1
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. An evolutionary dynamics analysis of the plant DEK gene family reveals the role of BnaA02g08940D in drought tolerance. Int J Biol Macromol 2025; 298:140053. [PMID: 39828179 DOI: 10.1016/j.ijbiomac.2025.140053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
DEK is a chromatin protein that interacts with DNA to influence chromatin formation, thereby affecting plant growth, development, and stress response. This study investigates the molecular evolution of the DEK family in plants, with a particular focus on the Brassica species. A total of 127 DEK genes were identified in 34 plants and classified into seven groups based on the phylogenetic analysis. The distribution of motifs and gene structure is similar within each group, indicating a high degree of conservation. The results of the collinearity analysis indicated that the DEK protein has undergone a certain degree of evolutionary conservation. The expansion of the DEK family is primarily attributable to whole-genome duplication (WGD) or segmental duplication events. The DEK protein has undergone purification during its evolutionary history, and several positively selected sites have been identified. Moreover, the examination of cis-acting elements and expression patterns revealed that the BnDEKs play a significant role in plant growth and stress response. The protein-protein interaction network identified several noteworthy proteins that interact with DEK. These analyses enhance our comprehension of the DEK gene family and establish the foundation for additional validation of its function. Further research demonstrated that the overexpression of one DEK family member, BnaA02g08940D, enhanced the transgenic Arabidopsis tolerance to drought and osmosis. This indicates that the DEK family may respond when plants are subjected to drought stress, thereby strengthening the plant's resilience.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
2
|
Sundaram R, Gandhi S, Jonak C, Vasudevan D. Characterization of the Arabidopsis thaliana chromatin remodeler DEK3 for its interaction with histones and DNA. Biochimie 2024; 227:248-261. [PMID: 39097158 DOI: 10.1016/j.biochi.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Chromatin structure and dynamics regulate all DNA-templated processes, such as transcription, replication, and repair. Chromatin binding factors, chromatin architectural proteins, and nucleosome remodelers modulate chromatin structure and dynamics and, thereby, the various DNA-dependent processes. Arabidopsis thaliana DEK3, a member of the evolutionarily conserved DEK domain-containing chromatin architectural proteins, is an important factor for chromatin structure and function, involved in transcriptional programming to regulate flowering time and abiotic stress tolerance. AtDEK3 contains an uncharacterized N-terminal domain, a middle SAF domain (winged helix-like domain), and a C-terminal DEK domain, but their role in the interaction of AtDEK3 with histones and DNA remained poorly understood. Using biochemical and biophysical analyses, we provide a comprehensive in vitro characterization of the different AtDEK3 domains for their interaction with histone H3/H4 and DNA. AtDEK3 directly interacts with histone H3/H4 tetramers through its N-terminal domain and the C-terminal DEK domain in a 1:1 stoichiometry. Upon interaction with H3/H4, the unstructured N-terminal domain of AtDEK3 undergoes a conformational change and adopts an alpha-helical conformation. In addition, the in-solution envelope structures of the AtDEK3 domains and their complex with H3/H4 have been characterized. The SAF and DEK domains associate with double-stranded and four-way junction DNA. As DEK3 possesses a histone-interacting domain at the N- and the C-terminus and a DNA-binding domain in the middle and at the C-terminus, the protein might play a complex role as a chromatin remodeler.
Collapse
Affiliation(s)
- Rajivgandhi Sundaram
- Institute of Life Sciences, Bhubaneswar, 751023, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Surajit Gandhi
- Institute of Life Sciences, Bhubaneswar, 751023, India; Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Dileep Vasudevan
- Institute of Life Sciences, Bhubaneswar, 751023, India; Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India.
| |
Collapse
|
3
|
Hopper MA, Dropik AR, Walker JS, Novak JP, Laverty MS, Manske MK, Wu X, Wenzl K, Krull JE, Sarangi V, Maurer MJ, Yang ZZ, Del Busso MD, Habermann TM, Link BK, Rimsza LM, Witzig TE, Ansell SM, Cerhan JR, Jevremovic D, Novak AJ. DEK regulates B-cell proliferative capacity and is associated with aggressive disease in low-grade B-cell lymphomas. Blood Cancer J 2024; 14:172. [PMID: 39384745 PMCID: PMC11464677 DOI: 10.1038/s41408-024-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
This study sheds light on the pivotal role of the oncoprotein DEK in B-cell lymphoma. We reveal DEK expression correlates with increased tumor proliferation and inferior overall survival in cases diagnosed with low-grade B-cell lymphoma (LGBCL). We also found significant correlation between DEK expression and copy number alterations in LGBCL tumors, highlighting a novel mechanism of LGBCL pathogenesis that warrants additional exploration. To interrogate the mechanistic role of DEK in B-cell lymphoma, we generated a DEK knockout cell line model, which demonstrated DEK depletion caused reduced proliferation and altered expression of key cell cycle and apoptosis-related proteins, including Bcl-2, Bcl-xL, and p53. Notably, DEK depleted cells showed increased sensitivity to apoptosis-inducing agents, including venetoclax and staurosporine, which underscores the therapeutic potential of targeting DEK in B-cell lymphomas. Overall, our study contributes to a better understanding of DEK's role as an oncoprotein in B-cell lymphomas, highlighting its potential as both a promising therapeutic target and a novel biomarker for aggressive LGBCL. Further research elucidating the molecular mechanisms underlying DEK-mediated tumorigenesis could pave the way for improved treatment strategies and better clinical outcomes for patients with B-cell lymphoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaosheng Wu
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Brian K Link
- Division of Hematology, Oncology, and Bone & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Han J, Wang J, Wang Q, Li Y, Li T, Zhang J, Sun H. Clinical values of preoperative red blood cell distribution width and platelet parameters in patients with papillary thyroid carcinoma. Oncol Lett 2024; 28:460. [PMID: 39119231 PMCID: PMC11307553 DOI: 10.3892/ol.2024.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The prevalence of thyroid carcinoma is increasing, and papillary thyroid carcinoma (PTC) is the most frequent subtype. More and more attention is being concentrated on the association between inflammation indicators and malignant tumors. The aim of the present study was to analyze whether the preoperative red blood cell distribution width (RDW) and platelet parameters, including mean platelet volume (MPV) and platelet distribution width (PDW), can be applied to distinguish between patients with PTC or papillary thyroid microcarcinoma (PTMC) and healthy controls, and to explore the associations with clinicopathological characteristics. The study retrospectively compared the RDW, MPV and PDW values of 780 patients with PTC or PTMC against a healthy control group. Receiver operating characteristic (ROC) curves were conducted to determine diagnostic accuracy. Furthermore, the clinicopathological features of the patients with PTC or PTMC were compared between higher and lower platelet parameter groups based on the RDW, MPV and PDW values. Significantly higher preoperative RDW, MPV and PDW values were found in patients with PTC or PTMC compared with those of the healthy group. ROC curve analysis showed that the area under the curve (AUC) plus 95% confidence interval (95% CI) values of RDW, MPV and PDW were 0.808 (0.780-0.835), 0.771 (0.743-0.799) and 0.711 (0.681-0.742), respectively. When RDW and MPV were combined together, the AUC (95% CI) value was enhanced to 0.858 (0.835-0.881) for the patients with PTC. For the patients with PTMC, RDW, MPV and PDW had AUC (95% CI) values of 0.812 (0.783-0.840), 0.779 (0.749-0.808) and 0.718 (0.685-0.751), respectively. When RDW and MPV were combined together, the AUC (95% CI) value was enhanced to 0.858 (0.835-0.881). A higher RDW was significantly associated with being female, deeper tumor infiltration, and normal FT3 and FT4 levels. A higher PDW was significantly associated with elevated thyrotropin receptor antibody levels. In conclusion, as convenient and available inflammation indicators, RDW, PDW and MPV have diagnostic ability and can distinguish between patients with PTC or PTMC and healthy controls. In addition, the combined application of RDW and MPV can improve the diagnostic power. The values of RDW and MPV were associated with clinicopathological characteristics. To the best of our knowledge, this is the first study to prove the usefulness of preoperative RDW combined with MPV in diagnosing patients with PTC or PTMC.
Collapse
Affiliation(s)
- Jingying Han
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jing Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qian Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yuan Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Tian Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jian Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hui Sun
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
5
|
Bai Q, Liu R, Quan C, Han X, Wang D, Wang C, Wang Z, Li L, Li L, Piao H, Song Y, Yan G. DEK deficiency suppresses mitophagy to protect against house dust mite-induced asthma. Front Immunol 2024; 14:1289774. [PMID: 38274803 PMCID: PMC10808738 DOI: 10.3389/fimmu.2023.1289774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
DEK protein is highly expressed in asthma. However, the mechanism of DEK on mitophagy in asthma has not been fully understood. This study aims to investigate the role and mechanism of DEK in asthmatic airway inflammation and in regulating PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. PINK1-Parkin mitophagy, NLRP3 inflammasome, and apoptosis were examined after gene silencing or treatment with specific inhibitors (MitoTEMPO, MCC950, and Ac-DEVD-CHO) in house dust mite (HDM) or recombinant DEK (rmDEK)-induced WT and DEK-/- asthmatic mice and BEAS-2B cells. The regulatory role of DEK on ATAD3A was detected using ChIP-sequence and co-immunoprecipitation. rmDEK promoted eosinophil recruitment, and co-localization of TOM20 and LC3B, MFN1 and mitochondria, LC3B and VDAC, and ROS generation, reduced protein level of MnSOD in HDM induced-asthmatic mice. Moreover, rmDEK also increased DRP1 expression, PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. These effects were partially reversed in DEK-/- mice. In BEAS-2B cells, siDEK diminished the Parkin, LC3B, and DRP1 translocation to mitochondria, mtROS, TOM20, and mtDNA. ChIP-sequence analysis showed that DEK was enriched on the ATAD3A promoter and could positively regulate ATAD3A expression. Additionally, ATAD3A was highly expressed in HDM-induced asthma models and interacted with DRP1, and siATAD3A could down-regulate DRP1 and mtDNA-mediated mitochondrial oxidative damage. Conclusively, DEK deficiency alleviates airway inflammation in asthma by down-regulating PINK1-Parkin mitophagy, NLRP3 inflammasome activation, and apoptosis. The mechanism may be through the DEK/ATAD3A/DRP1 signaling axis. Our findings may provide new potential therapeutic targets for asthma treatment.
Collapse
Affiliation(s)
- Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Ruobai Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Changlin Quan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Xue Han
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Dandan Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
6
|
Stimulus-responsive and dual-target DNA nanodrugs for rheumatoid arthritis treatment. Int J Pharm 2023; 632:122543. [PMID: 36572263 DOI: 10.1016/j.ijpharm.2022.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor receptor-1 (TNFR1) and DEK are closely associated with the development of rheumatoid arthritis (RA). Taking advantage of the high adenosine triphosphate (ATP) in RA microenvironment and the interactions of DNA aptamers with their targets, an ATP-responsive DNA nanodrug was constructed that simultaneously targets TNFR1 and DEK for RA therapy. To this end, DEK target aptamer DTA and TNFR1 target aptamer Apt1-67 were equipped with sticky ends to hybridize with ATP aptamer (AptATP) and fabricated DNA nanodrug DAT. Our results showed that DAT was successfully prepared with good stability. In the presence of ATP, DAT was disassembled, resulting in the release of DTA and Apt1-67. In vitro studies demonstrated that DAT was superior to the non-responsive DNA nanodrug TD-3A3T in terms of anti-inflammation activity and ATP was inevitable to maximize the anti-inflammation ability of DAT. The superior efficacy of DAT is attributed to the more potent inhibition of caspase-3 and NETs formation. In vivo results further confirmed the anti-RA efficacy of DAT, whereas the administration routes (intravenous injection and transdermal administration via microneedles) did not cause significant differences. Overall, the present study supplies an intelligent strategy for RA therapy and explores a promising administration route for future clinical medication of RA patients.
Collapse
|
7
|
Yang C, Shao Y, Wang X, Wang J, Wang P, Huang C, Wang W, Wang J. The Effect of the Histone Chaperones HSPA8 and DEK on Tumor Immunity in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24032653. [PMID: 36768989 PMCID: PMC9916749 DOI: 10.3390/ijms24032653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Complex immune contexture leads to resistance to immunotherapy in hepatocellular carcinoma (HCC), and the need for new potential biomarkers of immunotherapy in HCC is urgent. Histone chaperones are vital determinants of gene expression and genome stability that regulate tumor development. This study aimed to investigate the effect of histone chaperones on tumor immunity in HCC. Bioinformatics analyses were initially performed using The Cancer Genome Atlas (TCGA) database, and were validated using the Gene Expression Omnibus (GEO) database and the International Cancer Genome Consortium (ICGC) database. Immune-related histone chaperones were screened with the Spearman rank coefficient. Consensus clustering was utilized to divide the HCC samples into two clusters. ESTIMATE, CIBERSORT and ssGSEA analyses were performed to assess immune infiltration. The expression of immunomodulatory genes, chemokines and chemokine receptors was analyzed to evaluate sensitivity to immunotherapy. The differentially expressed genes (DEGs) were included in weighted gene coexpression network analysis (WGCNA) to identify the hub genes. Enrichment analyses were used to investigate the functions of the hub genes. The Kaplan-Meier method and log-rank test were conducted to draw survival curves. A Cox regression analysis was utilized to identify independent risk factors affecting prognosis. HSPA8 and DEK were screened out from 36 known histone chaperones based on their strongest correlation with the ESTIMATE score. Cluster 2, with high HSPA8 expression and low DEK expression, tended to have stronger immune infiltration and better sensitivity to immunotherapy than Cluster 1, with low HSPA8 expression and high DEK expression. Furthermore, WGCNA identified 12 hub genes closely correlated with immune infiltration from the DEGs of the two clusters, of which FBLN2 was proven to be an independent protective factor of HCC patients. HSPA8 and DEK are expected to be biomarkers for precisely predicting the effect of immunotherapy, and FBLN2 is expected to be a therapeutic target of HCC.
Collapse
Affiliation(s)
- Chuanxin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yaodi Shao
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiangjun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Puxiongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Correspondence: (W.W.); (J.W.)
| | - Jian Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Correspondence: (W.W.); (J.W.)
| |
Collapse
|
8
|
Zhu X, Zhou H. Neutrophil-to-Lymphocyte Ratio Can Distinguish Patients with Liver Cirrhosis from Healthy People but Cannot Distinguish Patients with Cirrhotic Hepatocellular Carcinoma from Patients with Liver Cirrhosis. J Hepatocell Carcinoma 2022; 9:1127-1136. [PMID: 36338430 PMCID: PMC9628700 DOI: 10.2147/jhc.s387189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/15/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Identifying cirrhotic hepatocellular carcinoma (HCC) during liver cirrhosis (LC) stage is pivotal for improving the clinical outcomes of cirrhotic HCC patients. Inflammation-driven markers play a crucial role in tumorigenesis and tumor progression. Neutrophil-to-lymphocyte ratio (NLR) is an inflammatory response marker. This study aimed to evaluate the ability of NLR to distinguish cirrhotic HCC from LC. METHODS Data of healthy control (HC) people, LC patients, cirrhotic HCC patients, and non-cirrhotic HCC patients were retrospectively analyzed. Mann-Whitney U test and Chi-squared test were used to compare demographic and clinical parameters in different groups. Spearman correlation analysis was used to assess correlations. Receiver operating characteristic (ROC) curves were performed to determine diagnostic accuracy. RESULTS A total of 419 participants were enrolled in this study, including 152 HC people, 131 LC patients, 96 cirrhotic HCC patients, and 40 non-cirrhotic HCC patients. Level of NLR was elevated significantly in LC compared with HC (P < 0.001). No significant differences were found for NLR between LC and cirrhotic HCC (P = 0.083), as well as between cirrhotic HCC and non-cirrhotic HCC (P = 0.729). NLR was positively correlated with platelet-to-lymphocyte ratio (r = 0.33, P < 0.001). The area under the ROC curve (AUC) value for NLR to distinguish LC from HC was 0.759 (P < 0.001), and AUC value to distinguish cirrhotic HCC from LC was 0.567 (P = 0.083), and AUC value to distinguish non-cirrhotic HCC from cirrhotic HCC was 0.519 (0.415-0.623) (P = 0.729). CONCLUSION NLR can distinguish LC from HC but cannot not distinguish cirrhotic HCC from LC.
Collapse
Affiliation(s)
- Xuming Zhu
- Department of Laboratory Medicine, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China,Correspondence: Xuming Zhu, Department of Laboratory Medicine, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 at Qingyang Road, Wuxi, 214023, People’s Republic of China, Email
| | - Hongxing Zhou
- Department of Laboratory Medicine, the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|
9
|
Özçelik E, Kalaycı A, Çelik B, Avcı A, Akyol H, Kılıç İB, Güzel T, Çetin M, Öztürk MT, Çalışkaner ZO, Tombaz M, Yoleri D, Konu Ö, Kandilci A. Doxorubicin induces prolonged DNA damage signal in cells overexpressing DEK isoform-2. PLoS One 2022; 17:e0275476. [PMID: 36190960 PMCID: PMC9529144 DOI: 10.1371/journal.pone.0275476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
DEK has a short isoform (DEK isoform-2; DEK2) that lacks amino acid residues between 49–82. The full-length DEK (DEK isoform-1; DEK1) is ubiquitously expressed and plays a role in different cellular processes but whether DEK2 is involved in these processes remains elusive. We stably overexpressed DEK2 in human bone marrow stromal cell line HS-27A, in which endogenous DEKs were intact or suppressed via short hairpin RNA (sh-RNA). We have found that contrary to ectopic DEK1, DEK2 locates in the nucleus and nucleolus, causes persistent γH2AX signal upon doxorubicin treatment, and couldn’t functionally compensate for the loss of DEK1. In addition, DEK2 overexpressing cells were more sensitive to doxorubicin than DEK1-cells. Expressions of DEK1 and DEK2 in cell lines and primary tumors exhibit tissue specificity. DEK1 is upregulated in cancers of the colon, liver, and lung compared to normal tissues while both DEK1 and DEK2 are downregulated in subsets of kidney, prostate, and thyroid carcinomas. Interestingly, only DEK2 was downregulated in a subset of breast tumors suggesting that DEK2 can be modulated differently than DEK1 in specific cancers. In summary, our findings show distinct expression patterns and subcellular location and suggest non-overlapping functions between the two DEK isoforms.
Collapse
Affiliation(s)
- Emrah Özçelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ahmet Kalaycı
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Büşra Çelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Açelya Avcı
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hasan Akyol
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - İrfan Baki Kılıç
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Türkan Güzel
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Metin Çetin
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Merve Tuzlakoğlu Öztürk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Zihni Onur Çalışkaner
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Melike Tombaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Dilan Yoleri
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Özlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ayten Kandilci
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- * E-mail:
| |
Collapse
|
10
|
Greene AN, Nguyen ET, Paranjpe A, Lane A, Privette Vinnedge LM, Solomon MB. In silico gene expression and pathway analysis of DEK in the human brain across the lifespan. Eur J Neurosci 2022; 56:4720-4743. [PMID: 35972263 PMCID: PMC9730547 DOI: 10.1111/ejn.15791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
DEK, a chromatin-remodelling phosphoprotein, is associated with various functions and biological pathways in the periphery, including inflammation, oncogenesis, DNA repair, and transcriptional regulation. We recently identified an association between DEK loss and central nervous system diseases, such as Alzheimer's. To understand DEK's potential role in disease, it is critical to characterize DEK in healthy human brain to distinguish between neural DEK expression and function in healthy versus diseased states like dementia. We utilized two public databases, BrainCloud and Human Brain Transcriptome, and analysed DEK mRNA expression across the lifespan in learning and memory relevant brain regions. Since DEK loss induces phenotypes associated with brain ageing (e.g., DNA damage and apoptosis), we hypothesized that neural DEK expression may be highest during foetal development and lower in elderly individuals. In agreement with this hypothesis, DEK was most prominently expressed during foetal development in all queried forebrain areas, relative to other ages. Consistent with its roles in the periphery, pathways related to DEK in the brain were associated with cellular proliferation, DNA replication and repair, apoptosis, and inflammation. We also found novel neural development-relevant pathways (e.g., synaptic transmission, neurite outgrowth, and myelination) to be enriched from genes correlated with DEK expression. These findings suggest that DEK is important for human brain development. Overall, we highlight age-related changes in neural DEK expression across the human lifespan and illuminate novel biological pathways associated with DEK that are distinct from normal brain ageing. These findings may further our understanding of how DEK impacts brain function and disease susceptibility.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45267
| | | | - Aditi Paranjpe
- Division of Biomedical Informatics, Bioinformatics Collaborative Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45267
- Department of Psychology, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
11
|
Habiburrahman M, Wardoyo MP, Sutopo S, Rahadiani N. Potential of DEK proto-oncogene as a prognostic biomarker for colorectal cancer: An evidence-based review. Mol Clin Oncol 2022; 17:117. [PMID: 35747597 PMCID: PMC9204329 DOI: 10.3892/mco.2022.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Given its role in tumorigenesis and its correlation with various pathologic features of colorectal cancer (CRC), DEK is considered to have the potential to predict CRC prognosis. This review attempts to summarize current knowledge and evidence supporting the potential of DEK as a prognostic biomarker of CRC. We searched meta-analyses, systematic reviews, cohort studies, and cell line studies published in the last 10 years. A literature search was conducted in PubMed, Pubmed Central (PMC), Proquest, EBSCOHost, Scopus, and Cochrane Library using the keywords 'colorectal/colon/rectal cancer', 'DEK', 'biomarker', and 'prognosis'. Studies that were not published in English, without accessible full text, unrelated to clinical questions, or conducted with a design unsuitable for the eligibility criteria were excluded. Seven included studies reported the potential of DEK as a prognostic biomarker of CRC and its role in cancer cell proliferation, invasion, and metastasis. This role is achieved through the Wnt/β-catenin pathway, prevention of apoptosis through destabilization of p53, and bridging inflammation and tumorigenesis through the nuclear factor (NF)-κB pathway, causing chronic inflammation and activation of tumorigenic genes. DEK overexpression is also associated with CRC clinical and pathological features, such as tumor size, lymph node metastasis, serosal invasion, differentiation, tumor staging, and epithelial-mesenchymal transition. DEK overexpression was found to be associated with lower survival and recovery rates. Its prognostic value was comparable with other prognostic biomarkers of CRC, such as BRAF, topoisomerase-1, and CEA. A cohort study reported that DEK overexpression was associated with a better response to fluoropyrimidine-based chemotherapy, while a cell-line study indicated a correlation between DEK overexpression with a worse response to irinotecan-based chemotherapy. In conclusion, considering its correlation with CRC pathology, its association with worse CRC patient survival, and its possibility to forecast the therapeutic response of various chemotherapeutic regimens, DEK has the potential to be used as a CRC prognostic biomarker.
Collapse
Affiliation(s)
- Muhammad Habiburrahman
- Faculty of Medicine, Universitas Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | | | - Stefanus Sutopo
- Faculty of Medicine, Universitas Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Nur Rahadiani
- Department of Anatomical Pathology, Faculty of Medicine Universitas Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
12
|
Tadokoro RDB, Cardili L, Artigiani Neto R, Paiotti APR, Oshima CTF, Forones NM. IMMUNOEXPRESSION OF DEK AND PHOSPHO-P38 PROTEINS IN RECTAL CANCER BEFORE CHEMORADIATION THERAPY. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:414-420. [PMID: 36102441 DOI: 10.1590/s0004-2803.202203000-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Colorectal cancer is the third cause of cancer worldwide and a quarter of them are in the rectum. DEK oncogene is involved in several nuclear processes and can accelerate tumorigenesis. OBJECTIVE This study aims to evaluate the immunoexpression of DEK and Phospho-P38 proteins before neoadjuvant therapy in patients with rectum adenocarcinoma and correlate it with a clinical response and survival. METHODS Patients with adenocarcinoma of the middle and low rectum who underwent chemotherapy and radiotherapy followed by surgical tumor resection were included. The expression and quantification were studied by immunohistochemistry in the tumor biopsy tissues using a HScore system. Score ≥4 were considered positive and those with <4 negative. RESULTS 22 patients were included with a mean age of 63.55 years (SD: ±13.49). The clinical-stage before treatment was T3 on 72.7%, T4 on 18.2%, 31.8% were N1, 50% N0 and all M0. After chemo and radiotherapy, 54.6% were T3; 22.7% were classified as T2; 9.1% as T1, and 13.6% were T0. Among the tumors, 22.7% were positive for DEK and 63.6% positive for Phospho-P38. There was a positive correlation between DEK protein before treatment and pTNM stage (P=0.011). Phospho-P38 protein showed no correlation with these parameters. Patients with a negative HScore had a mean survival of 141.33 months (95%CI: 112.41-170.25) and those with a positive HSscore had a mean survival of 25.10 months (95%CI: 17.36-32.84; P<0.001). CONCLUSION A higher expression of DEK was observed in advanced stages. Patients who presented DEK expression <4 had a higher survival, being a factor of worst prognosis.
Collapse
Affiliation(s)
- Rebeca De Barros Tadokoro
- UNIFESP-EPM, Departamento de Medicina, Disciplina de Gastroenterologia, Setor de Oncologia, São Paulo, SP, Brasil
- UNIFESP-EPM, Departamento de Patologia, São Paulo, SP, Brasil
| | | | | | - Ana Paula Ribeiro Paiotti
- UNIFESP-EPM, Departamento de Medicina, Disciplina de Gastroenterologia, Setor de Oncologia, São Paulo, SP, Brasil
| | | | - Nora Manoukian Forones
- UNIFESP-EPM, Departamento de Medicina, Disciplina de Gastroenterologia, Setor de Oncologia, São Paulo, SP, Brasil
| |
Collapse
|
13
|
Saraswat M, Garapati K, Kim J, Budhraja R, Pandey A. Proteomic alterations in extracellular vesicles induced by oncogenic PIK3CA mutations. Proteomics 2022; 22:e2200077. [PMID: 35689797 DOI: 10.1002/pmic.202200077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022]
Abstract
PIK3CA is one of the most frequently mutated genes in human cancers, with the two most prevalent activating mutations being E545K and H1047R. Although the altered intracellular signaling pathways in these cells have been described, the effect of these mutations on their extracellular vesicles (EVs) has not yet been reported. To study altered cellular physiology and intercellular communication through proteomic analysis of EVs, MCF10A cells and their isogenic mutant versions (PIK3CA E545K and H1047R) were cultured and their EVs enriched by differential ultracentrifugation. Proteins were extracted, digested with trypsin and the peptides labeled with tandem mass tag (TMT) reagents and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Four thousand six hundred and fifty-five peptides were identified from 579 proteins of which 522 proteins have been previously described in EVs. Relative quantitation revealed altered levels of EV proteins including several cell adhesion molecules. Mesothelin, E-cadherin, and epithelial cell adhesion molecule were elevated in both mutant cell-derived EVs. Markers of tumor invasion and progression like galectin-3 and transforming growth factor beta induced protein were increased in both mutants. Overall, activating mutations in PIK3CA result in altered EV composition with characteristic changes associated with these hotspot mutations.
Collapse
Affiliation(s)
- Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Liu B, Sun Y, Zhang Y, Xing Y, Suo J. DEK modulates both expression and alternative splicing of cancer‑related genes. Oncol Rep 2022; 47:111. [PMID: 35475534 PMCID: PMC9073418 DOI: 10.3892/or.2022.8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/11/2022] [Indexed: 11/05/2022] Open
Abstract
DEK is known to be a potential proto‑oncogene and is highly expressed in gastric cancer (GC); thus, DEK is considered to contribute to the malignant progression of GC. DEK is an RNA‑binding protein involved in transcription, DNA repair, and selection of splicing sites during mRNA processing; however, its precise function remains elusive due to the lack of clarification of the overall profiles of gene transcription and post‑transcriptional splicing that are regulated by DEK. We performed our original whole‑genomic RNA‑Seq data to analyze the global transcription and alternative splicing profiles in a human GC cell line by comparing DEK siRNA‑treated and control conditions, dissecting both differential gene expression and potential alternative splicing events regulated by DEK. The siRNA‑mediated knockdown of DEK in a GC cell line led to significant changes in gene expression of multiple cancer‑related genes including both oncogenes and tumor suppressors. Moreover, it was revealed that DEK regulated a number of alternative splicing in genes which were significantly enriched in various cancer‑related pathways including apoptosis and cell cycle processes. This study clarified for the first time that DEK has a regulatory effect on the alternative splicing, as well as on the expression, of numerous cancer‑related genes, which is consistent with the role of DEK as a possible oncogene. Our results further expand the importance and feasibility of DEK as a clinical therapeutic target for human malignancies including GC.
Collapse
Affiliation(s)
- Bin Liu
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuanlin Sun
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhang
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanpeng Xing
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian Suo
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
15
|
Karakaya S, Karadağ İ, Yılmaz ME, Çakmak Öksüzoğlu ÖB. High Neutrophil-Lymphocyte Ratio, Platelet-Lymphocyte Ratio and Low Lymphocyte Levels Are Correlated With Worse Pathological Complete Response Rates. Cureus 2022; 14:e22972. [PMID: 35415045 PMCID: PMC8990043 DOI: 10.7759/cureus.22972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To investigate the effect of hemogram parameters on predicting pathological complete response (pCR) in locally advanced rectal cancer. METHODOLOGY A total of 227 patients with rectal cancer treated with neoadjuvant concurrent chemoradiotherapy (CRT) were retrospectively analyzed. All patients were divided into two subgroups as high or low hemogram parameters according to the cut-off value obtained using the receiver operating characteristic (ROC) curve. RESULTS In patients with low neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) levels, pCR rate was statistically significantly higher than the group with high NLR and PLR levels (for NLR: 39.77% vs. 5.34%; p<0.001, for PLR: 32.38% vs 7.01%; p<0.001 respectively). In addition, the pCR rate was significantly better in patients with high lymphocyte levels compared to the group with low lymphocyte levels (33.33% vs. 7.5%; p<0.001, respectively). According to the multivariate logistic regression analysis result, NLR and PLR levels were considered as independent predictors to predict pathological complete response [p<0.001, HR: 0.128 (95% CI=0.051 - 0.322) for NLR; p=0.017, HR: 0.332 (95% CI=0.134 - 0.821) for PLR, respectively]. CONCLUSION Our study showed that high NLR, PLR, and low lymphocyte levels were correlated with worse pCR rates. In addition to that, NLR and PLR emerged as independent predictive markers.
Collapse
Affiliation(s)
- Serdar Karakaya
- Medical Oncology, Health Science University, Atatürk Chest Diseases and Chest Surgery Training and Research Hospital, Ankara, TUR
| | - İbrahim Karadağ
- Department of Medical Oncology, Çorum Hittite University Erol Olçok Training and Research Hospital, Çorum, TUR
| | - Mehmet Emin Yılmaz
- Department of Internal Medicine, Health Sciences University, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, TUR
| | - Ömür Berna Çakmak Öksüzoğlu
- Department of Medical Oncology, Health Sciences University, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, TUR
| |
Collapse
|
16
|
Qi Y, Guo L, Liu Y, Zhao T, Liu X, Zhang Y. Sevoflurane Limits Glioma Progression by Regulating Cell Proliferation, Apoptosis, Migration, and Invasion via miR-218-5p/DEK/β-Catenin Axis in Glioma. Cancer Manag Res 2021; 13:2057-2069. [PMID: 33664593 PMCID: PMC7924128 DOI: 10.2147/cmar.s265356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose Sevoflurane (SEV) is a frequently used volatile anesthetic in cancer surgery. Sevoflurane treatment has been shown to suppress the migration and invasion of several human cancer cells. However, the effect of sevoflurane on glioma remains largely unclear. Methods Glioma cell lines (U251 and U343) were treated by various concentrations of sevoflurane. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry assay, and transwell assay were performed to detect the cell viability, apoptosis, migration and invasion. Western blot assay was employed to detect the protein levels of β-catenin, c-Myc, CyclinD1, β-catenin, N-cadherin, vimentin, and DEK. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the expression level of miR-218-5p. The target interaction between miR-218-5p and DEK was predicted through bioinformatics analysis and verified by dual-luciferase reporter assay system. Results We found that sevoflurane aberrantly inhibited the abilities on viability, migration, invasion, EMT and β-catenin signaling and promoted cell apoptosis in U251 and U343 cells in a dose-dependent manner. MiR-218-5p strikingly suppressed the abilities of proliferation, migration, invasion rather than apoptosis and activation of β-catenin signaling. Sevoflurane could facilitate the miR-218-5p expression, and its suppressing effects on glioma cells were reversed by pre-treatment with miR-218-5p inhibitors or pcDNA3.1/DEK in vitro and in vivo. Silencing of miR-218-5p reverted sh-DEK and sevoflurane-induced repression on proliferation, migration, invasion, and β-catenin signaling, and promotion on apoptosis in the glioma cells. Conclusion Our data showed that sevoflurane inhibited the proliferation, migration, invasion, and enhanced the apoptosis in glioma cells through regulating miR-218-5p/DEK/β-catenin axis.
Collapse
Affiliation(s)
- Yingying Qi
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Lina Guo
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Yanchao Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Tonghang Zhao
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Xianwen Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Yang Zhang
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| |
Collapse
|
17
|
Song Y, Wang Z, Jiang J, Piao Y, Li L, Xu C, Piao H, Li L, Yan G. DEK-targeting aptamer DTA-64 attenuates bronchial EMT-mediated airway remodelling by suppressing TGF-β1/Smad, MAPK and PI3K signalling pathway in asthma. J Cell Mol Med 2020; 24:13739-13750. [PMID: 33124760 PMCID: PMC7754001 DOI: 10.1111/jcmm.15942] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
This study is to investigate the inhibitory effects and mechanisms of DEK-targeting aptamer (DTA-64) on epithelial mesenchymaltransition (EMT)-mediated airway remodelling in mice and human bronchial epithelial cell line BEAS-2B. In the ovalbumin (OVA)-induced asthmatic mice, DTA-64 significantly reduced the infiltration of eosinophils and neutrophils in lung tissue, attenuated the airway resistance and the proliferation of goblet cells. In addition, DTA-64 reduced collagen deposition, transforming growth factor 1 (TGF-β1) level in BALF and IgE levels in serum, balanced Th1/Th2/Th17 ratio, and decreased mesenchymal proteins (vimentin and α-SMA), as well as weekend matrix metalloproteinases (MMP-2 and MMP-9) and NF-κB p65 activity. In the in vitro experiments, we used TGF-β1 to induce EMT in the human epithelial cell line BEAS-2B. DEK overexpression (ovDEK) or silencing (shDEK) up-regulated or down-regulated TGF-β1 expression, respectively, on the contrary, TGF-β1 exposure had no effect on DEK expression. Furthermore, ovDEK and TGF-β1 synergistically promoted EMT, whereas shDEK significantly reduced mesenchymal markers and increased epithelial markers, thus inhibiting EMT. Additionally, shDEK inhibited key proteins in TGF-β1-mediated signalling pathways, including Smad2/3, Smad4, p38 MAPK, ERK1/2, JNK and PI3K/AKT/mTOR. In conclusion, the effects of DTA-64 against EMT of asthmatic mice and BEAS-2B might partially be achieved through suppressing TGF-β1/Smad, MAPK and PI3K signalling pathways. DTA-64 may be a new therapeutic option for the management of airway remodelling in asthma patients.
Collapse
Affiliation(s)
- Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
- Postdoctoral Programme, Research CenterAffiliated Hospital of Yanbian UniversityYanjiChina
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Respiratory MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Intensive Care UnitAffiliated Hospital of Yanbian UniversityYanjiChina
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Respiratory MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| |
Collapse
|
18
|
Greene AN, Parks LG, Solomon MB, Privette Vinnedge LM. Loss of DEK Expression Induces Alzheimer's Disease Phenotypes in Differentiated SH-SY5Y Cells. Front Mol Neurosci 2020; 13:594319. [PMID: 33304240 PMCID: PMC7701170 DOI: 10.3389/fnmol.2020.594319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia and is characterized by the buildup of β-amyloid plaques and neurofibrillary Tau tangles. This leads to decreased synaptic efficacy, cell death, and, consequently, brain atrophy in patients. Behaviorally, this manifests as memory loss and confusion. Using a gene ontology analysis, we recently identified AD and other age-related dementias as candidate diseases associated with the loss of DEK expression. DEK is a nuclear phosphoprotein with roles in DNA repair, cellular proliferation, and inhibiting apoptosis. Work from our laboratory determined that DEK is highly expressed in the brain, particularly in regions relevant to learning and memory, including the hippocampus. Moreover, we have also determined that DEK is highly expressed in neurons. Consistent with our gene ontology analysis, we recently reported that cortical DEK protein levels are inversely proportional to dementia severity scores in elderly female patients. However, the functional role of DEK in neurons is unknown. Thus, we knocked down DEK in an in vitro neuronal model, differentiated SH-SY5Y cells, hypothesizing that DEK loss would result in cellular and molecular phenotypes consistent with AD. We found that DEK loss resulted in increased neuronal death by apoptosis (i.e., cleaved caspases 3 and 8), decreased β-catenin levels, disrupted neurite development, higher levels of total and phosphorylated Tau at Ser262, and protein aggregates. We have demonstrated that DEK loss in vitro recapitulates cellular and molecular phenotypes of AD pathology.
Collapse
Affiliation(s)
- Allie N Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lois G Parks
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matia B Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
19
|
Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Blood to Distinguish Lung Cancer Patients from Healthy Subjects. DISEASE MARKERS 2020; 2020:8844698. [PMID: 33133306 PMCID: PMC7591974 DOI: 10.1155/2020/8844698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 10/07/2020] [Indexed: 01/19/2023]
Abstract
Objective Inflammation-driven markers play a crucial role in tumorigenesis and tumor progression. The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in blood are systemic inflammatory response markers. Some reports have showed that NLR and PLR are related to a poor prognosis in patients with lung cancer. However, little studies have reported whether NLR and PLR can be diagnostic markers for lung cancer. The aim of the current study is to investigate the roles of NLR and PLR in diagnosing lung cancer. Methods This study analyzed data from lung cancer patients and healthy individuals in Wuxi People's Hospital Affiliated with Nanjing Medical University. The Mann-Whitney U test was performed to compare differences between the lung cancer group and the control group. Based on white blood cell (WBC) counts, both lung cancer patients and healthy individuals were divided into the low-level group, moderate-level group, and high-level group. The Kruskal-Wallis test was applied to compare differences of NLR and PLR among those groups with different WBC counts. Spearman correlation analysis was used to assess correlations. Receiver operating characteristic (ROC) curves were performed to determine diagnostic accuracy. Results 210 patients diagnosed with lung cancer and 261 healthy subjects were enrolled in this study. Levels of NLR and PLR increased in the lung cancer group compared with the control group (P < 0.001). For the lung cancer group, NLR levels could rise with the increasing of WBC levels (P < 0.001) while PLR levels had no significant variation with the increasing of WBC levels (P = 0.206). For the control group, NLR levels could rise with the increasing of WBC levels (P < 0.001) while PLR levels would decline with the increasing of WBC levels (P < 0.001). In the lung cancer group, both NLR and PLR had no significant correlations with aspartate transaminase, urea, and glucose. The area under the curve (AUC) with 95% confidence interval (95% CI) of NLR and PLR to distinguish lung cancer patients from healthy subjects was, respectively, 0.684 (0.634-0.735) and 0.623 (0.571-0.674). When NLR and PLR were combined, AUC (95% CI) increased to 0.691 (0.642-0.740). Conclusions NLR and PLR alone have moderate ability to distinguish lung cancer patients from healthy subjects. Furthermore, combination forms of NLR and PLR can improve diagnostic ability.
Collapse
|
20
|
Pease NA, Shephard MS, Sertorio M, Waltz SE, Vinnedge LMP. DEK Expression in Breast Cancer Cells Leads to the Alternative Activation of Tumor Associated Macrophages. Cancers (Basel) 2020; 12:cancers12071936. [PMID: 32708944 PMCID: PMC7409092 DOI: 10.3390/cancers12071936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer deaths among women. DEK is a known oncoprotein that is highly expressed in over 60% of breast cancers and is an independent marker of poor prognosis. However, the molecular mechanisms by which DEK promotes tumor progression are poorly understood. To identify novel oncogenic functions of DEK, we performed RNA-Seq analysis on isogenic Dek-knockout and complemented murine BC cells. Gene ontology analyses identified gene sets associated with immune system regulation and cytokine-mediated signaling and differential cytokine and chemokine expression was confirmed across Dek-proficient versus Dek-deficient cells. By exposing murine bone marrow-derived macrophages (BMDM) to tumor cell conditioned media (TCM) to mimic a tumor microenvironment, we showed that Dek-expressing breast cancer cells produce a cytokine milieu, including up-regulated Tslp and Ccl5 and down-regulated Cxcl1, Il-6, and GM-CSF, that drives the M2 polarization of macrophages. We validated this finding in primary murine mammary tumors and show that Dek expression in vivo is also associated with increased expression of M2 macrophage markers in murine tumors. Using TCGA data, we verified that DEK expression in primary human breast cancers correlates with the expression of several genes identified by RNA-Seq in our murine model and with M2 macrophage phenotypes. Together, our data demonstrate that by regulating the production of multiple secreted factors, DEK expression in BC cells creates a potentially immune suppressed tumor microenvironment, particularly by inducing M2 tumor associated macrophage (TAM) polarization.
Collapse
Affiliation(s)
- Nicholas A. Pease
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
- Molecular and Cellular Biology Program, Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Miranda S. Shephard
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
| | - Mathieu Sertorio
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (N.A.P.); (M.S.S.); (M.S.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-513-636-1155
| |
Collapse
|
21
|
Ke TM, Lin LC, Huang CC, Chien YW, Ting WC, Yang CC. High neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio predict poor survival in rectal cancer patients receiving neoadjuvant concurrent chemoradiotherapy. Medicine (Baltimore) 2020; 99:e19877. [PMID: 32332656 PMCID: PMC7220521 DOI: 10.1097/md.0000000000019877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study explored the prognostic value of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in rectal cancer patients receiving neoadjuvant concurrent chemoradiotherapy (CCRT).Between January 2006 and December 2016, 184 patients with newly-diagnosed rectal cancer receiving neoadjuvant CCRT were enrolled. Risk of overall survival (OS) and disease-free survival (DFS) were calculated using the Kaplan-Meier method and Cox proportional hazard models. Stratified survival analyses were also performed between post-neoadjuvant pathological (yp) stage.The mean follow-up time was 72.73 ± 36.82 months. High- and low-NLR patients differed significantly in both 5-year DFS (P = .026) and OS (P = .016). High- and low-PLR patients differed significantly in 5-year DFS (P = .011) but not OS (P = .185). Multivariate analyses revealed worse 5-year DFS (adjusted HR [aHR] = 2.8; 95% CI: 1.473-5.41; P = .002) and 5-year OS (aHR = 1.871; 95%CI: 1.029-3.4; P = .04) in the high-NLR group after adjusting for covariates. After adjustments, the high-PLR group had inferior 5-year DFS (aHR = 2.274; 95%CI: 1.473-5.419; P = .038) but not 5-year OS (aHR = 1.156; 95%CI: 0.650-2.056; P = .622). Further stratified analysis indicated that yp stage II and III patients with high NLR had worse 5-year DFS (aHR = 2.334; 95% CI: 1.158-4.725; P = .018) and OS (aHR = 2.226; 95% CI: 1.165-4.251; P = .015). Additionally, yp stage II and III patients with high PLR had inferior 5-year DFS (aHR = 2.012; 95% CI: 1.049-3.861; P = .036).Pre-CCRT NLR and PLR are independent prognostic factors for rectal cancer patients and could be used as a potential biomarker to identify high-risk patients for more intense treatment and care.
Collapse
Affiliation(s)
- Te-Min Ke
- Dali District public health center, Taichung
- Department of Public Health College of Medicine, National Cheng Kung University
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi Mei Medical Center
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan
- School of Medicine, Taipei Medical University, Taipei
| | - Chun-Che Huang
- Department of Healthcare Administration, I-Shou University, Kaohsiung
| | - Yu-Wen Chien
- Department of Public Health College of Medicine, National Cheng Kung University
| | - Wei-Chen Ting
- Department of radiation oncology, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan Taiwan
| |
Collapse
|
22
|
Lee KF, Tsai MM, Tsai CY, Huang CG, Ou YH, Hsieh CC, Hsieh HL, Wang CS, Lin KH. DEK Is a Potential Biomarker Associated with Malignant Phenotype in Gastric Cancer Tissues and Plasma. Int J Mol Sci 2019; 20:E5689. [PMID: 31766266 PMCID: PMC6888682 DOI: 10.3390/ijms20225689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is the second most widespread cause of cancer-related mortality worldwide. The discovery of novel biomarkers of oncoproteins can facilitate the development of therapeutic strategies for GC treatment. In this study, we identified novel biomarkers by integrating isobaric tags for relative and absolute quantitation (iTRAQ), a human plasma proteome database, and public Oncomine datasets to search for aberrantly expressed oncogene-associated proteins in GC tissues and plasma. One of the most significantly upregulated biomarkers, DEK, was selected and its expression validated. Our immunohistochemistry (IHC) (n = 92) and quantitative real-time polymerase chain reaction (qRT-PCR) (n = 72) analyses disclosed a marked increase in DEK expression in tumor tissue, compared with paired nontumor mucosa. Importantly, significantly higher preoperative plasma DEK levels were detected in GC patients than in healthy controls via enzyme-linked immunosorbent assay (ELISA). In clinicopathological analysis, higher expression of DEK in both tissue and plasma was significantly associated with advanced stage and poorer survival outcomes of GC patients. Data from receiver operating characteristic (ROC) curve analysis disclosed a better diagnostic accuracy of plasma DEK than carcinoembryonic antigen (CEA), carbohydrate antigen 19.9 (CA 19.9), and C-reactive protein (CRP), highlighting its potential as an effective plasma biomarker for GC. Plasma DEK is also more sensitive in tumor detection than the other three biomarkers. Knockdown of DEK resulted in inhibition of GC cell migration via a mechanism involving modulation of matrix metalloproteinase MMP-2/MMP-9 level and vice versa. Our results collectively support plasma DEK as a useful biomarker for making diagnosis and prognosis of GC patients.
Collapse
Affiliation(s)
- Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan; (M.-M.T.); (H.-L.H.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Chia-yi 613, Taiwan;
| | - Chung-Ying Tsai
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (Y.-H.O.)
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chung-Guei Huang
- Department of Medical Biotechnology and Laboratory Science, and Graduate Institute of Biomedical Science, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Yu-Hsiang Ou
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (Y.-H.O.)
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Ching-Chuan Hsieh
- Department of General Surgery, Chang Gung Memorial Hospital, Chia-yi 613, Taiwan;
| | - Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan; (M.-M.T.); (H.-L.H.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chia-Siu Wang
- Department of General Surgery, Chang Gung Memorial Hospital, Chia-yi 613, Taiwan;
| | - Kwang-Huei Lin
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (Y.-H.O.)
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
23
|
Chen H, Gao F, He M, Ding XF, Wong AM, Sze SC, Yu AC, Sun T, Chan AW, Wang X, Wong N. Long-Read RNA Sequencing Identifies Alternative Splice Variants in Hepatocellular Carcinoma and Tumor-Specific Isoforms. Hepatology 2019; 70:1011-1025. [PMID: 30637779 PMCID: PMC6766942 DOI: 10.1002/hep.30500] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022]
Abstract
Alternative splicing (AS) allows generation of cell type-specific mRNA transcripts and contributes to hallmarks of cancer. Genome-wide analysis for AS in human hepatocellular carcinoma (HCC), however, is limited. We sought to obtain a comprehensive AS landscape in HCC and define tumor-associated variants. Single-molecule real-time long-read RNA sequencing was performed on patient-derived HCC cells, and presence of splice junctions was defined by SpliceMap-LSC-IDP algorithm. We obtained an all-inclusive map of annotated AS variants and further discovered 362 alternative spliced variants that are not previously reported in any database (neither RefSeq nor GENCODE). They were mostly derived from intron retention and early termination codon with an in-frame open reading frame in 81.5%. We corroborated many of these predicted unannotated and annotated variants to be tumor specific in an independent cohort of primary HCC tumors and matching nontumoral liver. Using the combined Sanger sequencing and TaqMan junction assays, unique and common expressions of spliced variants including enzyme regulators (ARHGEF2, SERPINH1), chromatin modifiers (DEK, CDK9, RBBP7), RNA-binding proteins (SRSF3, RBM27, MATR3, YBX1), and receptors (ADRM1, CD44v8-10, vitamin D receptor, ROR1) were determined in HCC tumors. We further focused functional investigations on ARHGEF2 variants (v1 and v3) that arise from the common amplified site chr.1q22 of HCC. Their biological significance underscores two major cancer hallmarks, namely cancer stemness and epithelial-to-mesenchymal transition-mediated cell invasion and migration, although v3 is consistently more potent than v1. Conclusion: Alternative isoforms and tumor-specific isoforms that arise from aberrant splicing are common during the liver tumorigenesis. Our results highlight insights gained from the analysis of AS in HCC.
Collapse
Affiliation(s)
- Hui Chen
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongShatin Hong KongChina
| | - Feng Gao
- Department of Biomedical SciencesCity University of Hong KongKowloon TongHong KongChina
| | - Mian He
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongShatin Hong KongChina
| | - Xiao Fan Ding
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongShatin Hong KongChina
| | - Aikha M. Wong
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongShatin Hong KongChina
| | - Siu Ching Sze
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongShatin Hong KongChina
| | - Allen C. Yu
- School of Life SciencesThe Chinese University of Hong KongShatinHong KongChina
| | - Tingting Sun
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongShatin Hong KongChina
| | - Anthony W‐H. Chan
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongShatin Hong KongChina
| | - Xin Wang
- Department of Biomedical SciencesCity University of Hong KongKowloon TongHong KongChina
| | - Nathalie Wong
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongShatin Hong KongChina
- State Key Laboratory in Translational OncologyThe Chinese University of Hong KongShatin Hong KongChina
- State Key Laboratory of Digestive DiseaseSir YK Pao Centre for Cancer, The Chinese University of Hong KongShatin Hong KongChina
| |
Collapse
|
24
|
de Albuquerque Oliveira AC, Kappes F, Martins DBG, de Lima Filho JL. The unique DEK oncoprotein in women's health: A potential novel biomarker. Biomed Pharmacother 2018; 106:142-148. [PMID: 29957464 DOI: 10.1016/j.biopha.2018.06.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022] Open
Abstract
Breast and cervical cancer are the first and fourth cancer types with the highest prevalence in women, respectively. The developmental profiles of cancer in women can vary by genetic markers and cellular events. In turn, age and lifestyle influence in the cellular response and also on the cancer progression and relapse. The human DEK protein, a histone chaperone, belongs to a specific subclass of chromatin topology modulators, being involved in the regulation of DNA-dependent processes. These epigenetic mechanisms have dynamic and reversible nature, have been proposed as targets for different treatment approaches, especially in tumor therapy. The expression patterns of DEK vary between healthy and cancer cells. High expression of DEK is associated with poor prognosis in many cancer types, suggesting that DEK takes part in oncogenic activities via different molecular pathways, including inhibition of senescence and apoptosis. The focus of this review was to highlight the role of the DEK protein in these two female cancers.
Collapse
Affiliation(s)
- Ana Cecília de Albuquerque Oliveira
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil
| | - Ferdinand Kappes
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University No 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou, 215123, PR China
| | - Danyelly Bruneska Gondim Martins
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil; Department of Biochemistry - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil.
| | - José Luiz de Lima Filho
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil; Department of Biochemistry - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil
| |
Collapse
|
25
|
Smith EA, Krumpelbeck EF, Jegga AG, Greis KD, Ali AM, Meetei AR, Wells SI. The nuclear DEK interactome supports multi-functionality. Proteins 2018; 86:88-97. [PMID: 29082557 PMCID: PMC5730476 DOI: 10.1002/prot.25411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023]
Abstract
DEK is an oncoprotein that is overexpressed in many forms of cancer and participates in numerous cellular pathways. Of these different pathways, relevant interacting partners and functions of DEK are well described in regard to the regulation of chromatin structure, epigenetic marks, and transcription. Most of this understanding was derived by investigating DNA-binding and chromatin processing capabilities of the oncoprotein. To facilitate the generation of mechanism-driven hypotheses regarding DEK activities in underexplored areas, we have developed the first DEK interactome model using tandem-affinity purification and mass spectrometry. With this approach, we identify IMPDH2, DDX21, and RPL7a as novel DEK binding partners, hinting at new roles for the oncogene in de novo nucleotide biosynthesis and ribosome formation. Additionally, a hydroxyurea-specific interaction with replication protein A (RPA) was observed, suggesting that a DEK-RPA complex may form in response to DNA replication fork stalling. Taken together, these findings highlight diverse activities for DEK across cellular pathways and support a model wherein this molecule performs a plethora of functions.
Collapse
Affiliation(s)
- Eric A. Smith
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Eric F. Krumpelbeck
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45219, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45219, USA
| | - Abdullah M. Ali
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Amom R. Meetei
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Susanne I. Wells
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| |
Collapse
|
26
|
Wise-Draper T, Sendilnathan A, Palackdharry S, Pease N, Qualtieri J, Butler R, Sadraei NH, Morris JC, Patil Y, Wilson K, Mark J, Casper K, Takiar V, Lane A, Privette Vinnedge L. Decreased plasma DEK Oncogene Levels Correlate with p16-Negative Disease and Advanced Tumor Stage in a Case-Control Study of Patients with Head and Neck Squamous Cell Carcinoma. Transl Oncol 2017; 11:168-174. [PMID: 29289845 PMCID: PMC6002348 DOI: 10.1016/j.tranon.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Head and neck cancer (HNC) remains the sixth most common malignancy worldwide and survival upon recurrence and/or metastasis remains poor. HNSCC has traditionally been associated with alcohol and nicotine use, but more recently the Human Papilloma Virus (HPV) has emerged as a favorable prognostic risk factor for oropharyngeal HNSCC. However, further stratification with additional biomarkers to predict patient outcome continues to be essential. One candidate biomarker is the DEK oncogenic protein, which was previously detected in the urine of patients with bladder cancer and is known to be secreted by immune cells such as macrophages. Here, we investigated if DEK could be detected in human plasma and if DEK levels correlated with clinical and pathological variables of HNSCC. Plasma was separated from the peripheral blood of newly diagnosed, untreated HNSCC patients or age-matched normal healthy controls and analyzed for DEK protein using ELISA. Plasma concentrations of DEK protein were lower in p16-negative tumors compared to both normal controls and patients with p16-positive tumors. Patients with lower plasma concentrations of DEK were also more likely to have late stage tumors and a lower white blood cell count. Contrary to previously published work demonstrating a poor prognosis with high intratumoral DEK levels, we show for the first time that decreased concentrations of DEK in patient plasma correlates with poor prognostic factors, including HPV-negative status as determined by negative p16 expression and advanced tumor stage.
Collapse
Affiliation(s)
- Trisha Wise-Draper
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267.
| | - Arun Sendilnathan
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267
| | - Sarah Palackdharry
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267
| | - Nicholas Pease
- Department of Bioengineering, University of Washington, Seattle, WA 98105
| | - Julianne Qualtieri
- Department of Pathology, University of Cincinnati, Cincinnati, OH, 45267
| | - Randall Butler
- Department of Pathology, University of Cincinnati, Cincinnati, OH, 45267
| | - Nooshin Hashemi Sadraei
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267
| | - John C Morris
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267
| | - Yash Patil
- Department of Otolaryngology- Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, 45267
| | - Keith Wilson
- Department of Otolaryngology- Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, 45267
| | - Jonathan Mark
- Department of Otolaryngology- Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, 45267
| | - Keith Casper
- Department of Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, 45267
| | - Adam Lane
- Cancer and Blood Diseases Institute, Cincinnati Children's Medical Center, Cincinnati, OH, 45229
| | - Lisa Privette Vinnedge
- Cancer and Blood Diseases Institute, Cincinnati Children's Medical Center, Cincinnati, OH, 45229.
| |
Collapse
|
27
|
Neuroanatomical Distribution of DEK Protein in Corticolimbic Circuits Associated with Learning and Memory in Adult Male and Female Mice. Neuroscience 2017; 371:254-267. [PMID: 29175155 DOI: 10.1016/j.neuroscience.2017.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023]
Abstract
DEK, a chromatin-remodeling gene expressed in most human tissues, is known for its role in cancer biology and autoimmune diseases. DEK depletion in vitro reduces cellular proliferation, induces DNA damage subsequently leading to apoptosis, and down-regulates canonical Wnt/β-catenin signaling, a molecular pathway essential for learning and memory. Despite a recognized role in cancer (non-neuronal) cells, DEK expression and function is not well characterized in the central nervous system. We conducted a gene ontology analysis (ToppGene), using a cancer database to identify genes associated with DEK deficiency, which pinpointed several genes associated with cognitive-related diseases (i.e., Alzheimer's disease, presenile dementia). Based on this information, we examined DEK expression in corticolimbic structures associated with learning and memory in adult male and female mice using immunohistochemistry. DEK was expressed throughout the brain in both sexes, including the medial prefrontal cortex (prelimbic, infralimbic and dorsal peduncular). DEK was also abundant in all amygdalar subdivisions (basolateral, central and medial) and in the hippocampus including the CA1, CA2, CA3, dentate gyrus (DG), ventral subiculum and entorhinal cortex. Of note, compared to males, females had significantly higher DEK immunoreactivity in the CA1, indicating a sex difference in this region. DEK was co-expressed with neuronal and microglial markers in the CA1 and DG, whereas only a small percentage of DEK cells were in apposition to astrocytes in these areas. Given the reported inverse cellular and molecular profiles (e.g., cell survival, Wnt pathway) between cancer and Alzheimer's disease, these findings suggest a potentially important role of DEK in cognition.
Collapse
|
28
|
Feng T, Liu Y, Li C, Li Z, Cai H. DEK proto-oncogene is highly expressed in astrocytic tumors and regulates glioblastoma cell proliferation and apoptosis. Tumour Biol 2017; 39:1010428317716248. [PMID: 28670979 DOI: 10.1177/1010428317716248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Astrocytic tumors are the most common neuroepithelial neoplasms with high relapse rate after surgery. Understanding the molecular mechanisms for astrocytic tumorigenesis and progression will lead to early diagnosis and effective treatment of astrocytic tumors. The DEK mRNA and protein expression in normal brain tissues and astrocytic tumors was quantified. To investigate DEK functions in tumor cells, DEK gene was silenced with siRNA in U251 glioblastoma cells. Cell proliferation, cell cycle and apoptosis were then measured. The expression and activity of key genes that regulate cell proliferation and apoptosis were also measured. We identified DEK as a high expressed gene in astrocytic tumor tissues. DEK expression level was positively correlated with the pathological grade of astrocytic tumors. Gene silencing of DEK in U251 glioblastomas inhibited cell proliferation and blocked cells at G0/G1 phase of cell cycle. DEK depletion also induced cell apoptosis, with up-regulated expression of P53 and P21 and down-regulated expression of Bcl-2 and C-myc. The Caspase-3 activity in U251 cells was also significantly increased after knockdown. Our results provided evidences that DEK regulates proliferation and apoptosis of glioblastomas. DEK gene silencing may induce apoptosis through P53-dependent pathway. Our data indicated DEK plays multiple roles to facilitate tumor growth and maintenance. It can be used as a potential target for astrocytic tumor diagnosis and gene therapy.
Collapse
Affiliation(s)
- Tianda Feng
- 1 Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhui Liu
- 1 Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Li
- 2 Department of Neurosurgery, Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Li
- 1 Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Heng Cai
- 1 Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem/progenitor cell fate decision during hematopoiesis is regulated by intracellular and extracellular signals such as transcription factors, growth factors, and cell-to-cell interactions. In this review, we explore the function of DEK, a nuclear phosphoprotein, on gene regulation. We also examine how DEK is secreted and internalized by cells, and discuss how both endogenous and extracellular DEK regulates hematopoiesis. Finally, we explore what currently is known about the regulation of DEK during inflammation. RECENT FINDINGS DEK negatively regulates the proliferation of early myeloid progenitor cells but has a positive effect on the differentiation of mature myeloid cells. Inflammation regulates intracellular DEK concentrations with inflammatory stimuli enhancing DEK expression. Inflammation-induced nuclear factor-kappa B activation is regulated by DEK, resulting in changes in the production of other inflammatory molecules such as IL-8. Inflammatory stimuli in turn regulates DEK secretion by cells of hematopoietic origin. However, how inflammation-induced expression and secretion of DEK regulates hematopoiesis remains unknown. SUMMARY Understanding how DEK regulates hematopoiesis under both homeostatic and inflammatory conditions may lead to a better understanding of the biology of HSCs and HPCs. Furthering our knowledge of the regulation of hematopoiesis will ultimately lead to new therapeutics that may increase the efficacy of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Maegan L Capitano
- Indiana University School of Medicine, Department of Microbiology and Immunology, Indianapolis, Indiana, USA
| | | |
Collapse
|
30
|
Smith EA, Kumar B, Komurov K, Smith SM, Brown NV, Zhao S, Kumar P, Teknos TN, Wells SI. DEK associates with tumor stage and outcome in HPV16 positive oropharyngeal squamous cell carcinoma. Oncotarget 2017; 8:23414-23426. [PMID: 28423581 PMCID: PMC5410314 DOI: 10.18632/oncotarget.15582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/12/2017] [Indexed: 01/25/2023] Open
Abstract
Oropharyngeal squamous cell carcinomas (OPSCC) are common, have poor outcomes, and comprise two biologically and clinically distinct diseases. While OPSCC that arise from human papillomavirus infections (HPV+) have better overall survival than their HPV- counterparts, the incidence of HPV+ OPSCC is increasing dramatically, affecting younger individuals which are often left with life-long co-morbidities from aggressive treatment. To identify patients which do poorly versus those who might benefit from milder regimens, risk-stratifying biomarkers are now needed within this population. One potential marker is the DEK oncoprotein, whose transcriptional upregulation in most malignancies is associated with chemotherapy resistance, advanced tumor stage, and worse outcomes. Herein, a retrospective case study was performed on DEK protein expression in therapy-naïve surgical resections from 194 OPSCC patients. We found that DEK was associated with advanced tumor stage, increased hazard of death, and interleukin IL6 expression in HPV16+ disease. Surprisingly, DEK levels in HPV16- OPSCC were not associated with advanced tumor stage or increased hazard of death. Overall, these findings mark HPV16- OPSCC as an exceptional malignancy were DEK expression does not correlate with outcome, and support the potential prognostic utility of DEK to identify aggressive HPV16+ disease.
Collapse
Affiliation(s)
- Eric A. Smith
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Bhavna Kumar
- Department of Otolaryngology–Head and Neck Surgery, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Kakajan Komurov
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Stephen M. Smith
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicole V. Brown
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Songzhu Zhao
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Pawan Kumar
- Department of Otolaryngology–Head and Neck Surgery, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Theodoros N. Teknos
- Department of Otolaryngology–Head and Neck Surgery, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Susanne I. Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
31
|
Sun J, Bi F, Yang Y, Zhang Y, Jin A, Li J, Lin Z. DEK protein overexpression predicts poor prognosis in pancreatic ductal adenocarcinoma. Oncol Rep 2017; 37:857-864. [PMID: 27959420 DOI: 10.3892/or.2016.5302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
DEK, a transcription factor, is involved in mRNA splicing, transcriptional control, cell division and differentiation. Recent studies suggest that DEK overexpression can promote tumorigenesis in a wide range of cancer cell types. However, little is known concerning the status of DEK in pancreatic ductal adenocarcinoma (PDAC). Based on the microarray data from Gene Expression Omnibus (GEO), the expression levels of DEK mRNA in PDAC tissues were significantly higher than levels in the adjacent non-tumor tissues. To explore the clinical features of DEK overexpression in PDAC, 87 PDAC and 52 normal pancreas tissues were selected for immunoenzyme staining of the DEK protein. Localization of the DEK protein was detected in PANC-1 pancreatic cancer cells using immunofluorescence (IF) staining. The correlations between DEK overexpression and the clinical features of PDAC were evaluated using the Chi-squared (χ2) and Fisher's exact tests. The survival rates were calculated by the Kaplan-Meier method, and the relationship between prognostic factors and patient survival was also analyzed by the Cox proportional hazard models. The expression levels of DEK mRNA in PDAC tissues were significantly higher than that in the adjacent non‑tumor tissues. The DEK protein showed a primarily nuclear staining pattern in PDAC. The positive rate of the DEK protein was 52.9% (46/87) in PDAC, which was significantly higher than that in the adjacent normal pancreatic tissues (7.7%, 4/52). DEK overexpression in PDAC was correlated with tumor size, histological grade, tumor‑node‑metastasis (TNM) stage and overall survival (OS) rates. In addition, multivariate analysis demonstrated that DEK overexpression was an independent prognostic factor along with histological grade and TNM stage in patients with PDAC. In conclusion, DEK overexpression is associated with PDAC progression and may be a potential biomarker for poor prognostic evaluation in PDAC.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Fangfang Bi
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Yang Yang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Yuan Zhang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Aihua Jin
- Department of Internal Medicine, Yanbian University Hospital, Yanji, Jilin 133002, P.R. China
| | - Jinzi Li
- Department of Pediatrics, Yanbian University Hospital, Yanji, Jilin 133002, P.R. China
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| |
Collapse
|
32
|
Kim HB, Myung SK, Park YC, Park B. Use of benzodiazepine and risk of cancer: A meta-analysis of observational studies. Int J Cancer 2016; 140:513-525. [PMID: 27667780 DOI: 10.1002/ijc.30443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022]
Abstract
Several observational epidemiological studies have reported inconsistent results on the association between the use of benzodiazepine and the risk of cancer. We investigated the association by using a meta-analysis. We searched PubMed, EMBASE, and the bibliographies of relevant articles to locate additional publications in January 2016. Three evaluators independently reviewed and selected eligible studies based on predetermined selection criteria. Of 796 articles meeting our initial criteria, a total of 22 observational epidemiological studies with 18 case-control studies and 4 cohort studies were included in the final analysis. Benzodiazepine use was significantly associated with an increased risk of cancer (odds ratio [OR] or relative risk [RR] 1.19; 95% confidence interval 1.16-1.21) in a random-effects meta-analysis of all studies. Subgroup meta-analyses by various factors such as study design, type of case-control study, study region, and methodological quality of study showed consistent findings. Also, a significant dose-response relationship was observed between the use of benzodiazepine and the risk of cancer (p for trend <0.01). The current meta-analysis of observational epidemiological studies suggests that benzodiazepine use is associated with an increased risk of cancer.
Collapse
Affiliation(s)
- Hong-Bae Kim
- Department of Family Medicine, MyongJi Hospital, 14-55 Hwasu-ro, Deokyang-gu, Goyang, Gyeonggi-do, 10475, Republic of Korea.,Department of Family Medicine, School of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea
| | - Seung-Kwon Myung
- Department of Cancer Control and Policy, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10408, Republic of Korea.,Molecular Epidemiology Branch, Division of Cancer Epidemiology and Prevention, Research Institute, National Cancer Center, Goyang, Republic of Korea.,Department of Family Medicine and Center for Cancer Prevention and Detection, Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Yon Chul Park
- Department of Family Medicine, School of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea.,Department of Family Medicine, Wonju Severance Christian Hospital, 20 Ilsan-ro, Wonju, Gangwon-do, 220-701, Republic of Korea
| | - Byoungjin Park
- Department of Family Medicine, School of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea.,Department of Family Medicine, Yongin Severance Hospital, 225 Gumhak-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17046, Republic of Korea
| |
Collapse
|
33
|
Yu L, Huang X, Zhang W, Zhao H, Wu G, Lv F, Shi L, Teng Y. Critical role of DEK and its regulation in tumorigenesis and metastasis of hepatocellular carcinoma. Oncotarget 2016; 7:26844-55. [PMID: 27057626 PMCID: PMC5042019 DOI: 10.18632/oncotarget.8565] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/01/2016] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. Therefore, it is quite essential to identify novel HCC-related molecules for the discovery of new prognostic markers and therapeutic targets. As an oncogene, DEK plays an important role in cell processes and participates in a variety of cellular metabolic functions, and its altered expression is associated with several human malignancies. However, the functional significance of DEK and the involved complex biological events in HCC development and progression are poorly understood. Here, combing the results from clinical specimens and cultured cell lines, we uncover a critical oncogenic role of DEK, which is highly expressed in HCC cells. DEK protein encompasses two isoforms (isoforms 1 and 2) and isoform 1 is the most frequently expressed DEK isoform in HCC cells. DEK depletion by using shRNA inhibited the cell proliferation and migration in vitro and suppressed tumorigenesis and metastasis in mouse models. Consistently, DEK overexpression regardless of which isoform produced the opposite effects. Further studies showed that DEK induced cell proliferation through upregulating cell cycle related CDK signaling, and promoted cell migration and EMT, at least in part, through the repression of β-catenin/E-cadherin axis. Interestingly, isoform 1 induced cell proliferation more efficiently than isoform 2, however, no functional differences existed between these two isoforms in cell migration. Together, our study indicates that DEK expression is required for tumorigenesis and metastasis of HCC, providing molecular insights for DEK-related pathogenesis and a basis for developing new strategies against HCC.
Collapse
Affiliation(s)
- Le Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Xiaobin Huang
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Wenfa Zhang
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Huakan Zhao
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Gang Wu
- Third Affiliated Hospital, Third Military Medical University, Chongqing 400044, PR China
| | - Fenglin Lv
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Yong Teng
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|