment with a fixed orthodontic appliance positively correlated with the presence of EARR (P < 0.05). CONCLUSIONS Although the effect of individual SNPs studied on the EARR development was not confirmed in the Czech population, complex analysis suggested that variability in the P2RX7 gene and the length of orthodontic treatment may be important factors contributing to the etiopathogenesis of postorthodontic EARR.
Collapse
Affiliation(s)
- P Borilova Linhartova
- Clinic of Stomatology, Institutions Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - P Cernochova
- Clinic of Stomatology, Institutions Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - J Kastovsky
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Z Vrankova
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - M Sirotkova
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - L Izakovicova Holla
- Clinic of Stomatology, Institutions Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
15
|
Ruchel JB, Rezer JFP, Thorstenberg ML, Dos Santos CB, Cabral FL, Lopes STA, da Silva CB, Machado AK, da Cruz IBM, Schetinger MRC, Gonçalves JF, Leal DBR. Hypercholesterolemia and Ecto-enzymes of Purinergic System: Effects of Paullinia cupana. Phytother Res 2015; 30:49-57. [PMID: 26514663 DOI: 10.1002/ptr.5499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 08/30/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022]
Abstract
Hypercholesterolemia is a metabolic disorder characterized by high levels of low-density lipoprotein and blood cholesterol, causing inflammatory lesion. Purinergic signaling modulates the inflammatory and immune responses through adenine nucleotides and nucleoside. Guaraná has hypocholesterolemic and antiinflammatory properties. Considering that there are few studies demonstrating the effects of guaraná powder on the metabolism of adenine nucleotides, we investigated its effects on the activity of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase activity in lymphocytes of rats with diet-induced hypercholesterolemia. The rats were divided into hypercholesterolemic and normal diet groups. Each group was subdivided by treatment: saline, guaraná powder 12.5, 25, or 50 mg/kg/day and caffeine concentration equivalent to highest dose of guaraná, fed orally for 30 days. An increase in adenosine triphosphate hydrolysis was observed in the lymphocytes of rats with hypercholesterolemia and treated with 25 or 50 mg/kg/day when compared with the other groups. The hypercholesterolemic group treated with the highest concentration of guaraná powder showed decreased ecto-adenosine deaminase activity compared with the normal diet groups. Guaraná was able to reduce the total cholesterol and low-density lipoprotein cholesterol to basal levels in hypercholesterolemic rats. High concentrations of guaraná associated with a hypercholesterolemic diet are likely to have contributed to the reduction of the inflammatory process.
Collapse
Affiliation(s)
- J B Ruchel
- Centro de Ciências Naturais e Exatas, Departamento de Química, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil.,Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - J F P Rezer
- Centro de Ciências Naturais e Exatas, Departamento de Química, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil.,Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - M L Thorstenberg
- Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - C B Dos Santos
- Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - F L Cabral
- Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - S T A Lopes
- Centro de Ciências Rurais, Departamento de Patologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - C B da Silva
- Centro de Ciências Rurais, Departamento de Patologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - A K Machado
- Centro de Ciências da Saúde, Departamento de Morfologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - I B M da Cruz
- Centro de Ciências da Saúde, Departamento de Morfologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - M R C Schetinger
- Centro de Ciências Naturais e Exatas, Departamento de Química, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - J F Gonçalves
- Centro de Ciências Naturais e Exatas, Departamento de Química, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil.,Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - D B R Leal
- Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
16
|
Kvist TM, Syberg S, Petersen S, Ding M, Jørgensen NR, Schwarz P. The role of the P2X7 receptor on bone loss in a mouse model of inflammation-mediated osteoporosis. Bone Rep 2015; 7:145-151. [PMID: 29276731 PMCID: PMC5736855 DOI: 10.1016/j.bonr.2015.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/14/2015] [Accepted: 09/20/2015] [Indexed: 12/17/2022] Open
Abstract
In inflammatory autoimmune diseases, bone loss is frequent. In most cases, secondary osteoporosis is caused by treatment with systemic glucocorticoid. However, the pathogenesis behind the bone loss is presumed multifactorial. We aimed to elucidate the role of the P2X7 receptor on bone mineral density (BMD), microarchitecture, and bone strength in a standardized mouse model of inflammation-mediated osteoporosis (IMO). In total 146 mice completed our protocol, 70 wild type (WT) mice and 76 P2X7 -/- (knockout, KO). BMD at the femur and spine decreased significantly from baseline to day 20 in the WT IMO mice (p < 0.01). In the WT vehicle, KO vehicle and KO IMO, no significant BMD changes were found. Bone strength showed a lower mid-shaft max strength (p = 0.038) and also a non-significant trend towards lower strength at the femoral neck of the WT IMO group. Trabecular bone volume fraction (BV/TV) and connectivity density (CD) after 20 days were significantly decreased in the WT IMO group (p = 0.001). In contrast, the WT vehicle and KO vehicle, BV/TV and CD did no change at 20 days. Cortical bone revealed no significant microarchitectural changes after 20 days in the WT IMO group, whereas the total cortical area increased significantly in WT vehicle and KO IMO after 20 days (5.2% and 8.8%, respectively). In conclusion, the P2X7 receptor KO mice did not respond to inflammation with loss of BMD whereas the WT mice had a significant loss of BMD, bone strength and trabecular microarchitecture, demonstrating a role for the P2X7 receptor in inflammatory bone loss.
Collapse
Affiliation(s)
- T M Kvist
- Research Centre for Ageing and Osteoporosis, Dep. of Endocrinology PE, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - S Syberg
- Research Centre for Ageing and Osteoporosis, Dep. of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - S Petersen
- Research Centre for Ageing and Osteoporosis, Dep. of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - M Ding
- Research Centre for Ageing and Osteoporosis, Dep. of Ortopedics & Traumatology, Odense University Hospital, University of Southern Denmark, Denmark
| | - N R Jørgensen
- Research Centre for Ageing and Osteoporosis, Dep. of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Denmark.,Research Centre for Ageing and Osteoporosis, Institute of Clinical Research, University of Southern Denmark, Denmark
| | - P Schwarz
- Research Centre for Ageing and Osteoporosis, Dep. of Endocrinology PE, Copenhagen University Hospital, Rigshospitalet, Denmark.,Research Centre for Ageing and Osteoporosis, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
17
|
Sinadinos A, Young CNJ, Al-Khalidi R, Teti A, Kalinski P, Mohamad S, Floriot L, Henry T, Tozzi G, Jiang T, Wurtz O, Lefebvre A, Shugay M, Tong J, Vaudry D, Arkle S, doRego JC, Górecki DC. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy. PLoS Med 2015; 12:e1001888. [PMID: 26461208 PMCID: PMC4604078 DOI: 10.1371/journal.pmed.1001888] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density. Current interventions in DMD are palliative only as no treatment improves the long-term outcome. Therefore, approaches with a translational potential should be investigated, and key abnormalities downstream from the absence of the DMD product, dystrophin, appear to be strong therapeutic targets. We and others have demonstrated that DMD mutations alter ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible for the death of muscles in the mdx mouse model of DMD and human DMD lymphoblasts. Moreover, the ATP-P2RX7 axis, being a crucial activator of innate immune responses, can contribute to DMD pathology by stimulating chronic inflammation. We investigated whether ablation of P2RX7 attenuates the DMD model mouse phenotype to assess receptor suitability as a therapeutic target. METHODS AND FINDINGS Using a combination of molecular, histological, and biochemical methods and behavioral analyses in vivo we demonstrate, to our knowledge for the first time, that genetic ablation of P2RX7 in the DMD model mouse produces a widespread functional attenuation of both muscle and non-muscle symptoms. In dystrophic muscles at 4 wk there was an evident recovery in key functional and molecular parameters such as improved muscle structure (minimum Feret diameter, p < 0.001), increased muscle strength in vitro (p < 0.001) and in vivo (p = 0.012), and pro-fibrotic molecular signatures. Serum creatine kinase (CK) levels were lower (p = 0.025), and reduced cognitive impairment (p = 0.006) and bone structure alterations (p < 0.001) were also apparent. Reduction of inflammation and fibrosis persisted at 20 mo in leg (p = 0.038), diaphragm (p = 0.042), and heart muscles (p < 0.001). We show that the amelioration of symptoms was proportional to the extent of receptor depletion and that improvements were observed following administration of two P2RX7 antagonists (CK, p = 0.030 and p = 0.050) without any detectable side effects. However, approaches successful in animal models still need to be proved effective in clinical practice. CONCLUSIONS These results are, to our knowledge, the first to establish that a single treatment can improve muscle function both short and long term and also correct cognitive impairment and bone loss in DMD model mice. The wide-ranging improvements reflect the convergence of P2RX7 ablation on multiple disease mechanisms affecting skeletal and cardiac muscles, inflammatory cells, brain, and bone. Given the impact of P2RX7 blockade in the DMD mouse model, this receptor is an attractive target for translational research: existing drugs with established safety records could potentially be repurposed for treatment of this lethal disease.
Collapse
Affiliation(s)
- Anthony Sinadinos
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Christopher N. J. Young
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Rasha Al-Khalidi
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Paweł Kalinski
- Departments of Surgery, Immunology, and Bioengineering, School of Medicine, University of Pittsburgh, Pittsburg, Pennsylvania, United States of America
| | - Shafini Mohamad
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Léonore Floriot
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
| | - Tiphaine Henry
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
| | - Gianluca Tozzi
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Taiwen Jiang
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Olivier Wurtz
- INSERM U982, Plate-Forme d’Imagerie PRIMACEN, IRIB, University of Rouen, Mont-Saint-Aignan, France
| | - Alexis Lefebvre
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
| | - Mikhail Shugay
- Genomics of Adaptive Immunity Lab, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry and Pirogov Russian National Research Medical University, Moscow, Russia
| | - Jie Tong
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - David Vaudry
- INSERM U982, Plate-Forme d’Imagerie PRIMACEN, IRIB, University of Rouen, Mont-Saint-Aignan, France
| | - Stephen Arkle
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jean-Claude doRego
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
- National Center of Scientific Research (CNRS), Caen, France
| | - Dariusz C. Górecki
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Gong QY, Chen Y. Correlation between P2X7 receptor gene polymorphisms and gout. Rheumatol Int 2015; 35:1307-10. [DOI: 10.1007/s00296-015-3258-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/16/2015] [Indexed: 11/29/2022]
|
19
|
Yan Y, Bai J, Zhou X, Tang J, Jiang C, Tolbert E, Bayliss G, Gong R, Zhao TC, Zhuang S. P2X7 receptor inhibition protects against ischemic acute kidney injury in mice. Am J Physiol Cell Physiol 2015; 308:C463-72. [PMID: 25588875 DOI: 10.1152/ajpcell.00245.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activation of the purinergic P2X7 receptor (P2X7R) has been associated with the development of experimental nephritis and diabetic and hypertensive nephropathy. However, its role in acute kidney injury (AKI) remains unknown. In this study, we examined the effects of P2X7R inhibition in a murine model of ischemia-reperfusion (I/R)-induced AKI using A438079, a selective inhibitor of P2X7R. At 24 h after I/R, mice developed renal dysfunction and renal tubular damage, which was accompanied by elevated expression of P2X7R. Early administration of A438079 immediately or 6 h after the onset of reperfusion protected against renal dysfunction and attenuated kidney damage whereas delayed administration of A438079 at 24 h after restoration of perfusion had no protective effects. The protective actions of A438079 were associated with inhibition of renal tubule injury and cell death and suppression of renal expression of monocyte chemotactic protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). Moreover, I/R injury led to an increase in phosphorylation (activation) of extracellular signal-regulated kinases 1/2 in the kidney; treatment with A438079 diminished this response. Collectively, these results indicate that early P2X7R inhibition is effective against renal tubule injury and proinflammatory response after I/R injury and suggest that targeting P2X7R may be a promising therapeutic strategy for treatment of AKI.
Collapse
Affiliation(s)
- Yanli Yan
- Department of Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Jianwen Bai
- Department of Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Jinhua Tang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Chunming Jiang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Evelyn Tolbert
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Rujun Gong
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| |
Collapse
|