1
|
Hermosaningtyas AA, Totoń E, Lisiak N, Kruszka D, Budzianowska A, Kikowska M. Evaluation of Cytotoxic Activity of Cell Biomass from Eryngium planum and Lychnis flos-cuculi on Melanoma Cancer Cell. Molecules 2024; 29:5158. [PMID: 39519799 PMCID: PMC11547748 DOI: 10.3390/molecules29215158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Melanoma is a malignant neoplasm of melanocytes in the skin, and its occurrence is increasing annually. Plant-based products contain active compounds with low toxicity and are accessible alternatives for melanoma cancer treatment. The biotechnology approach for obtaining plant-based products provides continuity and allows the high-yield production of phytochemically uniform biomass. The callus biomass of Eryngium planum L. and Lychnis flos-cuculi L. was induced on Murashige and Skoog (MS) medium supplemented with growth regulators. A combination of 3.0 mg/L of 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 0.3 mg/L of 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea-(thidiazuron) was used to obtain E. planum callus. Meanwhile, the callus of L. flos-cuculi was cultivated on MS medium with 2.0 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D). Methanolic extracts (EpME and LFcME), including 40% MeOH fractions (Ep40MF and LFc40MF) and 80% MeOH fractions (Ep80MF and LFc80MF), of E. planum and L. flos-cuculi cell biomass were prepared. Their cytotoxicity activity was assessed in human fibroblast cells (MRC-5) and human melanoma cells (MeWo) by direct cell counting and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Qualitative analyses using thin-layer chromatography and UPLC-HRMS/MS chromatograms showed the presence of phenolic acids and saponins within the extracts and fractions of both cell biomasses. LFc80MF and Ep80MF showed the strongest toxicity against the MeWo cell line, with IC50 values of 47 ± 0.5 and 52 ± 4 μg/mL after 72 h of treatment. EpME and LFcME had IC50 values of 103 ± 4 and 147 ± 4 µg/mL, respectively. On the other hand, Ep40MF and LFc40MF were less toxic against the MeWo cell line compared to the extracts and 80% MeOH fractions, with IC50 values of 145 ± 10 and 172 ± 7 µg/mL. This study suggests that the obtained extracts and fractions of E. planum and L. flos-cuculi cell biomass potentially possess significant cytotoxic activity against MeWo cells, which work in a time and dose-dependent manner. Although the extracts and 80% MeOH fractions were more potent, the 40% MeOH was shown to be more selective against the MeWo than the control MRC-5 cells.
Collapse
Affiliation(s)
- Anastasia Aliesa Hermosaningtyas
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St., 60-812 Poznan, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland; (E.T.); (N.L.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland; (E.T.); (N.L.)
| | - Dariusz Kruszka
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska St., 60-479 Poznan, Poland;
| | - Anna Budzianowska
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Małgorzata Kikowska
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
2
|
Palá-Paúl J, Pérez-Alonso MJ, Soria AC, Brophy JJ. Chemical Composition of the Essential Oils of the Iberian Peninsula Endemic Species Eryngium dilatatum Lam. Molecules 2024; 29:562. [PMID: 38338307 PMCID: PMC10856671 DOI: 10.3390/molecules29030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Eryngium dilatatum Lam. is a thorny Iberian Peninsula endemic species belonging to the Apiaceae family that has not been previously analysed from a chemical point of view. Following our studies on this genus, we characterized the chemical composition of the essential oils from the different parts (inflorescences, stems + leaves, and roots) of this species; these parts were gathered in Cádiz (Spain). The specimens were collected in July during the flowering period and air-dried before the oil extraction by hydro-distillation. The essential oils were analysed by gas chromatography and gas chromatography coupled with mass spectrometry. The different parts of the plant yielded low amounts of pale yellow oil, with the roots being the fraction that provided the lowest amount of oil. The chemical characterization of the essential oils showed qualitative and quantitative differences between the fractions examined, but all of them showed the same principal compound, germacrene D (9.1-46.5%). Similarly, all the fractions shared most of their representative constituents, with their percentage compositions being different from one sample to the other: α-cadinol (3.8%), bicyclogermacrene (3.5%), octanal (3.1%), and spathulenol (2.5%) were found in the inflorescences; octanal (8.1%), α-cadinol (3.7%), δ-cadinene (3.6%), (E)-caryophyllene (2.6%), bicyclogermacrene (2.5%), and spathulenol (2.4%) were found in the stems and leaves; and spathulenol (4.6%), α-cadinol (4.4%), khusinol (3.2%), α-muurolol (3.1%), and δ-cadinene (2.6%) were found in the roots. As far as we know, this is the first report about the chemical composition of this endemic species of the Iberian Peninsula. It contributes to the knowledge of this species and to the genus to which it belongs. This species could be considered as a natural source of germacrene D, which is a sesquiterpene hydrocarbon with active properties.
Collapse
Affiliation(s)
- Jesús Palá-Paúl
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María José Pérez-Alonso
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana C. Soria
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Joseph J. Brophy
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
3
|
Zamanian MY, Parra RMR, Soltani A, Kujawska M, Mustafa YF, Raheem G, Al-Awsi L, Lafta HA, Taheri N, Heidari M, Golmohammadi M, Bazmandegan G. Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson's disease: an overview and update on new developments. Mol Biol Rep 2023; 50:5455-5464. [PMID: 37155008 DOI: 10.1007/s11033-023-08409-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) as a prevalent neurodegenerative condition impairs motor function and is caused by the progressive deterioration of nigrostriatal dopaminergic (DAergic) neurons. The current therapy solutions for PD are ineffective because they could not inhibit the disease's progression and they even have adverse effects. Natural polyphenols, a group of phytochemicals, have been found to offer various health benefits, including neuroprotection against PD. Among these, resveratrol (RES) has neuroprotective properties owing to its capacity to protect mitochondria and act as an antioxidant. An increase in the formation of reactive oxygen species (ROS) leads to oxidative stress (OS), which is responsible for cellular damage resulting in lipid peroxidation, oxidative protein alteration, and DNA damage. In PD models, it's been discovered that RES pretreatment can diminish oxidative stress by boosting endogenous antioxidant status and directly scavenging ROS. Several studies have examined the involvement of RES in the modulation of the transcriptional factor Nrf2 in PD models because this protein recognizes oxidants and controls the antioxidant defense. In this review, we have examined the molecular mechanisms underlying the RES activity and reviewed its effects in both in vitro and in vivo models of PD. The gathered evidence herein showed that RES treatment provides neuroprotection against PD by reducing OS and upregulation of Nrf2. Moreover, in the present study, scientific proof of the neuroprotective properties of RES against PD and the mechanism supporting clinical development consideration has been described.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | | | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, Poznan, 60-631, Poland
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ghaidaa Raheem
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Lateef Al-Awsi
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Holya A Lafta
- Department of Pharmacy, Al-Nisour University College, Baghdad, Iraq
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Bazmandegan
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
4
|
Al-Kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Ahmed EA, Batiha GES. SARS-COV-2 infection and Parkinson's disease: Possible links and perspectives. J Neurosci Res 2023; 101:952-975. [PMID: 36717481 DOI: 10.1002/jnr.25171] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The hallmarks are the presence of Lewy bodies composed mainly of aggregated α-synuclein and immune activation and inflammation in the brain. The neurotropism of SARS-CoV-2 with induction of cytokine storm and neuroinflammation can contribute to the development of PD. Interestingly, overexpression of α-synuclein in PD patients may limit SARS-CoV-2 neuroinvasion and degeneration of dopaminergic neurons; however, on the other hand, this virus can speed up the α-synuclein aggregation. The review aims to discuss the potential link between COVID-19 and the risk of PD, highlighting the need for further studies to authenticate the potential association. We have also overviewed the influence of SARS-CoV-2 infection on the PD course and management. In this context, we presented the prospects for controlling the COVID-19 pandemic and related PD cases that, beyond global vaccination and novel anti-SARS-CoV-2 agents, may include the development of graphene-based nanoscale platforms offering antiviral and anti-amyloid strategies against PD.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, Baghdad, Iraq
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida, USA
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
5
|
Şener G, Karakadıoglu G, Ozbeyli D, Ede S, Yanardag R, Sacan O, Aykac A. Petroselinum crispum extract ameliorates scopolamine-induced cognitive dysfunction: role on apoptosis, inflammation and oxidative stress. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Xuan Z, Gu X, Yan S, Xie Y, Zhou Y, Zhang H, Jin H, Hu S, Mak MSH, Zhou D, Keung Tsim KW, Carlier PR, Han Y, Cui W. Dimeric Tacrine(10)-hupyridone as a Multitarget-Directed Ligand To Treat Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2462-2477. [PMID: 34156230 DOI: 10.1021/acschemneuro.1c00182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with multiple pathological features. Therefore, a multitarget-directed ligands (MTDLs) strategy has been developed to treat AD. We have previously designed and synthesized dimeric tacrine(10)-hupyridone (A10E), a novel tacrine derivative with acetylcholinesterase (AChE) inhibition and brain-derived neurotrophic factor (BDNF) activation activity, by linking tacrine and a fragment of huperzine A. However, it was largely unknown whether A10E could act on other AD targets and produce cognitive-enhancing ability in AD animal models. In this study, A10E could prevent cognitive impairments in APP/PS1 transgenic mice and β-amyloid (Aβ) oligomers-treated mice, with higher potency than tacrine and huperzine A. Moreover, A10E could effectively inhibit Aβ production and deposition, alleviate neuroinflammation, enhance BDNF expression, and elevate cholinergic neurotransmission in vivo. At nanomolar concentrations, A10E could inhibit Aβ oligomers-induced neurotoxicity via the activation of tyrosine kinase receptor B (TrkB)/Akt pathway in SH-SY5Y cells. Furthermore, Aβ oligomerization and fibrillization could be directly disrupted by A10E. Importantly, A10E at high concentrations did not produce obvious hepatotoxicity. Our results indicated that A10E could produce anti-AD neuroprotective effects via the inhibition of Aβ aggregation, the activation of the BDNF/TrkB pathway, the alleviation of neuroinflammation, and the decrease of AChE activity. As MTDLs could produce additional benefits, such as overcoming the deficits of drug combination and enhancing the compliance of AD patients, our results also suggested that A10E might be developed as a promising MTDL lead for the treatment of AD.
Collapse
Affiliation(s)
- Zhenquan Xuan
- Ningbo Kangning Hospital, Ningbo 315211, China
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xinmei Gu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yanfei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yiying Zhou
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hui Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Haibo Jin
- Affiliated Hospital of Medical School Ningbo University and Ningbo City Third Hospital, Ningbo 315211, China
| | - Shengquan Hu
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Marvin S. H. Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | | | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Paul R. Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Wei Cui
- Ningbo Kangning Hospital, Ningbo 315211, China
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Development of edible bioactive coating based on mucilages for increasing the shelf life of strawberries. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00638-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Phytochemical Screening and Acanthamoebic Activity of Shoots from in Vitro Cultures and in Vivo Plants of Eryngium alpinum L.-The Endangered and Protected Species. Molecules 2020; 25:molecules25061416. [PMID: 32244952 PMCID: PMC7144402 DOI: 10.3390/molecules25061416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Genetically uniform shoots of Eryngium alpinum L. cultured in vitro were subjected to the qualitative analysis applying the UPLC-HESI-HRMS technique. In vitro cultures give the opportunity to perform the phytochemical studies on the protected species without harvesting the plant material from the natural environment. The phytochemical screening of the crude methanolic extracts of shoots, both from in vitro cultures and in vivo plants, revealed the presence of phenolic acids, coumarins, flavonoids, triterpenoid saponins, amino acids, or dipeptides. Active compounds detected are known to have medicinal importance, and for this reason, the present study represents a preliminary investigation of the extracts against pathogenic and opportunistic amoeba. Among the extracts tested, the extract of shoots from in vitro cultures exhibited remarkable amoebicidal action against trophozoites. On the second day of treatment, the extract at the concentrations of 5 mg/mL, 2.5 mg/mL, and 0.5 mg/mL showed the highest antiamoebicidal effect: the inhibition of trophozoites reached 81.14%, 66.38%, and 54.99%, respectively. To our best knowledge, the present report is the first to show the phytochemical screening and to discuss the antiamoebic activity of Eryngium alpinum L. shoots, both from in vitro cultures and in vivo plants.
Collapse
|
9
|
Aykac A, Ozbeyli D, Uncu M, Ertaş B, Kılınc O, Şen A, Orun O, Sener G. Evaluation of the protective effect of Myrtus communis in scopolamine-induced Alzheimer model through cholinergic receptors. Gene 2018; 689:194-201. [PMID: 30553998 DOI: 10.1016/j.gene.2018.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/15/2018] [Accepted: 12/07/2018] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder causing common health problem with increasing age. Evidences show that the key symptoms of AD are mainly caused by cholinergic system dysfunction which has a role in cognitive disorders. Cholinergic pathways especially muscarinic receptors like M1 subtype also have a major role in learning, memory, cognitive functions and emotional state. There is no available permanent treatment currently to cure AD or to change its progression. This study was designed to investigate the factors that play important role in pathogenesis of AD and to compare the effects of Galantamine treatment with effects of Myrtus communis treatment. The expression level of M1, ACh, BDNF; AChE activity, GSH level, MDA and MPO activity and AChE gene expression were investigated in scopolamine-induced rat model. Results showed that, administration of MC significantly improves the SCOP-induced reduction of latency and object recognition time; increasing BDNF, M1 and ACh receptor expression levels in the different brain regions. Additionally, MC showed an increased in AChE by enhancing GSH activity and reducing MDA level and MPO activity. In conclusion MC considered as a possible novel therapeutic approach that can be a valuable alternative way in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Asli Aykac
- Department of Biophysics, Faculty of Medicine, Near East University, Nicosia, Cyprus.
| | - Dilek Ozbeyli
- Vocational School of Health Services, Marmara University, Istanbul, Turkey
| | - Murat Uncu
- Department of Clinical Biochemistry, Dr. Burhan Nalbantoglu State Hospital, Nicosia, Cyprus
| | - Büşra Ertaş
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Olca Kılınc
- Department of Biophysics, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Ali Şen
- Department of Pharmacognosy, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Oya Orun
- Department of Biophysics, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Goksel Sener
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
10
|
Ozarowski M, Mikolajczak PL, Piasecka A, Kujawski R, Bartkowiak-Wieczorek J, Bogacz A, Szulc M, Kaminska E, Kujawska M, Gryszczynska A, Kachlicki P, Buchwald W, Klejewski A, Seremak-Mrozikiewicz A. Effect of Salvia miltiorrhiza root extract on brain acetylcholinesterase and butyrylcholinesterase activities, their mRNA levels and memory evaluation in rats. Physiol Behav 2017; 173:223-230. [PMID: 28219697 DOI: 10.1016/j.physbeh.2017.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 01/05/2023]
Abstract
Salvia miltiorrhiza (Lamiaceae), one of the most important and popular plants of traditional medicine of Asia, is used for the prevention and treatment of cardiovascular diseases and in central nervous system disturbances. The main aim of this study was to assess the influence of subchronic (28-fold) administration of Salvia miltiorrhiza root extract (SE, 200mg/kg, p.o.) on behavioural activity and memory of rats and to evaluate the activities of cholinesterases (AChE and BuChE) and gene expression levels of AChE and BuChE as well as of beta-secretase (BACE1) in the hippocampus and frontal cortex in vivo. Huperzine A (HU, 0.5mg/kg b.w., p.o.) served as a positive control substance, whereas scopolamine (0.5mg/kg, i.p.) injection was used as a well-known model of memory impairment. The results showed that subchronic administration of SE led to an improvement of long-term memory of rats. Strong inhibition of AChE and BuChE mRNA transcription in the frontal cortex of rats treated with SE or HU was observed. The BACE1 transcript level was significantly decreased. AChE activity was statistically significantly inhibited in the frontal cortex and the hippocampus by SE (47% and 55%, respectively). Similar effects were observed in the case of HU. In summary, activity of SE provides evidence that the plant can be a source of drugs used in the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Marcin Ozarowski
- Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, Sw. Marii Magdaleny 14, Poznan, Poland; Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland.
| | - Przemyslaw L Mikolajczak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland.
| | - Anna Piasecka
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; Department of Pathogen Genetics and Plant Resistance, Metabolomics Team, Institute of Plant Genetics of the Polish Academy of Science, Strzeszynska 34, 60-479 Poznan, Poland.
| | - Radoslaw Kujawski
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland.
| | - Joanna Bartkowiak-Wieczorek
- Department of Clinical Pharmacy and Biopharmacy, University of Medical Sciences,Sw. Marii Magdaleny 14, 61-861 Poznan, Poland.
| | - Anna Bogacz
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland.
| | - Michal Szulc
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland.
| | - Ewa Kaminska
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland.
| | - Malgorzata Kujawska
- Department of Toxicology,University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland.
| | - Agnieszka Gryszczynska
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Piotr Kachlicki
- Department of Pathogen Genetics and Plant Resistance, Metabolomics Team, Institute of Plant Genetics of the Polish Academy of Science, Strzeszynska 34, 60-479 Poznan, Poland.
| | - Waldemar Buchwald
- Department of Botany, Breeding and Agricultural Technology for Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland.
| | - Andrzej Klejewski
- Department of Nursing, University of Medical Sciences, Smoluchowskiego 11, Poznan, Poland; Department of Obstetrics and Women's Diseases, University of Medical Sciences, Smoluchowskiego 11, Poznan, Poland.
| | - Agnieszka Seremak-Mrozikiewicz
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; Division of Perinatology and Women's Diseases, University of Medical Sciences, Polna 33, 60-535 Poznan, Poland; Laboratory of Molecular Biology, University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| |
Collapse
|
11
|
Bednarczyk-Cwynar B, Wachowiak N, Szulc M, Kamińska E, Bogacz A, Bartkowiak-Wieczorek J, Zaprutko L, Mikolajczak PL. Strong and Long-Lasting Antinociceptive and Anti-inflammatory Conjugate of Naturally Occurring Oleanolic Acid and Aspirin. Front Pharmacol 2016; 7:202. [PMID: 27462270 PMCID: PMC4940421 DOI: 10.3389/fphar.2016.00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
The conjugate 8 was obtained as a result of condensation of 3-hydroxyiminooleanolic acid morfolide (7) and aspirin in dioxane. Analgesic effect of OAO-ASA (8) for the range of doses 0.3–300.0 mg/kg (p.o.) was performed in mice using a hot-plate test. Anti-inflammatory activity was assessed on carrageenan-induced paw edema in rats for the same range of doses. The conjugate OAO-ASA (8) did not significantly change locomotor activity of mice, therefore sedative properties of the compound should be excluded. The compound 8 proved a simple, proportional, dose-dependent analgesic action and expressed strong anti-inflammatory activity showing a reversed U-shaped, dose-dependent relation with its maximum at 30.0 mg/kg. After its combined administration with morphine (MF, 5.0 mg/kg, s.c.) the lowering of antinociceptive activity was found; however, the interaction with naloxone (NL, 3.0 mg/kg, s.c.) did not affect the antinociceptive effect of OAO-ASA (8), therefore its opioid mechanism of action should be rather excluded. After combined administration with acetylsalicylic acid (ASA, 300.0 mg/kg, p.o.) in hot-plate test, the examined compound 8 enhanced the antinociceptive activity in significant way. It also shows that rather the whole molecule is responsible for the antinociceptive and anti-inflammatory effect of the tested compound 8, however, it cannot be excluded that the summarizing effect is produced by ASA released from the compound 8 and the rest of triterpene derivative. The occurrence of tolerance for triterpenic derivative 8 was not observed, since the analgesic and anti-inflammatory effects after chronic administration of the conjugate OAO-ASA (8) was on the same level as after its single treatment. It seemed that the anti-inflammatory mechanism of action of OAO-ASA (8) is not simple, even its chronic administration lowered both blood concentration of IL-6 and mRNA IL-6 expression. However, the effects of the conjugate OAO-ASA (8) on TNF-α level and mRNA expression were opposite. Moreover, compound 8 did not change unequivocally mRNA TLR1, and TLR3 expression. Concluding, the obtained results regarding the antinociceptive and anti-inflammatory activity of new conjugate of oleanolic acid oxime and acetylsalicylic acid (OAO-ASA 8) are very interesting, but for explanation of its mechanism of action, more detailed studies are necessary.
Collapse
Affiliation(s)
- Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences Poznan, Poland
| | - Natalia Wachowiak
- Department of Pharmacology, Poznan University of Medical Sciences Poznan, Poland
| | - Michal Szulc
- Department of Pharmacology, Poznan University of Medical Sciences Poznan, Poland
| | - Ewa Kamińska
- Department of Pharmacology, Poznan University of Medical Sciences Poznan, Poland
| | - Anna Bogacz
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences Poznan, Poland
| | - Joanna Bartkowiak-Wieczorek
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences Poznan, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences Poznan, Poland
| | - Przemyslaw L Mikolajczak
- Department of Pharmacology, Poznan University of Medical SciencesPoznan, Poland; Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal PlantsPlewiska, Poland
| |
Collapse
|
12
|
Qiong W, Yong-Liang Z, Ying-Hui L, Shan-Guang C, Jiang-Hui G, Yi-Xi C, Ning J, Xin-Min L. The memory enhancement effect of Kai Xin San on cognitive deficit induced by simulated weightlessness in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:9-16. [PMID: 27103112 DOI: 10.1016/j.jep.2016.03.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It is vital for astronauts to develop effective countermeasures to prevent their decline of cognitive performance in microgravity to make space-flight missions successful. The traditional Chinese herbal formula Kai Xin San (KXS) has been used to treat amnesia for thousands years. It is a traditional complex prescription comprising of ginseng (Panax ginseng C. A. Meyer), hoelen (Poria cocos (Schw.) Wolf), polygala (Polygala tenaifolia Willd), and acorus (Acorus tatarinowii Schott). Previous study showed KXS could improve CMS-induced memory impairment in rats. MATERIAL AND METHODS In this paper, a unique environmental factor-microgravity (weightlessness) was simulated as hindlimb suspension (HLS) by tail in rats for two weeks as the HLS animal model. The KXS at the doses of 0.3 or 0.6g/kg p.o. daily was administrated to HLS rats for two weeks at the same time of HLS, the memory behavior tests were investigated with Morris water maze (MWM) and Shuttle Box (SB) test. The levels of ROS, 8-OHdG and 3-nitrotyrosine (3-NT) in the serum, and AChE and ChAT activity in the brain of rats were determined by ELISA or biochemical analysis. RESULTS After HLS for two weeks, the escape latency and the swimming distance were significantly increased in the MWM test in rats in the HLS group, compared with control group. The percent of swimming distance in target quadrant and the number of target crossing was significantly decreased in rats in the HLS group compared with the control group. Performance in the SB test showed, the numbers and the distance of active avoidance was decreased from day 4 to day 7, the time spent in electric area was increased in rats in the HLS group compared with the control group. Administration of KXS 0.3 or 0.6g/kg to the HLS rats for two weeks significantly reduced the escape latency and the swimming distance, increased the percentage of swimming distance in target quadrant and the number of target crossings (P<0.01, compared with the HLS group) in the MWM test. Similar treatment with KXS increased the numbers and the distance of active avoidance (P<0.01, compared with the HLS group) and reduced the time spent in electric area after training 3 days in the SB test (P<0.01, compared with the HLS group). The HLS induced the increase of the ROS, 8-OHdG and 3-NT in the serum of rats, but has little influence on the AChE, ChAT activity in the brain. Only the AChE activity in the cortex and the ChAT activity in the hippocampus had some changes in rats in the HLS model group. After administration of KXS 0.6g/kg for two weeks, the abnormal levels of ROS, 8-OHdG, 3-NT were found reversed in the serum of rats (P<0.05, compared with HLS model group). And KXS 0.3g/kg was found reversed the increased AChE activity in the cortex. CONCLUSIONS Experimental results from this study show that KXS may improve memory deficiency induced by HLS, its mechanisms are major related to antioxidant activities, rather than the central cholinergic system.
Collapse
Affiliation(s)
- Wang Qiong
- Sichuan Medical University, Luzhou 646000, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhang Yong-Liang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Li Ying-Hui
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Chen Shan-Guang
- National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Gao Jiang-Hui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Chen Yi-Xi
- Sichuan Medical University, Luzhou 646000, China
| | - Jiang Ning
- Sichuan Medical University, Luzhou 646000, China
| | - Liu Xin-Min
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; National Laboratory of Human Factors Engineering / the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| |
Collapse
|
13
|
Erdem SA, Nabavi SF, Orhan IE, Daglia M, Izadi M, Nabavi SM. Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. Daru 2015; 23:53. [PMID: 26667677 PMCID: PMC4678568 DOI: 10.1186/s40199-015-0136-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 12/14/2022] Open
Abstract
Medicinal and edible plants play a crucial role in the prevention and/or mitigation of different human diseases from ancient times to today. In folk medicine, there are different plants used for infectious disease treatment. During the past two decades, much attention has been paid to plants as novel alternative therapeutic agents for the treatment of infectious diseases due to their bioactive natural compounds such as phenol, flavonoids, tannins, etc. The genus Eryngium (Apiaceae) contains more than 250 flowering plant species, which are commonly used as edible and medicinal plants in different countries. In fact, some genus Eryngium species are used as spices and are cultivated throughout the world and others species are used for the treatment of hypertension, gastrointestinal problems, asthma, burns, fevers, diarrhea, malaria, etc. Phytochemical analysis has shown that genus Eryngium species are a rich source of flavonoids, tannins, saponins, and triterpenoids. Moreover, eryngial, one the most important and major compounds of genus Eryngium plant essential oil, possesses a significant antibacterial effect. Thus, the objective of this review is to critically review the scientific literature on the phytochemical composition and antibacterial effects of the genus Eryngium plants. In addition, we provide some information about traditional uses, cultivation, as well as phytochemistry.
Collapse
Affiliation(s)
- Sinem Aslan Erdem
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran.
| |
Collapse
|