1
|
Cheng KO, Montaño DE, Zelante T, Dietschmann A, Gresnigt MS. Inflammatory cytokine signalling in vulvovaginal candidiasis: a hot mess driving immunopathology. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae010. [PMID: 39234208 PMCID: PMC11374039 DOI: 10.1093/oxfimm/iqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
Protective immunity to opportunistic fungal infections consists of tightly regulated innate and adaptive immune responses that clear the infection. Immune responses to infections of the vaginal mucosa by Candida species are, however, an exception. In the case of vulvovaginal candidiasis (VVC), the inflammatory response is associated with symptomatic disease, rather than that it results in pathogen clearance. As such VVC can be considered an inflammatory disease, which is a significant public health problem due to its predominance as a female-specific fungal infection. Particularly, women with recurrent VVC (RVVC) suffer from a significant negative impact on their quality of life and mental health. Knowledge of the inflammatory pathogenesis of (R)VVC may guide more effective diagnostic and therapeutic options to improve the quality of life of women with (R)VVC. Here, we review the immunopathogenesis of (R)VVC describing several elements that induce an inflammatory arson, starting with the activation threshold established by vaginal epithelial cells that prevent unnecessary ignition of inflammatory responses, epithelial and inflammasome-dependent immune responses. These inflammatory responses will drive neutrophil recruitment and dysfunctional neutrophil-mediated inflammation. We also review the, sometimes controversial, findings on the involvement of adaptive and systemic responses. Finally, we provide future perspectives on the potential of some unexplored cytokine axes and discuss whether VVC needs to be subdivided into subgroups to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Kar On Cheng
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1, Perugia, 06132, Italy
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| |
Collapse
|
2
|
Croquette M, Faugeroux A, Fonlupt C, Godet J, Frouin É, Garcia M, Bernard FX, Cordier-Dirikoc S, Pedretti N, Larid G, Favot L, Roblot P, Boutin D, Hainaut-Wierzbicka E, Heymann D, Lecron JC, Morel F, Jégou JF. IL-34 Exerts Anti-Inflammatory Activities on Keratinocytes and Is Downregulated in Psoriatic-Inflamed Skin. J Invest Dermatol 2023; 143:2521-2524.e5. [PMID: 37315881 DOI: 10.1016/j.jid.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/16/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Affiliation(s)
- Magali Croquette
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France; Service de Médecine Interne, CHU de Poitiers, Poitiers, France; Unité de Médecine Vasculaire, CHU de Poitiers, Poitiers, France
| | - Alicia Faugeroux
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France; QIMA Life Sciences, Bioalternatives, Gençay, France
| | - Clémence Fonlupt
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France; Service de Médecine Interne, CHU de Poitiers, Poitiers, France
| | - Julie Godet
- Service d'Anatomopathologie, CHU de Poitiers, Poitiers, France
| | - Éric Frouin
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France; Service d'Anatomopathologie, CHU de Poitiers, Poitiers, France
| | - Martine Garcia
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
| | - François-Xavier Bernard
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France; QIMA Life Sciences, Bioalternatives, Gençay, France
| | | | | | - Guillaume Larid
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
| | - Laure Favot
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
| | - Pascal Roblot
- Service de Médecine Interne, CHU de Poitiers, Poitiers, France
| | - Damien Boutin
- Service de Dermatologie, CHU de Poitiers, Poitiers, France
| | - Ewa Hainaut-Wierzbicka
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France; Service de Dermatologie, CHU de Poitiers, Poitiers, France
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR6286, Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Jean-Claude Lecron
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France; Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Franck Morel
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France
| | - Jean-François Jégou
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Poitiers, France.
| |
Collapse
|
3
|
Boruah P, Deka N. Interleukin 34 in Disease Progressions: A Comprehensive Review. Crit Rev Immunol 2023; 43:25-43. [PMID: 37943151 DOI: 10.1615/critrevimmunol.2023050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
IL-34, a cytokine, discovered a decade before and is known to be a colony stimulating factor CSF-1 receptor (CSF-1R) ligand. Along with CSF-1R, it also interacts with syndecan-1 receptors and protein-tyrosine phosphatase (PTP-ζ). Hence, IL-34 takes part in a number of biological activities owing to its involvement in different signaling pathways. This review was done to analyze the recent studies on the functions of IL-34 in progression of diseases. The role of IL-34 under the physiological and pathological settings is studied by reviewing current data. In the last ten years, studies suggested that the IL-34 was involved in the regulation of morbid states such as inflammatory diseases, infections, transplant rejection, autoimmune diseases, neurologic diseases, and cancer. In general, the involvement of IL-34 is observed in many serious health ailments like metabolic diseases, heart diseases, infections and even cancer. As such, IL-34 can be regarded as a therapeutic target, potential biomarker or as a therapeutic tool, which ought to be assessed in future research activities.
Collapse
Affiliation(s)
- Prerona Boruah
- Shanghai Veterinary Research Institute, Shanghai, China; School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, India
| | - Nikhita Deka
- Department of Life Sciences, Dibrugarh University, Assam, India
| |
Collapse
|
4
|
Implications of fractalkine on glial function, ablation and glial proteins/receptors/markers—understanding its therapeutic usefulness in neurological settings: a narrative review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Fractalkine (CX3CL1) is a chemokine predominantly released by neurons. As a signaling molecule, CX3CL1 facilitates talk between neurons and glia. CX3CL1 is considered as a potential target which could alleviate neuroinflammation. However, certain controversial results and ambiguous role of CX3CL1 make it inexorable to decipher the overall effects of CX3CL1 on the physiopathology of glial cells.
Main body of the abstract
Implications of cross-talk between CX3CL1 and different glial proteins/receptors/markers will give a bird eye view of the therapeutic significance of CX3CL1. Keeping with the need, this review identifies the effects of CX3CL1 on glial physiopathology, glial ablation, and gives a wide coverage on the effects of CX3CL1 on certain glial proteins/receptors/markers.
Short conclusion
Pinpoint prediction of the therapeutic effect of CX3CL1 on neuroinflammation needs further research. This is owing to certain obscure roles and implications of CX3CL1 on different glial proteins/receptors/markers, which are crucial under neurological settings. Further challenges are imposed due to the dichotomous roles played by CX3CL1. The age-old chemokine shows many newer scopes of research in near future. Thus, overall assessment of the effect of CX3CL1 becomes crucial prior to its administration in neuroinflammation.
Collapse
|
5
|
Almarghlani A, Settem RP, Croft AJ, Metcalfe S, Giangreco M, Kay JG. Interleukin-34 Permits Porphyromonas gingivalis Survival and NF-κB p65 Inhibition in Macrophages. Mol Oral Microbiol 2022; 37:109-121. [PMID: 35576119 DOI: 10.1111/omi.12366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34 is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34 derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, DC-SIGN was found to have the largest variation between IL-34 and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34 derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ammar Almarghlani
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.,Current Address: Department of Periodontics, Faculty of Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Rajendra P Settem
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Andrew J Croft
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Sarah Metcalfe
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Matthew Giangreco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Jason G Kay
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| |
Collapse
|
6
|
Wang Y, Xu H, Chen N, Yang J, Zhou H. LncRNA: A Potential Target for Host-Directed Therapy of Candida Infection. Pharmaceutics 2022; 14:pharmaceutics14030621. [PMID: 35335994 PMCID: PMC8954347 DOI: 10.3390/pharmaceutics14030621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Despite various drugs work against Candida, candidiasis represents clinical management challenges worldwide due to the rising incidence and recurrence rate, as well as epidemics, of new drug-resistant pathogens. Recent insights into interactions between Candida and hosts contribute to exploring novel therapeutic strategies, termed host-directed therapies (HDTs). HDTs are viable adjuncts with good efficacy for the existing standard antifungal regimens. However, HDTs induce other response unintendedly, thus requiring molecular targets with highly specificity. Long noncoding RNAs (lncRNAs) with highly specific expression patterns could affect biological processes, including the immune response. Herein, this review will summarize recent advances of HDTs based on the Candida–host interaction. Especially, the findings and application strategies of lncRNAs related to the host response are emphasized. We propose it is feasible to target lncRNAs to modulate the host defense during Candida infection, which provides a new perspective in identifying options of HDTs for candidiasis.
Collapse
|
7
|
Otsuka R, Wada H, Seino KI. IL-34, the rationale of its expression in physiological and pathological condition. Semin Immunol 2021; 54:101517. [PMID: 34774392 DOI: 10.1016/j.smim.2021.101517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
IL-34 is a cytokine that shares one of its receptors with CSF-1. It has long been thought that CSF-1 receptor (CSF-1R) receives signals only from CSF-1, but the identification of IL-34 reversed this stereotype. Regardless of low structural homology, IL-34 and CSF-1 emanate similar downstream signaling through binding to CSF-1R and provoke similar but different physiological events afterward. In addition to CSF-1R, protein-tyrosine phosphatase (PTP)-ζ and Syndecan-1 were also identified as IL-34 receptors and shown to be at play. Although IL-34 expression is limited to particular tissues in physiological conditions, previous studies have revealed that it is upregulated in several diseases. In cancer, IL-34 is produced by several types of tumor cells and contributes to therapy resistance and disease progression. A recent study has demonstrated that tumor cell-derived IL-34 abrogates immunotherapy efficacy through myeloid cell remodeling. On the other hand, IL-34 expression is downregulated in some brain and dermal disorders. Despite accumulating insights, our understanding of IL-34 may not be even close to its nature. This review aims to comprehensively describe the physiological and pathological roles of IL-34 based on its similarity and differences to CSF-1 and discuss the rationale for its disease-dependent expression pattern.
Collapse
Affiliation(s)
- Ryo Otsuka
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Haruka Wada
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Ken-Ichiro Seino
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan.
| |
Collapse
|
8
|
Shah H, Shakir HA, Safi SZ, Ali A. Hippophae rhamnoides mediate gene expression profiles against keratinocytes infection of Staphylococcus aureus. Mol Biol Rep 2021; 48:1409-1422. [PMID: 33608810 DOI: 10.1007/s11033-021-06221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
|
9
|
Renert-Yuval Y, Del Duca E, Pavel AB, Fang M, Lefferdink R, Wu J, Diaz A, Estrada YD, Canter T, Zhang N, Wagner A, Chamlin S, Krueger JG, Guttman-Yassky E, Paller AS. The molecular features of normal and atopic dermatitis skin in infants, children, adolescents, and adults. J Allergy Clin Immunol 2021; 148:148-163. [PMID: 33453290 DOI: 10.1016/j.jaci.2021.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although atopic dermatitis (AD) often presents in infancy and persists into adulthood, comparative characterization of AD skin among different pediatric age groups is lacking. OBJECTIVE We sought to define skin biopsy profiles of lesional and nonlesional AD across different age groups (0-5-year-old infants with disease duration <6 months, 6-11-year-old children, 12-17-year-old adolescents, ≥18-year-old adults) versus age-appropriate controls. METHODS We performed gene expression analyses by RNA-sequencing and real-time PCR (RT-PCR) and protein expression analysis using immunohistochemistry. RESULTS TH2/TH22 skewing, including IL-13, CCL17/thymus and activation-regulated chemokine, IL-22, and S100As, characterized the common AD signature, with a global pathway-level enrichment across all ages. Nevertheless, specific cytokines varied widely. For example, IL-33, IL-1RL1/IL-33R, and IL-9, often associated with early atopic sensitization, showed greatest upregulations in infants. TH17 inflammation presented a 2-peak curve, with highest increases in infants (including IL-17A and IL-17F), followed by adults. TH1 polarization was uniquely detected in adults, even when compared with adolescents, with significant upregulation in adults of IFN-γ and CXCL9/CXCL10/CXCL11. Although all AD age groups had barrier abnormalities, only adults had significant decreases in filaggrin expression. Despite the short duration of the disease, infant AD presented robust downregulations of multiple barrier-related genes in both lesional and nonlesional skin. Clinical severity scores significantly correlated with TH2/TH22-related markers in all pediatric age groups. CONCLUSIONS The shared signature of AD across ages is TH2/TH22-skewed, yet differential expression of specific TH2/TH22-related genes, other TH pathways, and barrier-related genes portray heterogenetic, age-specific molecular fingerprints.
Collapse
Affiliation(s)
- Yael Renert-Yuval
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY; Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Dermatology, University Magna Graecia, Catanzaro, Italy
| | - Ana B Pavel
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Biomedical Engineering, University of Mississippi, Oxford, Miss
| | - Milie Fang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Rachel Lefferdink
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Jianni Wu
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aisleen Diaz
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yeriel D Estrada
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Talia Canter
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ning Zhang
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Annette Wagner
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Sarah Chamlin
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY; Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
10
|
Moses RL, Dally J, Lundy FT, Langat M, Kiapranis R, Tsolaki AG, Moseley R, Prescott TA. Lepiniopsis ternatensis sap stimulates fibroblast proliferation and down regulates macrophage TNF-α secretion. Fitoterapia 2020; 141:104478. [DOI: 10.1016/j.fitote.2020.104478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
|
11
|
Ge Y, Huang M, Yao YM. Immunomodulation of Interleukin-34 and its Potential Significance as a Disease Biomarker and Therapeutic Target. Int J Biol Sci 2019; 15:1835-1845. [PMID: 31523186 PMCID: PMC6743287 DOI: 10.7150/ijbs.35070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-34 is a cytokine discovered a few years ago and identified as the second colony-stimulating factor (CSF)-1 receptor (CSF-1R) ligand. Although CSF-1 and IL-34 share the same receptor through which they trigger similar effects, IL-34 also binds to receptors protein-tyrosine phosphatase (PTP)-ζ and syndecan-1. Thus, IL-34 is involved in several signaling pathways and participates in a wide array of biological actions. This review analyzes current studies on the role of IL-34 under physiological and pathological conditions, and explores its potential significance as a disease biomarker and therapeutic target. In physiological conditions, IL-34 expression is restricted to the microglia and Langerhans cells, with a fundamental role in cellular differentiation, adhesion and migration, proliferation, metabolism, and survival. It is released in response to inflammatory stimuli, such as pathogen-associated molecular patterns or pro-inflammatory cytokines, with effects over various immune cells, including monocytes, macrophages, and regulatory T cells that shape the immune microenvironment. Over the past decade, accumulating evidence has suggested a potent immune regulation of IL-34 in pathological states such as autoimmune diseases, cancer, transplant rejection, neurologic diseases, infections, and inflammatory diseases. Importantly, IL-34 may hold great promise for acting as a biomarker for monitoring disease severity and progression, and may serve as a new therapeutic target for the treatment of several diseases in clinical settings.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China.,Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.,State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
12
|
Jiang HH, Zhang YJ, Sun YZ, Qi RQ, Chen HD, Gao XH. Cell wall mannoprotein of Candida albicans polarizes macrophages and affects proliferation and apoptosis through activation of the Akt signal pathway. Int Immunopharmacol 2019; 72:308-321. [PMID: 31005041 DOI: 10.1016/j.intimp.2019.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Candida albicans is a commensal fungus that associates with human hosts. Under normal circumstances this interaction does not produce any severe life-threatening disease, as macrophages of the innate immune system will result in its clearance. However, disorders may arise in immunosuppressed individuals. To understand the bioactivity of Candida albicans cell wall polysaccharides, which represent an important component of its function, mannoprotein from this fungus was extracted, purified and analyzed. Mannoprotein with α-(1,2) and α-(1,6) linkages was investigated with use of HPLC and NMR. Co-incubation of mannoprotein with macrophages resulted in a mannoprotein with the potential to polarize macrophages to M1 and promote phagocytosis/microbial killing ability thus increasing the clearance of pathogens through Akt2. Moreover, mannoprotein within the cell wall promoted cell proliferation and inhibited apoptosis by activation of the Akt signaling pathway. Collectively, α-(1,6)(1,2)-mannoprotein, one of the five polysaccharides extracted from the cell wall of Candida albicans, demonstrates immune-enhancing effects by activation of the Akt signaling pathway. These findings provide important new insights into the biological effects of polysaccharides on macrophages. Such information can then serve as the foundation for the development of novel anti-fungal medications.
Collapse
Affiliation(s)
- Hang-Hang Jiang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, PR China; Key Lab of Dermatology, Ministry of Education and Public Health, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang 110001, PR China
| | - Yu-Jing Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, PR China; Key Lab of Dermatology, Ministry of Education and Public Health, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang 110001, PR China
| | - Yu-Zhe Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, PR China; Key Lab of Dermatology, Ministry of Education and Public Health, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang 110001, PR China
| | - Rui-Qun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, PR China; Key Lab of Dermatology, Ministry of Education and Public Health, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang 110001, PR China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, PR China; Key Lab of Dermatology, Ministry of Education and Public Health, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang 110001, PR China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, PR China; Key Lab of Dermatology, Ministry of Education and Public Health, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang 110001, PR China.
| |
Collapse
|
13
|
Ge Y, Huang M, Zhu XM, Yao YM. Biological functions and clinical implications of interleukin-34 in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:39-63. [PMID: 31997772 DOI: 10.1016/bs.apcsb.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-34 is a recently discovered cytokine and ligand of the colony-stimulating factor (CSF)-1 receptor. Although CSF-1 and IL-34 share similar biological properties, their expression patterns and downstream signaling pathways are distinct. IL-34 can influence differentiation and has functions in multiple cell types (e.g., dendritic cells, monocytes, macrophages). In the pathological conditions, IL-34 is induced by pro-inflammatory stimuli (e.g., cytokines, pathogen-associated molecular patterns, and infection). Current evidence shows that IL-34 is a critical player in inflammatory response and is involved in the pathogenesis of inflammatory autoimmune dysfunction. Therefore, IL-34 may be a promising clinical biomarker and therapeutic target for treating inflammatory related disorders. In this article, we review the advances in biological functions of IL-34 and our understanding of its role in the development of inflammatory diseases as well as therapeutic applications.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiao-Mei Zhu
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
14
|
Sanches MD, Mimura LAN, Oliveira LRC, Ishikawa LLW, Garces HG, Bagagli E, Sartori A, Kurokawa CS, Fraga-Silva TFC. Differential Behavior of Non- albicans Candida Species in the Central Nervous System of Immunocompetent and Immunosuppressed Mice. Front Microbiol 2019; 9:2968. [PMID: 30671026 PMCID: PMC6332706 DOI: 10.3389/fmicb.2018.02968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/18/2018] [Indexed: 12/16/2022] Open
Abstract
The genus Candida includes commensal fungi that can cause local and systemic infections, frequently involving vital organs as the central nervous system (CNS). Candida spp. occupy the fourth place among infections that affect the CNS. Although the incidence of Candida albicans is decreasing among patients under immunosuppressive therapies, the incidence of non-albicans Candida is increasing. In this context, the objective of this work was to evaluate the ability of non-albicans Candida species to spread to the CNS of immunocompetent and immunosuppressed mice. Adult female C57BL/6 mice were treated with prednisolone, intravenously infected with Candida glabrata, Candida krusei and Candida parapsilosis yeasts and then evaluated at the 3rd and 14th days after infection. All Candida species disseminated to the brain from immunocompetent animals and induced local inflammation at the third day post-infection. The immunosuppression resulted in body weight loss, leukopenia and reduced IL-2 production by spleen cell cultures. Higher fungal loads were recovered from the CNS of immunosuppressed mice. Inflammatory infiltration associated to a Th1 subset profile was higher in brain samples from C. krusei immunosuppressed mice compared with immunocompetent ones. Additionally, C. krusei was able to transform into pseudohypha inside microglia in vitro infected cells and also to induce elevated nitric oxide production. Altogether, these results indicate that C. glabrata, C. krusei and C. parapsilosis are able to disseminate to the CNS and promote local inflammation in both immunocompetent and immunosuppressed mice. C. krusei displayed a distinct behavior at the CNS triggering a local Th1 profile. The possible contribution of these non-albicans Candida species to other CNS pathologies as multiple sclerosis, Parkinson’s and Alzheimer’s diseases deserves further attention.
Collapse
Affiliation(s)
| | - Luiza A N Mimura
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | - Hans G Garces
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Eduardo Bagagli
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Alexandrina Sartori
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | |
Collapse
|
15
|
Baghdadi M, Umeyama Y, Hama N, Kobayashi T, Han N, Wada H, Seino KI. Interleukin-34, a comprehensive review. J Leukoc Biol 2018; 104:931-951. [PMID: 30066957 DOI: 10.1002/jlb.mr1117-457r] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
IL-34 is a novel cytokine that was identified in 2008 in a comprehensive proteomic analysis as a tissue-specific ligand of CSF-1 receptor (CSF-1R). IL-34 exists in all vertebrates including fish, amphibians, birds, and mammals, showing high conservation among species. Structurally, IL-34 belongs to the short-chain helical hematopoietic cytokine family but shows no apparent consensus structural domains, motifs, or sequence homology with other cytokines. IL-34 is synthesized as a secreted homodimeric glycoprotein that binds to the extracellular domains of CSF-1R and receptor-type protein-tyrosine phosphatase-zeta (PTP-ζ) in addition to the chondroitin sulfate chains of syndecan-1. These interactions result in activating several signaling pathways that regulate major cellular functions, including proliferation, differentiation, survival, metabolism, and cytokine/chemokine expression in addition to cellular adhesion and migration. In the steady state, IL-34 contributes to the development and maintenance of specific myeloid cell subsets in a tissue-specific manner: Langerhans cells in the skin and microglia in the brain. In pathological conditions, changes in IL-34 expression-increased or decreased-are involved in disease pathogenesis and correlate with progression, severity, and chronicity. One decade after its discovery, IL-34 has been introduced as a newcomer to the big family of interleukins with specific physiological functions, critical pathological roles, and promising clinical applications in disease diagnosis and treatment. In this review, we celebrate the 10th anniversary of IL-34 discovery, introducing its biological characteristics, and discussing the importance of IL-34 signaling network in health and disease.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yui Umeyama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Truong AD, Hong Y, Lee J, Lee K, Kil DY, Lillehoj HS, Hong YH. Interleukin-34 Regulates Th1 and Th17 Cytokine Production by Activating Multiple Signaling Pathways through CSF-1R in Chicken Cell Lines. Int J Mol Sci 2018; 19:ijms19061665. [PMID: 29874806 PMCID: PMC6032434 DOI: 10.3390/ijms19061665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/19/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-34 (IL-34) is a newly recognized cytokine with functions similar to macrophage colony-stimulating factor 1. It is expressed in macrophages and fibroblasts, where it induces cytokine production; however, the mechanism of chicken IL-34 (chIL-34) signaling has not been identified to date. The aim of this study was to analyze the signal transduction pathways and specific biological functions associated with chIL-34 in chicken macrophage (HD11) and fibroblast (OU2) cell lines. We found that IL-34 is a functional ligand for the colony-stimulating factor receptor (CSF-1R) in chicken cell lines. Treatment with chIL-34 increased the expression of Th1 and Th17 cytokines through phosphorylation of tyrosine and serine residues in Janus kinase (JAK) 2, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription (STAT) 1, STAT3, and Src homology 2-containing tyrosine phosphatase 2 (SHP-2), which also led to phosphorylation of NF-κB1, p-mitogen-activated protein kinase kinase kinase 7 (TAK1), MyD88, suppressor of cytokine signaling 1 (SOCS1), and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Taken together, these results suggest that chIL-34 functions by binding to CSF-1R and activating the JAK/STAT, nuclear factor κ B (NF-κB), and mitogen-activated protein kinase signaling pathways; these signaling events regulate cytokine expression and suggest roles for chIL-34 in innate and adaptive immunity.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam.
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| |
Collapse
|
17
|
Zhou J, Sun X, Zhang J, Yang Y, Chen D, Cao J. IL-34 regulates IL-6 and IL-8 production in human lung fibroblasts via MAPK, PI3K-Akt, JAK and NF-κB signaling pathways. Int Immunopharmacol 2018; 61:119-125. [PMID: 29857241 DOI: 10.1016/j.intimp.2018.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/15/2023]
Abstract
IL-34 plays diverse roles in disease due to its inflammatory and immunosuppressive properties. Elevated IL-34 expression has been observed in lung cancers and pulmonary infections although its role is unclear. We found that IL-34 addition to primary lung fibroblasts significantly promoted IL-6 and IL-8 expression in a dose and time dependent manner. These effects were reversed when JAK, NF-κB, Akt and p38 inhibitors were included before IL-34 addition. Protein phosphorylation in these pathways was also observed through western-blotting. Stimulation of human lung fibroblasts with IL-34 in combination with TNF-α, IL-17A and IL-4 enhanced inflammatory cytokine production. Our data confirmed the inflammatory effect of IL-34 on human lung fibroblasts and suggested that the IL-34/CSF-1R axis may be a novel therapeutic target in pulmonary disease.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Sun
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Juan Zhang
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dapeng Chen
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Martinez G, Majster M, Bjurshammar N, Johannsen A, Figueredo C, Boström E. Salivary Colony Stimulating Factor-1 and Interleukin-34 in Periodontal Disease. J Periodontol 2017; 88:e140-e149. [DOI: 10.1902/jop.2017.170081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- G.L. Martinez
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
- Department of Periodontology, Faculty of Odontology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - M. Majster
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
| | - N. Bjurshammar
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
| | - A. Johannsen
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
| | - C.M. Figueredo
- Department of Periodontology, Faculty of Odontology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - E.A. Boström
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
19
|
Guillonneau C, Bézie S, Anegon I. Immunoregulatory properties of the cytokine IL-34. Cell Mol Life Sci 2017; 74:2569-2586. [PMID: 28258292 PMCID: PMC11107603 DOI: 10.1007/s00018-017-2482-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Abstract
Interleukin-34 is a cytokine with only partially understood functions, described for the first time in 2008. Although IL-34 shares very little homology with CSF-1 (CSF1, M-CSF), they share a common receptor CSF-1R (CSF-1R) and IL-34 has also two distinct receptors (PTP-ζ) and CD138 (syndecan-1). To make the situation more complex, IL-34 has also been shown as pairing with CSF-1 to form a heterodimer. Until now, studies have demonstrated that this cytokine is released by some tissues that differ to those where CSF-1 is expressed and is involved in the differentiation and survival of macrophages, monocytes, and dendritic cells in response to inflammation. The involvement of IL-34 has been shown in areas as diverse as neuronal protection, autoimmune diseases, infection, cancer, and transplantation. Our recent work has demonstrated a new and possible therapeutic role for IL-34 as a Foxp3+ Treg-secreted cytokine mediator of transplant tolerance. In this review, we recapitulate most recent findings on IL-34 and its controversial effects on immune responses and address its immunoregulatory properties and the potential of targeting this cytokine in human.
Collapse
Affiliation(s)
- Carole Guillonneau
- INSERM UMR1064, Center for Research in Transplantation and Immunology-ITUN, Université de Nantes, 30 Bd. Jean Monnet, 44093, Nantes Cedex 01, France.
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.
| | - Séverine Bézie
- INSERM UMR1064, Center for Research in Transplantation and Immunology-ITUN, Université de Nantes, 30 Bd. Jean Monnet, 44093, Nantes Cedex 01, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Ignacio Anegon
- INSERM UMR1064, Center for Research in Transplantation and Immunology-ITUN, Université de Nantes, 30 Bd. Jean Monnet, 44093, Nantes Cedex 01, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
20
|
Zhou RP, Wu XS, Xie YY, Dai BB, Hu W, Ge JF, Chen FH. Functions of interleukin-34 and its emerging association with rheumatoid arthritis. Immunology 2016; 149:362-373. [PMID: 27550090 DOI: 10.1111/imm.12660] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic, synovial inflammation affecting multiple joints, finally leading to extra-articular lesions for which limited effective treatment options are currently available. Interleukin-34 (IL-34), recently discovered as the second colony-stimulating factor-1 receptor (CSF-1R) ligand, is a newly discovered cytokine. Accumulating evidence has disclosed crucial roles of IL-34 in the proliferation and differentiation of mononuclear phagocyte lineage cells, osteoclastogenesis and inflammation. Recently, IL-34 was detected at high levels in patients with active RA and in experimental models of inflammatory arthritis. Blockade of functional IL-34 with a specific monoclonal antibody can reduce the severity of inflammatory arthritis, suggesting that targeting IL-34 or its receptors may constitute a novel therapeutic strategy for autoimmune diseases such as RA. Here, we have comprehensively discussed the structure and biological functions of IL-34, and reviewed recent advances in our understanding of the emerging role of IL-34 in the development of RA as well as its potential utility as a therapeutic target.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiao-Shan Wu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Ya-Ya Xie
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Bei-Bei Dai
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Wei Hu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Fei-Hu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China. , .,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China. ,
| |
Collapse
|
21
|
Agustinho DP, de Oliveira MA, Tavares AH, Derengowski L, Stolz V, Guilhelmelli F, Mortari MR, Kuchler K, Silva-Pereira I. Dectin-1 is required for miR155 upregulation in murine macrophages in response to Candida albicans. Virulence 2016; 8:41-52. [PMID: 27294852 DOI: 10.1080/21505594.2016.1200215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The commensal fungal pathogen Candida albicans is a leading cause of lethal systemic infections in immunocompromised patients. One of the main mechanisms of host immune evasion and virulence by this pathogen is the switch from yeast form to hyphal growth morphologies. Micro RNAs (miRNAs), a small regulatory non-coding RNA, has been identified as an important part of the immune response to a wide variety of pathogens. In general, miRNAs act by modulating the intensity of inflammatory responses. miRNAs act by base-paring binding to specific sequences of target mRNAs, generally causing their silencing through mRNA degradation or translational repression. To study the impact of C. albicans cell morphology upon host miRNA expression, we investigated the differential modulation of 9 different immune response-related miRNAs in primary murine bone marrow-derived macrophages (BMDMs) exposed to either yeasts or hyphal forms of Candida albicans. Here, we show that the different growth morphologies induce distinct miRNA expression patterns in BMDMs. Interestingly, our data suggest that the C-Type lectin receptor Dectin-1 is a major PRR that orchestrates miR155 upregulation in a Syk-dependent manner. Our results suggest that PRR-mediating signaling events are key drivers of miRNA-mediated gene regulation during fungal pathogenesis.
Collapse
Affiliation(s)
- Daniel Paiva Agustinho
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Marco Antônio de Oliveira
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Aldo Henrique Tavares
- b Departamento de Biologia Celular , Laboratório de Imunologia Aplicada, Instituto de Biologia, Universidade de Brasília , Brasília , DF , Brasil
| | - Lorena Derengowski
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Valentina Stolz
- c Department of Molecular Genetics , Max F. Perutz Laboratories, Medical University of Vienna , Vienna , Austria
| | - Fernanda Guilhelmelli
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Márcia Renata Mortari
- d Departamento de Ciências Fisiológicas , Laboratório de Neurofarmacologia, Universidade de Brasília , Brasília , DF , Brasil
| | - Karl Kuchler
- c Department of Molecular Genetics , Max F. Perutz Laboratories, Medical University of Vienna , Vienna , Austria
| | - Ildinete Silva-Pereira
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| |
Collapse
|
22
|
Yun Z, Jianping P. [Progress on the role of Toll-like receptors in Candida albicans infections]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2016; 45:302-7. [PMID: 27651197 PMCID: PMC10396928 DOI: 10.3785/j.issn.1008-9292.2016.05.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/20/2016] [Indexed: 06/06/2023]
Abstract
Toll like receptors (TLRs) are expressed mainly on innate immunocytes such as dendritic cells and macrophages, and may have the potential to recognize and bind to pathogen-associated molecular patterns (PAMPs) from Candida albicans, thereby triggering the downstream signals. The genetic polymorphism of TLRs is associated with susceptibility to Candida albicans. The activation of TLRs by PAMPs from Candida albicans can induce the production of proinflammatory cytokines that play key roles in the anti-infection of Candida albicans. However, in order to evade the immune response of host,Candida albicans can also change its bacterial phase. Understanding of the interaction between TLRs and Candida albicans will provide novel evidence to further clarify the mechanisms of anti-fungal immune response.
Collapse
Affiliation(s)
- Zhou Yun
- Zhejiang University City College School of Medicine, Hangzhou 310015, China;Department of Pathogen Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pan Jianping
- Zhejiang University City College School of Medicine, Hangzhou 310015, China.
| |
Collapse
|
23
|
Sanchez-Niño MD, Sanz AB, Ortiz A. Chronicity following ischaemia-reperfusion injury depends on tubular-macrophage crosstalk involving two tubular cell-derived CSF-1R activators: CSF-1 and IL-34. Nephrol Dial Transplant 2016; 31:1409-16. [PMID: 27190368 DOI: 10.1093/ndt/gfw026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/23/2022] Open
Abstract
Two structurally unrelated ligands activate the macrophage colony stimulating factor receptor (CSF-1R, c-fms, CD115): M-CSF/CSF-1 and interleukin-34 (IL-34). Both ligands promote macrophage proliferation, survival and differentiation. IL-34 also activates the protein-tyrosine phosphatase ζ receptor (PTP-ζ, PTPRZ1). Both receptors and cytokines are increased during acute kidney injury. While tubular cell-derived CSF-1 is required for kidney repair, Baek et al (J Clin Invest 2015; 125: 3198-3214) have now identified tubular epithelial cell-derived IL-34 as a promoter of kidney neutrophil and macrophage infiltration and tubular cell destruction during experimental kidney ischaemia-reperfusion, leading to chronic injury. IL-34 promoted proliferation of both intrarenal macrophages and bone marrow cells, increasing circulating neutrophils and monocytes and their kidney recruitment. Thus, injured tubular cells release two CSF-1R activators, one (CSF-1) that promotes tubular cell survival and kidney repair and another (IL-34) that promotes chronic kidney damage. These results hold promise for the development of IL-34-targeting strategies to prevent ischaemia-reperfusion kidney injury in contexts such as kidney transplantation. However, careful consideration should be given to the recent characterization by Bezie et al. (J Clin Invest 2015; 125: 3952-3964) of IL-34 as a T regulatory cell (Treg) cytokine that modulates macrophage responses so that IL-34-primed macrophages potentiate the immune suppressive capacity of Tregs and promote graft tolerance.
Collapse
Affiliation(s)
| | - Ana Belen Sanz
- IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain REDINREN, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain REDINREN, Madrid, Spain School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| |
Collapse
|