1
|
Ogunniran AO, Dauda OS, Rotimi D, Jegede FC, Falodun DJ, Adekunle PO. Nutritional, phytochemical, and antimicrobial properties of Senna siamea leaves. Toxicol Rep 2024; 13:101793. [PMID: 39559564 PMCID: PMC11570923 DOI: 10.1016/j.toxrep.2024.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024] Open
Abstract
Senna siamea is a medicinal plant with numerous benefits in different parts of the world. This study evaluated the leaf's nutritional composition, mineral composition, phytochemical constituents, antioxidant properties and antimicrobial properties, and high-performance liquid chromatography (HPLC) using standard methods. The proximate analysis revealed the presence of moisture content (12.14 ± 0.01), ash content (1.05 ± 0.07), crude fat (4.21 ± 0.10), crude protein at (9.78 ± 0.11), crude fiber (2.70 ± 0.32), and carbohydrate content (70.12 ± 0.37). Mineral analysis showed an abundance of potassium (125.18 ± 0.04), followed by magnesium (32.62 ± 0.01), and phosphorus (18.30 ± 0.02). The phytochemical screening revealed the presence of saponins, flavonoids, phenolics, steroids, and alkaloids with 13.25 ± 0.03 mg GAE/g total phenolics and 3.99 ± 0.01 mg QE/g flavonoid contents, respectively. IC50 values of the scavenging abilities of DPPH, NO radicals, and TBARS were 206.01 µg/mL, 347.66 µg/mL, and 394.92 µg/mL, respectively while the IC50 value for FRAP was 145.01 µg/mL. Salmonella typhimurium 14028 and Pseudomonas aeruginosa 27853 were most susceptible. At 100 mg/mL, their average zone of inhibition was 18 and 16 mm for ethyl acetate and 15 and 12 mm for methanol, respectively. The minimum inhibitory concentration (MIC) for both isolates was 25 and 50 mg/mL while the leaves were rich in chlorogenic acid, p-coumaric acid, friedelin, quercetin, emodin, cassiarin A, and kaempferol. These results reveal the leaf as a good source of nutrients and also confirm its phenolic antioxidant activity and antimicrobial properties.
Collapse
Affiliation(s)
- Adefunke Oluwaseun Ogunniran
- Department of Science Laboratory Technology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti PMB 5363, Nigeria
| | | | - Damilare Rotimi
- Department of Biochemistry, Landmark University, Omu-Aran, Kwara, Nigeria
| | - Foluso Christopher Jegede
- Department of Science Laboratory Technology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti PMB 5363, Nigeria
| | - Deborah Joy Falodun
- Department of Science Laboratory Technology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti PMB 5363, Nigeria
| | - Precious Oluwaseun Adekunle
- Department of Science Laboratory Technology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti PMB 5363, Nigeria
| |
Collapse
|
2
|
Schorr RR, Ballesteros Garcia MJ, Petermann D, Moreira RR, Sales Maia BHLN, Marques FA, May-De Mio LL. Eugenol, Isoeugenol, Thymol, Carvacrol, and Ester Derivatives as an Ecofriendly Option to Control Glomerella Leaf Spot and Bitter Rot on Apple. PLANTS (BASEL, SWITZERLAND) 2024; 13:3196. [PMID: 39599405 PMCID: PMC11598785 DOI: 10.3390/plants13223196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Glomerella leaf spot (GLS) and bitter rot (BR) are severe diseases of apple. Colletotrichum nymphaeae and Colletotrichum chrysophillum are the main species in Brazil. To control GLS and BR in Brazilian apple orchards, mancozeb and thiophanate-methyl fungicides are still used despite reported Colletotrichum resistance to these active ingredients. In addition, mancozeb has been banned from apple-importing countries and it has been a great challenge for apple producers to find products for its replacement that are eco-friendly. So, this study aimed to search for alternatives to control the diseases. We assessed the antifungal activity of eugenol, isoeugenol, thymol, carvacrol, and some of their ester derivatives. The best products to inhibit the pathogen in in vitro assays were thymol, thymol butyrate, and carvacrol, completely inhibiting mycelial growth at 125 mg L-1 and conidial germination at 100 mg L-1. In detached apple fruit, eugenol, eugenyl acetate, carvacryl acetate, and thymol butyrate, significantly reduced BR symptoms caused by Colletotrichum species with some variation between experiments and species, decreasing the risk of BR with the time compared to control. In detached leaves, all tested compounds significantly reduced the risk of development of GLS symptoms with disease control varying from 30 to 100%. The compounds tested are promising alternatives to replace fungicides to control bitter rot and Glomerella leaf spot on apple culture and should be tested for field conditions.
Collapse
Affiliation(s)
- Renan R. Schorr
- Laboratório de Ecologia Química e Síntese de Produtos Naturais (LECOSIN), Departamento de Química, Universidade Federal do Paraná (UFPR), Av. Cel. Francisco H. dos Santos, 100 Jardim das Américas, Curitiba 81531-980, Brazil; (R.R.S.); (M.J.B.G.); (B.H.L.N.S.M.); (F.A.M.)
| | - Meira J. Ballesteros Garcia
- Laboratório de Ecologia Química e Síntese de Produtos Naturais (LECOSIN), Departamento de Química, Universidade Federal do Paraná (UFPR), Av. Cel. Francisco H. dos Santos, 100 Jardim das Américas, Curitiba 81531-980, Brazil; (R.R.S.); (M.J.B.G.); (B.H.L.N.S.M.); (F.A.M.)
| | - Debora Petermann
- Laboratório de Epidemiologia para Manejo Integrado de Doenças de Plantas (LEMID), Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Curitiba 80035-050, Brazil; (D.P.); (R.R.M.)
| | - Rafaele R. Moreira
- Laboratório de Epidemiologia para Manejo Integrado de Doenças de Plantas (LEMID), Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Curitiba 80035-050, Brazil; (D.P.); (R.R.M.)
| | - Beatriz H. L. N. Sales Maia
- Laboratório de Ecologia Química e Síntese de Produtos Naturais (LECOSIN), Departamento de Química, Universidade Federal do Paraná (UFPR), Av. Cel. Francisco H. dos Santos, 100 Jardim das Américas, Curitiba 81531-980, Brazil; (R.R.S.); (M.J.B.G.); (B.H.L.N.S.M.); (F.A.M.)
| | - Francisco A. Marques
- Laboratório de Ecologia Química e Síntese de Produtos Naturais (LECOSIN), Departamento de Química, Universidade Federal do Paraná (UFPR), Av. Cel. Francisco H. dos Santos, 100 Jardim das Américas, Curitiba 81531-980, Brazil; (R.R.S.); (M.J.B.G.); (B.H.L.N.S.M.); (F.A.M.)
| | - Louise L. May-De Mio
- Laboratório de Epidemiologia para Manejo Integrado de Doenças de Plantas (LEMID), Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Curitiba 80035-050, Brazil; (D.P.); (R.R.M.)
| |
Collapse
|
3
|
Srinath, Patil O, Devar S, Hanagodimath SM. Estimation of Electric Dipole Moment by Solvatochromism, Computational Method, and Study of the Effect of Solvents by Preferential Solvation of 6 - Methoxy-4-(4-Nitro-Phenoxy Methyl)-Chromen-2-One (6mnpm). J Fluoresc 2024:10.1007/s10895-024-03955-8. [PMID: 39365421 DOI: 10.1007/s10895-024-03955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
At room temperature, the absorption and fluorescence properties of coumarin 6-Methoxy-4-(4-nitro-phenoxy methyl)-chromen-2-one (6MNPM) are investigated in pure organic solvents and a combination of acetonitrile (ACN) and tetrahydrofuran (THF). The pure solvents' influence on spectral characteristics is examined by applying theories such as Kamlet and Catalan's multiple linear regression techniques, Reichardt's microscopic solvent polarity parameter, and the Lippert-Mataga polarity function. The significant role of solute-solvent interactions in pure solvents, particularly dielectric interaction and hydrogen bonding. However, hydrogen bonding interactions dominate the contribution of dielectric interactions. The electric dipole moments of both the ground as well as excited states had been calculated using the Solvatochromic method. The value of the excited state electric dipole moment and the redshifts of the emission spectra show that the emitting singlet state has an intramolecular charge transfer (ICT) character. From Catalan's linear regression, we found that di-polarity has a much smaller influence than polarizability. By solvation study, we conclude that Tetrahydrofuran solvent is preferred over Acetonitrile.
Collapse
Affiliation(s)
- Srinath
- Department of PG Studies and Research in Physics, Gulbarga University, Kalaburagi, 585 106, Karnataka, India.
| | - Omnath Patil
- Department of PG Studies and Research in Physics, Gulbarga University, Kalaburagi, 585 106, Karnataka, India
| | - Sulochana Devar
- Department of PG Studies and Research in Physics, Gulbarga University, Kalaburagi, 585 106, Karnataka, India
| | - S M Hanagodimath
- Department of PG Studies and Research in Physics, Gulbarga University, Kalaburagi, 585 106, Karnataka, India
| |
Collapse
|
4
|
Noui Mehidi I, Ait Ouazzou A, Tachoua W, Hosni K. Investigating the Antimicrobial Properties of Essential Oil Constituents and Their Mode of Action. Molecules 2024; 29:4119. [PMID: 39274967 PMCID: PMC11397014 DOI: 10.3390/molecules29174119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 09/16/2024] Open
Abstract
Essential oils (EOs) and plant extracts, rich in beneficial chemical compounds, have diverse applications in medicine, food, cosmetics, and agriculture. This study investigates the antibacterial activity of nine essential oil constituents (EOCs) against Escherichia coli, focusing on the effects of treatment pH and biosynthetic requirements. The impact of EOCs on bacterial inactivation in E. coli strains was examined using both nonselective and selective culture media. Computer-assisted drug design (CADD) methods were employed to identify critical binding sites and predict the main binding modes of ligands to proteins. The EOCs, including citral, α-terpinyl acetate, α-terpineol, and linalool, demonstrated significant bacterial inactivation, particularly under acidic conditions. This study revealed that EOCs have an effect on the presence of sublethal damage to both the cytoplasmic membrane and the outer membrane in Gram-negative bacteria. Adding penicillin G to the repair medium prevents the recovery of sublethal injuries in E. coli treated with α-terpinyl acetate, α-terpineol, linalool, and citral, indicating that peptidoglycan synthesis is essential for recovering from these injuries. However, penicillin G did not hinder the recovery process of most sublethally injured cells treated with the other assessed EOCs. Molecular docking studies revealed the favorable binding interactions of α-terpinyl acetate, α-terpineol, linalool, and citral with the β-lactamase enzyme Toho-1, indicating their potential as effective antibacterial agents. The findings suggest that EOCs could serve as viable alternatives to synthetic preservatives, offering new strategies for combating antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ilham Noui Mehidi
- Natural Resources Valorization and Bioengineering Laboratory, University Benyoucef Benkhedda Algiers 1, Alger Centre 16000, Algeria
| | - Abdenour Ait Ouazzou
- Natural Resources Valorization and Bioengineering Laboratory, University Benyoucef Benkhedda Algiers 1, Alger Centre 16000, Algeria
- Department of Nature and Life Sciences, Faculty of Sciences, Algiers 1 University-Benyoucef Benkhedda, 2 Rue Didouche Mourad, Alger Centre 16000, Algeria
| | - Wafa Tachoua
- Department of Nature and Life Sciences, Faculty of Sciences, Algiers 1 University-Benyoucef Benkhedda, 2 Rue Didouche Mourad, Alger Centre 16000, Algeria
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-Chimique, Sidi Thabet 2020, Tunisia
| |
Collapse
|
5
|
Gill A, McMahon T, Ferrato C, Chui L. Survival of O157 and non-O157 shiga toxin-producing Escherichia coli in Korean style kimchi. Food Microbiol 2024; 121:104526. [PMID: 38637088 DOI: 10.1016/j.fm.2024.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
Korean style kimchi contaminated with Shiga toxin-producing Escherichia coli (STEC) O157:H7 was the cause of an outbreak in Canada from December 2021 to January 2022. To determine if this STEC O157:H7 has greater potential for survival in kimchi than other STEC, the outbreak strain and six other STEC strains (O26:H11, O91:H21, O103:H2, O121:H19, and two O157:H7) were inoculated individually at 6 to 6.5 log CFU/g into commercially sourced kimchi and incubation at 4 °C. At intervals of seven days inoculated and control kimchi was plated onto MacConkey agar to enumerate lactose utilising bacteria. The colony counts were interpreted as enumerating the inoculated STEC, since no colonies were observed on MacConkey agar plated with uninoculated kimchi. Over eight weeks of incubation the pH was stable at 4.10 to 4.05 and the STEC strains declined by 0.7-1.0 log, with a median reduction of 0.9 log. The linear rate of reduction of kimchi outbreak STEC O157:H7 was -0.4 log per 30 days (Slope Uncertainty 0.05), which was not significantly different from the other O157 and nonO157 STEC strains (P = 0.091). These results indicate that the outbreak was not due to the presence of strain better adapted to survival in kimchi than other STEC, and that STEC can persist in refrigerated Korean style kimchi with a minimal decline over the shelf-life of the product.
Collapse
Affiliation(s)
- Alexander Gill
- Health Canada/Santé Canada, Bureau of Microbial Hazards, Ottawa, Ontario, Canada.
| | - Tanis McMahon
- Health Canada/Santé Canada, Bureau of Microbial Hazards, Ottawa, Ontario, Canada
| | - Christina Ferrato
- Alberta Precision Laboratories: Provincial Laboratory for Public Health, Edmonton, AB, Canada
| | - Linda Chui
- Alberta Precision Laboratories: Provincial Laboratory for Public Health, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Kadirvel G, Marak TB, Aochen C, Jamir L. Effect of Chinese chives and perilla seed incorporation on physicochemical, functional properties and sensory attributes of pork sausage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1304-1314. [PMID: 38910917 PMCID: PMC11189876 DOI: 10.1007/s13197-023-05899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/08/2023] [Accepted: 11/18/2023] [Indexed: 06/25/2024]
Abstract
Meat and meat products, apart from being highly nutritious, comes with several health risk factors as they are also high in saturated fatty acids which can trigger various health issues. This can be modified functionally by incorporating various herbs, spices, fruits and vegetables that has functional properties benefiting the human health. Attempt has been made in this study to investigate the benefits ofincorporation of two such functional ingredients, viz., Chinese chives and perilla seeds to pork sausage. The resultant products were analyzed forproximate composition, biochemical properties and sensory attributes. Storage study was conducted and evaluated based on five parameters, viz., pH, WHC, Cooking loss, Cooking yield and Shrinkage percentage. Addition of functional ingredients has improved the sensory attributes and enhanced the antioxidant capacity and physiochemical properties of the product. Improved texture of pork sausage with functional herbs has led to decreased cooking loss and shrinkage percentage and increased cooking yield and WHC. Commercialization of these functional meat products will create a better market opportunity and benefit the consumers in the world. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05899-6.
Collapse
Affiliation(s)
| | - Thameridus B. Marak
- ICAR Research Complex for NEH Region Umiam, Shillong, Meghalaya 793 103 India
| | - Chubasenla Aochen
- ICAR Research Complex for NEH Region Umiam, Shillong, Meghalaya 793 103 India
| | - Lemnaro Jamir
- ICAR Research Complex for NEH Region Umiam, Shillong, Meghalaya 793 103 India
| |
Collapse
|
7
|
Kharel K, Kraśniewska K, Gniewosz M, Prinyawiwatkul W, Fontenot K, Adhikari A. Antimicrobial screening of pecan shell extract and efficacy of pecan shell extract-pullulan coating against Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus on blueberries. Heliyon 2024; 10:e29610. [PMID: 38665559 PMCID: PMC11044034 DOI: 10.1016/j.heliyon.2024.e29610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Pecan shell is considered an agricultural waste; however, it contains various bioactive compounds with potential inhibitory effect against microorganisms. This study evaluated the antimicrobial efficacy of pecan shell extract (PSE) in vitro using disc-diffusion method and in vivo on blueberries as an antimicrobial coating using pullulan. For in vitro study, 5 and 10 % of aqueous (A-PSE) or ethanol pecan shell extract (E-PSE) incorporated into pullulan film were tested against different bacterial and fungal strains. Pullulan film disc was used as control. The diameter of growth inhibition (mm) around discs was measured. For in vivo study, PSE-P (5 % w/v aqueous pecan shell extract+5 % w/v pullulan), P (5 % w/v pullulan) or control (water) were spray coated on blueberries inoculated (∼5 log CFU/g) with Listeria monocytogenes, Salmonella enterica or Staphylococcus aureus; and stored at 4 °C, 50 ± 10 % RH for 15 days. The effect of antimicrobial coating against pathogens and its impact on quality during storage were determined. A-PSE and E-PSE films were more effective against Gram-positive bacteria and showed no antifungal effect at tested concentrations when evaluated in vitro. Immediately after coating on blueberries, PSE-P significantly reduced Listeria monocytogenes by 2 log CFU/g and lowered survival until day 5 than control or P. Native aerobic microbial population was reduced (P < 0.05) by 0.7 log CFU/g immediately after coating. PSE-P coating or storage time had no significant effect (P > 0.05) on the survival of S. enterica, S. aureus and native fungal population. PSE-P maintained the firmness of blueberry with no significant effect on its color, TSS, and pH during 15 days storage. PSE-P significantly reduced (P < 0.05) the spoilage rate by 21 % than control (28.5 %) and P (37 %); and minimized (P < 0.05) weight loss during storage. Pecan shell extracts show promise as a potential antimicrobial compound whose application on various food products or packaging material could be further explored.
Collapse
Affiliation(s)
- Karuna Kharel
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Karolina Kraśniewska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Małgorzata Gniewosz
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Kathryn Fontenot
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| |
Collapse
|
8
|
Rendueles E, Mauriz E, Sanz-Gómez J, González-Paramás AM, Adanero-Jorge F, García-Fernández C. Exploring Propolis as a Sustainable Bio-Preservative Agent to Control Foodborne Pathogens in Vacuum-Packed Cooked Ham. Microorganisms 2024; 12:914. [PMID: 38792741 PMCID: PMC11124515 DOI: 10.3390/microorganisms12050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The search for natural food additives makes propolis an exciting alternative due to its known antimicrobial activity. This work aims to investigate propolis' behavior as a nitrite substitute ingredient in cooked ham (a ready-to-eat product) when confronted with pathogenic microorganisms of food interest. The microbial evolution of Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, and Clostridium sporogenes inoculated at known doses was examined in different batches of cooked ham. The design of a challenge test according to their shelf life (45 days), pH values, and water activity allowed the determination of the mesophilic aerobic flora, psychotropic, and acid lactic bacteria viability. The test was completed with an organoleptic analysis of the samples, considering possible alterations in color and texture. The cooked ham formulation containing propolis instead of nitrites limited the potential growth (δ < 0.5 log10) of all the inoculated microorganisms until day 45, except for L. monocytogenes, which in turn exhibited a bacteriostatic effect between day 7 and 30 of the storage time. The sensory analysis revealed the consumer's acceptance of cooked ham batches including propolis as a natural additive. These findings suggest the functionality of propolis as a promising alternative to artificial preservatives for ensuring food safety and reducing the proliferation risk of foodborne pathogens in ready-to-eat products.
Collapse
Affiliation(s)
- Eugenia Rendueles
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain; (J.S.-G.); (F.A.-J.); (C.G.-F.)
- ALINS—Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Elba Mauriz
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain; (J.S.-G.); (F.A.-J.); (C.G.-F.)
- ALINS—Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Javier Sanz-Gómez
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain; (J.S.-G.); (F.A.-J.); (C.G.-F.)
- ALINS—Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | | | - Félix Adanero-Jorge
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain; (J.S.-G.); (F.A.-J.); (C.G.-F.)
| | - Camino García-Fernández
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain; (J.S.-G.); (F.A.-J.); (C.G.-F.)
- ALINS—Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| |
Collapse
|
9
|
Chen F, Shi L, Hu J, Wang J, Li Z, Xiu Y, He B, Lin S, Liang D. Revelation of enzyme/transporter-mediated metabolic regulatory model for high-quality terpene accumulation in developing fruits of Lindera glauca. Int J Biol Macromol 2024; 264:130763. [PMID: 38467223 DOI: 10.1016/j.ijbiomac.2024.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.
Collapse
Affiliation(s)
- Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jinhe Hu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Zhi Li
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| |
Collapse
|
10
|
Abdou AM, Awad DAB. Lysozyme Peptides as a Novel Nutra-Preservative to Control Some Food Poisoning and Food Spoilage Microorganisms. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10226-2. [PMID: 38376818 DOI: 10.1007/s12602-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
Foodborne illnesses and microbial food contamination are crucial concerns and still issues of great worldwide concern. Additionally, the serious health hazards associated with the use of chemical preservatives in food technology. Lysozyme (Lz) is an active protein against Gram-positive bacterial cell wall through its muramidase lytic activity; however, several authors could identify some antimicrobial peptides derived from Lz that have an exaggerated and broad-spectrum antibacterial activity. Therefore, a lysozyme peptides preparation (LzP) is developed to broaden the Lz spectrum. In this work, we investigated the potential efficacy of LzP as a novel Nutra-preservative (food origin) agent against some pathogenic and spoilage bacteria. Our results showed that LzP demonstrated only 11% of the lysozyme lytic activity. However, LzP exhibited strong antibacterial activity against Escherichia coli, Salmonella enteritidis, and Pseudomonas species, while Salmonella typhi and Aeromonas hydrophila exhibited slight resistance. Despite the lowest LzP concentration (0.1%) employed, it performs stronger antibacterial activity than weak organic acids (0.3%). Interestingly, the synergistic multi-component formulation (LzP, glycine, and citric acid) could inhibit 6 log10 cfu/ml of E. coli survival growth. The effect of heat treatment on LzP showed a decrease in its antibacterial activity at 5 and 67% by boiling at 100 °C/30 min, and autoclaving at 121 °C/15 min; respectively. On the other hand, LzP acquired stable antibacterial activity at different pH values (4-7). In conclusion, LzP would be an innovative, natural, and food origin preservative to control the growth of food poisoning and spoilage bacteria in food instead chemical one.
Collapse
Affiliation(s)
- Adham M Abdou
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Kaliobeya, Egypt.
| | - Dina A B Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Kaliobeya, Egypt
| |
Collapse
|
11
|
Ludwig-Müller J. Production of Plant Proteins and Peptides with Pharmacological Potential. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:51-81. [PMID: 38286902 DOI: 10.1007/10_2023_246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The use of plant proteins or peptides in biotechnology is based on their identification as possessing bioactive potential in plants. This is usually the case for antimicrobial, fungicidal, or insecticidal components of the plant's defense system. They function in addition to a large number of specialized metabolites. Such proteins can be classified according to their sequence, length, and structure, and this has been tried to describe for a few examples here. Even though such proteins or peptides can be induced during plant-pathogen interaction, they are still present in rather small amounts that make the system not suitable for the production in large-scale systems. Therefore, a suitable type of host needs to be identified, such as cell cultures or adult plants. Bioinformatic predictions can also be used to add to the number of bioactive sequences. Some problems that can occur in production by the plant system itself will be discussed, such as choice of promoter for gene expression, posttranslational protein modifications, protein stability, secretion of proteins, or induction by elicitors. Finally, the plant needs to be set up by biotechnological or molecular methods for production, and the product needs to be enriched or purified. In some cases of small peptides, a direct chemical synthesis might be feasible. Altogether, the process needs to be considered marketable.
Collapse
|
12
|
Hassanpour SH, Doroudi A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:354-376. [PMID: 37663389 PMCID: PMC10474916 DOI: 10.22038/ajp.2023.21774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 09/05/2023]
Abstract
Objective This review describes the antioxidant activity of flavonoids as a subgroup of polyphenols and a partial or entire substitute for synthetic antioxidants. Materials and Methods All relevant databases were searched using the terms "Phytochemical", "Polyphenol", and "Flavonoid". Results The oxidative reaction caused by free radicals is a reason for food spoilage, which causes unpleasant odor, loss of taste, and damaged tissues. The common antioxidants employed in foods include butylated hydroxyanisole, butylated hydroxytoluene, propyl gallate, and tert-butyl hydroquinone. Despite their high efficiency and potency, synthetic antioxidants have adverse effects on the human body, such as causing mutation and carcinogenicity. A whole and a group of them known as polyphenols possess high antioxidant activity. These compounds are potential antioxidants due to their capabilities such as scavenging free radicals, donating hydrogen atoms, and chelating metal cations. The antioxidant mechanism of action of flavonoids is transferring hydrogen atom to free radicals. Accordingly, the more the flavonoid structure makes the hydrogen transfer faster and easier, the more the flavonoid's antioxidant power will be. Therefore, the antioxidant activity of the flavonoids with hydroxyl groups in their structure is the highest among different flavonoids. Conclusion In addition to health promotion and some disease prevention effects, various in vitro investigations have indicated that flavonoids possess high antioxidant activity that is comparable with synthetic antioxidants. However, to be commercially available, these compounds should be extracted from a low-price source with a high-performance method.
Collapse
Affiliation(s)
- Seyyed Hossein Hassanpour
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Doroudi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Ilyas Z, Ali Redha A, Wu YS, Ozeer FZ, Aluko RE. Nutritional and Health Benefits of the Brown Seaweed Himanthalia elongata. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:233-242. [PMID: 36947371 PMCID: PMC10363077 DOI: 10.1007/s11130-023-01056-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Himanthalia elongata is a brown seaweed containing several nutritional compounds and bioactive substances including antioxidants, dietary fibre, vitamins, fatty acids, amino acids, and macro- and trace- elements. A variety of bioactive compounds including phlorotannins, flavonoids, dietary fucoxanthin, hydroxybenzoic acid, hydroxycinnamic acid, polyphenols and carotenoids are also present in this seaweed. Multiple comparative studies were carried out between different seaweed species, wherein H. elongata was determined to exhibit high antioxidant capacity, total phenolic content, fucose content and potassium concentrations compared to other species. H. elongata extracts have also shown promising anti-hyperglycaemic and neuroprotective activities. H. elongata is being studied for its potential industrial food applications. In new meat product formulations, it lowered sodium content, improved phytochemical and fiber content in beef patties, improved properties of meat gel/emulsion systems, firmer and tougher with improved water and fat binding properties. This narrative review provides a comprehensive overview of the nutritional composition, bioactive properties, and food applications of H. elongata.
Collapse
Affiliation(s)
- Zahra Ilyas
- Department of Laboratory, Bahrain Specialist Hospital, P. O. Box: 10588, Juffair, Kingdom of Bahrain
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX1 2LU, UK.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Fathima Zahraa Ozeer
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Richardson Centre for Food Technology and Research (RCFTR), 196, Innovation Drive, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
14
|
Williams GA, Oso AO, Mafimidiwo AN, Olayemi WA, Akinjute OF, Isaque AA, Williams OK, Ogunrombi JO. Nutrient digestibility, gut microflora, carcass yield, and meat microbiology of broilers fed diets supplemented Ethiopian pepper (Xylopia aethiopica), cloves (Syzygium aromaticum), and their composite. Trop Anim Health Prod 2023; 55:167. [PMID: 37084089 DOI: 10.1007/s11250-023-03582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
The effect of dietary supplementation of Ethiopian pepper (Xylopia aethiopica) and clove (Syzygium aromaticum) and their composite on nutrient digestibility, gut microflora, carcass yield, and meat microbiology were investigated in a 52-day boiler feeding trial. Three hundred and sixty unsexed Ross broilers were used for the study. Four experimental diets were formulated for the starter (0-28 days) and finisher (29-56 days) phases: diet 1 was the control without phytogenic supplementation, diet 2 (supplemented with 1% Ethiopian pepper (EP)), diet 3 (supplemented with 1% clove (CL)), and diet 4 (supplemented with 1% mix of equal quantity (0.5% each) of Ethiopian pepper and clove (EPCL)). Each treatment was replicated 6 times with 15 birds per replicate. Nutrient digestibility was determined on days 28 and 56, gut microflora was determined for the small intestine and caecum on day 56, carcass yield, organ weights, and meat microbiology were also determined on day 56. Data obtained were subjected to a one-way analysis of variance using SAS 2000 and significant means were separated using Tukey's test in the same software. At day 28, broilers fed the diet supplemented EPCL had the highest (P < 0.05) dry matter digestibility (DMD, 86.81%) crude protein digestibility (CPD, 71.28%), and ash digestibility (64.24%). Broilers fed EP supplemented diet had reduced (P < 0.05) DMD (70.50%). Increased (P < 0.05) ether extract digestibility (EED) was observed for broilers fed the diet supplemented CL (75.27%) and EPCL (76.43%). Ash digestibility (AD) was lowest (P < 0.05) for broilers fed control diet (50.30%). At day 56, broilers fed the diet supplemented CL and those fed the EPCL supplemented diet had higher (P < 0.05) CPD (78.07%, 79.35%) and EED (70.20%, 71.42%) than other treatments. Ash digestibility was higher (P < 0.05) for broilers fed diet supplemented EPCL (74.60%) than other treatments. Intestinal clostridium count reduced (P < 0.05) and lactobacillus count increased (P < 0.05) in the intestine and caecum of broilers fed the diet supplemented CL and those fed EPCL supplemented diet. Intestinal coliform and salmonella count reduced (P < 0.05) for broilers fed the diet supplemented EP and those fed the EPCL supplemented diet. Dietary supplementation of EPCL resulted in the highest (P < 0.05) body weight (BW, 2551.38 g), dressing percentage (DP, 81.68%), and percentage of breast muscle (20.01%). Supplementation of EP, CL, and EPCL in the diet of broilers resulted in higher (P < 0.05) spleen weight while dietary supplementation of EP and EPCL resulted in higher (P < 0.05) thymus weight. Clostridium count was reduced (P < 0.05) in the meat of broilers fed the diet supplemented CL and EPCL and the lowest (P < 0.05) salmonella count was observed in the meat of broilers fed the diet supplemented with EPCL. In conclusion, the current study reveals that dietary supplementation with EP and CL composite improves nutrient digestibility, gut microflora, and dressing percentage with reduced meat microbial load of broilers.
Collapse
Affiliation(s)
| | - Abimbola Oladele Oso
- Department of Animal Nutrition, College of Animal Science and Livestock Production, Federal University of Agriculture, PMB 2240 Ogun State, Abeokuta, Nigeria
| | | | - Wasiu Ajani Olayemi
- Department of Agricultural Technology, Yaba College of Technology, Lagos, Nigeria
| | - Obafemi Foluso Akinjute
- Department of Animal Physiology, College of Animal Science and Livestock Production, Federal University of Agriculture, PMB 2240 Ogun State, Abeokuta, Nigeria
| | - Adebayo Adewunmi Isaque
- Department of Animal Nutrition, College of Animal Science and Livestock Production, Federal University of Agriculture, PMB 2240 Ogun State, Abeokuta, Nigeria
| | - Oluwaseyi Kudirat Williams
- Department of Animal Nutrition, College of Animal Science and Livestock Production, Federal University of Agriculture, PMB 2240 Ogun State, Abeokuta, Nigeria
| | - Joshua Olumide Ogunrombi
- Department of Animal Nutrition, College of Animal Science and Livestock Production, Federal University of Agriculture, PMB 2240 Ogun State, Abeokuta, Nigeria
| |
Collapse
|
15
|
Duskaev G, Kurilkina M, Zavyalov O. Growth-stimulating and antioxidant effects of vanillic acid on healthy broiler chickens. Vet World 2023; 16:518-525. [PMID: 37041822 PMCID: PMC10082733 DOI: 10.14202/vetworld.2023.518-525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Phytobiotics are a safe alternative to feed antibiotics in industrial poultry farming that increases productivity by stimulating various digestive enzymes to reduce the number of pathogenic microorganisms in the intestines and improve antioxidant status and immune response. This study aimed to evaluate the effect of vanillic acid in its pure form and in combination with gamma lactone on weight growth and the physiological parameters of broiler chickens. Materials and Methods The studies were performed on 120 Arbor Acres broiler chickens (7 days old) that were randomly divided into four groups with five replicates (cages) and six birds per replicate. The control group was fed the basal diet (BD) only. Group I was fed the BD + gamma lactone (average dose 0.07 mL/animal/day). Group II was fed the BD + vanillic acid (average dose 0.07 mL/animal/day). Group III was fed the BD + gamma lactone + vanillic acid in a 1:1 ratio (average dose 0.07 mL/body/day). Live weight of broiler chickens for all group was assessed at the end of each period (age of 7, 14, 21, 28, 35, 42 days). At the end of the experiment (on day 42), 10 broilers with an average live weight were selected for blood sampling from the axillary vein. Results The results showed a growth-promoting effect of vanillic acid when fed with a diet free of synthetic antioxidants. Groups I and II had increased live weights throughout the entire experiment and a significant increase at the end of the experiment (8.2%-8.5%; p ≤ 0.05) compared to the control group. Toxic effects were not found in the biochemical blood serum analyses of Groups II and III. The metabolic processes in the experimental groups were intensified, especially in the enzyme associated with amino acid metabolism (gamma-glutamyl transferase) in Groups I and III (p ≤ 0.05). Vanillic acid, whether fed alone or in combination with gamma lactone, exhibited high antioxidant activities, protected cells from oxidative damage by inducing total antioxidant, catalase, and superoxide dismutase activities (p ≤ 0.05), and reduced the level of malondialdehyde (p ≤ 0.05) measured. No significant changes in the morphological blood parameters were found. Conclusion The use of vanillic acid alone and in combination with gamma lactone increases the digestive enzyme activities in blood plasma, increases body weight, and has a positive effect on lipid metabolism and the antioxidant status of broiler chickens. These findings indicate the significant potential use of vanillic acid and gamma lactone in poultry due to their antioxidant properties.
Collapse
Affiliation(s)
- Galimzhan Duskaev
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Marina Kurilkina
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- Corresponding author: Marina Kurilkina, e-mail: Co-authors: GD: , OZ:
| | - Oleg Zavyalov
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
16
|
Microbial Load of Fresh Blueberries Harvested by Different Methods. Foods 2023; 12:foods12051047. [PMID: 36900562 PMCID: PMC10000651 DOI: 10.3390/foods12051047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
Currently, more and more growers are transitioning to the use of over-the-row machine harvesters for harvesting fresh market blueberries. This study assessed the microbial load of fresh blueberries harvested by different methods. Samples (n = 336) of 'Draper' and 'Liberty' northern highbush blueberries, which were harvested using a conventional over-the-row machine harvester, a modified machine harvester prototype, ungloved but sanitized hands, and hands wearing sterile gloves were collected from a blueberry farm near Lynden, WA, in the Pacific Northwest at 9 am, 12 noon, and 3 pm on four different harvest days during the 2019 harvest season. Eight replicates of each sample were collected at each sampling point and evaluated for the populations of total aerobes (TA), total yeasts and molds (YM), and total coliforms (TC), as well as for the incidence of fecal coliforms and enterococci. The harvest method was a significant factor (p < 0.05) influencing the TA and TC counts, the harvest time was a significant factor influencing the YM counts, while the blueberry cultivar was an insignificant (p > 0.05) factor for all three indicator microorganisms. These results suggest that effective harvester cleaning methods should be developed to prevent fresh blueberry contamination by microorganisms. This research will likely benefit blueberry and other fresh fruit producers.
Collapse
|
17
|
Fernandes S, Borges A, Gomes IB, Sousa SF, Simões M. Curcumin and 10-undecenoic acid as natural quorum sensing inhibitors of LuxS/AI-2 of Bacillus subtilis and LasI/LasR of Pseudomonas aeruginosa. Food Res Int 2023; 165:112519. [PMID: 36869520 DOI: 10.1016/j.foodres.2023.112519] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The quorum sensing (QS) system is related to cell-to-cell communication as a function of population density, which regulates several physiological functions including biofilm formation and virulence gene expression. QS inhibitors have emerged as a promising strategy to tackle virulence and biofilm development. Among a wide variety of phytochemicals, many of them have been described as QS inhibitors. Driven by their promising clues, this study aimed to identify active phytochemicals against LuxS/autoinducer-2 (AI-2) (as the universal QS system) from Bacillus subtilis and LasI/LasR (as a specific QS system) of Pseudomonas aeruginosa, through in silico analysis followed by in vitro validation. The optimized virtual screening protocols were applied to screen a phytochemical database containing 3479 drug-like compounds. The most promising phytochemicals were curcumin, pioglitazone hydrochloride, and 10-undecenoic acid. In vitro analysis corroborated the QS inhibitory activity of curcumin and 10-undecenoic acid, however, pioglitazone hydrochloride showed no relevant effect. Inhibitory effects on LuxS/AI-2 QS system triggered reduction of 33-77% by curcumin (at 1.25-5 µg/mL) and 36-64% by 10-undecenoic acid (at 12.5-50 µg/mL). Inhibition of LasI/LasR QS system was 21% by curcumin (at 200 µg/mL) and 10-54% by 10-undecenoic acid (at 15.625-250 µg/mL). In conclusion, in silico analysis allowed the identification of curcumin and, for the first time, 10-undecenoic acid (showing low cost, high availability, and low toxicity) as alternatives to counteract bacterial pathogenicity and virulence, avoiding the imposition of selective pressure usually related to classic industrial disinfection and antibiotics therapy.
Collapse
Affiliation(s)
- Susana Fernandes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
18
|
Non-Targeted Metabolomic Profiling Identifies Metabolites with Potential Antimicrobial Activity from an Anaerobic Bacterium Closely Related to Terrisporobacter Species. Metabolites 2023; 13:metabo13020252. [PMID: 36837871 PMCID: PMC9962286 DOI: 10.3390/metabo13020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
This work focused on the metabolomic profiling of the conditioned medium (FS03CM) produced by an anaerobic bacterium closely related to Terrisporobacter spp. to identify potential antimicrobial metabolites. The metabolome of the conditioned medium was profiled by two-channel Chemical Isotope Labelling (CIL) LC-MS. The detected metabolites were identified or matched by conducting a library search using different confidence levels. Forty-eight significantly changed metabolites were identified with high confidence after the growth of isolate FS03 in cooked meat glucose starch (CMGS) medium. Some of the secondary metabolites identified with known antimicrobial activities were 4-hydroxyphenyllactate, 3-hydroxyphenylacetic acid, acetic acid, isobutyric acid, valeric acid, and tryptamine. Our findings revealed the presence of different secondary metabolites with previously reported antimicrobial activities and suggested the capability of producing antimicrobial metabolites by the anaerobic bacterium FS03.
Collapse
|
19
|
Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens 2023; 12:pathogens12020270. [PMID: 36839543 PMCID: PMC9967150 DOI: 10.3390/pathogens12020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.
Collapse
|
20
|
Ani NI, Okolo KO, Offiah RO. Evaluation of antibacterial, antioxidant, and anti-inflammatory properties of GC/MS characterized methanol leaf extract of Terminalia superba (Combretaceae, Engl. & Diels). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-022-00455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Terminalia superba is a well-known medicinal plant used in folk medicine for the management of various diseases and swelling. Validation of its efficacy in standardized scientific models is lacking. This gap needs to be filled as a way of enhancing modern drug discovery. The aim is to evaluate the antibacterial, antioxidant, and anti-inflammatory properties of T. superba in known and established models. Also, to establish and possibly correlate the established activity with the phytochemicals identified using GC/MS and qualitative methods.
Results
The result showed a dose-dependent percentage inhibition of DPPH, HO•, and Fe3+ reducing activity. The antibacterial activity showed dose-dependent significant (p < 0.05) inhibition against all the organisms used. The anti-inflammatory activity of METS was confirmed in the carrageenan model with significant (p < 0.05) inhibition of paw volume when compared to control while significantly decreasing (p < 0.05) weight of xylene-induced ear. For instance, after 6 h, there was a reduction of 42%, 33%, and 22% for diclofenac, 200 mg, and 100 mg, respectively, as against 4% in control. The significant (p < 0.05) increase in MDA was attenuated by the treatment with METS dose dependently. Phytochemical assay and GC/MS characterization showed that alkaloids, saponins, phenols, quinone, tannins, coumarins, proteins, flavonoids, and amino acids were dominant with fatty acids accounting for 53%. Others are esters (23%), organic compounds (12%), alkanes (9%), and carboxylic acids (3%).
Conclusions
T. superba possesses antioxidant, antibacterial, and anti-inflammatory properties which are believed to arise from the secondary metabolites observed in the GC–MS characterization.
Graphical Abstract
Collapse
|
21
|
Singh R, Ahmed S, Luxmi S, Rai G, Gupta AP, Bhanwaria R, Gandhi SG. An assessment of the physicochemical characteristics and essential oil composition of Mentha longifolia (L.) Huds. exposed to different salt stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165687. [PMID: 37143871 PMCID: PMC10151762 DOI: 10.3389/fpls.2023.1165687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Salt stress adversely influences growth, development, and productivity in plants, resulting in a limitation on agriculture production worldwide. Therefore, this study aimed to investigate the effect of four different salts, i.e., NaCl, KCl, MgSO4, and CaCl2, applied at various concentrations of 0, 12.5, 25, 50, and 100 mM on the physico-chemical properties and essential oil composition of M. longifolia. After 45 days of transplantation, the plants were irrigated at different salinities at 4-day intervals for 60 days. The resulting data revealed a significant reduction in plant height, number of branches, biomass, chlorophyll content, and relative water content with rising concentrations of NaCl, KCl, and CaCl2. However, MgSO4 poses fewer toxic effects than other salts. Proline concentration, electrolyte leakage, and DPPH inhibition (%) increase with increasing salt concentrations. At lower-level salt conditions, we had a higher essential oil yield, and GC-MS analysis reported 36 compounds in which (-)-carvone and D-limonene covered the most area by 22%-50% and 45%-74%, respectively. The expression analyzed by qRT-PCR of synthetic Limonene (LS) and Carvone (ISPD) synthetic genes has synergistic and antagonistic relationships in response to salt treatments. To conclude, it can be said that lower levels of salt enhanced the production of essential oil in M. longifolia, which may provide future benefits commercially and medicinally. In addition to this, salt stress also resulted in the emergence of novel compounds in essential oils, for which future strategies are needed to identify the importance of these compounds in M. longifolia.
Collapse
Affiliation(s)
- Ruby Singh
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sajad Ahmed
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Savita Luxmi
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Garima Rai
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajai Prakash Gupta
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Rajendra Bhanwaria
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- *Correspondence: Sumit G. Gandhi, ; ; Rajendra Bhanwaria,
| | - Sumit G. Gandhi
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- *Correspondence: Sumit G. Gandhi, ; ; Rajendra Bhanwaria,
| |
Collapse
|
22
|
Kopel J, McDonald J, Hamood A. An Assessment of the In Vitro Models and Clinical Trials Related to the Antimicrobial Activities of Phytochemicals. Antibiotics (Basel) 2022; 11:antibiotics11121838. [PMID: 36551494 PMCID: PMC9774156 DOI: 10.3390/antibiotics11121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
An increased number antibiotic-resistant bacteria have emerged with the rise in antibiotic use worldwide. As such, there has been a growing interest in investigating novel antibiotics against antibiotic-resistant bacteria. Due to the extensive history of using plants for medicinal purposes, scientists and medical professionals have turned to plants as potential alternatives to common antibiotic treatments. Unlike other antibiotics in use, plant-based antibiotics have the innate ability to eliminate a broad spectrum of microorganisms through phytochemical defenses, including compounds such as alkaloids, organosulfur compounds, phenols, coumarins, and terpenes. In recent years, these antimicrobial compounds have been refined through extraction methods and tested against antibiotic-resistant strains of Gram-negative and Gram-positive bacteria. The results of the experiments demonstrated that plant extracts successfully inhibited bacteria independently or in combination with other antimicrobial products. In this review, we examine the use of plant-based antibiotics for their utilization against antibiotic-resistant bacterial infections. In addition, we examine recent clinical trials utilizing phytochemicals for the treatment of several microbial infections.
Collapse
Affiliation(s)
- Jonathan Kopel
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Abdul Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence:
| |
Collapse
|
23
|
Premanath R, James JP, Karunasagar I, Vaňková E, Scholtz V. Tropical plant products as biopreservatives and their application in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Potentials of Natural Preservatives to Enhance Food Safety and Shelf Life: A Review. ScientificWorldJournal 2022; 2022:9901018. [PMID: 36193042 PMCID: PMC9525789 DOI: 10.1155/2022/9901018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Food-borne illnesses are a significant concern for consumers, the food industry, and food safety authorities. Natural preservatives are very crucial for enhancing food safety and shelf life. Therefore, this review aimed to assess the literature regarding the potential of natural preservatives to enhance food safety and extend the shelf life of food products. The review paper indicated that natural antimicrobial agents that inhibit bacterial and fungal growth for better quality and shelf life have been of considerable interest in recent years. Natural antimicrobials are mainly extracted and isolated as secondary metabolites of plants, animals, and microorganisms. Plants, especially herbs and spices, are given more attention as a source of natural antimicrobials. Microorganisms used in food fermentation also produce different antimicrobial metabolites, including organic acids, hydrogen peroxide, and diacetyl, in addition to bacteriocins. Products of animal origin, such as tissues and milk, contain different antimicrobial agents. Natural antimicrobials are primarily extracted and purified before utilization for food product development. The extraction condition and purification of natural preservatives may change their structure and affect their functionality. Selecting the best extraction method coupled with minimal processing such as direct mechanical extraction seems to preserve active ingredients. The activity of natural antimicrobials could also be influenced by the source, time of harvesting, and stage of development. The effectiveness of natural antimicrobial compounds in food applications is affected by different factors, including food composition, processing method, and storage conditions. Natural antimicrobials are safe because they can limit microbial resistance and meet consumers’ demands for healthier foods.
Collapse
|
25
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
26
|
Development, Synthesis and Characterization of Tannin/Bentonite-Derived Biochar for Water and Wastewater Treatment from Methylene Blue. WATER 2022. [DOI: 10.3390/w14152407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Novel hybrid carbon–mineral materials were synthesized by the mechanochemical activation of a mixture of tannin and bentonite in a ball mill with further pyrolysis in an argon atmosphere at 800 °C. The influence of the initial mixture ingredients content on the structural, textural, and thermal characteristics of biochars has been described using X-ray diffraction, Raman and Fourier-transform infrared spectroscopy, nitrogen adsorption–desorption, and scanning electron microscopy. The influence of bentonite clay on the carbon phase characteristics due to the formation of more heat-resistant and structured nanocarbon particles in biochars has been proven. The adsorption effectiveness of the materials towards methylene blue was studied. The adsorption data were analyzed applying Langmuir and Freundlich isotherms with high determination coefficients (R2) in the range of 0.983–0.999 (Langmuir) and 0.783–0.957 (Freundlich). The maximum adsorption amount of MB was 5.78 mg/g. The adsorption efficiency of biochars with respect to phenol was also examined. It was shown that the hybrid biochars show differentiated selectivity to the adsorption of organic compounds. It was concluded that the physicochemical properties of the surface of biochars play an important role in the adsorption effectiveness, making them a good candidate for water and wastewater remediation processes.
Collapse
|
27
|
Jiamjariyatam R, Samosorn S, Dolsophon K, Tantayotai P, Lorliam W, Krajangsang S. Development of Cascara Tea from Coffee Cherry Pulp. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Siritron Samosorn
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Sukhumaporn Krajangsang
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
28
|
Alderees F, Akter S, Mereddy R, Sultanbawa Y. Formulation, characterization, and stability of food grade oil‐in‐water nanoemulsions of essential oils of
Tasmannia lanceolata
,
Backhousia citriodora
and
Syzygium anisatum. J Food Saf 2022. [DOI: 10.1111/jfs.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fahad Alderees
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
| | - Saleha Akter
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
| | - Ram Mereddy
- Department of Agriculture and Fisheries Queensland Government, Health and Food Sciences Precinct Coopers Plains Qld Australia
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
| |
Collapse
|
29
|
Scanavacca J, Iecher Faria MG, Canonico Silva GC, Inumaro RS, Gonçalves JE, Kupski L, Gazim ZC. Chemical analysis, antifungal and antimycotoxigenic activity of tetradenia riparia essential oil and crude extract. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1296-1310. [PMID: 35652893 DOI: 10.1080/19440049.2022.2080870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tetradenia riparia is known for its richness in essential oil which has been widely investigated due to its biological activities such as antimicrobial, insecticidal, trypanocidal, antimalarial and antioxidant. The objective of this work was to chemically analyze and evaluate the antifungal and antimycotoxigenic activity of the essential oil and the crude extract of leaves, flower buds and stems of T. riparia from the northwest region of the state of Paraná. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus. To obtain the crude extract, the leaves, flower buds and stems were pulverized and subjected to a dynamic maceration process using 70% v v-1 ethyl alcohol. Chemical analysis of the essential oil was performed by GC/MS, and chemical identification of the crude extract by UHPLC-ESI/qTOF. Antifungal activity (Rhizopus oryzae, Aspergillus flavus, Aspergillus ochraceus, Penicillium verrucosum and Fusarium graminearum) was performed by broth microdilution and the antimycotoxigenic assay was performed with A. ochraceus and P. verrucosum. Ochratoxin A was extracted by partition with chloroform and quantified by HPLC-FL. The oil yield was 0.29% for leaves, 0.34% for stems and 0.38% for flower buds, and the major compounds were fenchone, β-caryophyllene, α-cadinol, 14-hydroxy-9- epi-caryophyllene, 9β,13β-epoxy-7-abietene, α-cadinol and 6-7-dehydroroyleanone. The main chemical compounds identified in the crude extract were terpenes, anthocyanins, flavonoids, tannins and phenolic acids. The minimum inhibitory concentration (MIC) of oils from leaves, flower buds and stems for the strains tested ranged from 0.87 mg mL-1 to 33.3 mg mL-1, while the minimum fungicidal concentration (MFC) ranged from 6.94 mg mL-1 and 33.3 mg mL-1. The MIC and MFC for ketoconazole, tebuconazole, sorbate and nitrite ranged from 0.05 to 33.3 mg mL-1. The oil and crude extract of leaves, stems and flower buds showed an inhibition of ochratoxin A production for P. verrucosum of approximately 100%.
Collapse
Affiliation(s)
- Juliana Scanavacca
- Laboratório de Química de Produtos Naturais, Programa de Pós graduação de Biotecnologia Aplicada a Agricultura, Universidade Paranaense, Umuarama Paraná, Brasil
| | - Maria Graciela Iecher Faria
- Laboratório de Microbiologia, Programa de Pós graduação de Biotecnologia Aplicada a Agricultura, Universidade Paranaense, Umuarama Paraná, Brasil
| | - Gabriela Catuzo Canonico Silva
- Laboratório de Química de Produtos Naturais, Programa de Pós graduação de Biotecnologia Aplicada a Agricultura, Universidade Paranaense, Umuarama Paraná, Brasil
| | - Rodrigo Sadao Inumaro
- Laboratório de Química, Programa de Pós Graduação em tecnologias Limpas-PPGTL, Universidade Cesumar-UNICESUMAR, Campus Maringá, Paraná Brasil
| | - José Eduardo Gonçalves
- Laboratório de Química, Programa de Pós Graduação em tecnologias Limpas-PPGTL, Universidade Cesumar-UNICESUMAR, Campus Maringá, Paraná Brasil.,Instituto de Ciência, Tecnologia e Inovação ICETI UniCesumar, Maringá, Brasil
| | - Larine Kupski
- Laboratório de Microbiologia, Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, Brasil
| | - Zilda Cristiani Gazim
- Laboratório de Química de Produtos Naturais, Programa de Pós graduação de Biotecnologia Aplicada a Agricultura, Universidade Paranaense, Umuarama Paraná, Brasil
| |
Collapse
|
30
|
Synergistic activity of Stryphnodendron adstringens and potassium sorbate against foodborne bacteria. Arch Microbiol 2022; 204:292. [PMID: 35503382 DOI: 10.1007/s00203-022-02904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/10/2021] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
Stryphnodendron adstringens is a medicinal plant that has a broad spectrum of action, including antibacterial activity. The aim of the present study was to evaluate the effect of S. adstringens alone and in combination with potassium sorbate (PS) against foodborne bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined and, for most of the bacteria tested, the crude extract (CE), aqueous fraction (AQF), and ethyl-acetate fraction (EAF) of S. adstringens had a MIC and MBC ranging from 500 to ≥ 1000 µg/mL. The AQF and EAF showed greater activity against S. aureus strains (MIC = 125 to 250 µg/mL; MBC = 500 to 1000 µg/m). Quantitative cell viability was determined and was observed reductions ranging from 3.0 to 5.8 log10 CFU/ml.The combination of S. adstringens and PS against seven S. aureus isolates was determined by the checkerboard method at neutral and acid pH. In a neutral medium, the AQF + PS combination presented synergistic or additive interactions against six S. aureus strains. The combination of EAF + PS resulted in additive interactions against four bacterial isolates. In an acidic medium, the AQF + PS combination was synergistic or additive against all S. aureus, while EAF + PS presented the same effect against six S. aureus strains S. adstringens showed important antibacterial effects against foodborne S. aureus strains. Moreover, the combination of S. adstringens fractions and PS improved the antibacterial activity compared to the compounds utilized individually. The combined use of these compounds may be an alternative to reduce bacterial food contamination and improve food safety.
Collapse
|
31
|
Abstract
This paper deals with the question about how early humans managed to feed themselves, and how they preserved and stored food for times of need. It attempts to show how humans interacted with their environments and demonstrate what lessons can be learnt from the about 3.4 million years of food processing and preservation. It includes a discussion about how hominins shifted from consumption of nuts and berries toward meat and learnt to control and use fire. Cooking with fire generated more food-related energy and enabled humans to have more mobility. The main trust of the paper is on historical food preservations, organized from the perspectives of key mechanical, thermal, biological and chemical processes. Emerging food processes are also highlighted. Furthermore, how humans historically dealt with food storage and packaging and how early humans interacted with their given environments are discussed. Learnings from the history of food preservation and culinary practices of our ancestors provide us with an understanding of their culture and how they adapted and lived with their given environments to ensure adequacy of food supply. Collaboration between food scientists and anthropologists is advocated as this adds another dimension to building resilient and sustainable food systems for the future.
Collapse
Affiliation(s)
- Dietrich Knorr
- Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
32
|
Krishnamoorthy R, Athinarayanan J, Periyasamy VS, Alshuniaber MA, Alshammari G, Hakeem MJ, Ahmed MA, Alshatwi AA. Antibacterial Mechanisms of Zinc Oxide Nanoparticle against Bacterial Food Pathogens Resistant to Beta-Lactam Antibiotics. Molecules 2022; 27:2489. [PMID: 35458685 PMCID: PMC9032754 DOI: 10.3390/molecules27082489] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
The increase in β-lactam-resistant Gram-negative bacteria is a severe recurrent problem in the food industry for both producers and consumers. The development of nanotechnology and nanomaterial applications has transformed many features in food science. The antibacterial activity of zinc oxide nanoparticles (ZnO NPs) and their mechanism of action on β-lactam-resistant Gram-negative food pathogens, such as Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Klebsiella pneumoniae, and Proteus mirabilis, are investigated in the present paper. The study results demonstrate that ZnO NPs possesses broad-spectrum action against these β-lactamase-producing strains. The minimal inhibitory and minimal bactericidal concentrations vary from 0.04 to 0.08 and 0.12 to 0.24 mg/mL, respectively. The ZnO NPs elevate the level of reactive oxygen species (ROS) and malondialdehyde in the bacterial cells as membrane lipid peroxidation. It has been confirmed from the transmission electron microscopy image of the treated bacterial cells that ZnO NPs diminish the permeable membrane, denature the intracellular proteins, cause DNA damage, and cause membrane leakage. Based on these findings, the action of ZnO NPs has been attributed to the fact that broad-spectrum antibacterial action against β-lactam-resistant Gram-negative food pathogens is mediated by Zn2+ ion-induced oxidative stress, actions via lipid peroxidation and membrane damage, subsequently resulting in depletion, leading to β-lactamase enzyme inhibition, intracellular protein inactivation, DNA damage, and eventually cell death. Based on the findings of the present study, ZnO NPs can be recommended as potent broad-spectrum antibacterial agents against β-lactam-resistant Gram-negative pathogenic strains.
Collapse
Affiliation(s)
- Rajapandiyan Krishnamoorthy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia or (J.A.); or (V.S.P.); (M.A.A.)
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia or (J.A.); or (V.S.P.); (M.A.A.)
| | - Vaiyapuri Subbarayan Periyasamy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia or (J.A.); or (V.S.P.); (M.A.A.)
| | - Mohammad A. Alshuniaber
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia or (J.A.); or (V.S.P.); (M.A.A.)
| | - Ghedeir Alshammari
- Department of Food and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia; (G.A.); (M.J.H.); (M.A.A.)
| | - Mohammed Jamal Hakeem
- Department of Food and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia; (G.A.); (M.J.H.); (M.A.A.)
| | - Mohammed Asif Ahmed
- Department of Food and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia; (G.A.); (M.J.H.); (M.A.A.)
| | - Ali A. Alshatwi
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia or (J.A.); or (V.S.P.); (M.A.A.)
| |
Collapse
|
33
|
Novais C, Molina AK, Abreu RMV, Santo-Buelga C, Ferreira ICFR, Pereira C, Barros L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2789-2805. [PMID: 35201759 PMCID: PMC9776543 DOI: 10.1021/acs.jafc.1c07533] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The looming urgency of feeding the growing world population along with the increasing consumers' awareness and expectations have driven the evolution of food production systems and the processes and products applied in the food industry. Although substantial progress has been made on food additives, the controversy in which some of them are still shrouded has encouraged research on safer and healthier next generations. These additives can come from natural sources and confer numerous benefits for health, beyond serving the purpose of coloring or preserving, among others. As limiting factors, these additives are often related to stability, sustainability, and cost-effectiveness issues, which justify the need for innovative solutions. In this context, and with the advances witnessed in computers and computational methodologies for in silico experimental aid, the development of new safer and more efficient natural additives with dual functionality (colorant and preservative), for instance by the copigmentation phenomena, may be achieved more efficiently, circumventing the current difficulties.
Collapse
Affiliation(s)
- Cláudia Novais
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rui M. V. Abreu
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santo-Buelga
- Grupo
de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia,
Campus Miguel de Unamuno s/n, Universidad
de Salamanca, 37007 Salamanca, Spain
| | - Isabel C. F. R. Ferreira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
34
|
Kawhena TG, Opara UL, Fawole OA. Effects of Gum Arabic Coatings Enriched with Lemongrass Essential Oil and Pomegranate Peel Extract on Quality Maintenance of Pomegranate Whole Fruit and Arils. Foods 2022; 11:593. [PMID: 35206069 PMCID: PMC8871292 DOI: 10.3390/foods11040593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
The effects of gum arabic coatings combined with lemongrass oil and/or pomegranate peel extract on freshly harvested mature 'Wonderful' pomegranate fruit were studied. Fruit were coated with gum arabic (GA) (1.5% w/v) alone or enriched with lemongrass oil (LM) (0.1% v/v) and/or pomegranate peel extract (PP) (1% w/v). Fruit were packed into standard open top ventilated cartons (dimensions: 0.40 m long, 0.30 m wide and 0.12 m high), and stored for 6 weeks at 5 ± 1 °C (90% RH). Evaluations were made every 2 weeks of cold storage and after 5 d of shelf life (20 °C and 65% RH). Fruit coated with GA + PP (4.09%) and GA + PP + LM (4.21%) coatings recorded the least cumulative weight loss compared to the uncoated control (9.87%). After 6 weeks, uncoated control and GA + PP + LM recorded the highest (24.55 mg CO2Kg-1h-1) and lowest (10.76 mg CO2Kg-1h-1) respiration rate, respectively. Coating treatments reduced the incidence of decay and treatments GA + LM + PP and GA + PP recorded the highest total flavonoid content between 2 and 6 weeks of storage. The findings suggest that GA coatings with/without LM and PP can be a beneficial postharvest treatment for 'Wonderful' pomegranates to reduce weight loss and decay development during cold storage.
Collapse
Affiliation(s)
- Tatenda Gift Kawhena
- Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa;
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Enugu State, Nigeria
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
35
|
The Evolution of Pharmacological Activities Bouea macrophylla Griffith In Vivo and In Vitro Study: A Review. Pharmaceuticals (Basel) 2022; 15:ph15020238. [PMID: 35215350 PMCID: PMC8880147 DOI: 10.3390/ph15020238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Bouea macrophylla Griffith (B. macrophylla) is one of the many herbal plants found in Asia, and its fruit is plum mango. This plant is rich in secondary metabolites, including flavonoids, tannins, polyphenolic compounds, and many others. Due to its bioactive components, plum mango has powerful antioxidants that have therapeutic benefits for many common ailments, including cardiovascular disease, diabetes, and cancer. This review describes the evolution of plum mango’s phytochemical properties and pharmacological activities including in vitro and in vivo studies. The pharmacological activities of B. macrophylla Griffith reviewed in this article are antioxidant, anticancer, antihyperglycemic, antimicrobial, and antiphotoaging. Each of these pharmacological activities described and studied the possible cellular and molecular mechanisms of action. Interestingly, plum mango seeds show good pharmacological activity where the seed is the part of the plant that is a waste product. This can be an advantage because of its economic value as a herbal medicine. Overall, the findings described in this review aim to allow this plant to be explored and utilized more widely, especially as a new drug discovery.
Collapse
|
36
|
Hamdan N, Lee CH, Wong SL, Fauzi CENCA, Zamri NMA, Lee TH. Prevention of Enzymatic Browning by Natural Extracts and Genome-Editing: A Review on Recent Progress. Molecules 2022; 27:1101. [PMID: 35164369 PMCID: PMC8839884 DOI: 10.3390/molecules27031101] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Fresh fruits and vegetable products are easily perishable during postharvest handling due to enzymatic browning reactions. This phenomenon has contributed to a significant loss of food quality and appearance. Thus, a safe and effective alternative method from natural sources is needed to tackle enzymatic browning prevention. The capabilities of natural anti-browning agents derived from plant- and animal-based resources in inhibiting enzymatic activity have been demonstrated in the literature. Some also possess strong antioxidants properties. This review aims to summarize a recent investigation regarding the use of natural anti-browning extracts from different sources for controlling the browning. The potential applications of genome-editing in preventing browning activity and improving postharvest quality is also discussed. Moreover, the patents on the anti-browning extract from natural sources is also presented in this review. The information reviewed here could provide new insights, contributing to the development of natural anti-browning extracts and genome-editing techniques for the prevention of food browning.
Collapse
Affiliation(s)
- Norfadilah Hamdan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Chia Hau Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Syie Luing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
- Department of Matem’atica Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electronica, Universidad Rey Juan Carlos, C/Tulip’an s/n, M´ostoles, 28933 Madrid, Spain
| | - Che Ellysa Nurshafika Che Ahmad Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Nur Mirza Aqilah Zamri
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Ting Hun Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Johor, Malaysia
| |
Collapse
|
37
|
AL-HIJAZEEN M. Anti-bacterial effect of Rosmarinus officinalis Linn. extract and Origanum syriacum L. essential oil on survival and growth of total aerobic bacteria and Staphylococcus aureus using cooked chicken meat. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.60720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Arulrajah B, Muhialdin BJ, Qoms MS, Zarei M, Hussin ASM, Hasan H, Saari N. Production of cationic antifungal peptides from kenaf seed protein as natural bio preservatives to prolong the shelf-life of tomato puree. Int J Food Microbiol 2021; 359:109418. [PMID: 34607033 DOI: 10.1016/j.ijfoodmicro.2021.109418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 01/19/2023]
Abstract
This study determined the favourable fermentation conditions for the production of antifungal peptides from kenaf seeds and their effectiveness in extending the shelf-life of tomato puree. The optimum fermentation conditions for the maximum activity of the antifungal peptides were 8.4% (w/v), 7 days and 3.7% for substrate/water ratio, fermentation time and glucose concentration, respectively. Eight cationic peptides of low molecular weight ranging from 840 to 1876 Da were identified in kenaf seed peptides mixture (KSPM). The minimum inhibitory concentration and minimum fungicidal concentration of KSPM against Fusarium sp. were 0.18 mg/mL and 0.70 mg/mL, respectively, while those for Aspergillus niger were 1.41 mg/mL and 2.81 mg/mL respectively. KSPM exhibited a fungicidal effect and a prolonged lag phase, with increased fungal membrane permeability as the concentration of KSPM increased, as evidenced by the release of intracellular constituents. The treatment of tomato puree with 1000 mg/kg KSPM delayed fungal growth for up to 14 and 23 days at 25 °C and 4 °C respectively, significantly reducing Aspergillus niger and Fusarium sp. counts. In conclusion, kenaf seed peptides prepared by lacto-fermentation possess antifungal activity, hence can be applied as natural bio preservatives to extend the shelf-life of food products such as tomato puree.
Collapse
Affiliation(s)
- Brisha Arulrajah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Belal J Muhialdin
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA
| | - Mohammed S Qoms
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
39
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
40
|
The Antimicrobial Activities of Silver Nanoparticles from Aqueous Extract of Grape Seeds against Pathogenic Bacteria and Fungi. Molecules 2021; 26:molecules26196081. [PMID: 34641623 PMCID: PMC8511990 DOI: 10.3390/molecules26196081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Grape seed extract (GSE) is a natural source of polyphenolic compounds and secondary metabolites, which have been tested for their possible antimicrobial activities. In the current study, we tested the antibacterial and antifungal activities of aqueous GSE and the biosynthesized silver nanoparticles loaded with GSE (GSE-AgNPs) against different pathogens. The biosynthesized GSE-AgNPs were assessed by UV spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and gas chromatography/mass spectrometry (GC/MS). The antimicrobial activities were assessed against different bacterial and fungal species. DLS analysis showed that GSE-AgNPs had a Z-Average of 91.89 nm while UV spectroscopy showed that GSE-AgNPs had the highest absorbance at a wavelength of ~415 nm. FTIR analysis revealed that both of GSE and GSE-AgNPs consisted of different functional groups, such as hydroxyl, alkenes, alkyne, and aromatic rings. Both FE-SEM and TEM showed that GSE-AgNPs had larger sizes and rough surfaces than GSE and AgNO3. The results showed significant antimicrobial activities of GSE-AgNPs against all tested species, unlike GSE, which had weaker and limited effects. More studies are needed to investigate the other antimicrobial activities of GSE.
Collapse
|
41
|
Gerst MM, Somogyi Á, Yang X, Yousef AE. Detection and characterization of a rare two-component lantibiotic, amyloliquecidin GF610 produced by Bacillus velezensis, using a combination of culture, molecular and bioinformatic analyses. J Appl Microbiol 2021; 132:994-1007. [PMID: 34487591 DOI: 10.1111/jam.15290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/30/2021] [Indexed: 01/26/2023]
Abstract
AIM To detect and characterize novel lantibiotics from a collection of Bacillus spp. using a multifaceted analytical approach. METHODS AND RESULTS A previously completed microassay identified 45 Bacillus isolates with anti-Listeria activity. The isolates were PCR screened using degenerate primers targeting conserved sequences in lanM-type lantibiotics. B. velezensis GF610 produced a PCR product whose sequence, along with genome mining and bioinformatics, guided the liquid chromatographic analysis of strain's cell-free extracts and the mass spectrometry of purified fractions. Results revealed a new amyloliquecidin variant (designated GF610) produced by the strain. Amyloliquecidin GF610 is a two-component lantibiotic with α and β peptides having monoisotopic masses of 3026 and 2451 Da, and molecular formulae C130 H191 N35 O39 S5 and C110 H158 N26 O30 S4 , respectively. Amyloliquecidin GF610 is active against Listeria monocytogenes, Clostridium sporogenes, Clostridioides difficile, Staphylococcus aureus and Alicyclobacillus acidoterrestris with minimum inhibitory concentrations (MICs) in the range of 0.5-7.0 µmol l-1 . CONCLUSIONS The proposed multifaceted analytical approach was valuable to provide a deep and proper characterization of a novel bacteriocin, amyloliquecidin GF610, with high antimicrobial activity against Gram-positive bacteria. SIGNIFICANCE AND IMPACT The discovered Amyloliquecidin GF610 is potentially useful in food, agricultural or medical applications. The analytical approach followed may facilitate future discoveries of two-component lantibiotics, which are challenging compounds to detect and characterize.
Collapse
Affiliation(s)
- Michelle M Gerst
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Árpád Somogyi
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio, USA
| | - Xu Yang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed E Yousef
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA.,Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
42
|
El-Saber Batiha G, Hussein DE, Algammal AM, George TT, Jeandet P, Al-Snafi AE, Tiwari A, Pagnossa JP, Lima CM, Thorat ND, Zahoor M, El-Esawi M, Dey A, Alghamdi S, Hetta HF, Cruz-Martins N. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108066] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Effects of Green Tea Powder, Pomegranate Peel Powder, Epicatechin and Punicalagin Additives on Antimicrobial, Antioxidant Potential and Quality Properties of Raw Meatballs. Molecules 2021; 26:molecules26134052. [PMID: 34279391 PMCID: PMC8271633 DOI: 10.3390/molecules26134052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative technologies, which have been developed in order to meet the consumers’ demand for nourishing and healthy meat and meat products, are followed by the food industry. In the present study, it was determined, using the HPLC method, that green tea contains a high level of epicatechin (EP) under optimal conditions and that pomegranate peel contains a high level of punicalagin (PN). Green tea, pomegranate peel, EP and PN were added to meatballs at different concentrations in eight groups. The antioxidant capacities of extracts were measured. The antimicrobial activity was examined for 72 h using three different food pathogens. The highest level of antimicrobial activity was achieved in the 1% punicalagin group, whereas the minimum inhibition concentration (L. monocytogenes, S. typhimurium) was found to be 1.87 mg/mL. A statistically significant decrease was found in FFA, POV and TBARS levels of meatballs on different days of storage (p < 0.05). When compared to the control group, the bioactive compounds preserved the microbiological and chemical properties of meatballs during storage at +4 °C (14 days). It was concluded that the extracts with high EP and PN concentrations can be used as bio-preservative agents for meat and meat products.
Collapse
|
44
|
Ouassou H, Bouhrim M, Kharchoufa L, Imtara H, Daoudi NE, Benoutman A, Bencheikh N, Ouahhoud S, Elbouzidi A, Bnouham M. Caralluma europaea (Guss) N.E.Br.: A review on ethnomedicinal uses, phytochemistry, pharmacological activities, and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113769. [PMID: 33412248 DOI: 10.1016/j.jep.2020.113769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caralluma europaea (Guss) N.E.Br. (Apocynaceae), is a medicinal plant distributed in Morocco, Algeria, Tunisia, Libya, Egypt, Jordan, Spain, and Italy. The different parts of the plant are used traditionally to treat various diseases such as diabetes mellitus, flu, caught, kidney stones, cysts, respiratory infection, cancer, digestives disorders, urogenital infections, metabolic disorders, and cardiovascular problems. AIM OF THE REVIEW In this review, previous reports on C. europaea concerning its morphological description, geographical distribution, ethnomedicinal uses, phytochemistry, pharmacological properties, and toxicological studies were critically summarized. MATERIALS AND METHODS A systematic review of the literature on C. europaea was performed by searching the scientific databases Science Direct, PubMed, Scopus, and Google Scholar. RESULTS In traditional medicine, C. europaea used to treat several illnesses including diabetes, cancer, and kidney stones. Our analysis of the previous reports confirmed the scientific evidence of C. europaea ethnomedicinal uses, especially the antidiabetic activity. However, there was no clear correlation between previous pharmacological reports on C. europaea and its other ethnomedicinal uses in the treatment of kidney stones, flu, caught, metabolic, digestive, cardiovascular and respiratory disorders. The essential oils and extracts of C. europaea exhibited several in vitro and in vivo pharmacological properties such as antidiabetic, antioxidant, anti-inflammatory, analgesic, anti-proliferative, antibacterial, antimicrobial, toxicological, and immunomodulatory effects. Phytochemical characterization of C. europaea revealed the presence of several classes of secondary metabolites such as terpenoids, polyphenols, and flavonoids compounds. Finally, the food preservative ability of the extracts and essential oil obtained from C. europaea has been fully discussed. CONCLUSION Ethnomedicinal surveys indicated the use of C. europaea for the treatment of numerous diseases. Pharmacological reports showed that C. europaea exhibited significant antidiabetic, antioxidant, anti-inflammatory, analgesic, anti-proliferative, antibacterial, antimicrobial, and immunomodulatory effects. Further studies on the phytochemistry of bioactive compounds should be performed by using bioactivity-guided isolation strategy and improve their biological potency as well as scientific exploitation of traditional uses. An in-depth investigation is needed to valid the food preservative properties.
Collapse
Affiliation(s)
- Hayat Ouassou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University Palestine, P. O. Box 240, Jenin, Palestine.
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Amina Benoutman
- Laboratory of Biology, Environment, and Sustainable Development, Higher Normal School, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Noureddine Bencheikh
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Saber Ouahhoud
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Amine Elbouzidi
- Faculty of Sciences, Mohamed First University, Boulevard Mohamed VI BP 717, Oujda, 60000, Morocco.
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| |
Collapse
|
45
|
Lee J, Kang HK, Cheong H, Park Y. A Novel Antimicrobial Peptides From Pine Needles of Pinus densiflora Sieb. et Zucc. Against Foodborne Bacteria. Front Microbiol 2021; 12:662462. [PMID: 34093476 PMCID: PMC8172577 DOI: 10.3389/fmicb.2021.662462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023] Open
Abstract
Pine needles are used in several East Asian countries as food or traditional medicine. It contains functional components that exhibit a wide spectrum of pharmacological effects such as antioxidant, antimicrobial, anti-diabetic, and anti-inflammatory activities. We determined and characterized the novel antimicrobial peptides (AMPs) isolated from Pinus densiflora Sieb. et Zucc. The four active pine-needle (PN) peptides showed antimicrobial activity against foodborne bacteria with minimum inhibitory concentration (MIC) values within the range of 8-128 μg/ml. PN peptides showed no detectable hemolytic activity or cytotoxicity at the antimicrobial concentrations. The N-terminal amino acid sequence of the PN5 was identified using Edman degradation and Antimicrobial Peptide Database (APD) homology analysis showed that it was not identical to any other plant peptide. This suggests that PN5 can serve as an alternative therapeutic agent to be used in the food industry.
Collapse
Affiliation(s)
- Junho Lee
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Hyeonsook Cheong
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, South Korea.,Research Center for Proteineous Materials (RCPM), Chosun University, Gwangju, South Korea
| |
Collapse
|
46
|
Biologically active composite based on fumed silica and Anoectochilus formosanus Hayata extract. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01513-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Biswas S, Ghosh P, Dutta A, Biswas M, Chatterjee S. Comparative Analysis of Nutritional Constituents, Antioxidant and Antimicrobial Activities of Some Common Vegetable Wastes. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.1.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vegetables are intrinsic to a healthy diet. But the peels are discarded as food waste, unknowing of their potential as the source of bioactive compounds. The study aims to find the nutritional constituents, antioxidant and antimicrobial activity of these food wastes. Here we make a comparative investigation among the five underutilized vegetable parts namely, Solanum tuberosum (Potato peel), Cucumis sativus (Cucumber peel), Musa acuminata (Unripe Banana peel), Brassica oleracea (Cauliflower stem), Lagenaria siceraria (Bottle gourd peel). After the primary screening, including proximate and qualitative analysis, the quantification of primary and secondary metabolites as well as minerals was estimated by different standard methods. The antioxidant potential was evaluated by both DPPH and H2O2 radical scavenging assays. Antimicrobial activity was analyzed by Kirby Bauer disc diffusion method against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains of bacteria compared with positive and negative controls. From the proximate analysis, the highest moisture and water content were found in the peel sample of Lagenaria siceraria. Out of ten qualitative tests, protein, fatty acid, flavonoid, alkaloid and xanthoprotein were detected in all five samples. Among the quantitative estimations, Lagenaria siceraria showed the highest amount of polysaccharides (85.82±0.12 mg DE/g DW), ascorbic acid (2.48±0.14 mg AAE/g FW), thiamine (24.46±0.13 mg TE/g DW), polyphenols (86.36±0.10 mg GAE/g DW), flavonoids (49.59±0.07 mg QE/g DW), minerals like K, Ca and Mg and 72.35±0.40% inhibition by DPPH. Simultaneously a significant amount of protein (63.59±0.13 mg BSAE/g FW), the amino acid (7.84±0.02 mg AAE/g DW), minerals like Na, Zn and B and 88.76±0.10% inhibition by H2O2 were found in Cucumis sativus. At a higher concentration, all samples were exhibited significant antimicrobial activity which laid out a strong correlation with previously screened phytonutrients and antioxidants. The overall findings suggested that these underutilized vegetable parts can be utilized in the processing of potential functional foods as well as pharmaceuticals rather than thrown out as agro-waste.
Collapse
Affiliation(s)
- Swagata Biswas
- Department of Biotechnology, Techno India University West Bengal, Kolkata, West Bengal, India
| | - Pranabesh Ghosh
- Department of Biotechnology, Techno India University West Bengal, Kolkata, West Bengal, India
| | - Alolika Dutta
- Department of Biotechnology, Techno India University West Bengal, Kolkata, West Bengal, India
| | - Maitrayee Biswas
- Department of Biotechnology, Techno India University West Bengal, Kolkata, West Bengal, India
| | - Sirshendu Chatterjee
- Department of Biotechnology, Techno India University West Bengal, Kolkata, West Bengal, India
| |
Collapse
|
48
|
Gafur A, Sukamdani GY, Kristi N, Maruf A, Xu J, Chen X, Wang G, Ye Z. From bulk to nano-delivery of essential phytochemicals: recent progress and strategies for antibacterial resistance. J Mater Chem B 2021; 8:9825-9835. [PMID: 33000844 DOI: 10.1039/d0tb01671c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial biofilms caused by antibiotic resistance are a severe cause of infection threatening human health nowadays. The primary causes of this emerging threat are poor penetration of conventional antibiotics and the growing number of varied strains of resistant bacteria. Recently, bulk phytochemical oils have been widely explored for their potential as antibacterial agents. However, due to their poor solubility, low stability, and highly volatile properties, essential oils are not effective for in vitro and in vivo antibacterial applications and require further preparation. In this review, we discuss the recent progress and strategies to overcome the drawbacks of bulk phytochemical oils using nano-delivery, as well as the current challenges and future outlook of these nano-delivery systems against bacterial resistance.
Collapse
Affiliation(s)
- Alidha Gafur
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Gerry Yusuf Sukamdani
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Natalia Kristi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Jing Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Xue Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
49
|
Wu Q, Zhou J. The application of polyphenols in food preservation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:35-99. [PMID: 34507646 DOI: 10.1016/bs.afnr.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyphenols are a kind of complex secondary metabolites in nature, widely exist in the flowers, bark, roots, stems, leaves, and fruits of plants. Numerous studies have shown that plant-derived polyphenols have a variety of bioactivities due to their unique chemical structure, such as antioxidant, antimicrobial, and prevention of chronic diseases, cardiovascular disease, cancer, osteoporosis, and neurodegeneration. With the gradual rise of natural product development, plant polyphenols have gradually become one of the research hotspots in the field of food science due to their wide distribution in the plants, and the diversity of physiological functions. Owing to the extraordinary antioxidant and antibacterial activity of polyphenols, plant-derived polyphenols offer an alternative to chemical additives used in the food industry, such as oil, seafood, meat, beverages, and food package materials. Based on this, this chapter provides an overview of the potential antioxidant and antibacterial mechanisms of plant polyphenols and their application in food preservation, it would be providing a reference for the future development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei University of Technology, Wuhan, China.
| | - Jie Zhou
- Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
50
|
Houicher A, Bensid A, Regenstein JM, Özogul F. Control of biogenic amine production and bacterial growth in fish and seafood products using phytochemicals as biopreservatives: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|