1
|
Ivanova A, Gruzova O, Ermolaeva E, Astakhova O, Itaman S, Enikolopov G, Lazutkin A. Synthetic Thymidine Analog Labeling without Misconceptions. Cells 2022; 11:cells11121888. [PMID: 35741018 PMCID: PMC9220989 DOI: 10.3390/cells11121888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Tagging proliferating cells with thymidine analogs is an indispensable research tool; however, the issue of the potential in vivo cytotoxicity of these compounds remains unresolved. Here, we address these concerns by examining the effects of BrdU and EdU on adult hippocampal neurogenesis and EdU on the perinatal somatic development of mice. We show that, in a wide range of doses, EdU and BrdU label similar numbers of cells in the dentate gyrus shortly after administration. Furthermore, whereas the administration of EdU does not affect the division and survival of neural progenitor within 48 h after injection, it does affect cell survival, as evaluated 6 weeks later. We also show that a single injection of various doses of EdU on the first postnatal day does not lead to noticeable changes in a panel of morphometric criteria within the first week; however, higher doses of EdU adversely affect the subsequent somatic maturation and brain growth of the mouse pups. Our results indicate the potential caveats in labeling the replicating DNA using thymidine analogs and suggest guidelines for applying this approach.
Collapse
Affiliation(s)
- Anna Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (A.I.); (O.G.); (E.E.); (O.A.)
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Olesya Gruzova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (A.I.); (O.G.); (E.E.); (O.A.)
| | - Elizaveta Ermolaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (A.I.); (O.G.); (E.E.); (O.A.)
| | - Olga Astakhova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (A.I.); (O.G.); (E.E.); (O.A.)
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sheed Itaman
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
- Graduate Program in Neurobiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (G.E.); (A.L.)
| | - Alexander Lazutkin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (A.I.); (O.G.); (E.E.); (O.A.)
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow 119991, Russia
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (G.E.); (A.L.)
| |
Collapse
|
2
|
Constitutive Neurogenesis in the Brain of Different Vertebrate Groups. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Evidence That Artificial Light at Night Induces Structure-Specific Changes in Brain Plasticity in a Diurnal Bird. Biomolecules 2021; 11:biom11081069. [PMID: 34439736 PMCID: PMC8394529 DOI: 10.3390/biom11081069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
We recently reported that artificial light at night (ALAN), at ecologically relevant intensities (1.5, 5 lux), increases cell proliferation in the ventricular zone and recruitment of new neurons in several forebrain regions of female zebra finches (Taeniopygia guttata), along with a decrease of total neuronal densities in some of these regions (indicating possible neuronal death). In the present study, we exposed male zebra finches to the same ALAN intensities, treated them with 5′-bromo-2′-deoxyuridine, quantified cell proliferation and neuronal recruitment in several forebrain regions, and compared them to controls that were kept under dark nights. ALAN increased cell proliferation in the ventricular zone, similar to our previous findings in females. We also found, for the first time, that ALAN increased new neuronal recruitment in HVC and Area X, which are part of the song system in the brain and are male-specific. In other brain regions, such as the medial striatum, nidopallium caudale, and hippocampus, we recorded an increased neuronal recruitment only in the medial striatum (unlike our previous findings in females), and relative to the controls this increase was less prominent than in females. Moreover, the effect of ALAN duration on total neuronal densities in the studied regions varied between the sexes, supporting the suggestion that males are more resilient to ALAN than females. Suppression of nocturnal melatonin levels after ALAN exhibited a light intensity-dependent decrease in males in contrast to females, another indication that males might be less affected by ALAN. Taken together, our study emphasizes the importance of studying both sexes when considering ALAN effects on brain plasticity.
Collapse
|
4
|
Kubikova L, Polomova J, Mikulaskova V, Lukacova K. Effectivity of Two Cell Proliferation Markers in Brain of a Songbird Zebra Finch. BIOLOGY 2020; 9:biology9110356. [PMID: 33113793 PMCID: PMC7694046 DOI: 10.3390/biology9110356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary The present study compared the effectivity of two cell proliferation markers, BrdU and EdU, in the brain neurogenic zone of the songbird zebra finch. It shows their saturation doses, that BrdU labels more cells than the equimolar dose of EdU, and that both markers can be reliably detected in the same brain. Abstract There are two most heavily used markers of cell proliferation, thymidine analogues 5-bromo-2′-deoxyuridine (BrdU) and 5-ethynyl-2′-deoxyuridine (EdU) that are incorporated into the DNA during its synthesis. In neurosciences, they are often used consecutively in the same animal to detect neuronal populations arising at multiple time points, their migration and incorporation. The effectivity of these markers, however, is not well established. Here, we studied the effectivity of equimolar doses of BrdU and EdU to label new cells and looked for the dose that will label the highest number of proliferating cells in the neurogenic ventricular zone (VZ) of adult songbirds. We found that, in male zebra finches (Taeniopygia guttata), the equimolar doses of BrdU and EdU did not label the same number of cells, with BrdU being more effective than EdU. Similarly, in liver, BrdU was more effective. The saturation of the detected brain cells occurred at 50 mg/kg BrdU and above 41 mg/kg EdU. Higher dose of 225 mg/kg BrdU or the equimolar dose of EdU did not result in any further significant increases. These results show that both markers are reliable for the detection of proliferating cells in birds, but the numbers obtained with BrdU and EdU should not be compared.
Collapse
Affiliation(s)
- Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
- Correspondence:
| | - Justina Polomova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
| | - Viktoria Mikulaskova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Kristina Lukacova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
| |
Collapse
|
5
|
Moaraf S, Heiblum R, Vistoropsky Y, Okuliarová M, Zeman M, Barnea A. Artificial Light at Night Increases Recruitment of New Neurons and Differentially Affects Various Brain Regions in Female Zebra Finches. Int J Mol Sci 2020; 21:E6140. [PMID: 32858878 PMCID: PMC7503983 DOI: 10.3390/ijms21176140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 11/16/2022] Open
Abstract
Despite growing evidence that demonstrate adverse effects of artificial light at night (ALAN) on many species, relatively little is known regarding its effects on brain plasticity in birds. We recently showed that although ALAN increases cell proliferation in brains of birds, neuronal densities in two brain regions decreased, indicating neuronal death, which might be due to mortality of newly produced neurons or of existing ones. Therefore, in the present study we studied the effect of long-term ALAN on the recruitment of newborn neurons into their target regions in the brain. Accordingly, we exposed zebra finches (Taeniopygia guttata) to 5 lux ALAN, and analysed new neuronal recruitment and total neuronal densities in several brain regions. We found that ALAN increased neuronal recruitment, possibly as a compensatory response to ALAN-induced neuronal death, and/or due to increased nocturnal locomotor activity caused by sleep disruption. Moreover, ALAN also had a differential temporal effect on neuronal densities, because hippocampus was more sensitive to ALAN and its neuronal densities were more affected than in other brain regions. Nocturnal melatonin levels under ALAN were significantly lower compared to controls, indicating that very low ALAN intensities suppress melatonin not only in nocturnal, but also in diurnal species.
Collapse
Affiliation(s)
- Stan Moaraf
- School of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana 43710, Israel; (R.H.); (Y.V.); (A.B.)
| | - Rachel Heiblum
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana 43710, Israel; (R.H.); (Y.V.); (A.B.)
| | - Yulia Vistoropsky
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana 43710, Israel; (R.H.); (Y.V.); (A.B.)
| | - Monika Okuliarová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovak Republic; (M.O.); (M.Z.)
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovak Republic; (M.O.); (M.Z.)
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana 43710, Israel; (R.H.); (Y.V.); (A.B.)
| |
Collapse
|
6
|
Nkomozepi P, Mazengenya P, Ihunwo AO. Quantitative analysis of age and life-history stage related changes in DCX expression in the male Japanese quail (Cortunix japonica) telencephalon. Int J Dev Neurosci 2019; 74:38-48. [PMID: 30890437 DOI: 10.1016/j.ijdevneu.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Most avian neurogenesis studies focused on the song control system and little attention has been given to non-song birds such as the Japanese quail. However, the only few neurogenesis studies in quails mainly focused on the sex steroid sensitive areas of the brain such as the medial preoptic and lateral septal nuclei. Despite the important role the quail telencephalon plays in filial imprinting and passive avoidance learning, neurogenesis in this structure has been completely overlooked. The aim of this study was therefore to quantitatively determine how DCX expression in the Japanese quail telencephalon changes with post hatching age (3-12 weeks) and life history stage. In this study, DCX was used as a proxy for neuronal incorporation. Bipolar and multipolar DCX immunoreactive cells were observed in the entire telencephalon except for the entopallium and arcopallium. In addition, DCX expression in all the eight telencephalic areas quantified was strongly negatively correlated with post-hatching age. Furthermore, numbers of bipolar and multipolar DCX immunoreactive cells were higher in the juvenile compared to subadult and adult quails. In conclusion, neuronal incorporation in the quail telencephalon is widespread but it declines with post hatching age. In addition, the most dramatic decline in neuronal incorporation in the telencephalic areas quantified takes place just after the birds have attained sexual maturity.
Collapse
Affiliation(s)
- Pilani Nkomozepi
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa; Department of Human Anatomy & Physiology, University of Johannesburg, Cnr Siemert and Beit Streets, Doornfontein, Johannesburg, 2094, South Africa
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
7
|
Pozner T, Vistoropsky Y, Moaraf S, Heiblum R, Barnea A. Questioning Seasonality of Neuronal Plasticity in the Adult Avian Brain. Sci Rep 2018; 8:11289. [PMID: 30050046 PMCID: PMC6062517 DOI: 10.1038/s41598-018-29532-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
To date, studies that reported seasonal patterns of adult neurogenesis and neuronal recruitment have correlated them to seasonal behaviors as the cause or as a consequence of neuronal changes. The aim of our study was to test this correlation, and to investigate whether there is a seasonal pattern of new neuronal recruitment that is not correlated to behavior. To do this, we used adult female zebra finches (songbirds that are not seasonal breeders), kept them under constant social, behavioral, and spatial environments, and compared neuronal recruitment in their brains during two seasons, under natural and laboratory conditions. Under natural conditions, no significant differences were found in the pattern of new neuronal recruitment across seasons. However, under artificial indoor conditions that imitated the natural conditions, higher neuronal recruitment occurred in late summer (August) compared to early spring (February). Moreover, our data indicate that "mixing" temperature and day length significantly reduces new neuronal recruitment, demonstrating the importance of the natural combination of temperature and day length. Taken together, our findings show, for the first time, that neuroplasticity changes under natural vs. artificial conditions, and demonstrate the importance of both laboratory and field experiments when looking at complex biological systems.
Collapse
Affiliation(s)
- Tatyana Pozner
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel.
- Department of Stem Cell Biology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, 91054, Germany.
| | - Yulia Vistoropsky
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Stan Moaraf
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Rachel Heiblum
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| |
Collapse
|
8
|
Studies of HVC Plasticity in Adult Canaries Reveal Social Effects and Sex Differences as Well as Limitations of Multiple Markers Available to Assess Adult Neurogenesis. PLoS One 2017; 12:e0170938. [PMID: 28141859 PMCID: PMC5283688 DOI: 10.1371/journal.pone.0170938] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
In songbirds, neurogenesis in the song control nucleus HVC is sensitive to the hormonal and social environment but the dynamics of this process is difficult to assess with a single exogenous marker of new neurons. We simultaneously used three independent markers to investigate HVC neurogenesis in male and female canaries. Males were castrated, implanted with testosterone and housed either alone (M), with a female (M-F) or with another male (M-M) while females were implanted with 17β-estradiol and housed with a male (F-M). All subjects received injections of the two thymidine analogues, BrdU and of EdU, respectively 21 and 10 days before brain collection. Cells containing BrdU or EdU or expressing doublecortin (DCX), which labels newborn neurons, were quantified. Social context and sex differentially affected total BrdU+, EdU+, BrdU+EdU- and DCX+ populations. M-M males had a higher density of BrdU+ cells in the ventricular zone adjacent to HVC and of EdU+ in HVC than M-F males. M birds had a higher ratio of BrdU+EdU- to EdU+ cells than M-F subjects suggesting higher survival of newer neurons in the former group. Total number of HVC DCX+ cells was lower in M-F than in M-M males. Sex differences were also dependent of the type of marker used. Several technical limitations associated with the use of these multiple markers were also identified. These results indicate that proliferation, recruitment and survival of new neurons can be independently affected by environmental conditions and effects can only be fully discerned through the use of multiple neurogenesis markers.
Collapse
|
9
|
Vistoropsky Y, Heiblum R, Smorodinsky NI, Barnea A. Active immunization against vasoactive intestinal polypeptide decreases neuronal recruitment and inhibits reproduction in zebra finches. J Comp Neurol 2016; 524:2516-28. [PMID: 26801210 DOI: 10.1002/cne.23971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/26/2015] [Accepted: 01/19/2016] [Indexed: 01/21/2023]
Abstract
Neurogenesis and neuronal recruitment occur in adult brains of many vertebrates, and the hypothesis is that these phenomena contribute to the brain plasticity that enables organisms to adjust to environmental changes. In mammals, vasoactive intestinal polypeptide (VIP) is known to have many neuroprotective properties, but in the avian brain, although widely distributed, its role in neuronal recruitment is not yet understood. In the present study we actively immunized adult zebra finches against VIP conjugated to KLH and compared neuronal recruitment in their brains, with brains of control birds, which were immunized against KLH. We looked at two forebrain regions: the nidopallium caudale (NC), which plays a role in vocal communication, and the hippocampus (HC), which is involved in the processing of spatial information. Our data demonstrate that active immunization against VIP reduces neuronal recruitment, inhibits reproduction, and induces molting, with no change in plasma prolactin levels. Thus, our observations suggest that VIP has a direct positive role in neuronal recruitment and reproduction in birds. J. Comp. Neurol. 524:2516-2528, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yulia Vistoropsky
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Rachel Heiblum
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Nechama-Ina Smorodinsky
- Department of Cell Research & Immunology, The George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 61391, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| |
Collapse
|