1
|
Carnivali GS, Borges CC. Method to link medicines to diseases using multiplex networks. Comput Methods Biomech Biomed Engin 2024:1-14. [PMID: 38907637 DOI: 10.1080/10255842.2024.2362860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
The reuse of well-established medicines using computational modeling has gained a lot of attention due to its tremendous benefits. Based on this perspective, a new method for linking known medicines to diseases is proposed. The creation of a new treatment or medicine can be financially and temporally costly and the reuse of medicines is one possibility to accelerate this process efficiently. The main purpose of the reuse of medicines is to reduce some stages of the development of new medicines, motivating the proposition of several methods nowadays. In this work, a new method is developed aiming to connect known medicines to diseases based on available networks of protein interactions and available lists of medicines that affect protein action. The concepts of multiplex networks are used to connect subgraphs of vertices that represent medicines and proteins. The core of the procedure is determined by a weighting strategy constructed to define precisely the more relevant connections. The method was compared to other network link methods in the literature and a case study was presented and evaluated by the proposed method.
Collapse
|
2
|
Takundwa MM, Thimiri Govinda Raj DB. Novel strategies for drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:9-21. [PMID: 38789188 DOI: 10.1016/bs.pmbts.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Synthetic biology, precision medicine, and nanobiotechnology are the three main emerging areas that drive translational innovation toward commercialization. There are several strategies used in precision medicine and drug repurposing is one of the key approaches as it addresses the challenges in drug discovery (high cost and time). Here, we provide a perspective on various new approaches to drug repurposing for cancer precision medicine. We report here our optimized wound healing methodology that can be used to validate drug sensitivity and drug repurposing. Using HeLa as our benchmark, we demonstrated that the assay can be applied to identify drugs that limit cell proliferation. From a future perspective, this assay can be expanded to ex vivo culturing of solid tumors in 2D culture and leukemia in 3D culture.
Collapse
Affiliation(s)
- Mutsa Monica Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Deepak B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
| |
Collapse
|
3
|
Boudin M, Diallo G, Drancé M, Mougin F. The OREGANO knowledge graph for computational drug repurposing. Sci Data 2023; 10:871. [PMID: 38057380 PMCID: PMC10700660 DOI: 10.1038/s41597-023-02757-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
Drug repositioning is a faster and more affordable solution than traditional drug discovery approaches. From this perspective, computational drug repositioning using knowledge graphs is a very promising direction. Knowledge graphs constructed from drug data and information can be used to generate hypotheses (molecule/drug - target links) through link prediction using machine learning algorithms. However, it remains rare to have a holistically constructed knowledge graph using the broadest possible features and drug characteristics, which is freely available to the community. The OREGANO knowledge graph aims at filling this gap. The purpose of this paper is to present the OREGANO knowledge graph, which includes natural compounds related data. The graph was developed from scratch by retrieving data directly from the knowledge sources to be integrated. We therefore designed the expected graph model and proposed a method for merging nodes between the different knowledge sources, and finally, the data were cleaned. The knowledge graph, as well as the source codes for the ETL process, are openly available on the GitHub of the OREGANO project ( https://gitub.u-bordeaux.fr/erias/oregano ).
Collapse
Affiliation(s)
- Marina Boudin
- AHeaD team, Bordeaux Population Health Inserm U1219, Univ. Bordeaux, F-33000, Bordeaux, France.
| | - Gayo Diallo
- AHeaD team, Bordeaux Population Health Inserm U1219, Univ. Bordeaux, F-33000, Bordeaux, France
| | - Martin Drancé
- AHeaD team, Bordeaux Population Health Inserm U1219, Univ. Bordeaux, F-33000, Bordeaux, France
| | - Fleur Mougin
- AHeaD team, Bordeaux Population Health Inserm U1219, Univ. Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|
4
|
Chen L, Lin D, Xu H, Li J, Lin L. WLLP: A weighted reconstruction-based linear label propagation algorithm for predicting potential therapeutic agents for COVID-19. Front Microbiol 2022; 13:1040252. [PMID: 36466666 PMCID: PMC9713947 DOI: 10.3389/fmicb.2022.1040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV) has led to a huge health and economic crises. However, the research required to develop new drugs and vaccines is very expensive in terms of labor, money, and time. Owing to recent advances in data science, drug-repositioning technologies have become one of the most promising strategies available for developing effective treatment options. Using the previously reported human drug virus database (HDVD), we proposed a model to predict possible drug regimens based on a weighted reconstruction-based linear label propagation algorithm (WLLP). For the drug–virus association matrix, we used the weighted K-nearest known neighbors method for preprocessing and label propagation of the network based on the linear neighborhood similarity of drugs and viruses to obtain the final prediction results. In the framework of 10 times 10-fold cross-validated area under the receiver operating characteristic (ROC) curve (AUC), WLLP exhibited excellent performance with an AUC of 0.8828 ± 0.0037 and an area under the precision-recall curve of 0.5277 ± 0.0053, outperforming the other four models used for comparison. We also predicted effective drug regimens against SARS-CoV-2, and this case study showed that WLLP can be used to suggest potential drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Langcheng Chen
- Center of Campus Network and Modern Educational Technology, Guangdong University of Technology, Guangzhou, China
| | - Dongying Lin
- School of Computer Science, Guangdong University of Technology, Guangzhou, China
| | - Haojie Xu
- School of Computer Science, Guangdong University of Technology, Guangzhou, China
| | - Jianming Li
- School of Computer Science, Guangdong University of Technology, Guangzhou, China
| | - Lieqing Lin
- Center of Campus Network and Modern Educational Technology, Guangdong University of Technology, Guangzhou, China
- *Correspondence: Lieqing Lin
| |
Collapse
|
5
|
Hickey SL, McKim A, Mancuso CA, Krishnan A. A network-based approach for isolating the chronic inflammation gene signatures underlying complex diseases towards finding new treatment opportunities. Front Pharmacol 2022; 13:995459. [PMCID: PMC9597699 DOI: 10.3389/fphar.2022.995459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Complex diseases are associated with a wide range of cellular, physiological, and clinical phenotypes. To advance our understanding of disease mechanisms and our ability to treat these diseases, it is critical to delineate the molecular basis and therapeutic avenues of specific disease phenotypes, especially those that are associated with multiple diseases. Inflammatory processes constitute one such prominent phenotype, being involved in a wide range of health problems including ischemic heart disease, stroke, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease, and autoimmune and neurodegenerative conditions. While hundreds of genes might play a role in the etiology of each of these diseases, isolating the genes involved in the specific phenotype (e.g., inflammation “component”) could help us understand the genes and pathways underlying this phenotype across diseases and predict potential drugs to target the phenotype. Here, we present a computational approach that integrates gene interaction networks, disease-/trait-gene associations, and drug-target information to accomplish this goal. We apply this approach to isolate gene signatures of complex diseases that correspond to chronic inflammation and use SAveRUNNER to prioritize drugs to reveal new therapeutic opportunities.
Collapse
Affiliation(s)
- Stephanie L. Hickey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Alexander McKim
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Christopher A. Mancuso
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Arjun Krishnan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Arjun Krishnan,
| |
Collapse
|
6
|
A comprehensive review of Artificial Intelligence and Network based approaches to drug repurposing in Covid-19. Biomed Pharmacother 2022; 153:113350. [PMID: 35777222 PMCID: PMC9236981 DOI: 10.1016/j.biopha.2022.113350] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
Conventional drug discovery and development is tedious and time-taking process; because of which it has failed to keep the required pace to mitigate threats and cater demands of viral and re-occurring diseases, such as Covid-19. The main reasons of this delay in traditional drug development are: high attrition rates, extensive time requirements, and huge financial investment with significant risk. The effective solution to de novo drug discovery is drug repurposing. Previous studies have shown that the network-based approaches and analysis are versatile platform for repurposing as the network biology is used to model the interactions between variety of biological concepts. Herein, we provide a comprehensive background of machine learning and deep learning in drug repurposing while specifically focusing on the applications of network-based approach to drug repurposing in Covid-19, data sources, and tools used. Furthermore, use of network proximity, network diffusion, and AI on network-based drug repurposing for Covid-19 is well-explained. Finally, limitations of network-based approaches in general and specific to network are stated along with future recommendations for better network-based models.
Collapse
|
7
|
Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: from biological data to computational models. Brief Bioinform 2022; 23:6553604. [PMID: 35325024 DOI: 10.1093/bib/bbac080] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, with the rapid development of techniques in bioinformatics and life science, a considerable quantity of biomedical data has been accumulated, based on which researchers have developed various computational approaches to discover potential associations between human microbes, drugs and diseases. This paper provides a comprehensive overview of recent advances in prediction of potential correlations between microbes, drugs and diseases from biological data to computational models. Firstly, we introduced the widely used datasets relevant to the identification of potential relationships between microbes, drugs and diseases in detail. And then, we divided a series of a lot of representative computing models into five major categories including network, matrix factorization, matrix completion, regularization and artificial neural network for in-depth discussion and comparison. Finally, we analysed possible challenges and opportunities in this research area, and at the same time we outlined some suggestions for further improvement of predictive performances as well.
Collapse
Affiliation(s)
- Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Yaqin Tan
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaoyu Yang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Linai Kuang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Pengyao Ping
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China
| |
Collapse
|
8
|
Abstract
Drug repurposing refers to finding new indications for existing drugs. The paradigm shift from traditional drug discovery to drug repurposing is driven by the fact that new drug pipelines are getting dried up because of mounting Research & Development (R&D) costs, long timeline for new drug development, low success rate for new molecular entities, regulatory hurdles coupled with revenue loss from patent expiry and competition from generics. Anaemic drug pipelines along with increasing demand for newer effective, cheaper, safer drugs and unmet medical needs call for new strategies of drug discovery and, drug repurposing seems to be a promising avenue for such endeavours. Drug repurposing strategies have progressed over years from simple serendipitous observations to more complex computational methods in parallel with our ever-growing knowledge on drugs, diseases, protein targets and signalling pathways but still the knowledge is far from complete. Repurposed drugs too have to face many obstacles, although lesser than new drugs, before being successful.
Collapse
|
9
|
Prieto Santamaría L, Ugarte Carro E, Díaz Uzquiano M, Menasalvas Ruiz E, Pérez Gallardo Y, Rodríguez-González A. A data-driven methodology towards evaluating the potential of drug repurposing hypotheses. Comput Struct Biotechnol J 2021; 19:4559-4573. [PMID: 34471499 PMCID: PMC8387760 DOI: 10.1016/j.csbj.2021.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.
Collapse
Key Words
- ACE, Angiotensin I Converting Enzyme
- AHR, Aryl Hydrocarbon Receptor
- ALK, Anaplastic Lymphoma Kinase
- API, Application Programming Interface
- CMap, Connectivity Map
- COX-2, Cyclooxygenase 2
- CUI, Concept Unique Identifier
- DISNET knowledge base
- DR, Drug Repurposing or Drug Repositioning
- DRD3, Dopamine Receptor D3
- Data integration
- Disease understanding
- Drug repositioning
- Drug repurposing
- Drug-disease validation
- ESR1, Estrogen Receptor 1
- ESR2, Estrogen Receptor 2
- FCGR2A, Fc Fragment Of IgG Receptor IIa
- FCGR3A, Fc Fragment Of IgG Receptor IIIa
- FCGR3B, Fc Fragment Of IgG Receptor IIIb
- GDA, Gene Disease Association
- ICD-10-CM, International Classification of Diseases, 10th revision, Clinical Modification
- ID, Identifier
- KDR, Kinase insert Domain Receptor
- LTα, Lymphotoxin alpha
- MeSH-PA, Medical Subject Headings – Pharmacological Action
- ND, New Disease
- NLM, National Library of Medicine
- OD, Original Disease
- PTGS2, Prostaglandin-endoperoxidase synthase 2
- SM, Supplementary Material
- SRD5A1, Steroid 5 Alpha-Reductase 1
- SRD5A2, Steroid 5 Alpha-Reductase 2
- TNFα, Tumour Necrosis Factor alpha
- UMLS, Unified Medical Language System
Collapse
Affiliation(s)
- Lucía Prieto Santamaría
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.,ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.,Ezeris Networks Global Services S.L., 28028 Madrid, Spain
| | - Esther Ugarte Carro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain
| | - Marina Díaz Uzquiano
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain
| | - Ernestina Menasalvas Ruiz
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.,ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain
| | | | - Alejandro Rodríguez-González
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.,ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain
| |
Collapse
|
10
|
Yan C, Feng L, Wang W, Wang J, Zhang G, Luo J. A Novel Drug Repositioning Approach Based on Integrative Multiple Similarity Measures. Curr Mol Med 2021; 20:442-451. [PMID: 31729291 DOI: 10.2174/1566524019666191115103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Drug repositioning refers to discovering new indications for the existing drugs, which can improve the efficiency of drug research and development. METHODS In this work, a novel drug repositioning approach based on integrative multiple similarity measure, called DR_IMSM, is proposed. The process of integrative similarity measure contains three steps. First, a heterogeneous network can be constructed based on known drug-disease association, shared entities information for drug pairwise and diseases pairwise. Second, a deep learning method, DeepWalk, is used to capture the topology similarity for drug and disease. Third, a similarity integration and adjusting process is further conducted to obtain more comprehensive drug and disease similarity measure, respectively. RESULTS On this basis, a Bi-random walk algorithm is implemented in the constructed heterogeneous network to rank diseases for each drug. Compared with other approaches, the proposed DR_IMSM can achieve superior performance in terms of AUC on the gold standard datasets. Case studies further confirm the practical significance of DR_IMSM.
Collapse
Affiliation(s)
- Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Luping Feng
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Wenxiu Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| |
Collapse
|
11
|
He B, Hou F, Ren C, Bing P, Xiao X. A Review of Current In Silico Methods for Repositioning Drugs and Chemical Compounds. Front Oncol 2021; 11:711225. [PMID: 34367996 PMCID: PMC8340770 DOI: 10.3389/fonc.2021.711225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022] Open
Abstract
Drug repositioning is a new way of applying the existing therapeutics to new disease indications. Due to the exorbitant cost and high failure rate in developing new drugs, the continued use of existing drugs for treatment, especially anti-tumor drugs, has become a widespread practice. With the assistance of high-throughput sequencing techniques, many efficient methods have been proposed and applied in drug repositioning and individualized tumor treatment. Current computational methods for repositioning drugs and chemical compounds can be divided into four categories: (i) feature-based methods, (ii) matrix decomposition-based methods, (iii) network-based methods, and (iv) reverse transcriptome-based methods. In this article, we comprehensively review the widely used methods in the above four categories. Finally, we summarize the advantages and disadvantages of these methods and indicate future directions for more sensitive computational drug repositioning methods and individualized tumor treatment, which are critical for further experimental validation.
Collapse
Affiliation(s)
- Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Fangxing Hou
- Queen Mary School, Nanchang University, Jiangxi, China
| | - Changjing Ren
- School of Science, Dalian Maritime University, Dalian, China.,Genies Beijing Co., Ltd., Beijing, China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Xiangzuo Xiao
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
12
|
Dotolo S, Marabotti A, Facchiano A, Tagliaferri R. A review on drug repurposing applicable to COVID-19. Brief Bioinform 2021; 22:726-741. [PMID: 33147623 PMCID: PMC7665348 DOI: 10.1093/bib/bbaa288] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Drug repurposing involves the identification of new applications for existing drugs at a lower cost and in a shorter time. There are different computational drug-repurposing strategies and some of these approaches have been applied to the coronavirus disease 2019 (COVID-19) pandemic. Computational drug-repositioning approaches applied to COVID-19 can be broadly categorized into (i) network-based models, (ii) structure-based approaches and (iii) artificial intelligence (AI) approaches. Network-based approaches are divided into two categories: network-based clustering approaches and network-based propagation approaches. Both of them allowed to annotate some important patterns, to identify proteins that are functionally associated with COVID-19 and to discover novel drug–disease or drug–target relationships useful for new therapies. Structure-based approaches allowed to identify small chemical compounds able to bind macromolecular targets to evaluate how a chemical compound can interact with the biological counterpart, trying to find new applications for existing drugs. AI-based networks appear, at the moment, less relevant since they need more data for their application.
Collapse
Affiliation(s)
| | | | | | - Roberto Tagliaferri
- Artificial Intelligence, Statistical Pattern Recognition, Clustering, Biomedical imaging and Bioinformatics
| |
Collapse
|
13
|
Galan-Vasquez E, Perez-Rueda E. A landscape for drug-target interactions based on network analysis. PLoS One 2021; 16:e0247018. [PMID: 33730052 PMCID: PMC7968663 DOI: 10.1371/journal.pone.0247018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/30/2021] [Indexed: 12/30/2022] Open
Abstract
In this work, we performed an analysis of the networks of interactions between drugs and their targets to assess how connected the compounds are. For our purpose, the interactions were downloaded from the DrugBank database, and we considered all drugs approved by the FDA. Based on topological analysis of this interaction network, we obtained information on degree, clustering coefficient, connected components, and centrality of these interactions. We identified that this drug-target interaction network cannot be divided into two disjoint and independent sets, i.e., it is not bipartite. In addition, the connectivity or associations between every pair of nodes identified that the drug-target network is constituted of 165 connected components, where one giant component contains 4376 interactions that represent 89.99% of all the elements. In this regard, the histamine H1 receptor, which belongs to the family of rhodopsin-like G-protein-coupled receptors and is activated by the biogenic amine histamine, was found to be the most important node in the centrality of input-degrees. In the case of centrality of output-degrees, fostamatinib was found to be the most important node, as this drug interacts with 300 different targets, including arachidonate 5-lipoxygenase or ALOX5, expressed on cells primarily involved in regulation of immune responses. The top 10 hubs interacted with 33% of the target genes. Fostamatinib stands out because it is used for the treatment of chronic immune thrombocytopenia in adults. Finally, 187 highly connected sets of nodes, structured in communities, were also identified. Indeed, the largest communities have more than 400 elements and are related to metabolic diseases, psychiatric disorders and cancer. Our results demonstrate the possibilities to explore these compounds and their targets to improve drug repositioning and contend against emergent diseases.
Collapse
Affiliation(s)
- Edgardo Galan-Vasquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, México
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| |
Collapse
|
14
|
Shi W, Chen X, Deng L. A Review of Recent Developments and Progress in Computational Drug Repositioning. Curr Pharm Des 2021; 26:3059-3068. [PMID: 31951162 DOI: 10.2174/1381612826666200116145559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022]
Abstract
Computational drug repositioning is an efficient approach towards discovering new indications for existing drugs. In recent years, with the accumulation of online health-related information and the extensive use of biomedical databases, computational drug repositioning approaches have achieved significant progress in drug discovery. In this review, we summarize recent advancements in drug repositioning. Firstly, we explicitly demonstrated the available data source information which is conducive to identifying novel indications. Furthermore, we provide a summary of the commonly used computing approaches. For each method, we briefly described techniques, case studies, and evaluation criteria. Finally, we discuss the limitations of the existing computing approaches.
Collapse
Affiliation(s)
- Wanwan Shi
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xuegong Chen
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
15
|
Yang J, Zhang D, Liu L, Li G, Cai Y, Zhang Y, Jin H, Chen X. Computational drug repositioning based on the relationships between substructure-indication. Brief Bioinform 2020; 22:6032618. [PMID: 33313675 DOI: 10.1093/bib/bbaa348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
At present, computational methods for drug repositioning are mainly based on the whole structures of drugs, which limits the discovery of new functions due to the similarities between local structures of drugs. In this article, we, for the first time, integrated the features of chemical-genomics (substructure-domain) and pharmaco-genomics (domain-indication) based on the assumption that drug-target interactions are mediated by the substructures of drugs and the domains of proteins to identify the relationships between substructure-indication and establish a drug-substructure-indication network for predicting all therapeutic effects of tested drugs through only information on the substructures of drugs. In total, 83 205 drug-indication relationships with different correlation scores were obtained. We used three different verification methods to indicate the accuracy of the method and the reliability of the scoring system. We predicted all indications of olaparib using our method, including the known antitumor effect and unknown antiviral effect verified by literature, and we also discovered the inhibitory mechanism of olaparib toward DNA repair through its specific sub494 (o = C-C: C), as it participates in the low synthesis of the poly subfunction of the apoptosis pathway (hsa04210) by inhibiting the Inositol 1,4,5-trisphosphate receptor(s) (ITPRs) and hydrolyzing poly (ADP ribose) polymerases. ElectroCardioGrams of four drugs (quinidine, amiodarone, milrinone and fosinopril) demonstrated the effect of anti-arrhythmia. Unlike previous studies focusing on the overall structures of drugs, our research has great potential in the search for more therapeutic effects of drugs and in predicting all potential effects and mechanisms of a drug from the local structural similarity.
Collapse
Affiliation(s)
- Jingbo Yang
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Denan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Lei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Guoqi Li
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Yiyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Hongbo Jin
- Department of Physiology, Harbin Medical University
| | - Xiujie Chen
- College of Bioinformatics Science and Technology, Harbin Medical University
| |
Collapse
|
16
|
Chen H, Cheng F, Li J. iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding. PLoS Comput Biol 2020; 16:e1008040. [PMID: 32667925 PMCID: PMC7384678 DOI: 10.1371/journal.pcbi.1008040] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/27/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Computational drug repositioning and drug-target prediction have become essential tasks in the early stage of drug discovery. In previous studies, these two tasks have often been considered separately. However, the entities studied in these two tasks (i.e., drugs, targets, and diseases) are inherently related. On one hand, drugs interact with targets in cells to modulate target activities, which in turn alter biological pathways to promote healthy functions and to treat diseases. On the other hand, both drug repositioning and drug-target prediction involve the same drug feature space, which naturally connects these two problems and the two domains (diseases and targets). By using the wisdom of the crowds, it is possible to transfer knowledge from one of the domains to the other. The existence of relationships among drug-target-disease motivates us to jointly consider drug repositioning and drug-target prediction in drug discovery. In this paper, we present a novel approach called iDrug, which seamlessly integrates drug repositioning and drug-target prediction into one coherent model via cross-network embedding. In particular, we provide a principled way to transfer knowledge from these two domains and to enhance prediction performance for both tasks. Using real-world datasets, we demonstrate that iDrug achieves superior performance on both learning tasks compared to several state-of-the-art approaches. Our code and datasets are available at: https://github.com/Case-esaC/iDrug.
Collapse
Affiliation(s)
- Huiyuan Chen
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jing Li
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
17
|
Saberian N, Peyvandipour A, Donato M, Ansari S, Draghici S. A new computational drug repurposing method using established disease-drug pair knowledge. Bioinformatics 2020; 35:3672-3678. [PMID: 30840053 DOI: 10.1093/bioinformatics/btz156] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 01/15/2019] [Accepted: 03/04/2019] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Drug repurposing is a potential alternative to the classical drug discovery pipeline. Repurposing involves finding novel indications for already approved drugs. In this work, we present a novel machine learning-based method for drug repurposing. This method explores the anti-similarity between drugs and a disease to uncover new uses for the drugs. More specifically, our proposed method takes into account three sources of information: (i) large-scale gene expression profiles corresponding to human cell lines treated with small molecules, (ii) gene expression profile of a human disease and (iii) the known relationship between Food and Drug Administration (FDA)-approved drugs and diseases. Using these data, our proposed method learns a similarity metric through a supervised machine learning-based algorithm such that a disease and its associated FDA-approved drugs have smaller distance than the other disease-drug pairs. RESULTS We validated our framework by showing that the proposed method incorporating distance metric learning technique can retrieve FDA-approved drugs for their approved indications. Once validated, we used our approach to identify a few strong candidates for repurposing. AVAILABILITY AND IMPLEMENTATION The R scripts are available on demand from the authors. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nafiseh Saberian
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Azam Peyvandipour
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Michele Donato
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Sahar Ansari
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
18
|
Arakelyan A, Nersisyan L, Nikoghosyan M, Hakobyan S, Simonyan A, Hopp L, Loeffler-Wirth H, Binder H. Transcriptome-Guided Drug Repositioning. Pharmaceutics 2019; 11:E677. [PMID: 31842375 PMCID: PMC6969900 DOI: 10.3390/pharmaceutics11120677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/17/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Drug repositioning can save considerable time and resources and significantly speed up the drug development process. The increasing availability of drug action and disease-associated transcriptome data makes it an attractive source for repositioning studies. Here, we have developed a transcriptome-guided approach for drug/biologics repositioning based on multi-layer self-organizing maps (ml-SOM). It allows for analyzing multiple transcriptome datasets by segmenting them into layers of drug action- and disease-associated transcriptome data. A comparison of expression changes in clusters of functionally related genes across the layers identifies "drug target" spots in disease layers and evaluates the repositioning possibility of a drug. The repositioning potential for two approved biologics drugs (infliximab and brodalumab) confirmed the drugs' action for approved diseases (ulcerative colitis and Crohn's disease for infliximab and psoriasis for brodalumab). We showed the potential efficacy of infliximab for the treatment of sarcoidosis, but not chronic obstructive pulmonary disease (COPD). Brodalumab failed to affect dysregulated functional gene clusters in Crohn's disease (CD) and systemic juvenile idiopathic arthritis (SJIA), clearly indicating that it may not be effective in the treatment of these diseases. In conclusion, ml-SOM offers a novel approach for transcriptome-guided drug repositioning that could be particularly useful for biologics drugs.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia; (M.N.); (A.S.)
| | - Lilit Nersisyan
- Group of Bioinformatics, Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia; (L.N.); (S.H.)
| | - Maria Nikoghosyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia; (M.N.); (A.S.)
- Group of Bioinformatics, Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia; (L.N.); (S.H.)
| | - Siras Hakobyan
- Group of Bioinformatics, Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia; (L.N.); (S.H.)
| | - Arman Simonyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia; (M.N.); (A.S.)
- Group of Bioinformatics, Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia; (L.N.); (S.H.)
| | - Lydia Hopp
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany; (L.H.); (H.L.-W.)
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany; (L.H.); (H.L.-W.)
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany; (L.H.); (H.L.-W.)
| |
Collapse
|
19
|
Mayers M, Li TS, Queralt-Rosinach N, Su AI. Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network. BMC Bioinformatics 2019; 20:653. [PMID: 31829175 PMCID: PMC6907279 DOI: 10.1186/s12859-019-3297-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Computational compound repositioning has the potential for identifying new uses for existing drugs, and new algorithms and data source aggregation strategies provide ever-improving results via in silico metrics. However, even with these advances, the number of compounds successfully repositioned via computational screening remains low. New strategies for algorithm evaluation that more accurately reflect the repositioning potential of a compound could provide a better target for future optimizations. RESULTS Using a text-mined database, we applied a previously described network-based computational repositioning algorithm, yielding strong results via cross-validation, averaging 0.95 AUROC on test-set indications. However, to better approximate a real-world scenario, we built a time-resolved evaluation framework. At various time points, we built networks corresponding to prior knowledge for use as a training set, and then predicted on a test set comprised of indications that were subsequently described. This framework showed a marked reduction in performance, peaking in performance metrics with the 1985 network at an AUROC of .797. Examining performance reductions due to removal of specific types of relationships highlighted the importance of drug-drug and disease-disease similarity metrics. Using data from future timepoints, we demonstrate that further acquisition of these kinds of data may help improve computational results. CONCLUSIONS Evaluating a repositioning algorithm using indications unknown to input network better tunes its ability to find emerging drug indications, rather than finding those which have been randomly withheld. Focusing efforts on improving algorithmic performance in a time-resolved paradigm may further improve computational repositioning predictions.
Collapse
Affiliation(s)
- Michael Mayers
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Tong Shu Li
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037 USA
| | | | - Andrew I. Su
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037 USA
| |
Collapse
|
20
|
Xuan P, Cui H, Shen T, Sheng N, Zhang T. HeteroDualNet: A Dual Convolutional Neural Network With Heterogeneous Layers for Drug-Disease Association Prediction via Chou's Five-Step Rule. Front Pharmacol 2019; 10:1301. [PMID: 31780934 PMCID: PMC6856670 DOI: 10.3389/fphar.2019.01301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/11/2019] [Indexed: 11/14/2022] Open
Abstract
Identifying new treatments for existing drugs can help reduce drug development costs and explore novel indications of drugs. The prediction of associations between drugs and diseases is challenging because their similarities and relations are complicated and non-linear. We propose a HeteroDualNet model to address this issue. Firstly, three types of matrices are extracted to represent intra-drug similarities, intra-disease similarity and drug-disease associations. The intra-drug similarities consider three drug features and a newly introduced drug-related disease correlation. Secondly, an embedding mechanism is proposed to integrate these matrices in a heterogenous drug-disease association layer (hetero-layer). Further, a neighbouring heterogeneous layer (hetero-layer-N) is constructed to incorporate the biological premise that similar drugs can often treat related diseases. Finally, a dual convolutional neural network is built with hetero-layer and hetero-layer-N as two branches to learn from characteristics of drug-disease and the relations of their neighbours simultaneously. HeteroDualNet outperformed the other four methods in comparison over a public dataset of 763 drugs and 681 diseases in terms of Areas Under the Curves of Receiver Operating Characteristics and Precision-Recall, and recall rate at top k. Case study of five drugs further proved the capacity of HeteroDualNet in finding reliable disease candidates of drugs as validated by database records or literature. Our findings show that the embedded heterogenous layers of original and neighbouring drug-disease representations in a dual neural network improved the association prediction performance.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Bundoora, VIC, Australia
| | - Tonghui Shen
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Nan Sheng
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin, China
| |
Collapse
|
21
|
Luo H, Wang J, Li M, Luo J, Ni P, Zhao K, Wu FX, Pan Y. Computational Drug Repositioning with Random Walk on a Heterogeneous Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1890-1900. [PMID: 29994051 DOI: 10.1109/tcbb.2018.2832078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Drug repositioning is an efficient and promising strategy to identify new indications for existing drugs, which can improve the productivity of traditional drug discovery and development. Rapid advances in high-throughput technologies have generated various types of biomedical data over the past decades, which lay the foundations for furthering the development of computational drug repositioning approaches. Although many researches have tried to improve the repositioning accuracy by integrating information from multiple sources and different levels, it is still appealing to further investigate how to efficiently exploit valuable data for drug repositioning. In this study, we propose an efficient approach, Random Walk on a Heterogeneous Network for Drug Repositioning (RWHNDR), to prioritize candidate drugs for diseases. First, an integrated heterogeneous network is constructed by combining multiple sources including drugs, drug targets, diseases and disease genes data. Then, a random walk model is developed to capture the global information of the heterogeneous network. RWHNDR takes advantage of drug targets and disease genes data more comprehensively for drug repositioning. The experiment results show that our approach can achieve better performance, compared with other state-of-the-art approaches which prioritized candidate drugs based on multi-source data.
Collapse
|
22
|
Karaman B, Sippl W. Computational Drug Repurposing: Current Trends. Curr Med Chem 2019; 26:5389-5409. [DOI: 10.2174/0929867325666180530100332] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
Abstract
:
Biomedical discovery has been reshaped upon the exploding digitization of data
which can be retrieved from a number of sources, ranging from clinical pharmacology to
cheminformatics-driven databases. Now, supercomputing platforms and publicly available
resources such as biological, physicochemical, and clinical data, can all be integrated to construct
a detailed map of signaling pathways and drug mechanisms of action in relation to drug
candidates. Recent advancements in computer-aided data mining have facilitated analyses of
‘big data’ approaches and the discovery of new indications for pre-existing drugs has been
accelerated. Linking gene-phenotype associations to predict novel drug-disease signatures or
incorporating molecular structure information of drugs and protein targets with other kinds of
data derived from systems biology provide great potential to accelerate drug discovery and
improve the success of drug repurposing attempts. In this review, we highlight commonly
used computational drug repurposing strategies, including bioinformatics and cheminformatics
tools, to integrate large-scale data emerging from the systems biology, and consider both
the challenges and opportunities of using this approach. Moreover, we provide successful examples
and case studies that combined various in silico drug-repurposing strategies to predict
potential novel uses for known therapeutics.
Collapse
Affiliation(s)
- Berin Karaman
- Biruni University - Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Wolfgang Sippl
- Martin-Luther University of Halle-Wittenberg - Institute of Pharmacy, Halle (Saale), Germany
| |
Collapse
|
23
|
Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin Cancer Biol 2019; 68:8-20. [PMID: 31550502 PMCID: PMC7128772 DOI: 10.1016/j.semcancer.2019.09.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022]
Abstract
Despite tremendous resources being invested in prevention and treatment, breast cancer remains a leading cause of cancer deaths in women globally. The available treatment modalities are very costly and produces severe side effects. Drug repurposing that relate to new uses for old drugs has emerged as a novel approach for drug development. Repositioning of old, clinically approved, off patent non-cancer drugs with known targets, into newer indication is like using old weapons for new battle. The advances in genomics, proteomics and information computational biology has facilitated the process of drug repurposing. Repositioning approach not only fastens the process of drug development but also offers more effective, cheaper, safer drugs with lesser/known side effects. During the last decade, drugs such as alkylating agents, anthracyclins, antimetabolite, CDK4/6 inhibitor, aromatase inhibitor, mTOR inhibitor and mitotic inhibitors has been repositioned for breast cancer treatment. The repositioned drugs have been successfully used for the treatment of most aggressive triple negative breast cancer. The literature review suggest that serendipity plays a major role in the drug development. This article describes the comprehensive overview of the current scenario of drug repurposing for the breast cancer treatment. The strategies as well as several examples of repurposed drugs are provided. The challenges associated with drug repurposing are discussed.
Collapse
|
24
|
Predicting Drug-Disease Associations via Using Gaussian Interaction Profile and Kernel-Based Autoencoder. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2426958. [PMID: 31534955 PMCID: PMC6732622 DOI: 10.1155/2019/2426958] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 01/18/2023]
Abstract
Computational drug repositioning, designed to identify new indications for existing drugs, significantly reduced the cost and time involved in drug development. Prediction of drug-disease associations is promising for drug repositioning. Recent years have witnessed an increasing number of machine learning-based methods for calculating drug repositioning. In this paper, a novel feature learning method based on Gaussian interaction profile kernel and autoencoder (GIPAE) is proposed for drug-disease association. In order to further reduce the computation cost, both batch normalization layer and the full-connected layer are introduced to reduce training complexity. The experimental results of 10-fold cross validation indicate that the proposed method achieves superior performance on Fdataset and Cdataset with the AUCs of 93.30% and 96.03%, respectively, which were higher than many previous computational models. To further assess the accuracy of GIPAE, we conducted case studies on two complex human diseases. The top 20 drugs predicted, 14 obesity-related drugs, and 11 drugs related to Alzheimer's disease were validated in the CTD database. The results of cross validation and case studies indicated that GIPAE is a reliable model for predicting drug-disease associations.
Collapse
|
25
|
Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. A review of network-based approaches to drug repositioning. Brief Bioinform 2019; 19:878-892. [PMID: 28334136 DOI: 10.1093/bib/bbx017] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 01/17/2023] Open
Abstract
Experimental drug development is time-consuming, expensive and limited to a relatively small number of targets. However, recent studies show that repositioning of existing drugs can function more efficiently than de novo experimental drug development to minimize costs and risks. Previous studies have proven that network analysis is a versatile platform for this purpose, as the biological networks are used to model interactions between many different biological concepts. The present study is an attempt to review network-based methods in predicting drug targets for drug repositioning. For each method, the preferred type of data set is described, and their advantages and limitations are discussed. For each method, we seek to provide a brief description, as well as an evaluation based on its performance metrics.We conclude that integrating distinct and complementary data should be used because each type of data set reveals a unique aspect of information about an organism. We also suggest that applying a standard set of evaluation metrics and data sets would be essential in this fast-growing research domain.
Collapse
Affiliation(s)
- Maryam Lotfi Shahreza
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Nasser Ghadiri
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | | | - Jaleh Varshosaz
- Drug Delivery Systems Research Center of Isfahan University of Medical Sciences
| | - James R Green
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
26
|
Almasi SM, Hu T. Measuring the importance of vertices in the weighted human disease network. PLoS One 2019; 14:e0205936. [PMID: 30901770 PMCID: PMC6430629 DOI: 10.1371/journal.pone.0205936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Many human genetic disorders and diseases are known to be related to each other through frequently observed co-occurrences. Studying the correlations among multiple diseases provides an important avenue to better understand the common genetic background of diseases and to help develop new drugs that can treat multiple diseases. Meanwhile, network science has seen increasing applications on modeling complex biological systems, and can be a powerful tool to elucidate the correlations of multiple human diseases. In this article, known disease-gene associations were represented using a weighted bipartite network. We extracted a weighted human diseases network from such a bipartite network to show the correlations of diseases. Subsequently, we proposed a new centrality measurement for the weighted human disease network (WHDN) in order to quantify the importance of diseases. Using our centrality measurement to quantify the importance of vertices in WHDN, we were able to find a set of most central diseases. By investigating the 30 top diseases and their most correlated neighbors in the network, we identified disease linkages including known disease pairs and novel findings. Our research helps better understand the common genetic origin of human diseases and suggests top diseases that likely induce other related diseases.
Collapse
Affiliation(s)
| | - Ting Hu
- Department of Computer Science, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
27
|
Tian Z, Teng Z, Cheng S, Guo M. Computational drug repositioning using meta-path-based semantic network analysis. BMC SYSTEMS BIOLOGY 2018; 12:134. [PMID: 30598084 PMCID: PMC6311940 DOI: 10.1186/s12918-018-0658-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Drug repositioning is a promising and efficient way to discover new indications for existing drugs, which holds the great potential for precision medicine in the post-genomic era. Many network-based approaches have been proposed for drug repositioning based on similarity networks, which integrate multiple sources of drugs and diseases. However, these methods may simply view nodes as the same-typed and neglect the semantic meanings of different meta-paths in the heterogeneous network. Therefore, it is urgent to develop a rational method to infer new indications for approved drugs. RESULTS In this study, we proposed a novel methodology named HeteSim_DrugDisease (HSDD) for the prediction of drug repositioning. Firstly, we build the drug-drug similarity network and disease-disease similarity network by integrating the information of drugs and diseases. Secondly, a drug-disease heterogeneous network is constructed, which combines the drug similarity network, disease similarity network as well as the known drug-disease association network. Finally, HSDD predicts novel drug-disease associations based on the HeteSim scores of different meta-paths. The experimental results show that HSDD performs significantly better than the existing state-of-the-art approaches. HSDD achieves an AUC score of 0.8994 in the leave-one-out cross validation experiment. Moreover, case studies for selected drugs further illustrate the practical usefulness of HSDD. CONCLUSIONS HSDD can be an effective and feasible way to infer the associations between drugs and diseases using on meta-path-based semantic network analysis.
Collapse
Affiliation(s)
- Zhen Tian
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhixia Teng
- School of information and computer engineering, Northeast Forestry, Harbin, 150001, People's Republic of China
| | - Shuang Cheng
- Institute of Materials, China Academy of Engineering Physics, Jiang You, 621907, Sichuan, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing, 100044, China.
| |
Collapse
|
28
|
Wu G, Liu J, Min W. Prediction of drug-disease treatment relations based on positive and unlabeled samples. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2018. [DOI: 10.3233/jifs-169679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Guangsheng Wu
- School of Computer Science, Wuhan University, Wuhan 430072, China
| | - Juan Liu
- School of Computer Science, Wuhan University, Wuhan 430072, China
| | - Wenwen Min
- School of Computer Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Deepika SS, Geetha TV. A meta-learning framework using representation learning to predict drug-drug interaction. J Biomed Inform 2018; 84:136-147. [DOI: 10.1016/j.jbi.2018.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023]
Affiliation(s)
- S S Deepika
- Department of Computer Science, Anna University, Chennai, Tamil Nadu, India.
| | - T V Geetha
- Department of Computer Science, Anna University, Chennai, Tamil Nadu, India
| |
Collapse
|
30
|
Liu W, Tu W, Li L, Liu Y, Wang S, Li L, Tao H, He H. Revisiting Connectivity Map from a gene co-expression network analysis. Exp Ther Med 2018; 16:493-500. [PMID: 30112021 PMCID: PMC6090433 DOI: 10.3892/etm.2018.6275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022] Open
Abstract
The Connectivity Map (CMap) is a tool that has been extensively utilized to study drug repositioning and side-effect prediction. However, most of these analyses rely on signature genes, ignoring the pathways by which those genes are regulated, as well as the functional overlap of redundant genes. The present study utilized a systems biology approach referred to as Weighted Gene Co-expression Network Analysis (WGCNA) to dissect the transcriptional profiles of CMap and reveal these hidden factors. Seven common modules associated with protein binding, extracellular matrix organization and translation were identified. Furthermore, drugs were clustered based on module expression to infer their mechanism of action (MoA) based on common activity profiles. As an extension of this, an example of disease-based module projection to identify novel drugs was provided. The analysis developed in the present study may provide a novel framework for drug repositioning or discovering MoAs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Bioinformatics, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Wei Tu
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Li Li
- Department of Medical Informatics, Institute of Health Service and Medical Information, Academy of Military Medical Sciences, Beijing 100850, P.R. China
| | - Yingfu Liu
- Department of Cell Biology, Logistics University of Chinese Armed Police Forces, Tianjin 300309, P.R. China
| | - Shaobo Wang
- Department of Bioinformatics, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Ling Li
- Department of Bioinformatics, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Huan Tao
- Department of Bioinformatics, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Huaqin He
- Department of Bioinformatics, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
31
|
Yella JK, Yaddanapudi S, Wang Y, Jegga AG. Changing Trends in Computational Drug Repositioning. Pharmaceuticals (Basel) 2018; 11:E57. [PMID: 29874824 PMCID: PMC6027196 DOI: 10.3390/ph11020057] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
Efforts to maximize the indications potential and revenue from drugs that are already marketed are largely motivated by what Sir James Black, a Nobel Prize-winning pharmacologist advocated-"The most fruitful basis for the discovery of a new drug is to start with an old drug". However, rational design of drug mixtures poses formidable challenges because of the lack of or limited information about in vivo cell regulation, mechanisms of genetic pathway activation, and in vivo pathway interactions. Hence, most of the successfully repositioned drugs are the result of "serendipity", discovered during late phase clinical studies of unexpected but beneficial findings. The connections between drug candidates and their potential adverse drug reactions or new applications are often difficult to foresee because the underlying mechanism associating them is largely unknown, complex, or dispersed and buried in silos of information. Discovery of such multi-domain pharmacomodules-pharmacologically relevant sub-networks of biomolecules and/or pathways-from collection of databases by independent/simultaneous mining of multiple datasets is an active area of research. Here, while presenting some of the promising bioinformatics approaches and pipelines, we summarize and discuss the current and evolving landscape of computational drug repositioning.
Collapse
Affiliation(s)
- Jaswanth K Yella
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way MLC 7024, Cincinnati, OH 45229, USA.
| | - Suryanarayana Yaddanapudi
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way MLC 7024, Cincinnati, OH 45229, USA.
| | - Yunguan Wang
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way MLC 7024, Cincinnati, OH 45229, USA.
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way MLC 7024, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH 45219, USA.
| |
Collapse
|
32
|
Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration. BMC Med Genomics 2017; 10:79. [PMID: 29297383 PMCID: PMC5751445 DOI: 10.1186/s12920-017-0311-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Prediction of drug-disease interactions is promising for either drug repositioning or disease treatment fields. The discovery of novel drug-disease interactions, on one hand can help to find novel indictions for the approved drugs; on the other hand can provide new therapeutic approaches for the diseases. Recently, computational methods for finding drug-disease interactions have attracted lots of attention because of their far more higher efficiency and lower cost than the traditional wet experiment methods. However, they still face several challenges, such as the organization of the heterogeneous data, the performance of the model, and so on. Methods In this work, we present to hierarchically integrate the heterogeneous data into three layers. The drug-drug and disease-disease similarities are first calculated separately in each layer, and then the similarities from three layers are linearly fused into comprehensive drug similarities and disease similarities, which can then be used to measure the similarities between two drug-disease pairs. We construct a novel weighted drug-disease pair network, where a node is a drug-disease pair with known or unknown treatment relation, an edge represents the node-node relation which is weighted with the similarity score between two pairs. Now that similar drug-disease pairs are supposed to show similar treatment patterns, we can find the optimal graph cut of the network. The drug-disease pair with unknown relation can then be considered to have similar treatment relation with that within the same cut. Therefore, we develop a semi-supervised graph cut algorithm, SSGC, to find the optimal graph cut, based on which we can identify the potential drug-disease treatment interactions. Results By comparing with three representative network-based methods, SSGC achieves the highest performances, in terms of both AUC score and the identification rates of true drug-disease pairs. The experiments with different integration strategies also demonstrate that considering several sources of data can improve the performances of the predictors. Further case studies on four diseases, the top-ranked drug-disease associations have been confirmed by KEGG, CTD database and the literature, illustrating the usefulness of SSGC. Conclusions The proposed comprehensive similarity scores from multi-views and multiple layers and the graph-cut based algorithm can greatly improve the prediction performances of drug-disease associations.
Collapse
|
33
|
Chen H, Zhang Z, Peng W. miRDDCR: a miRNA-based method to comprehensively infer drug-disease causal relationships. Sci Rep 2017; 7:15921. [PMID: 29162848 PMCID: PMC5698443 DOI: 10.1038/s41598-017-15716-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Revealing the cause-and-effect mechanism behind drug-disease relationships remains a challenging task. Recent studies suggested that drugs can target microRNAs (miRNAs) and alter their expression levels. In the meanwhile, the inappropriate expression of miRNAs will lead to various diseases. Therefore, targeting specific miRNAs by small-molecule drugs to modulate their activities provides a promising approach to human disease treatment. However, few studies attempt to discover drug-disease causal relationships through the molecular level of miRNAs. Here, we developed a miRNA-based inference method miRDDCR to comprehensively predict drug-disease causal relationships. We first constructed a three-layer drug-miRNA-disease heterogeneous network by combining similarity measurements, existing drug-miRNA associations and miRNA-disease associations. Then, we extended the algorithm of Random Walk to the three-layer heterogeneous network and ranked the potential indications for drugs. Leave-one-out cross-validations and case studies demonstrated that our method miRDDCR can achieve excellent prediction power. Compared with related methods, our causality discovery-based algorithm showed superior prediction ability and highlighted the molecular basis miRNAs, which can be used to assist in the experimental design for drug development and disease treatment. Finally, comprehensively inferred drug-disease causal relationships were released for further studies.
Collapse
Affiliation(s)
- Hailin Chen
- School of Software, East China Jiaotong University, Nanchang, China.
| | - Zuping Zhang
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Wei Peng
- Computer Center of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
34
|
Rampogu S, Son M, Park C, Kim HH, Suh JK, Lee KW. Sulfonanilide Derivatives in Identifying Novel Aromatase Inhibitors by Applying Docking, Virtual Screening, and MD Simulations Studies. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2105610. [PMID: 29312992 PMCID: PMC5664374 DOI: 10.1155/2017/2105610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/31/2017] [Accepted: 08/27/2017] [Indexed: 01/04/2023]
Abstract
Breast cancer is one of the leading causes of death noticed in women across the world. Of late the most successful treatments rendered are the use of aromatase inhibitors (AIs). In the current study, a two-way approach for the identification of novel leads has been adapted. 81 chemical compounds were assessed to understand their potentiality against aromatase along with the four known drugs. Docking was performed employing the CDOCKER protocol available on the Discovery Studio (DS v4.5). Exemestane has displayed a higher dock score among the known drug candidates and is labeled as reference. Out of 81 ligands 14 have exhibited higher dock scores than the reference. In the second approach, these 14 compounds were utilized for the generation of the pharmacophore. The validated four-featured pharmacophore was then allowed to screen Chembridge database and the potential Hits were obtained after subjecting them to Lipinski's rule of five and the ADMET properties. Subsequently, the acquired 3,050 Hits were escalated to molecular docking utilizing GOLD v5.0. Finally, the obtained Hits were consequently represented to be ideal lead candidates that were escalated to the MD simulations and binding free energy calculations. Additionally, the gene-disease association was performed to delineate the associated disease caused by CYP19A1.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Minky Son
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Chanin Park
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Hyong-Ha Kim
- Division of Quality of Life, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jung-Keun Suh
- Bio-Computing Major, Korean German Institute of Technology, Seoul 07582, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
35
|
Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. Heter-LP: A heterogeneous label propagation algorithm and its application in drug repositioning. J Biomed Inform 2017; 68:167-183. [DOI: 10.1016/j.jbi.2017.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/09/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
|
36
|
A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7147039. [PMID: 28127549 PMCID: PMC5233404 DOI: 10.1155/2016/7147039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022]
Abstract
Drug repositioning offers new clinical indications for old drugs. Recently, many computational approaches have been developed to repurpose marketed drugs in human diseases by mining various of biological data including disease expression profiles, pathways, drug phenotype expression profiles, and chemical structure data. However, despite encouraging results, a comprehensive and efficient computational drug repositioning approach is needed that includes the high-level integration of available resources. In this study, we propose a systematic framework employing experimental genomic knowledge and pharmaceutical knowledge to reposition drugs for a specific disease. Specifically, we first obtain experimental genomic knowledge from disease gene expression profiles and pharmaceutical knowledge from drug phenotype expression profiles and construct a pathway-drug network representing a priori known associations between drugs and pathways. To discover promising candidates for drug repositioning, we initialize node labels for the pathway-drug network using identified disease pathways and known drugs associated with the phenotype of interest and perform network propagation in a semisupervised manner. To evaluate our method, we conducted some experiments to reposition 1309 drugs based on four different breast cancer datasets and verified the results of promising candidate drugs for breast cancer by a two-step validation procedure. Consequently, our experimental results showed that the proposed framework is quite useful approach to discover promising candidates for breast cancer treatment.
Collapse
|
37
|
Liu H, Guo M, Xue T, Guan J, Luo L, Zhuang Z. Screening lifespan-extending drugs in Caenorhabditis elegans via label propagation on drug-protein networks. BMC SYSTEMS BIOLOGY 2016; 10:131. [PMID: 28155715 PMCID: PMC5260106 DOI: 10.1186/s12918-016-0362-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background One of the most challenging tasks in the exploration of anti-aging is to discover drugs that can promote longevity and delay the incidence of age-associated diseases of human. Up to date, a number of drugs, including some antioxidants, metabolites and synthetic compounds, have been found to effectively delay the aging of nematodes and insects. Results We proposed a label propagation algorithm on drug-protein network to infer drugs that can extend the lifespan of C. elegans. We collected a set of drugs of which functions on lifespan extension of C. elegans have been reliably determined, and then built a large-scale drug-protein network by collecting a set of high-confidence drugprotein interactions. A label propagation algorithm was run on the drug-protein bipartite network to predict new drugs with lifespan-extending effect on C. elegans. We calibrated the performance of the proposed method by conducting performance comparison with two classical models, kNN and SVM. We also showed that the screened drugs significantly mediate in the aging-related pathways, and have higher chemical similarities to the effective drugs than ineffective drugs in promoting longevity of C. elegans. Moreover, we carried out wet-lab experiments to verify a screened drugs, 2- Bromo-4’-nitroacetophenone, and found that it can effectively extend the lifespan of C. elegans. These results showed that our method is effective in screening lifespanextending drugs in C. elegans. Conclusions In this paper, we proposed a semi-supervised algorithm to predict drugs with lifespan-extending effects on C. elegans. In silico empirical evaluations and in vivo experiments in C. elegans have demonstrated that our method can effectively narrow down the scope of candidate drugs needed to be verified by wet lab experiments. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0362-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Liu
- Changzhou University, Jiangsu, 213164, China.,Changzhou NO. 7 People's Hospital, Changzhou, Jiangsu, 213011, China
| | | | - Ting Xue
- Changzhou University, Jiangsu, 213164, China
| | - Jihong Guan
- Department of Computer Science and Technology, Tongji University, Shanghai, 201804, China
| | - Libo Luo
- Changzhou NO. 7 People's Hospital, Changzhou, Jiangsu, 213011, China. @fudan.edu.cn
| | - Ziheng Zhuang
- Changzhou University, Jiangsu, 213164, China. .,Changzhou NO. 7 People's Hospital, Changzhou, Jiangsu, 213011, China.
| |
Collapse
|
38
|
Liu H, Song Y, Guan J, Luo L, Zhuang Z. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks. BMC Bioinformatics 2016; 17:539. [PMID: 28155639 PMCID: PMC5259862 DOI: 10.1186/s12859-016-1336-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Since traditional drug research and development is often time-consuming and high-risk, there is an increasing interest in establishing new medical indications for approved drugs, referred to as drug repositioning, which provides a relatively low-cost and high-efficiency approach for drug discovery. With the explosive growth of large-scale biochemical and phenotypic data, drug repositioning holds great potential for precision medicine in the post-genomic era. It is urgent to develop rational and systematic approaches to predict new indications for approved drugs on a large scale. Results In this paper, we propose the two-pass random walks with restart on a heterogenous network, TP-NRWRH for short, to predict new indications for approved drugs. Rather than random walk on bipartite network, we integrated the drug-drug similarity network, disease-disease similarity network and known drug-disease association network into one heterogenous network, on which the two-pass random walks with restart is implemented. We have conducted performance evaluation on two datasets of drug-disease associations, and the results show that our method has higher performance than six existing methods. A case study on the Alzheimer’s disease showed that nine of top 10 predicted drugs have been approved or investigational for neurodegenerative diseases. The experimental results show that our method achieves state-of-the-art performance in predicting new indications for approved drugs. Conclusions We proposed a two-pass random walk with restart on the drug-disease heterogeneous network, referred to as TP-NRWRH, to predict new indications for approved drugs. Performance evaluation on two independent datasets showed that TP-NRWRH achieved higher performance than six existing methods on 10-fold cross validations. The case study on the Alzheimer’s disease showed that nine of top 10 predicted drugs have been approved or are investigational for neurodegenerative diseases. The results show that our method achieves state-of-the-art performance in predicting new indications for approved drugs.
Collapse
Affiliation(s)
- Hui Liu
- Changzhou NO. 7 People's Hospital, Changzhou, Jiangsu, 213011, China.,Changzhou University, Jiangsu, 213164, China
| | - Yinglong Song
- Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, 200433, China
| | - Jihong Guan
- Department of Computer Science and Technology, Tongji University, Shanghai, 201804, China
| | - Libo Luo
- Changzhou NO. 7 People's Hospital, Changzhou, Jiangsu, 213011, China.
| | - Ziheng Zhuang
- Changzhou NO. 7 People's Hospital, Changzhou, Jiangsu, 213011, China. .,Changzhou University, Jiangsu, 213164, China.
| |
Collapse
|
39
|
Vanhaelen Q, Mamoshina P, Aliper AM, Artemov A, Lezhnina K, Ozerov I, Labat I, Zhavoronkov A. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today 2016; 22:210-222. [PMID: 27693712 DOI: 10.1016/j.drudis.2016.09.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/26/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Here, we provide a comprehensive overview of the current status of in silico repurposing methods by establishing links between current technological trends, data availability and characteristics of the algorithms used in these methods. Using the case of the computational repurposing of fasudil as an alternative autophagy enhancer, we suggest a generic modular organization of a repurposing workflow. We also review 3D structure-based, similarity-based, inference-based and machine learning (ML)-based methods. We summarize the advantages and disadvantages of these methods to emphasize three current technical challenges. We finish by discussing current directions of research, including possibilities offered by new methods, such as deep learning.
Collapse
Affiliation(s)
- Quentin Vanhaelen
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA.
| | - Polina Mamoshina
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Alexander M Aliper
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Artem Artemov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ksenia Lezhnina
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ivan Ozerov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ivan Labat
- BioTime Inc., 1010 Atlantic Avenue, 102, Alameda, CA 94501, USA
| | - Alex Zhavoronkov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| |
Collapse
|
40
|
Vitali F, Cohen LD, Demartini A, Amato A, Eterno V, Zambelli A, Bellazzi R. A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer. PLoS One 2016; 11:e0162407. [PMID: 27632168 PMCID: PMC5025072 DOI: 10.1371/journal.pone.0162407] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023] Open
Abstract
The integration of data and knowledge from heterogeneous sources can be a key success factor in drug design, drug repurposing and multi-target therapies. In this context, biological networks provide a useful instrument to highlight the relationships and to model the phenomena underlying therapeutic action in cancer. In our work, we applied network-based modeling within a novel bioinformatics pipeline to identify promising multi-target drugs. Given a certain tumor type/subtype, we derive a disease-specific Protein-Protein Interaction (PPI) network by combining different data-bases and knowledge repositories. Next, the application of suitable graph-based algorithms allows selecting a set of potentially interesting combinations of drug targets. A list of drug candidates is then extracted by applying a recent data fusion approach based on matrix tri-factorization. Available knowledge about selected drugs mechanisms of action is finally exploited to identify the most promising candidates for planning in vitro studies. We applied this approach to the case of Triple Negative Breast Cancer (TNBC), a subtype of breast cancer whose biology is poorly understood and that lacks of specific molecular targets. Our “in-silico” findings have been confirmed by a number of in vitro experiments, whose results demonstrated the ability of the method to select candidates for drug repurposing.
Collapse
Affiliation(s)
- Francesca Vitali
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, Pavia, Italy
- * E-mail:
| | - Laurie D. Cohen
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, Pavia, Italy
| | - Andrea Demartini
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, Pavia, Italy
| | | | | | - Alberto Zambelli
- IRCCS-Fondazione S. Maugeri, Pavia, Italy
- Oncologia Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Riccardo Bellazzi
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, Pavia, Italy
- IRCCS-Fondazione S. Maugeri, Pavia, Italy
| |
Collapse
|
41
|
Luo H, Wang J, Li M, Luo J, Peng X, Wu FX, Pan Y. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 2016; 32:2664-71. [PMID: 27153662 DOI: 10.1093/bioinformatics/btw228] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Drug repositioning, which aims to identify new indications for existing drugs, offers a promising alternative to reduce the total time and cost of traditional drug development. Many computational strategies for drug repositioning have been proposed, which are based on similarities among drugs and diseases. Current studies typically use either only drug-related properties (e.g. chemical structures) or only disease-related properties (e.g. phenotypes) to calculate drug or disease similarity, respectively, while not taking into account the influence of known drug-disease association information on the similarity measures. RESULTS In this article, based on the assumption that similar drugs are normally associated with similar diseases and vice versa, we propose a novel computational method named MBiRW, which utilizes some comprehensive similarity measures and Bi-Random walk (BiRW) algorithm to identify potential novel indications for a given drug. By integrating drug or disease features information with known drug-disease associations, the comprehensive similarity measures are firstly developed to calculate similarity for drugs and diseases. Then drug similarity network and disease similarity network are constructed, and they are incorporated into a heterogeneous network with known drug-disease interactions. Based on the drug-disease heterogeneous network, BiRW algorithm is adopted to predict novel potential drug-disease associations. Computational experiment results from various datasets demonstrate that the proposed approach has reliable prediction performance and outperforms several recent computational drug repositioning approaches. Moreover, case studies of five selected drugs further confirm the superior performance of our method to discover potential indications for drugs practically. AVAILABILITY AND IMPLEMENTATION http://github.com//bioinfomaticsCSU/MBiRW CONTACT: jxwang@mail.csu.edu.cn SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Huimin Luo
- School of Information Science and Engineering, Central South University, ChangSha, 410083, China School of Computer and Information Engineering, Henan University, KaiFeng 475001, China
| | - Jianxin Wang
- School of Information Science and Engineering, Central South University, ChangSha, 410083, China
| | - Min Li
- School of Information Science and Engineering, Central South University, ChangSha, 410083, China
| | - Junwei Luo
- School of Information Science and Engineering, Central South University, ChangSha, 410083, China
| | - Xiaoqing Peng
- School of Information Science and Engineering, Central South University, ChangSha, 410083, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatchewan S7N 5A9, Canada
| | - Yi Pan
- Department of Computer Science, Georgia State University, Atlanta, GA 30302-3994, USA
| |
Collapse
|
42
|
Huang CH, Chang PMH, Hsu CW, Huang CYF, Ng KL. Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory. BMC Bioinformatics 2016; 17 Suppl 1:2. [PMID: 26817825 PMCID: PMC4895785 DOI: 10.1186/s12859-015-0845-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the leading causes of death globally, and research into NSCLC has been accumulating steadily over several years. Drug repositioning is the current trend in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development process of drugs, as well as reducing side effects. Results This work integrates two approaches - machine learning algorithms and topological parameter-based classification - to develop a novel pipeline of drug repositioning to analyze four lung cancer microarray datasets, enriched biological processes, potential therapeutic drugs and targeted genes for NSCLC treatments. A total of 7 (8) and 11 (12) promising drugs (targeted genes) were discovered for treating early- and late-stage NSCLC, respectively. The effectiveness of these drugs is supported by the literature, experimentally determined in-vitro IC50 and clinical trials. This work provides better drug prediction accuracy than competitive research according to IC50 measurements. Conclusions With the novel pipeline of drug repositioning, the discovery of enriched pathways and potential drugs related to NSCLC can provide insight into the key regulators of tumorigenesis and the treatment of NSCLC. Based on the verified effectiveness of the targeted drugs predicted by this pipeline, we suggest that our drug-finding pipeline is effective for repositioning drugs.
Collapse
Affiliation(s)
- Chien-Hung Huang
- Department of Computer Science and Information Engineering, National Formosa University, Hu-Wei, 63205, Taiwan.
| | - Peter Mu-Hsin Chang
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital; Faculty of Medicine, National Yang Ming University, Taipei, 112, Taiwan.
| | - Chia-Wei Hsu
- Department of Computer Science and Information Engineering, National Formosa University, Hu-Wei, 63205, Taiwan.
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|