1
|
Waddington SN, Peranteau WH, Rahim AA, Boyle AK, Kurian MA, Gissen P, Chan JKY, David AL. Fetal gene therapy. J Inherit Metab Dis 2024; 47:192-210. [PMID: 37470194 PMCID: PMC10799196 DOI: 10.1002/jimd.12659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Fetal gene therapy was first proposed toward the end of the 1990s when the field of gene therapy was, to quote the Gartner hype cycle, at its "peak of inflated expectations." Gene therapy was still an immature field but over the ensuing decade, it matured and is now a clinical and market reality. The trajectory of treatment for several genetic diseases is toward earlier intervention. The ability, capacity, and the will to diagnose genetic disease early-in utero-improves day by day. A confluence of clinical trials now signposts a trajectory toward fetal gene therapy. In this review, we recount the history of fetal gene therapy in the context of the broader field, discuss advances in fetal surgery and diagnosis, and explore the full ambit of preclinical gene therapy for inherited metabolic disease.
Collapse
Affiliation(s)
- Simon N Waddington
- EGA Institute for Women's Health, University College London, London, UK
- Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, Johannesburg, South Africa
| | - William H Peranteau
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - Ashley K Boyle
- EGA Institute for Women's Health, University College London, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Paul Gissen
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
- Experimental Fetal Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anna L David
- EGA Institute for Women's Health, University College London, London, UK
| |
Collapse
|
2
|
Karda R, Rahim AA, Wong AMS, Suff N, Diaz JA, Perocheau DP, Tijani M, Ng J, Baruteau J, Martin NP, Hughes M, Delhove JMKM, Counsell JR, Cooper JD, Henckaerts E, Mckay TR, Buckley SMK, Waddington SN. Generation of light-producing somatic-transgenic mice using adeno-associated virus vectors. Sci Rep 2020; 10:2121. [PMID: 32034258 PMCID: PMC7005886 DOI: 10.1038/s41598-020-59075-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models.
Collapse
Affiliation(s)
- Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - Andrew M S Wong
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Natalie Suff
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
| | - Dany P Perocheau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
| | - Maha Tijani
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
| | - Joanne Ng
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
| | - Julien Baruteau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
| | - Nuria Palomar Martin
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Michael Hughes
- UCL School of Pharmacy, University College London, London, UK
| | | | - John R Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jonathan D Cooper
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- Laboratory of Viral Cell Signalling and Therapeutics, Department of Cellular and Molecular Medicine and Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Tristan R Mckay
- Centre for Biomedicine, Manchester Metropolitan University, Manchester, UK
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Karda R, Counsell JR, Karbowniczek K, Caproni LJ, Tite JP, Waddington SN. Production of lentiviral vectors using novel, enzymatically produced, linear DNA. Gene Ther 2019; 26:86-92. [PMID: 30643205 PMCID: PMC6760675 DOI: 10.1038/s41434-018-0056-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 11/08/2022]
Abstract
The manufacture of large quantities of high-quality DNA is a major bottleneck in the production of viral vectors for gene therapy. Touchlight Genetics has developed a proprietary abiological technology that addresses the major issues in commercial DNA supply. The technology uses 'rolling-circle' amplification to produce large quantities of concatameric DNA that is then processed to create closed linear double-stranded DNA by enzymatic digestion. This novel form of DNA, Doggybone™ DNA (dbDNA™), is structurally distinct from plasmid DNA. Here we compare lentiviral vectors production from dbDNA™ and plasmid DNA. Lentiviral vectors were administered to neonatal mice via intracerebroventricular injection. Luciferase expression was quantified in conscious mice continually by whole-body bioluminescent imaging. We observed long-term luciferase expression using dbDNA™-derived vectors, which was comparable to plasmid-derived lentivirus vectors. Here we have demonstrated that functional lentiviral vectors can be produced using the novel dbDNA™ configuration for delivery in vitro and in vivo. Importantly, this could enable lentiviral vector packaging of complex DNA sequences that have previously been incompatible with bacterial propagation systems, as dbDNA™ technology could circumvent such restrictions through its phi29-based rolling-circle amplification.
Collapse
Affiliation(s)
- Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
| | - John R Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | | | | | | | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- SA/MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Massaro G, Mattar CNZ, Wong AMS, Sirka E, Buckley SMK, Herbert BR, Karlsson S, Perocheau DP, Burke D, Heales S, Richard-Londt A, Brandner S, Huebecker M, Priestman DA, Platt FM, Mills K, Biswas A, Cooper JD, Chan JKY, Cheng SH, Waddington SN, Rahim AA. Fetal gene therapy for neurodegenerative disease of infants. Nat Med 2018; 24:1317-1323. [PMID: 30013199 PMCID: PMC6130799 DOI: 10.1038/s41591-018-0106-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 05/25/2018] [Indexed: 01/25/2023]
Abstract
For inherited genetic diseases, fetal gene therapy offers the potential of prophylaxis against early, irreversible and lethal pathological change. To explore this, we studied neuronopathic Gaucher disease (nGD), caused by mutations in GBA. In adult patients, the milder form presents with hepatomegaly, splenomegaly and occasional lung and bone disease; this is managed, symptomatically, by enzyme replacement therapy. The acute childhood lethal form of nGD is untreatable since enzyme cannot cross the blood-brain barrier. Patients with nGD exhibit signs consistent with hindbrain neurodegeneration, including neck hyperextension, strabismus and, often, fatal apnea1. We selected a mouse model of nGD carrying a loxP-flanked neomycin disruption of Gba plus Cre recombinase regulated by the keratinocyte-specific K14 promoter. Exclusive skin expression of Gba prevents fatal neonatal dehydration. Instead, mice develop fatal neurodegeneration within 15 days2. Using this model, fetal intracranial injection of adeno-associated virus (AAV) vector reconstituted neuronal glucocerebrosidase expression. Mice lived for up to at least 18 weeks, were fertile and fully mobile. Neurodegeneration was abolished and neuroinflammation ameliorated. Neonatal intervention also rescued mice but less effectively. As the next step to clinical translation, we also demonstrated the feasibility of ultrasound-guided global AAV gene transfer to fetal macaque brains.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London, UK
| | - Citra N Z Mattar
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrew M S Wong
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Ernestas Sirka
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Bronwen R Herbert
- Institute for Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Dany P Perocheau
- UCL Institute for Women's Health, University College London, London, UK
| | - Derek Burke
- Paediatric Laboratory Medicine, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Heales
- Paediatric Laboratory Medicine, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Angela Richard-Londt
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | | | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Kevin Mills
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jonathan D Cooper
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Jerry K Y Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Simon N Waddington
- UCL Institute for Women's Health, University College London, London, UK.
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa.
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
5
|
Delhove JMKM, Karda R, Hawkins KE, FitzPatrick LM, Waddington SN, McKay TR. Bioluminescence Monitoring of Promoter Activity In Vitro and In Vivo. Methods Mol Biol 2018; 1651:49-64. [PMID: 28801899 DOI: 10.1007/978-1-4939-7223-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The application of luciferase reporter genes to provide quantitative outputs for the activation of promoters is a well-established technique in molecular biology. Luciferase catalyzes an enzymatic reaction, which in the presence of the substrate luciferin produces photons of light relative to its molar concentration. The luciferase transgene can be genetically inserted at the first intron of a target gene to act as a surrogate for the gene's endogenous expression in cells and transgenic mice. Alternatively, promoter sequences can be excised and/or amplified from genomic sources or constructed de novo and cloned upstream of luciferase in an expression cassette transfected into cells. More recently, the development of synthetic promoters where the essential components of an RNA polymerase binding site and transcriptional start site are fused with various upstream regulatory sequences are being applied to drive reporter gene expression. We have developed a high-throughput cloning strategy to develop lentiviral luciferase reporters driven by transcription factor activated synthetic promoters. Lentiviruses integrate their payload cassette into the host cell genome, thereby facilitating the study of gene expression not only in the transduced cells but also within all subsequent daughter cells. In this manuscript we describe the design, vector construction, lentiviral transduction, and luciferase quantitation of transcription factor activated reporters (TFARs) in vitro and in vivo.
Collapse
Affiliation(s)
- Juliette M K M Delhove
- Cardiovascular and Cell Sciences Research Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE2, UK.,Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Kate E Hawkins
- Cardiovascular and Cell Sciences Research Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE2, UK
| | - Lorna M FitzPatrick
- Cardiovascular and Cell Sciences Research Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE2, UK.,School of Healthcare Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK
| | - Simon N Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Tristan R McKay
- Cardiovascular and Cell Sciences Research Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE2, UK. .,School of Healthcare Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
6
|
Suff N, Waddington SN. The power of bioluminescence imaging in understanding host-pathogen interactions. Methods 2017; 127:69-78. [PMID: 28694065 DOI: 10.1016/j.ymeth.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023] Open
Abstract
Infectious diseases are one of the leading causes of death worldwide. Modelling and understanding human infection is imperative to developing treatments to reduce the global burden of infectious disease. Bioluminescence imaging is a highly sensitive, non-invasive technique based on the detection of light, produced by luciferase-catalysed reactions. In the study of infectious disease, bioluminescence imaging is a well-established technique; it can be used to detect, localize and quantify specific immune cells, pathogens or immunological processes. This enables longitudinal studies in which the spectrum of the disease process and its response to therapies can be monitored. Light producing transgenic rodents are emerging as key tools in the study of host response to infection. Here, we review the strategies for identifying biological processes in vivo, including the technology of bioluminescence imaging and illustrate how this technique is shedding light on the host-pathogen relationship.
Collapse
Affiliation(s)
- Natalie Suff
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| |
Collapse
|
7
|
Neonatal Gene Therapy for Hemophilia B by a Novel Adenovirus Vector Showing Reduced Leaky Expression of Viral Genes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:183-193. [PMID: 28828393 PMCID: PMC5552065 DOI: 10.1016/j.omtm.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/05/2017] [Indexed: 01/01/2023]
Abstract
Gene therapy during neonatal and infant stages is a promising approach for hemophilia B, a congenital disorder caused by deficiency of blood coagulation factor IX (FIX). An adenovirus (Ad) vector has high potential for use in neonatal or infant gene therapy for hemophilia B due to its superior transduction properties; however, leaky expression of Ad genes often reduces the transduction efficiencies by Ad protein-mediated tissue damage. Here, we used a novel Ad vector, Ad-E4-122aT, which exhibits a reduction in the leaky expression of Ad genes in liver, in gene therapy studies for neonatal hemophilia B mice. Ad-E4-122aT exhibited significantly higher transduction efficiencies than a conventional Ad vector in neonatal mice. In neonatal hemophilia B mice, a single neonatal injection of Ad-E4-122aT expressing human FIX (hFIX) (Ad-E4-122aT-AHAFIX) maintained more than 6% of the normal plasma hFIX activity levels for approximately 100 days. Sequential administration of Ad-E4-122aT-AHAFIX resulted in more than 100% of the plasma hFIX activity levels for more than 100 days and rescued the bleeding phenotypes of hemophilia B mice. In addition, immunotolerance to hFIX was induced by Ad-E4-122aT-AHAFIX administration in neonatal hemophilia B mice. These results indicated that Ad-E4-122aT is a promising gene delivery vector for neonatal or infant gene therapy for hemophilia B.
Collapse
|
8
|
Vidović D, Carlon MS, da Cunha MF, Dekkers JF, Hollenhorst MI, Bijvelds MJC, Ramalho AS, Van den Haute C, Ferrante M, Baekelandt V, Janssens HM, De Boeck K, Sermet-Gaudelus I, de Jonge HR, Gijsbers R, Beekman JM, Edelman A, Debyser Z. rAAV-CFTRΔR Rescues the Cystic Fibrosis Phenotype in Human Intestinal Organoids and Cystic Fibrosis Mice. Am J Respir Crit Care Med 2016; 193:288-98. [PMID: 26509335 DOI: 10.1164/rccm.201505-0914oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Gene therapy holds promise for a curative mutation-independent treatment applicable to all patients with cystic fibrosis (CF). The various viral vector-based clinical trials conducted in the past have demonstrated safety and tolerance of different vectors, but none have led to a clear and persistent clinical benefit. Recent clinical breakthroughs in recombinant adeno-associated viral vector (rAAV)-based gene therapy encouraged us to reexplore an rAAV approach for CF. OBJECTIVES We evaluated the preclinical potential of rAAV gene therapy for CF to restore chloride and fluid secretion in two complementary models: intestinal organoids derived from subjects with CF and a CF mouse model, an important milestone toward the development of a clinical rAAV candidate for CF gene therapy. METHODS We engineered an rAAV vector containing a truncated CF transmembrane conductance regulator (CFTRΔR) combined with a short promoter (CMV173) to ensure optimal gene expression. A rescue in chloride and fluid secretion after rAAV-CFTRΔR treatment was assessed by forskolin-induced swelling in CF transmembrane conductance regulator (CFTR)-deficient organoids and by nasal potential differences in ΔF508 mice. MEASUREMENTS AND MAIN RESULTS rAAV-CFTRΔR transduction of human CFTR-deficient organoids resulted in forskolin-induced swelling, indicating a restoration of CFTR function. Nasal potential differences demonstrated a clear response to low chloride and forskolin perfusion in most rAAV-CFTRΔR-treated CF mice. CONCLUSIONS Our study provides robust evidence that rAAV-mediated gene transfer of a truncated CFTR functionally rescues the CF phenotype across the nasal mucosa of CF mice and in patient-derived organoids. These results underscore the clinical potential of rAAV-CFTRΔR in offering a cure for all patients with CF in the future.
Collapse
Affiliation(s)
| | | | - Mélanie F da Cunha
- 2 INSERM U1151, University Paris Descartes, Faculté de Médecine Necker Enfants-Malades, Paris, France
| | - Johanna F Dekkers
- 3 Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, and.,4 Laboratory of Translational Immunology, University Medical Center, Utrecht, the Netherlands
| | - Monika I Hollenhorst
- 2 INSERM U1151, University Paris Descartes, Faculté de Médecine Necker Enfants-Malades, Paris, France
| | - Marcel J C Bijvelds
- 5 Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | - Marc Ferrante
- 9 Translational Research in Gastrointestinal Disorders, KU Leuven, Flanders, Belgium
| | | | - Hettie M Janssens
- 10 Department of Pediatric Pulmonology, Erasmus University Medical Centre/Sophia Children's Hospital, Rotterdam, the Netherlands; and
| | | | - Isabelle Sermet-Gaudelus
- 2 INSERM U1151, University Paris Descartes, Faculté de Médecine Necker Enfants-Malades, Paris, France
| | - Hugo R de Jonge
- 5 Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rik Gijsbers
- 1 Molecular Virology and Gene Therapy.,8 Leuven Viral Vector Core, and
| | - Jeffrey M Beekman
- 3 Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, and.,4 Laboratory of Translational Immunology, University Medical Center, Utrecht, the Netherlands
| | - Aleksander Edelman
- 2 INSERM U1151, University Paris Descartes, Faculté de Médecine Necker Enfants-Malades, Paris, France
| | | |
Collapse
|
9
|
A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 2016; 34:334-8. [PMID: 26829317 PMCID: PMC4786489 DOI: 10.1038/nbt.3469] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/30/2015] [Indexed: 02/05/2023]
Abstract
Many genetic liver diseases present in newborns with repeated, often lethal, metabolic crises. Gene therapy using non-integrating viruses such as AAV is not optimal in this setting because the non-integrating genome is lost as developing hepatocytes proliferate1,2. We reasoned that newborn liver may be an ideal setting for AAV-mediated gene correction using CRISPR/Cas9. Here we intravenously infuse two AAVs, one expressing Cas9 and the other expressing a guide RNA and the donor DNA, into newborn mice with a partial deficiency in the urea cycle disorder enzyme, ornithine transcarbamylase (OTC). This resulted in reversion of the mutation in 10% (6.7% – 20.1%) of hepatocytes and increased survival in mice challenged with a high-protein diet, which exacerbates disease. Gene correction in adult OTC-deficient mice was lower and accompanied by larger deletions that ablated residual expression from the endogenous OTC gene, leading to diminished protein tolerance and lethal hyperammonemia on a chow diet.
Collapse
|
10
|
Vidović D, Gijsbers R, Quiles-Jimenez A, Dooley J, Van den Haute C, Van der Perren A, Liston A, Baekelandt V, Debyser Z, Carlon MS. Noninvasive Imaging Reveals Stable Transgene Expression in Mouse Airways After Delivery of a Nonintegrating Recombinant Adeno-Associated Viral Vector. Hum Gene Ther 2016; 27:60-71. [DOI: 10.1089/hum.2015.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dragana Vidović
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
- Leuven Viral Vector Core, KU Leuven, Flanders, Belgium
| | - Ana Quiles-Jimenez
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - James Dooley
- Department of Microbiology and Immunology, KU Leuven, Flanders, Belgium
- Vlaams Instituut Voor Biotechnologie, Translational Immunology Laboratory, Flanders, Belgium
| | - Chris Van den Haute
- Leuven Viral Vector Core, KU Leuven, Flanders, Belgium
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium
| | - Adrian Liston
- Department of Microbiology and Immunology, KU Leuven, Flanders, Belgium
- Vlaams Instituut Voor Biotechnologie, Translational Immunology Laboratory, Flanders, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Marianne Sylvia Carlon
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| |
Collapse
|
11
|
Buckley SMK, Delhove JMKM, Perocheau DP, Karda R, Rahim AA, Howe SJ, Ward NJ, Birrell MA, Belvisi MG, Arbuthnot P, Johnson MR, Waddington SN, McKay TR. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters. Sci Rep 2015; 5:11842. [PMID: 26138224 PMCID: PMC4490336 DOI: 10.1038/srep11842] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/08/2015] [Indexed: 11/22/2022] Open
Abstract
The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4(-/-) mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively.
Collapse
Affiliation(s)
- Suzanne M. K. Buckley
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK
| | - Juliette M. K. M. Delhove
- Stem Cell Group, Cardiovascular & Cell Sciences Research Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dany P. Perocheau
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, UK
| | - Ahad A. Rahim
- Department of Pharmacology, School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Steven J. Howe
- Wolfson Institute for Gene Therapy, Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Natalie J. Ward
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK
| | - Mark A. Birrell
- Faculty of Medicine, National Heart & Lung Institute, Imperial College, London, UK
| | - Maria G. Belvisi
- Faculty of Medicine, National Heart & Lung Institute, Imperial College, London, UK
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark R. Johnson
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, UK
| | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tristan R. McKay
- Stem Cell Group, Cardiovascular & Cell Sciences Research Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|