1
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
2
|
Mékinian A, Quinquenel A, Belkacem KA, Kanoun F, Dondi E, Franck E, Boubaya M, Mhibik M, Baran-Marszak F, Letestu R, Ajchenbaum-Cymbalista F, Lévy V, Varin-Blank N, Le Roy C. Immuno-regulatory malignant B cells contribute to Chronic Lymphocytic Leukemia progression. Cancer Gene Ther 2023:10.1038/s41417-023-00602-5. [PMID: 36973425 DOI: 10.1038/s41417-023-00602-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/29/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
Chronic Lymphocytic Leukemia (CLL) is a heterogeneous B cell neoplasm ranging from indolent to rapidly progressive disease. Leukemic cell subsets with regulatory properties evade immune clearance; however, the contribution of such subsets during CLL progression is not completely elucidated. Here, we report that CLL B cells crosstalk with their immune counterparts, notably by promoting the regulatory T (Treg) cell compartment and shaping several helper T (Th) subsets. Among various constitutively- and BCR/CD40-mediated factors secreted, tumour subsets co-express two important immunoregulatory cytokines, IL10 and TGFβ1, both associated with a memory B cell phenotype. Neutralizing secreted IL10 or inhibiting the TGFβ signalling pathway demonstrated that these cytokines are mainly involved in Th- and Treg differentiation/maintenance. In line with the regulatory subsets, we also demonstrated that a CLL B cell population expresses FOXP3, a marker of regulatory T cells. Analysis of IL10, TGFβ1 and FOXP3 positive subpopulations frequencies in CLL samples discriminated 2 clusters of untreated CLL patients that were significantly different in Tregs frequency and time-to-treatment. Since this distinction was pertinent to disease progression, the regulatory profiling provides a new rationale for patient stratification and sheds light on immune dysfunction in CLL.
Collapse
Affiliation(s)
- Arsène Mékinian
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Anne Quinquenel
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Koceïla Ait Belkacem
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Feriel Kanoun
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Elisabetta Dondi
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Emilie Franck
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | | | - Maïssa Mhibik
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Fanny Baran-Marszak
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
- Service d'Hématologie Biologique, APHP, Hôpital Avicenne, Bobigny, France
| | - Rémi Letestu
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
- Service d'Hématologie Biologique, APHP, Hôpital Avicenne, Bobigny, France
| | - Florence Ajchenbaum-Cymbalista
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
- Service d'Hématologie Biologique, APHP, Hôpital Avicenne, Bobigny, France
| | - Vincent Lévy
- URC, APHP, Hôpital Avicenne, Bobigny, France
- CRC, APHP, Hôpital Avicenne, Bobigny, France
| | - Nadine Varin-Blank
- INSERM, U978, Bobigny, France.
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France.
| | - Christine Le Roy
- INSERM, U978, Bobigny, France.
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France.
| |
Collapse
|
3
|
The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients. Proc Natl Acad Sci U S A 2021; 118:2024624118. [PMID: 34103397 DOI: 10.1073/pnas.2024624118] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Systemic lupus erythematous (SLE) is a female-predominant disease characterized by autoimmune B cells and pathogenic autoantibody production. Individuals with two or more X chromosomes are at increased risk for SLE, suggesting that X-linked genes contribute to the observed sex bias of this disease. To normalize X-linked gene expression between sexes, one X in female cells is randomly selected for transcriptional silencing through X-chromosome inactivation (XCI), resulting in allele-specific enrichment of epigenetic modifications, including histone methylation and the long noncoding RNA XIST/Xist on the inactive X (Xi). As we have previously shown that epigenetic regulation of the Xi in female lymphocytes from mice is unexpectedly dynamic, we used RNA fluorescence in situ hybridization and immunofluorescence to profile epigenetic features of the Xi at the single-cell level in human B cell subsets from pediatric and adult SLE patients and healthy controls. Our data reveal that abnormal XCI maintenance in B cells is a feature of SLE. Using single-cell and bulk-cell RNA sequencing datasets, we found that X-linked immunity genes escape XCI in specific healthy human B cell subsets and that human SLE B cells exhibit aberrant expression of X-linked genes and XIST RNA interactome genes. Our data reveal that mislocalized XIST RNA, coupled with a dramatic reduction in heterochromatic modifications at the Xi in SLE, predispose for aberrant X-linked gene expression from the Xi, thus defining a genetic and epigenetic pathway that affects X-linked gene expression in human SLE B cells and likely contributes to the female bias in SLE.
Collapse
|
4
|
Li M, Gao X, Liu K, Bao N, Jiang Z. MiR-379-5p aggravates experimental autoimmune uveitis in mice via the regulation of SEMA3A. Autoimmunity 2021; 54:275-283. [PMID: 34060391 DOI: 10.1080/08916934.2021.1931841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Uveitis is a disease resulting in the inflammation of uveal tracts, but the factors resulting in uveitis is still obscure. Previous studies have shown that miR-379-5p was involved in the pathogenesis of several diseases, however, the role and regulatory mechanism of miR-379-5p in uveitis were unclear. In our study, we established experimental autoimmune uveitis (EAU) mouse models to explore the role of miR-379-5p in uveitis. RT-qPCR identified that miR-379-5p level was increased in serum of EAU mice. In mechanism, SEMA3A 3'UTR was proven to be directly targeted by miR-379-5p and SEMA3A expression was negatively regulated by miR-379-5p in CD4+ T cells. Moreover, ELISA analysis revealed that knockdown of miR-379-5p suppressed the production of inflammation cytokines including IL-17, TNF-α and IL-β in vitro. These results were reversed by SEMA3A overexpression. In addition, the reduction of Th17 cells under miR-379-5p inhibitor was neutralised by SEMA3A knockdown in vitro. Furthermore, we demonstrated that knockdown of miR-379-5p significantly reversed the increased clinical scores and inflammatory response resulting from EAU treatment and this effect was further countervailed by SEMA3A silencing. Our study suggested that miR-379-5p aggravated uveitis in EAU mice via the regulation of SEMA3A, which may provide a novel insight for uveitis treatment.
Collapse
Affiliation(s)
- Mohan Li
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiang Gao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Kou Liu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ning Bao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
6
|
Singh RP, Hahn BH, Bischoff DS. Effects of Peptide-Induced Immune Tolerance on Murine Lupus. Front Immunol 2021; 12:662901. [PMID: 34093553 PMCID: PMC8171184 DOI: 10.3389/fimmu.2021.662901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of autoimmunity and the molecular mechanisms by which different immune cells, including T cells, polymorphonuclear leukocytes (PMN-granulocytes), and B cells suppress autoimmune diseases is complex. We have shown previously that BWF1 lupus mice are protected from autoimmunity after i.v. injection or oral administration of tolerogenic doses of pCons, an artificial synthetic peptide based on sequences containing MHC class I and MHC class II determinants in the VH region of a J558-encoded BWF1 anti-DNA Ab. Several T cell subsets can transfer this tolerance. In this study, we determined the potential roles of granulocytes, B cells and regulatory T cells altered by pCons treatment in the BWF1 (NZB/NZW) mouse model of lupus. Immunophenotyping studies indicated that pCons treatment of BWF1 mice significantly increased CD4+FoxP3+ T cells, reduced the percent of B cells expressing CD19+CD5+ but increased the percent of CD19+CD1d+ regulatory B cells and increased the ability of the whole B cell population to suppress IgG anti-DNA production in vitro. pCons treatment significantly decreased the expression of CTLA-4 (cytotoxic T-lymphocyte-associated protein-4) in CD8+ T cells. In addition, peptide administration modified granulocytes so they became suppressive. We co-cultured sorted naïve B cells from mice making anti-DNA Ab (supported by addition of sorted naive CD4+ and CD8+ T cells from young auto-antibody-negative BWF1 mice) with sorted B cells or granulocytes from tolerized mice. Both tolerized granulocytes and tolerized B cells significantly suppressed the production of anti-DNA in vitro. In granulocytes from tolerized mice compared to saline-treated littermate controls, real-time PCR analysis indicated that expression of interferon-induced TNFAIP2 increased more than 2-fold while Ptdss2 and GATA1 mRNA were up-regulated more than 10-fold. In contrast, expression of these genes was significantly down-regulated in tolerized B cells. Further, another IFN-induced protein, Bcl2, was reduced in tolerized B cells as determined by Western blot analyses. In contrast, expression of FoxP3 was significantly increased in tolerized B cells. Together, these data suggest that B cells and granulocytes are altered toward suppressive functions by in vivo tolerization of BWF1 mice with pCons and it is possible these cell types participate in the clinical benefits seen in vivo.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Ding T, Su R, Wu R, Xue H, Wang Y, Su R, Gao C, Li X, Wang C. Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells. Front Immunol 2021; 12:641013. [PMID: 33841422 PMCID: PMC8033031 DOI: 10.3389/fimmu.2021.641013] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies generation through providing necessary help for germinal center (GC) B cells, whereas T follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process through restraining Tfh cell responses. However, signals underlying the regulation of Tfh and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous subpopulation of B cells with immunosuppressive function. Considerable advances have been made in their functions to produce anti‐inflammatory cytokines and to regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes Bregs an important checkpoint in GC response. Bregs exert profound impacts on the differentiation, function, and distribution of Tfh and Tfr cells in the immune microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg interactions will inspire novel implications for the establishment of homeostasis and prevention of autoantibodies in diverse diseases. This review summarizes the dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular mechanisms of autoantibody production and evoke a revolution in immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ronghui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Difference between mitogen-stimulated B and T cells in nonspecific binding of R-phycoerythrin-conjugated antibodies. J Immunol Methods 2021; 493:113013. [PMID: 33689808 DOI: 10.1016/j.jim.2021.113013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022]
Abstract
Nonspecific binding of conjugated antibodies represents a critical step which could significantly influence the results of immunostaining or flow cytometry. In this respect, various staining procedures and distinct cell types can alter the results obtained with different fluorochromes. In this study, we analysed nonspecific binding of R-phycoerythrin (R-PE)-conjugated antibodies to mouse mitogen-stimulated B and T lymphocytes. The cells were fixed, permeabilized and stained using isotype control antibodies conjugated with different fluorochromes and assessed by flow cytometry. R-PE-conjugated antibodies bound to LPS-stimulated B cells, in contrast to Con A-stimulated T cells, independently of their specificity. The percentage of R-PE positive B cells varied, according to the used antibodies or the fixation/permeabilization kit. Nevertheless, up to 30% of R-PE+ B cells after staining with R-PE-conjugated isotype control antibodies was detected. Furthermore, LPS-stimulated B cells bound nonspecifically, in a dose-dependent manner, unconjugated R-PE molecules. Con A-stimulated T cells slightly bound R-PE only in high concentrations. Similarly, the antibodies conjugated with other fluorochromes showed less than 1% of nonspecific binding independently of the manufacturer of antibodies or fixation/permeabilization kits. The data demonstrated that LPS-stimulated B cells, in contrast to Con A-stimulated T cells, bind R-PE nonspecifically following formaldehyde or paraformaldehyde fixation. Therefore, the results based on the use of R-PE-conjugated antibodies should be taken with a precaution.
Collapse
|
9
|
Abbasifard M, Kamiab Z, Hasani M, Rahnama A, Saeed-Askari P, Khorramdelazad H. Assessing the expression of immunosuppressive cytokines in the newly diagnosed systemic lupus Erythematosus patients: a focus on B cells. BMC Immunol 2020; 21:58. [PMID: 33198645 PMCID: PMC7670657 DOI: 10.1186/s12865-020-00388-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The immunosuppressive effects of regulatory B-cells (Bregs) and their immunosuppressive cytokines on immune responses in autoimmune disorders, mainly systemic lupus erythematosus (SLE), have been recently established. Therefore, the purpose of this article has been the exploration of the expressions of cytokines produced by B cells in newly diagnosed SLE patients. RESULTS The findings demonstrated that the gene expression of IL-10, TGF-β, IL-35, PD-L1, and FasL was significantly up-regulated in SLE patients compared to healthy subjects (P < 0.05). Additionally, the results revealed that serum levels of IL-10, TGF-β, IL-35, PD-L1 were remarkably increased in patients with SLE compared to healthy subjects (P < 0.0001). However, serum levels of IL-10 and TGF-β decreased significantly with increasing SLEDAI score in studied patients (P < 0.05). CONCLUSION It was concluded that the release of anti-inflammatory cytokines, particularly IL-10 and TGF-β, might inhibit immune responses and autoreactive immune cells in a compensatory manner in SLE patients with mild to moderate disease activity.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Kamiab
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Family Medicine, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hasani
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amir Rahnama
- Department of Pathology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Pooya Saeed-Askari
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
10
|
Chesneau M, Mai HL, Danger R, Le Bot S, Nguyen TVH, Bernard J, Poullaouec C, Guerrif P, Conchon S, Giral M, Charreau B, Degauque N, Brouard S. Efficient Expansion of Human Granzyme B–Expressing B Cells with Potent Regulatory Properties. THE JOURNAL OF IMMUNOLOGY 2020; 205:2391-2401. [DOI: 10.4049/jimmunol.2000335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/10/2020] [Indexed: 01/12/2023]
|
11
|
Zhao L, Zhou X, Zhou X, Wang H, Gu L, Ke Y, Zhang M, Ji X, Yang X. Low expressions of PD-L1 and CTLA-4 by induced CD4+CD25+ Foxp3+ Tregs in patients with SLE and their correlation with the disease activity. Cytokine 2020; 133:155119. [DOI: 10.1016/j.cyto.2020.155119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/09/2023]
|
12
|
Feng Y, Yang M, Wu H, Lu Q. The pathological role of B cells in systemic lupus erythematosus: From basic research to clinical. Autoimmunity 2019; 53:56-64. [PMID: 31876195 DOI: 10.1080/08916934.2019.1700232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that often occurs in females of child-bearing age. It involves multiple systems and severely threatens human life. One of the typical characteristics of SLE is the formation of immune complexes with autoantibodies produced by B cells that target various autoantigens, thus indicating the pivotal role of B cells in the pathogenesis of SLE. Increasing evidence has shown abnormal expression of B cells in the peripheral blood of SLE patients. Moreover, numerous studies have shown that B cells in SLE patients are abnormally activated, as well as aberrantly differentiated, and are involved in the inflammatory cytokine milieu, abnormal transcription factor activity, and signalling pathways. Several biological therapies targeting B cells, such as anti-CD20 antibodies, have been intensively studied in preclinical and clinical trials. However, the results have not met expectations. Therefore, new therapies targeting B cells are in great need. This review will summarize the latest progress in basic research on B cells to better understand the pathogenesis of SLE and will discuss the outcomes of B-cell-targeting treatments that provide potential therapeutic targets and strategies for SLE. Studies have clarified high levels of IL-21 in serum from SLE patients and animal models. IL-21 promotes B cell differentiation, which results in antibodies accumulation leads to SLE. Therefore, further studies on IL-21 will give new perspectives on SLE treatments. In addition, the application of drugs targeting plasma cell depletion in SLE patients may also achieve satisfied results in treatment.
Collapse
Affiliation(s)
- Yu Feng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| |
Collapse
|
13
|
Wu H, Su Z, Barnie PA. The role of B regulatory (B10) cells in inflammatory disorders and their potential as therapeutic targets. Int Immunopharmacol 2019; 78:106111. [PMID: 31881524 DOI: 10.1016/j.intimp.2019.106111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Over the past decade, studies have identified subset of B cells, which play suppressive functions in additions to the conventional functions of B cells: antigen processing and presentation, activation of T cells and antibody productions. Because of their regulatory function, they were named as B regulatory cells (Bregs). Bregs restrict the severity of autoimmune disorders in animal disease models such as experimental autoimmune myocarditis (EAM), experimental autoimmune encephalitis (EAE), and collagen-induced arthritis (CIA) but can contribute to the development of infection and cancer. In humans, the roles of B regulatory cells in autoimmune diseases have not been clearly established because of the inconsistent findings from many researchers. This is believed to arise from the speculated fact that Bregs lack specific marker, which can be used to identify and characterize them in human diseases. The CD19+CD24hiCD38hiCD1dhiB cells have been associated with the regulatory function. Available evidences highlight the relevance of increasing IL-10-producing B cells in autoimmune diseases and the possibility of serving as new therapeutic targets in inflammatory disorders. This review empanels the functions of Bregs in autoimmune diseases in both human and animal models, and further evaluates the possibility of Bregs as therapeutic targets in inflammatory disorders. Consequently, this might help identify possible research gaps, which need to be clarified as researchers speculate the possibility of targeting some subsets of Bregs in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Hongxia Wu
- Department of Laboratory, People's Hospital of Jiangyin, Jiangsu 214400, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Prince Amoah Barnie
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Ghana.
| |
Collapse
|
14
|
Ma K, Du W, Wang X, Yuan S, Cai X, Liu D, Li J, Lu L. Multiple Functions of B Cells in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:E6021. [PMID: 31795353 PMCID: PMC6929160 DOI: 10.3390/ijms20236021] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by excessive autoantibody production and multi-organ involvement. Although the etiology of SLE still remains unclear, recent studies have characterized several pathogenic B cell subsets and regulatory B cell subsets involved in the pathogenesis of SLE. Among pathogenic B cell subsets, age-associated B cells (ABCs) are a newly identified subset of autoreactive B cells with T-bet-dependent transcriptional programs and unique functional features in SLE. Accumulation of T-bet+ CD11c+ ABCs has been observed in SLE patients and lupus mouse models. In addition, innate-like B cells with the autoreactive B cell receptor (BCR) expression and long-lived plasma cells with persistent autoantibody production contribute to the development of SLE. Moreover, several regulatory B cell subsets with immune suppressive functions have been identified, while the impaired inhibitory effects of regulatory B cells have been indicated in SLE. Thus, further elucidation on the functional features of B cell subsets will provide new insights in understanding lupus pathogenesis and lead to novel therapeutic interventions in the treatment of SLE.
Collapse
Affiliation(s)
- Kongyang Ma
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China; (K.M.); (D.L.)
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China; (S.Y.); (X.C.)
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China; (S.Y.); (X.C.)
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China; (K.M.); (D.L.)
| | - Jingyi Li
- Department of Rheumatology and Immunology, Southwest Hospital, The First Hospital Affiliated to The Army Medical University, Chongqing 400038, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| |
Collapse
|
15
|
Syrett CM, Anguera MC. When the balance is broken: X-linked gene dosage from two X chromosomes and female-biased autoimmunity. J Leukoc Biol 2019; 106:919-932. [PMID: 31125996 PMCID: PMC7206452 DOI: 10.1002/jlb.6ri0319-094r] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 12/21/2022] Open
Abstract
Women and men exhibit differences in innate and adaptive immunity, and women are more susceptible to numerous autoimmune disorders. Two or more X chromosomes increases the risk for some autoimmune diseases, and increased expression of some X-linked immune genes is frequently observed in female lymphocytes from autoimmune patients. Evidence from mouse models of autoimmunity also supports the idea that increased expression of X-linked genes is a feature of female-biased autoimmunity. Recent studies have begun to elucidate the correlation between abnormal X-chromosome inactivation (XCI), an essential mechanism female somatic cells use to equalize X-linked gene dosage between the sexes, and autoimmunity in lymphocytes. In this review, we highlight research describing overexpression of X-linked immunity-related genes and female-biased autoimmunity in both humans and mouse models, and make connections with our recent work elucidating lymphocyte-specific mechanisms of XCI maintenance that become altered in lupus patients.
Collapse
Affiliation(s)
- Camille M Syrett
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Valizadeh A, Sanaei R, Rezaei N, Azizi G, Fekrvand S, Aghamohammadi A, Yazdani R. Potential role of regulatory B cells in immunological diseases. Immunol Lett 2019; 215:48-59. [PMID: 31442542 DOI: 10.1016/j.imlet.2019.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Regulatory B cells (Bregs) are immune-modulating cells that affect the immune system by producing cytokines or cellular interactions. These cells have immunomodulatory effects on the immune system by cytokine production. The abnormalities in Bregs could be involved in various disorders such as autoimmunity, chronic infectious disease, malignancies, allergies, and primary immunodeficiencies are immune-related scenarios. Ongoing investigation could disclose the biology and the exact phenotype of these cells and also the assigned mechanisms of action of each subset, as a result, potential therapeutic strategies for treating immune-related anomalies. In this review, we collect the findings of human and mouse Bregs and the therapeutic efforts to change the pathogenicity of these cells in diverse disease.
Collapse
Affiliation(s)
- Amir Valizadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Roozbeh Sanaei
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
17
|
Cao T, Shao S, Fang H, Li B, Wang G. Role of Regulatory Immune Cells and Molecules in Autoimmune Bullous Dermatoses. Front Immunol 2019; 10:1746. [PMID: 31428090 PMCID: PMC6688483 DOI: 10.3389/fimmu.2019.01746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Autoimmune bullous dermatoses (AIBD) include a series of typical organ-specific autoimmune diseases characterized by extensive mucocutaneous blisters. It is generally accepted to be caused by pathological autoantibodies that directly target specific adhesion components of the skin or the adjacent mucous membranes. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Recent studies have indicated that the dysfunction of regulatory T cells, regulatory B cells, and complement regulatory proteins that play essential roles in maintaining a healthy immune environment is also closely related to immune disorders in AIBD. It is important to summarize these studies, elucidate the changes in these regulatory immune cells and molecules for the pathogenesis of AIBD, and reveal the mechanisms by which they lose their ability to regulate immune disorders. In this review, we highlight the role of regulatory immune cells and molecules in the pathogenesis of pemphigus vulgaris and bullous pemphigoid, the two most representative forms of AIBD, and indicate issues that should be addressed in future investigations.
Collapse
Affiliation(s)
- Tianyu Cao
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Garcia S. Role of Semaphorins in Immunopathologies and Rheumatic Diseases. Int J Mol Sci 2019; 20:ijms20020374. [PMID: 30654587 PMCID: PMC6359241 DOI: 10.3390/ijms20020374] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Rheumatic diseases are disorders characterized by joint inflammation, in which other organs are also affected. There are more than two hundred rheumatic diseases, the most studied so far are rheumatoid arthritis, osteoarthritis, spondyloarthritis, systemic lupus erythematosus, and systemic sclerosis. The semaphorin family is a large group of proteins initially described as axon guidance molecules involved in nervous system development. Studies have demonstrated that semaphorins play a role in other processes such as the regulation of immunity, angiogenesis, bone remodeling, apoptosis, and cell migration and invasion. Moreover, semaphorins have been related to the pathogenesis of multiple sclerosis, asthma, Alzheimer, myocarditis, atherosclerosis, fibrotic diseases, osteopetrosis, and cancer. The aim of this review is to summarize current knowledge regarding the role of semaphorins in rheumatic diseases, and discuss their potential applications as therapeutic targets to treat these disorders.
Collapse
Affiliation(s)
- Samuel Garcia
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
19
|
Sakkas LI, Daoussis D, Mavropoulos A, Liossis SN, Bogdanos DP. Regulatory B cells: New players in inflammatory and autoimmune rheumatic diseases. Semin Arthritis Rheum 2018; 48:1133-1141. [PMID: 30409417 DOI: 10.1016/j.semarthrit.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Regulatory B cells (Bregs) are a new subset of B cells with immunoregulatory functions, mainly through IL-10 production. Bregs suppress inflammatory Th1 and Th17 differentiation and induce Tregs suppressing autoimmune diseases. The aim of the study was to review the literature related to Bregs in autoimmune rheumatic diseases (ARDs). METHODS A literature review of publications in PUBMED published in English was performed using the relevant combinations of terms. RESULTS All relevant publications are discussed. Overall, recent studies in rheumatic diseases found Bregs to be decreased in ANCA-associated vasculitides (AAV) and in systemic sclerosis (SSc), particularly in SSc-associated lung fibrosis. In AAV Bregs levels are negatively correlated with autoantibody levels whereas in SSc this association is less clear but there is an inverse association with Th1 and Th17 cells. In rheumatoid arthritis (RA), Bregs were decreased, particularly in RA-associated lung fibrosis. In psoriatic arthritis IL-10 + Bregs are decreased and inversely associated with Th1 and Th17 cells. In systemic lupus erythematosus (SLE), the role of Bregs is unclear. In experimental diseases, when Bregs were expanded ex-vivo, they ameliorated established disease. CONCLUSION Bregs appear to be a new player in the pathogenesis of ARDs, and may offer a new strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece.
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| |
Collapse
|
20
|
Carvajal Alegria G, Gazeau P, Hillion S, Daïen CI, Cornec DYK. Could Lymphocyte Profiling be Useful to Diagnose Systemic Autoimmune Diseases? Clin Rev Allergy Immunol 2018; 53:219-236. [PMID: 28474288 DOI: 10.1007/s12016-017-8608-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considering the implications of B, T, and natural killer (NK) cells in the pathophysiology of systemic autoimmune diseases, the assessment of their distribution in the blood could be helpful for physicians in the complex process of determining a precise diagnosis. In primary Sjögren's syndrome, transitional and active naive B cells are increased and memory B cells are decreased compared to healthy controls and other systemic diseases. However, their utility to improve the accuracy of classification criteria has not been proven. In early untreated rheumatoid arthritis, proportions of regulatory T cells are constantly reduced, but other patterns are difficult to determine given the heterogeneity of published studies. In systemic lupus erythematosus, the lack of studies using large cohorts of patients and the diversity of the possible pathological mechanisms involved are also important impediments. Nevertheless, transitional B cell and plasma cell proportions are increased in most of the studies, the CD4/CD8 ratio is decreased, and the number of NK cells is reduced. Despite the low number of studies, anomalies of lymphocyte subset distribution was also described in ANCA-associated vasculitis, systemic scleroderma, and myositis. For now, flow cytometric analysis of lymphocyte subsets has focused mainly on specific subpopulations and is more useful for basic and translational research than for diagnostics in clinical practice. However, new modern methods such as mass cytometry and bioinformatics analyses may offer the possibility to simultaneously account for the relative proportions of multiple lymphocyte subsets and define a global profile in homogeneous groups of patients. The years to come will certainly incorporate such global lymphocyte profiling in reclassification of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Guillermo Carvajal Alegria
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France.,INSERM U1227, European University of Brest, Brest, France
| | - Pierre Gazeau
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France
| | - Sophie Hillion
- INSERM U1227, European University of Brest, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| | - Claire I Daïen
- Rheumatology Department, Lapeyronie Hospital and Montpellier I University, Montpellier, France.,UMR5535, CNRS, Institute of molecular genetic, Montpellier, France
| | - Divi Y K Cornec
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France. .,INSERM U1227, European University of Brest, Brest, France.
| |
Collapse
|
21
|
Rincón-Arévalo H, Villa-Pulgarín J, Tabares J, Rojas M, Vásquez G, Ramírez-Pineda JR, Castaño D, Yassin LM. Interleukin-10 production and T cell-suppressive capacity in B cell subsets from atherosclerotic apoE -/- mice. Immunol Res 2018; 65:995-1008. [PMID: 28744806 DOI: 10.1007/s12026-017-8939-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The evidence regarding the role of regulatory B cells (Breg) in atherosclerosis are scarce, and there are contradictory data about their atheroprotective properties. Due to the demonstrated protective function of Breg in different inflammatory diseases mainly through interleukin-10 (IL-10) production, the knowledge of their participation in atherosclerosis immunopathology would be very valuable. To further study which B cell subsets participate in IL-10 production and their regulatory role, splenocytes from apolipoprotein-E-deficient mice were evaluated by ex vivo and in vitro cultures. Atherosclerotic mice had increased frequency of IL-10+ B cells, which presented high CD1d, CD19, and IgM, but variable CD5, CD21, and CD23 expression. IL-10+ B cells were not enriched in B cell subsets previously reported as Breg. Increased frequency of IL-10+ B cells with transitional 1-like (T1-like) and follicular (FO) and reduced CD5+ and marginal zone (MZ) phenotypes were observed ex vivo. Increased frequency of IL-10+ B cells with T1-like and MZ, and decreased IL-10+ FO and T2 phenotypes were also observed in vitro. To determine regulatory capacity of B cells in the atherosclerotic model, each subset were co-cultured with CD4+CD25- T cells. CD5+, FO, MZ, and T1-like cells from atherosclerotic mice exhibited regulation in an IL-10-dependent manner. However, only FO cells decreased both frequency of interferon gamma (IFN-γ)+ and tumor necrosis factor alpha (TNF-α)+ and proliferation of T cells. Finally, splenocytes showed increased frequency of IFN-γ+ and TNF-α+ cells only when FO-depleted B cells were evaluated. These results suggest that mainly FO B cells can modulate in some level the inflammatory responses observed in atherosclerosis.
Collapse
Affiliation(s)
- Héctor Rincón-Arévalo
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Janny Villa-Pulgarín
- Grupo Inmunomodulación, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Jorge Tabares
- Grupo Inmunomodulación, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.,Unidad de Citometría, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - José R Ramírez-Pineda
- Grupo Inmunomodulación, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| | - Lina M Yassin
- Grupo de Investigaciones Biomédicas Uniremington, Corporación Universitaria Remington, Medellín, Colombia.
| |
Collapse
|
22
|
Liu LN, Li XM, Ye DQ, Pan HF. Emerging role of semaphorin-3A in autoimmune diseases. Inflammopharmacology 2018; 26:655-665. [PMID: 29696565 DOI: 10.1007/s10787-018-0484-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/16/2018] [Indexed: 12/24/2022]
Abstract
Autoimmune diseases (ADs) are featured by the body's immune responses being directed against its own tissues, resulting in prolonged inflammation and subsequent tissue damage. Currently, the exact pathogenesis of ADs remains not fully elucidated. Semaphorin-3A (Sema3A), a secreted member of semaphorin family, is a potent immunoregulator during all immune response stages. Sema3A has wide expression, such as in bone, connective tissue, kidney, neurons, and cartilage. Sema3A can downregulate ADs by suppressing the over-activity of both T-cell and B-cell autoimmunity. Moreover, Sema3A shows the ability to enhance T-cell and B-cell regulatory properties that control ADs, including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and systemic sclerosis. However, it can also induce ADs when overexpressed. Together, these data strongly suggest that Sema3A plays a pivotal role in ADs, and it may be a promising treatment target for these diseases. In the present review, we focus on the immunological functions of Sema3A and summarize recent studies on the involvement of Sema3A in the pathogenesis of ADs; the discoveries obtained from recent findings may translate into novel therapeutic agent for ADs.
Collapse
Affiliation(s)
- Li-Na Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology, Anhui Provincial Hospital, 17 Lujiang Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
23
|
Sokolov AV, Shmidt AA, Lomakin YA. B Cell Regulation in Autoimmune Diseases. Acta Naturae 2018; 10:11-22. [PMID: 30397522 PMCID: PMC6209408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Antibody-independent B cell effector functions play an important role in the development and suppression of the immune response. An extensive body of data on cytokine regulation of the immune response by B lymphocytes has been accumulated over the past fifteen years. In this review, we focused on the mechanisms of inflammatory response suppression by subpopulations of regulatory B cells in health and autoimmune pathologies.
Collapse
Affiliation(s)
- A. V. Sokolov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - A. A. Shmidt
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - Y. A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia ,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskay Str., 18, Kazan, 420008, Russia
| |
Collapse
|
24
|
Bocian K, Kiernozek E, Domagała-Kulawik J, Korczak-Kowalska G, Stelmaszczyk-Emmel A, Drela N. Expanding Diversity and Common Goal of Regulatory T and B Cells. I: Origin, Phenotype, Mechanisms. Arch Immunol Ther Exp (Warsz) 2017; 65:501-520. [PMID: 28477096 PMCID: PMC5688216 DOI: 10.1007/s00005-017-0469-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
Immunosuppressive activity of regulatory T and B cells is critical to limit autoimmunity, excessive inflammation, and pathological immune response to conventional antigens or allergens. Both types of regulatory cells are intensively investigated, however, their development and mechanisms of action are still not completely understood. Both T and B regulatory cells represent highly differentiated populations in terms of phenotypes and origin, however, they use similar mechanisms of action. The most investigated CD4+CD25+ regulatory T cells are characterized by the expression of Foxp3+ transcription factor, which is not sufficient to maintain their lineage stability and suppressive function. Currently, it is considered that specific epigenetic changes are critical for defining regulatory T cell stability in the context of their suppressive function. It is not yet known if similar epigenetic regulation determines development, lineage stability, and function of regulatory B cells. Phenotype diversity, confirmed or hypothetical developmental pathways, multiple mechanisms of action, and role of epigenetic changes in these processes are the subject of this review.
Collapse
Affiliation(s)
- Katarzyna Bocian
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | - Grażyna Korczak-Kowalska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Nadzieja Drela
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Mavropoulos A, Varna A, Zafiriou E, Liaskos C, Alexiou I, Roussaki-Schulze A, Vlychou M, Katsiari C, Bogdanos DP, Sakkas LI. IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNγ-producing T cells. Clin Immunol 2017; 184:33-41. [DOI: 10.1016/j.clim.2017.04.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/27/2017] [Indexed: 12/24/2022]
|
26
|
Peripheral CD19 hi B cells exhibit activated phenotype and functionality in promoting IgG and IgM production in human autoimmune diseases. Sci Rep 2017; 7:13921. [PMID: 29066741 PMCID: PMC5655037 DOI: 10.1038/s41598-017-14089-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/27/2017] [Indexed: 01/25/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) and pemphigus are two representative autoimmune diseases driven by pathogenic autoantibody systemically and organ-specifically, respectively. Given the involvement of antibody in the pathogenesis, B cells are inclined to differentiate and function in an abnormal activation model. Here we defined a unique CD19hi B cell population existing in the periphery of SLE and pemphigus patients as well as in human tonsils. CD19hi B cells could be induced in vitro after co-culturing fully activated CD4+ T cells with autologous B cells. They expressed high levels of HLA-DR, IgG, IgM and multiple ligands of costimulatory molecules with the capacity to produce extra IgG and IgM. Transcirptome assay revealed that genes involved in B-cell activation and differentiation were up-regulated in CD19hi B cells. Antibody blockade experiments showed that the interactions between costimulatory molecules contributed to CD19hi B-cell generation and IgG/IgM production. What is more, frequencies of peripheral CD19hi B cells from SLE and pemphigus patients were correlated with serum total IgG and IgM, but not with autoantigen-specific antibodies and disease severity. Therefore, our investigation demonstrates that CD19hi B cells might contain B cell precursors for terminal differentiation and contribute to total IgG/IgM production in human autoimmune diseases.
Collapse
|
27
|
Abstract
The proper restraint of the destructive potential of the immune system is essential for maintaining health. Regulatory T (Treg) cells ensure immune homeostasis through their defining ability to suppress the activation and function of other leukocytes. The expression of the transcription factor forkhead box protein P3 (FOXP3) is a well-recognized characteristic of Treg cells, and FOXP3 is centrally involved in the establishment and maintenance of the Treg cell phenotype. In this Review, we summarize how the expression and activity of FOXP3 are regulated across multiple layers by diverse factors. The therapeutic implications of these topics for cancer and autoimmunity are also discussed.
Collapse
|
28
|
Sakkas LI. Regulatory B cells in autoimmune rheumatic diseases. Mediterr J Rheumatol 2017; 28:75-79. [PMID: 32185261 PMCID: PMC7046031 DOI: 10.31138/mjr.28.2.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/14/2017] [Accepted: 02/25/2017] [Indexed: 01/15/2023] Open
Abstract
Background:
Regulatory B cells (regulatory B cells, Breg cells) in recent years have been shown to be important immunoregulatory factors.
Aim:
To review the role of Breg cells in autoimmune rheumatic diseases.
Methods:
This descriptional review was carried out after research on PubMed using the keywords “Bregs and rheumatoid arthritis”, “systemic lupus erythematosus”, “Sjögren’s syndrome”, “systemic sclerosis”, “vasculitis”, and “dermatomyositis”.
Results:
Breg cells have an inhibitory effect on pro-inflammatory Th1 and Th17 cells and prevent the development of autoimmune diseases. Breg cells mediate their effects through interleukin-10 (IL-10, IL-10+Breg cells), but recently other Breg cells have been recognized that mediate their effects through IL-35 (IL-35+Breg cells), or through transforming growth factor-β (TGFβ, TGFβ+Breg cells). In experimental models of autoimmune diseases, Breg cells are decreased, and when expanded ex vivo and re-infused back into animals, they ameliorate disease. In humans, IL-10+Breg cells are decreased in active autoimmune diseases, such as rheumatoid arthritis, ANCA-associated vasculitis, and systemic sclerosis, and may increase to normal levels in disease remission.
Conclusions:
The deficiency of IL-10+Breg cells during active autoimmune rheumatic disease suggests that Breg cells may be used as biomarkers and be a possible therapeutic target in these diseases.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
29
|
Significant decrease in peripheral regulatory B cells is an immunopathogenic feature of dermatomyositis. Sci Rep 2016; 6:27479. [PMID: 27270362 PMCID: PMC4895339 DOI: 10.1038/srep27479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022] Open
Abstract
Regulatory B cells (Bregs) are critical in maintaining self-tolerance. Their role in dermatomyositis (DM), an autoimmune disease characterized by inappropriate regulation of hyperactivated B and T cells, has not been clearly defined. In the current study, we performed flow cytometry analysis of studied CD19+ CD24highCD38high Breg subpopulations in blood samples from 30 patients with DM, 37 diseased controls and 23 healthy controls. A significant decrease was observed in the frequency of Bregs in DM patients compared to that in diseased controls (p < 0.0001) and in healthy controls (p < 0.0001). And the prevalence of Bregs deficiency (defined as Bregs/B cells < 0.50% in this study) in DM patients went as high as 73.3%. Furthermore, DM patients with positive myositis specific autoantibody often had lower Bregs levels than negative patients (p = 0.036), and lower level of Bregs was also found in DM patients with interstitial lung disease than in DM patients without (p = 0.041). In a follow-up study, seven DM patients were considered to be in remission stage, and their Breg levels were found to have significantly increased after treatment (p = 0.022). Our research revealed that Breg deficiency is an immunopathogenic feature of DM and provided insights into the design of new immunotherapy target for DM clinical interventions.
Collapse
|