1
|
Sala-Rabanal M, Yurtsever Z, Berry KN, McClenaghan C, Foy AJ, Hanson A, Steinberg DF, Greven JA, Kluender CE, Alexander-Brett JM, Nichols CG, Brett TJ. Modulation of TMEM16B channel activity by the calcium-activated chloride channel regulator 4 (CLCA4) in human cells. J Biol Chem 2024; 300:107432. [PMID: 38825009 PMCID: PMC11231702 DOI: 10.1016/j.jbc.2024.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024] Open
Abstract
The Ca2+-activated Cl- channel regulator CLCA1 potentiates the activity of the Ca2+-activated Cl- channel (CaCC) TMEM16A by directly engaging the channel at the cell surface, inhibiting its reinternalization and increasing Ca2+-dependent Cl- current (ICaCC) density. We now present evidence of functional pairing between two other CLCA and TMEM16 protein family members, namely CLCA4 and the CaCC TMEM16B. Similar to CLCA1, (i) CLCA4 is a self-cleaving metalloprotease, and the N-terminal portion (N-CLCA4) is secreted; (ii) the von Willebrand factor type A (VWA) domain in N-CLCA4 is sufficient to potentiate ICaCC in HEK293T cells; and (iii) this is mediated by the metal ion-dependent adhesion site motif within VWA. The results indicate that, despite the conserved regulatory mechanism and homology between CLCA1 and CLCA4, CLCA4-dependent ICaCC are carried by TMEM16B, rather than TMEM16A. Our findings show specificity in CLCA/TMEM16 interactions and suggest broad physiological and pathophysiological links between these two protein families.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Zeynep Yurtsever
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kayla N Berry
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; Immunology Program and Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alyssa J Foy
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Deborah F Steinberg
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jessica A Greven
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Colin E Kluender
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jennifer M Alexander-Brett
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tom J Brett
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA; Division of Pulmonary and Critical Care, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
2
|
Tutol J, Ong WSY, Phelps SM, Peng W, Goenawan H, Dodani SC. Engineering the ChlorON Series: Turn-On Fluorescent Protein Sensors for Imaging Labile Chloride in Living Cells. ACS CENTRAL SCIENCE 2024; 10:77-86. [PMID: 38292617 PMCID: PMC10823515 DOI: 10.1021/acscentsci.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Beyond its role as the "queen of electrolytes", chloride can also serve as an allosteric regulator or even a signaling ion. To illuminate this essential anion across such a spectrum of biological processes, researchers have relied on fluorescence imaging with genetically encoded sensors. In large part, these have been derived from the green fluorescent protein found in the jellyfish Aequorea victoria. However, a standalone sensor with a turn-on intensiometric response at physiological pH has yet to be reported. Here, we address this technology gap by building on our discovery of the anion-sensitive fluorescent protein mNeonGreen (mNG). The targeted engineering of two non-coordinating residues, namely K143 and R195, in the chloride binding pocket of mNG coupled with an anion walking screening and selection strategy resulted in the ChlorON sensors: ChlorON-1 (K143W/R195L), ChlorON-2 (K143R/R195I), and ChlorON-3 (K143R/R195L). In vitro spectroscopy revealed that all three sensors display a robust turn-on fluorescence response to chloride (20- to 45-fold) across a wide range of affinities (Kd ≈ 30-285 mM). We further showcase how this unique sensing mechanism can be exploited to directly image labile chloride transport with spatial and temporal resolution in a cell model overexpressing the cystic fibrosis transmembrane conductance regulator. Building from this initial demonstration, we anticipate that the ChlorON technology will have broad utility, accelerating the path forward for fundamental and translational aspects of chloride biology.
Collapse
Affiliation(s)
- Jasmine
N. Tutol
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Whitney S. Y. Ong
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shelby M. Phelps
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Weicheng Peng
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Helen Goenawan
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sheel C. Dodani
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Rapp K, Wei S, Roberts M, Yao S, Fei SS, Gao L, Ray K, Wang A, Godiah R, Han L. Transcriptional profiling of mucus production and modification in rhesus macaque endocervical cells under hormonal regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541362. [PMID: 37292621 PMCID: PMC10245652 DOI: 10.1101/2023.05.18.541362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the Rhesus Macaque (Macaca mulatta). Design Experimental. Setting Translational science laboratory. Intervention We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus producing and modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. Main Outcome Measures We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using qPCR. Results Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control, and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. Conclusion Our study is the first to use an in vitro culture system to create an epithelial-cell specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways that are altered by sex-steroids in cervical mucus production.
Collapse
|
4
|
Sinha M, Zabini D, Guntur D, Nagaraj C, Enyedi P, Olschewski H, Kuebler WM, Olschewski A. Chloride channels in the lung: Challenges and perspectives for viral infections, pulmonary arterial hypertension, and cystic fibrosis. Pharmacol Ther 2022; 237:108249. [PMID: 35878810 DOI: 10.1016/j.pharmthera.2022.108249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.
Collapse
Affiliation(s)
- Madhushri Sinha
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Diana Zabini
- Department of Physiology, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria.
| | - Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Peter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary.
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| |
Collapse
|
5
|
Keeler SP, Yantis J, Gerovac BJ, Youkilis SL, Podgorny S, Mao D, Zhang Y, Whitworth KM, Redel B, Samuel MS, Wells KD, Prather RS, Holtzman MJ. Chloride channel accessory 1 gene deficiency causes selective loss of mucus production in a new pig model. Am J Physiol Lung Cell Mol Physiol 2022; 322:L842-L852. [PMID: 35438004 PMCID: PMC9142155 DOI: 10.1152/ajplung.00443.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022] Open
Abstract
Morbidity and mortality of respiratory diseases are linked to airway obstruction by mucus but there are still no specific, safe, and effective drugs to correct this phenotype. The need for better treatment requires a new understanding of the basis for mucus production. In that regard, studies of human airway epithelial cells in primary culture show that a mucin granule constituent known as chloride channel accessory 1 (CLCA1) is required for inducible expression of the inflammatory mucin MUC5AC in response to potent type 2 cytokines. However, it remained uncertain whether CLCLA1 is necessary for mucus production in vivo. Conventional approaches to functional biology using targeted gene knockout were difficult due to the functional redundancy of additional Clca genes in mice not found in humans. We reasoned that CLCA1 function might be better addressed in pigs that maintain the same four-member CLCA gene locus and the corresponding mucosal and submucosal populations of mucous cells found in humans. Here we develop to our knowledge the first CLCA1-gene-deficient (CLCA1-/-) pig and show that these animals exhibit loss of MUC5AC+ mucous cells throughout the airway mucosa of the lung without affecting comparable cells in the tracheal mucosa or MUC5B+ mucous cells in submucosal glands. Similarly, CLCA1-/- pigs exhibit loss of MUC5AC+ mucous cells in the intestinal mucosa without affecting MUC2+ mucous cells. These data establish CLCA1 function for controlling MUC5AC expression as a marker of mucus production and provide a new animal model to study mucus production at respiratory and intestinal sites.
Collapse
Affiliation(s)
- Shamus P Keeler
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer Yantis
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Benjamin J Gerovac
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel L Youkilis
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Stephanie Podgorny
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Dailing Mao
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yong Zhang
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kristin M Whitworth
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Bethany Redel
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Melissa S Samuel
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Kevin D Wells
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Randall S Prather
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Michael J Holtzman
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
6
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
7
|
Costanzi E, Coletti A, Zambelli B, Macchiarulo A, Bellanda M, Battistutta R. Calmodulin binds to the STAS domain of SLC26A5 prestin with a calcium-dependent, one-lobe, binding mode. J Struct Biol 2021; 213:107714. [PMID: 33667636 DOI: 10.1016/j.jsb.2021.107714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
SLC26A5 transporter prestin is fundamental for the higher hearing sensitivity and frequency selectivity of mammals. Prestin is a voltage-dependent transporter found in the cochlear outer hair cells responsible for their electromotility. Intracellular chloride binding is considered essential for voltage sensitivity and electromotility. Prestin is composed by a transmembrane domain and by a cytosolic domain called STAS. There is evidence of a calcium/calmodulin regulation of prestin mediated by the STAS domain. Using different biophysical techniques, namely SEC, CD, ITC, MST, NMR and SAXS, here we demonstrate and characterize the direct interaction between calmodulin and prestin STAS. We show that the interaction is calcium-dependent and that involves residues at the N-terminal end of the "variable loop". This is an intrinsically disordered insertion typical of the STAS domains of the SLC26 family of transporters whose function is still unclear. We derive a low-resolution model of the STAS/CaM complex, where only one lobe of calmodulin is engaged in the interaction, and build a model for the entire dimeric prestin in complex with CaM, which can use the unoccupied lobe to interact with other regions of prestin or with other regulatory proteins. We show that also a non-mammalian STAS can interact with calmodulin via the variable loop. These data start to shed light on the regulatory role of the STAS variable loop of prestin.
Collapse
Affiliation(s)
- Elisa Costanzi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Alice Coletti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; Department of Pharmacy, University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Barbara Zambelli
- Department of Pharmacy and Biotechnology, University of Bologna, viale Fanin 40, 40127 Bologna, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Roberto Battistutta
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
8
|
Lee EH, Shin MH, Gi M, Park J, Song D, Hyun YM, Ryu JH, Seong JK, Jeon Y, Han G, Namkung W, Park MS, Choi JY. Inhibition of Pendrin by a small molecule reduces Lipopolysaccharide-induced acute Lung Injury. Theranostics 2020; 10:9913-9922. [PMID: 32929324 PMCID: PMC7481407 DOI: 10.7150/thno.46417] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Pendrin is encoded by SLC26A4 and its mutation leads to congenital hearing loss. Additionally, pendrin is up-regulated in inflammatory airway diseases such as chronic obstructive pulmonary disease, allergic rhinitis, and asthma. In this study, the effects of a novel pendrin inhibitor, YS-01, were investigated in an LPS-induced acute lung injury (ALI) mice model, and the mechanism underlying the effect of YS-01 was examined. Methods: Lipopolysaccharide (LPS, 10 mg/kg) was intranasally instilled in wild type (WT) and pendrin-null mice. YS-01 (10 mg/kg) was administered intra-peritoneally before or after LPS inhalation. Lung injury parameters were assessed in the lung tissue and bronchoalveolar lavage fluid (BALF). Pendrin levels in the BALF of 41 patients with acute respiratory distress syndrome (ARDS) due to pneumonia and 25 control (solitary pulmonary nodule) patients were also measured. Results: LPS instillation induced lung injury in WT mice but not in pendrin-null mice. Pendrin expression was increased by LPS stimulation both in vitro and in vivo. YS-01 treatment dramatically attenuated lung injury and reduced BALF cell counts and protein concentration after LPS instillation in WT mice. Proinflammatory cytokines and NF-κB activation were suppressed by YS-01 treatment in LPS-induced ALI mice. In BALF of patients whose ARDS was caused by pneumonia, pendrin expression was up-regulated compared to that in controls (mean, 24.86 vs. 6.83 ng/mL, P < 0.001). Conclusions: A novel pendrin inhibitor, YS-01, suppressed lung injury in LPS-induced ALI mice and our data provide a new strategy for the treatment of inflammatory airway diseases including sepsis-induced ALI.
Collapse
|
9
|
Wang Y, Ninaber DK, van Schadewijk A, Hiemstra PS. Tiotropium and Fluticasone Inhibit Rhinovirus-Induced Mucin Production via Multiple Mechanisms in Differentiated Airway Epithelial Cells. Front Cell Infect Microbiol 2020; 10:278. [PMID: 32637364 PMCID: PMC7318795 DOI: 10.3389/fcimb.2020.00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/12/2020] [Indexed: 01/16/2023] Open
Abstract
Human rhinoviruses (HRVs) are associated with acute exacerbations in patients with chronic obstructive pulmonary disease (COPD) and asthma, which are accompanied by mucus hypersecretion. Whereas, various studies have shown that HRVs increase epithelial mucin production and thus may directly contribute to mucus hypersecretion. The effects of drugs used in the treatment of COPD and asthma on HRV-induced mucin production in epithelial cell cultures have not been studied. In the present study, we assessed effects of HRVs on mucin production and secretion in well-differentiated primary human bronchial epithelial cells (PBEC) and studied the effect of the inhaled corticosteroid fluticasone propionate and the long-acting muscarinic antagonist tiotropium bromide on this process. Differentiated PBEC that were cultured at the air-liquid interface (ALI-PBEC) were infected with HRV-A16 and HRV-1B. Quantitative PCR, immunofluorescence staining, ELISA, periodic acid-Schiff (PAS) staining and immunostaining assays were used to assess the effects of HRV infection. Here we demonstrate that both HRV-A16 and HRV-1B increased mucin (MUC5AC and MUC5B) gene expression and protein release. When exploring this in more detail in HRV-A16-infected epithelial cells, mucin expression was found to be accompanied by increases in expression of SAM-pointed domain-containing Ets-like factor (SPDEF) and SPDEF-regulated genes known to be involved in the regulation of mucin production. We also found that pre-treatment with the purinergic P2R antagonist suramin inhibits HRV-enhanced MUC5AC expression and protein release, implicating involvement of purinergic signaling by extracellular ATP. We furthermore found that both fluticasone and tiotropium decreased HRV-induced mucin production without affecting viral replication, and obtained evidence to suggest that the inhibitory effect of fluticasone involved modulation of SPDEF-regulated genes and extracellular ATP release. These data show that both tiotropium and fluticasone inhibit HRV-induced epithelial mucin production independent of viral clearance, and thus provide insight into the mechanisms underlying beneficial effects of tiotropium and fluticasone in the treatment of COPD, asthma and accompanying exacerbations in these patients. Furthermore, our findings provide additional insight into the mechanisms by which HRV increases epithelial mucin production.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Dennis K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Zhou RH, Zhang JT, Chen C, Xu ZH, Lv XB, Ye L, Yu BT. Identification of CDC5L as bridge gene between chronic obstructive pulmonary disease and lung adenocarcinoma. Epigenomics 2020; 12:1515-1529. [PMID: 32543224 DOI: 10.2217/epi-2020-0112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: This study aimed to explore the genetic and epigenetic similarities between chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma (LUAD). Materials & methods: We mainly used Weighted correlation network analysis, protein-protein interaction network and pivot analysis to identify hub modules, bridge regulators, bridge genes and hub-driving genes in both diseases and carried out verifying using external datasets. Results: We identified eight bridge regulators, 19 key molecules in the COPD model and ten key molecules in the LUAD model. Moreover, we validated that CDC5L could be a reliable biomarker in COPD and may regulate cell proliferation and metastasis in LUAD via promoter methylation. Conclusion: Our results might form a theoretical foundation for future study at an epigenetic level.
Collapse
Affiliation(s)
- Rui-Hao Zhou
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, PR China
| | - Jing-Tao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Chan Chen
- Department of Anesthesiology & Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, PR China
| | - Zi-Hao Xu
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis & Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, PR China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
11
|
He LL, Xu F, Zhan XQ, Chen ZH, Shen HH. Identification of critical genes associated with the development of asthma by co-expression modules construction. Mol Immunol 2020; 123:18-25. [PMID: 32388106 DOI: 10.1016/j.molimm.2020.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Asthma is a worldwide problem that is caused by complex underlying immune dysregulation. The identification of potential prognostic markers of asthma may provide information for treatment. The purpose of this study was to explore the key mechanisms involved in the development of asthma on the basis of microarray analysis. METHODS The expression profile data of GSE43696, which contains 20 endobronchial epithelial brushing samples from healthy patients and 88 from asthma patients, were obtained from Gene Expression Omnibus. For the present study, we built co-expression modules by weighted gene co-expression network analysis (WGCNA). This new analysis strategy was applied to the data set to investigate the relationships underlying the modules and the pathogenesis of asthma. Functional enrichment analysis was performed on these co-expression genes from the modules, and a gene network was then constructed. In addition, mouse models of HDM-induced and OVA-induced asthma were established, and the expression of hub genes was measured. RESULTS First, using WGCNA, 20 co-expression modules were constructed with 19,596 genes obtained from 108 human endobronchial epithelial brushing samples. The number of genes within the modules ranged from 41 to 845. According to the colours assigned by the system, the module positively correlated with asthma status was named 'red module', and the module positively correlated with asthma severity was named 'purple module'. The results of a functional enrichment analysis showed that the red module was mainly enriched in intracellular calcium-activated chloride channel activity, intracellular chloride channel activity and endopeptidase inhibitor activity. The purple module was mainly enriched in microtubule motor activity and microtubule-binding and motor activity. Moreover, the mRNA expression levels of the 15 hub genes were confirmed to be significantly upregulated in the HDM mouse model, and 12 hub genes were upregulated in the OVA model. CONCLUSIONS The hub genes ANO7, PYCR1 and UBE2C might play potential roles in the pathogenesis of asthma. Our findings provided a framework of co-expression gene modules of asthma and led to the identification of some new markers that might be potential targets for the development of new drugs and diagnostic markers.
Collapse
Affiliation(s)
- Lu-Lu He
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Feng Xu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xue-Qin Zhan
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Hua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Hua-Hao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; State Key Lab of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
12
|
Mamber SW, Gurel V, Lins J, Ferri F, Beseme S, McMichael J. Effects of cannabis oil extract on immune response gene expression in human small airway epithelial cells (HSAEpC): implications for chronic obstructive pulmonary disease (COPD). J Cannabis Res 2020; 2:5. [PMID: 33526116 PMCID: PMC7819312 DOI: 10.1186/s42238-019-0014-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/29/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is commonly associated with both a pro-inflammatory and a T-helper 1 (Th1) immune response. It was hypothesized that cannabis oil extract can alleviate COPD symptoms by eliciting an anti-inflammatory Th2 immune response. Accordingly, the effects of cannabis oil extract on the expression of 84 Th2 and related immune response genes in human small airways epithelial cells (HSAEpC) were investigated. METHODS HSAEpC from a single donor were treated with three dilutions of a standardized cannabis oil extract (1:400, 1:800 and 1:1600) along with a solvent control (0.25% [2.5 ul/ml] ethanol) for 24 h. There were four replicates per treatment dilution, and six for the control. RNA isolated from cells were employed in pathway-focused quantitative polymerase chain reaction (qPCR) microarray assays. RESULTS The extract induced significant (P < 0.05) changes in expression of 37 tested genes. Six genes (CSF2, IL1RL1, IL4, IL13RA2, IL17A and PPARG) were up-regulated at all three dilutions. Another two (CCL22 and TSLP) were up-regulated while six (CLCA1, CMA1, EPX, LTB4R, MAF and PMCH) were down-regulated at the 1:400 and 1:800 dilutions. The relationship of differentially-expressed genes of interest to biologic pathways was explored using the Database for Annotation, Visualization and Integrated Discovery (DAVID). CONCLUSIONS This exploratory investigation indicates that cannabis oil extract may affect expression of specific airway epithelial cell genes that could modulate pro-inflammatory or Th1 processes in COPD. These results provide a basis for further investigations and have prompted in vivo studies of the effects of cannabis oil extract on pulmonary function. TRIAL REGISTRATION NONE (all in vitro experiments).
Collapse
Affiliation(s)
- Stephen W Mamber
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
- The Institute for Therapeutic Discovery, Delanson, NY, 12053, USA
| | - Volkan Gurel
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
| | - Jeremy Lins
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
| | - Fred Ferri
- NCM Biotechnology, Newport, RI, 02840, USA
| | - Sarah Beseme
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA.
| | - John McMichael
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
- The Institute for Therapeutic Discovery, Delanson, NY, 12053, USA
| |
Collapse
|
13
|
Berry KN, Brett TJ. Structural and Biophysical Analysis of the CLCA1 VWA Domain Suggests Mode of TMEM16A Engagement. Cell Rep 2020; 30:1141-1151.e3. [PMID: 31995732 PMCID: PMC7050472 DOI: 10.1016/j.celrep.2019.12.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/14/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023] Open
Abstract
The secreted protein calcium-activated chloride channel regulator 1 (CLCA1) utilizes a von Willebrand factor type A (VWA) domain to bind to and potentiate the calcium-activated chloride channel TMEM16A. To gain insight into this unique potentiation mechanism, we determined the 2.0-Å crystal structure of human CLCA1 VWA bound to Ca2+. The structure reveals the metal-ion-dependent adhesion site (MIDAS) in a high-affinity "open" conformation, engaging in crystal contacts that likely mimic how CLCA1 engages TMEM16A. The CLCA1 VWA contains a disulfide bond between α3 and α4 in close proximity to the MIDAS that is invariant in the CLCA family and unique in VWA structures. Further biophysical studies indicate that CLCA1 VWA is preferably stabilized by Mg2+ over Ca2+ and that α6 atypically extends from the VWA core. Finally, an analysis of TMEM16A structures suggests residues likely to mediate interaction with CLCA1 VWA.
Collapse
Affiliation(s)
- Kayla N Berry
- Immunology Program and Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tom J Brett
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Simões FB, Quaresma MC, Clarke LA, Silva IA, Pankonien I, Railean V, Kmit A, Amaral MD. TMEM16A chloride channel does not drive mucus production. Life Sci Alliance 2019; 2:2/6/e201900462. [PMID: 31732694 PMCID: PMC6859295 DOI: 10.26508/lsa.201900462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023] Open
Abstract
Despite being essential for airway hydration, TMEM16A is not required for mucus (MUC5AC) production. Cell proliferation is the main driver for TMEM16A up-regulation during inflammation. Airway mucus obstruction is the main cause of morbidity in cystic fibrosis, a disease caused by mutations in the CFTR Cl− channel. Activation of non-CFTR Cl− channels such as TMEM16A can likely compensate for defective CFTR. However, TMEM16A was recently described as a key driver in mucus production/secretion. Here, we have examined whether indeed there is a causal relationship between TMEM16A and MUC5AC production, the main component of respiratory mucus. Our data show that TMEM16A and MUC5AC are inversely correlated during differentiation of human airway cells. Furthermore, we show for the first time that the IL-4–induced TMEM16A up-regulation is proliferation-dependent, which is supported by the correlation found between TMEM16A and Ki-67 proliferation marker during wound healing. Consistently, the notch signaling activator DLL4 increases MUC5AC levels without inducing changes neither in TMEM16A nor in Ki-67 expression. Moreover, TMEM16A inhibition decreased airway surface liquid height. Altogether, our findings demonstrate that up-regulation of TMEM16A and MUC5AC is only circumstantial under cell proliferation, but with no causal relationship between them. Thus, although essential for airway hydration, TMEM16A is not required for MUC5AC production.
Collapse
Affiliation(s)
- Filipa B Simões
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Iris Al Silva
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Arthur Kmit
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
15
|
Seltmann K, Meyer M, Sulcova J, Kockmann T, Wehkamp U, Weidinger S, Auf dem Keller U, Werner S. Humidity-regulated CLCA2 protects the epidermis from hyperosmotic stress. Sci Transl Med 2019; 10:10/440/eaao4650. [PMID: 29743348 DOI: 10.1126/scitranslmed.aao4650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Low environmental humidity aggravates symptoms of the inflammatory skin disease atopic dermatitis (AD). Using mice that develop AD-like signs, we show that an increase in environmental humidity rescues their cutaneous inflammation and associated epidermal abnormalities. Quantitative proteomics analysis of epidermal lysates of mice kept at low or high humidity identified humidity-regulated proteins, including chloride channel accessory 3A2 (CLCA3A2), a protein with previously unknown function in the skin. The epidermis of patients with AD, organotypic skin cultures under dry conditions, and cultured keratinocytes exposed to hyperosmotic stress showed up-regulation of the nonorthologous human homolog CLCA2. Hyperosmolarity-induced CLCA2 expression occurred via p38/c-Jun N-terminal kinase-activating transcription factor 2 signaling. CLCA2 knockdown promoted keratinocyte apoptosis induced by hyperosmotic stress through impairment of cell-cell adhesion. These findings provide a mechanistic explanation for the beneficial effect of high environmental humidity for AD patients and identify CLCA3A2/CLCA2 up-regulation as a mechanism to protect keratinocytes from damage induced by low humidity.
Collapse
Affiliation(s)
- Kristin Seltmann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael Meyer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jitka Sulcova
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Tobias Kockmann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.,Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Ulrike Wehkamp
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Ulrich Auf dem Keller
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
16
|
Li X, Luo J, Zhang C, Liu L, Ou S, Zhang G, Peng X. Alliin protects against inflammatory bowel disease by preserving the gene expression in colonic epithelial cells rather than altering gut microbiota. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Pérez FJ, Iturra PA, Ponce CA, Magne F, Garcia-Angulo V, Vargas SL. Niflumic Acid Reverses Airway Mucus Excess and Improves Survival in the Rat Model of Steroid-Induced Pneumocystis Pneumonia. Front Microbiol 2019; 10:1522. [PMID: 31333624 PMCID: PMC6624676 DOI: 10.3389/fmicb.2019.01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Although the role of adaptive immunity in fighting Pneumocystis infection is well known, the role of the innate, airway epithelium, responses remains largely unexplored. The concerted interaction of innate and adaptive responses is essential to successfully eradicate infection. Increased expression of goblet-cell-derived CLCA1 protein plus excess mucus in infant autopsy lungs and in murine models of primary Pneumocystis infection alert of innate immune system immunopathology associated to Pneumocystis infection. Nonetheless, whether blocking mucus-associated innate immune pathways decreases Pneumocystis-related immunopathology is unknown. Furthermore, current treatment of Pneumocystis pneumonia (PcP) relying on anti-Pneumocystis drugs plus steroids is not ideal because removes cellular immune responses against the fungal pathogen. In this study, we used the steroid-induced rat model of PcP to evaluate inflammation and mucus progression, and tested the effect of niflumic acid (NFA), a fenamate-type drug with potent CLCA1 blocker activity, in decreasing Pneumocystis-associated immunopathology. In this model, animals acquire Pneumocystis spontaneously and pneumonia develops owing to the steroids-induced immunodeficiency. Steroids led to decreased animal weight evidencing severe immunosuppression and to significant Pneumocystis-associated pulmonary edema as evidenced by wet-to-dry lung ratios that doubled those of uninfected animals. Inflammatory cuffing infiltrates were noticed first around lung blood vessels followed by bronchi, and both increased progressively. Similarly, airway epithelial and lumen mucus progressively increased. This occurred in parallel to increasing levels of MUC5AC and mCLCA3, the murine homolog of hCLCA1. Administration of NFA caused a significant decrease in total mucus, MUC5AC and mCLCA3 and also, in Pneumocystis-associated inflammation. Most relevant, NFA treatment improved survival at 8 weeks of steroids. Results suggest an important role of innate immune responses in immunopathology of steroid-induced PcP. They warrant evaluation of CLCA1 blockers as adjunctive therapy in this condition and describe a simple model to evaluate therapeutic interventions for steroid resistant mucus, a common condition in patients with chronic lung disease like asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis.
Collapse
Affiliation(s)
- Francisco J Pérez
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A Iturra
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina A Ponce
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fabien Magne
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Garcia-Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio L Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Zhu JS, Lu JY, Tan JA, Rivera AA, Phuan PW, Shatskikh ME, Son JH, Haggie PM, Verkman AS, Kurth MJ. Synthesis and evaluation of tetrahydropyrazolopyridine inhibitors of anion exchange protein SLC26A4 (pendrin). Bioorg Med Chem Lett 2019; 29:2119-2123. [PMID: 31281021 DOI: 10.1016/j.bmcl.2019.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/03/2023]
Abstract
Pendrin is a transmembrane chloride/anion antiporter that is strongly upregulated in the airways in rhinoviral infection, asthma, cystic fibrosis and chronic rhinosinusitis. Based on its role in the regulation of airway surface liquid depth, pendrin inhibitors have potential indications for treatment of inflammatory airways diseases. Here, a completely regioselective route to tetrahydro-pyrazolopyridine pendrin inhibitors based on 1,3-diketone and substituted hydrazine condensation was been developed. Structure-activity relationships at the tetrahydropyridyl nitrogen were investigated using a focused library, establishing the privileged nature of N-phenyl ureas and improving inhibitor potency by greater than 2-fold.
Collapse
Affiliation(s)
- Jie S Zhu
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Julia Y Lu
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Joseph-Anthony Tan
- Departments of Medicine & Physiology, University of California, San Francisco, CA 94143, United States
| | - Amber A Rivera
- Departments of Medicine & Physiology, University of California, San Francisco, CA 94143, United States
| | - Puay-Wah Phuan
- Departments of Medicine & Physiology, University of California, San Francisco, CA 94143, United States
| | - Marina E Shatskikh
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Jung-Ho Son
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Peter M Haggie
- Departments of Medicine & Physiology, University of California, San Francisco, CA 94143, United States
| | - Alan S Verkman
- Departments of Medicine & Physiology, University of California, San Francisco, CA 94143, United States
| | - Mark J Kurth
- Department of Chemistry, University of California, Davis, CA 95616, United States.
| |
Collapse
|
19
|
Valdivieso ÁG, Santa‐Coloma TA. The chloride anion as a signalling effector. Biol Rev Camb Philos Soc 2019; 94:1839-1856. [DOI: 10.1111/brv.12536] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ángel G. Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| | - Tomás A. Santa‐Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| |
Collapse
|
20
|
Yarotskyy V, Malysz J, Petkov GV. Properties of single-channel and whole cell Cl - currents in guinea pig detrusor smooth muscle cells. Am J Physiol Cell Physiol 2019; 316:C698-C710. [PMID: 30566392 DOI: 10.1152/ajpcell.00327.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple types of Cl- channels regulate smooth muscle excitability and contractility in vascular, gastrointestinal, and airway smooth muscle cells. However, little is known about Cl- channels in detrusor smooth muscle (DSM) cells. Here, we used inside-out single channel and whole cell patch-clamp recordings for detailed biophysical and pharmacological characterizations of Cl- channels in freshly isolated guinea pig DSM cells. The recorded single Cl- channels displayed unique gating with multiple subconductive states, a fully opened single-channel conductance of 164 pS, and a reversal potential of -41.5 mV, which is close to the ECl of -65 mV, confirming preferential permeability to Cl-. The Cl- channel demonstrated strong voltage dependence of activation (half-maximum of mean open probability, V0.5, ~-20 mV) and robust prolonged openings at depolarizing voltages. The channel displayed similar gating when exposed intracellularly to solutions containing Ca2+-free or 1 mM Ca2+. In whole cell patch-clamp recordings, macroscopic current demonstrated outward rectification, inhibitions by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and insensitivity to chlorotoxin. The outward current was reversibly reduced by 94% replacement of extracellular Cl- with I-, Br-, or methanesulfonate (MsO-), resulting in anionic permeability sequence: Cl->Br->I->MsO-. While intracellular Ca2+ levels (0, 300 nM, and 1 mM) did not affect the amplitude of Cl- current and outward rectification, high Ca2+ slowed voltage-step current activation at depolarizing voltages. In conclusion, our data reveal for the first time the presence of a Ca2+-independent DIDS and niflumic acid-sensitive, voltage-dependent Cl- channel in the plasma membrane of DSM cells. This channel may be a key regulator of DSM excitability.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
21
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Strickland M, Yacoubi-Loueslati B, Bouhaouala-Zahar B, Pender SLF, Larbi A. Relationships Between Ion Channels, Mitochondrial Functions and Inflammation in Human Aging. Front Physiol 2019; 10:158. [PMID: 30881309 PMCID: PMC6405477 DOI: 10.3389/fphys.2019.00158] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Aging is often associated with a loss of function. We believe aging to be more an adaptation to the various, and often continuous, stressors encountered during life in order to maintain overall functionality of the systems. The maladaptation of a system during aging may increase the susceptibility to diseases. There are basic cellular functions that may influence and/or are influenced by aging. Mitochondrial function is amongst these. Their presence in almost all cell types makes of these valuable targets for interventions to slow down or even reserve signs of aging. In this review, the role of mitochondria and essential physiological regulators of mitochondria and cellular functions, ion channels, will be discussed in the context of human aging. The origins of inflamm-aging, associated with poor clinical outcomes, will be linked to mitochondria and ion channel biology.
Collapse
Affiliation(s)
- Marie Strickland
- Singapore Immunology Network, Agency for Science Technology and Research, Singapore, Singapore
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Besma Yacoubi-Loueslati
- Laboratory of Mycology, Pathologies and Biomarkers, Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
- Medical School of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sylvia L. F. Pender
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Chinese University of Hong Kong – University of Southampton Joint Lab for Stem Cell and Regenerative Medicine, Hong Kong, China
| | - Anis Larbi
- Singapore Immunology Network, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
23
|
Kubo F, Ariestanti DM, Oki S, Fukuzawa T, Demizu R, Sato T, Sabirin RM, Hirose S, Nakamura N. Loss of the adhesion G-protein coupled receptor ADGRF5 in mice induces airway inflammation and the expression of CCL2 in lung endothelial cells. Respir Res 2019; 20:11. [PMID: 30654796 PMCID: PMC6337809 DOI: 10.1186/s12931-019-0973-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/02/2019] [Indexed: 01/09/2023] Open
Abstract
Background Adhesion G-protein coupled receptor F5 (ADGRF5) was recently identified as an essential regulator of pulmonary surfactant homeostasis in alveolar type II cells. We previously showed that in addition to abnormal surfactant accumulation, Adgrf5-deficient (Adgrf5−/−) mice exhibit emphysema-like signs, suggesting a possible role for ADGRF5 in immune regulation. Here, we extended the phenotypic analysis of Adgrf5−/− mice to help understand its biological role in the lung, and especially in immune regulation. Methods Histological features of lungs were evaluated by Alcian blue and Masson’s trichrome staining. Quantitative real-time PCR (qPCR) and western blot analyses were performed to analyze the differential expression of genes/proteins related to airway inflammation in lungs between wildtype and Adgrf5−/− mice. Acid–base status was assessed by performing blood gas tests and urine pH measurements. Inflammatory cell counting was performed using Giemsa-stained bronchoalveolar lavage cells. Serum IgE concentrations were determined by enzyme-linked immunosorbent assay. The expression of Ccl2, S100a8, S100a9, and Saa3 in primary lung endothelial cells (ECs) was determined by qPCR and/or western blotting. Finally, the effect of administrating RS504393 to 2-week-old Adgrf5−/− mice on gene expression in the lungs was analyzed by qPCR. Results Adgrf5−/− mice exhibited several features of chronic airway inflammation (mucous cell metaplasia, mucus hyperproduction, subepithelial fibrosis, respiratory acidosis, high serum IgE, mast cell accumulation, and neutrophilia) in parallel with elevated expression of genes involved in mucous cell metaplasia (Muc5ac, Muc5b, Slc26a4, and Clca1), fibrosis (Tgfb1, Col1a1, Fn1, and Tnc), and type 2 immune response (Il4, Il5, Il13, IL-25, and IL-33) at 12 and/or 30 weeks of age. In contrast, mRNA expression of Ccl2, S100a8, and S100a9 was upregulated in embryonic or neonatal Adgrf5−/− lungs as well as in lung ECs of Adgrf5−/− mice at 1 week of age. RS504393 treatment suppressed the upregulation of S100a8, S100a9, Slc26a4, and Il5 in Adgrf5−/− lungs. Conclusions Targeted disruption of ADGRF5 results in the development of airway inflammation, which is likely mediated by the type 2 immune response and possibly CCL2-mediated inflammation. ADGRF5 also has a potential role in the regulation of genes encoding CCL2 in lung ECs, thereby maintaining immune homeostasis. Electronic supplementary material The online version of this article (10.1186/s12931-019-0973-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fumimasa Kubo
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Donna Maretta Ariestanti
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Souta Oki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Taku Fukuzawa
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Ryotaro Demizu
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tomoya Sato
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Rahmaningsih Mara Sabirin
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Department of Physiology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, JI.Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Shigehisa Hirose
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Nobuhiro Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
24
|
Liu X, Li T, Tuo B. Physiological and Pathophysiological Relevance of the Anion Transporter Slc26a9 in Multiple Organs. Front Physiol 2018; 9:1197. [PMID: 30233393 PMCID: PMC6127633 DOI: 10.3389/fphys.2018.01197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/08/2018] [Indexed: 02/05/2023] Open
Abstract
Transepithelial Cl- and HCO3- transport is crucial for the function of all epithelia, and HCO3- is a biological buffer that maintains acid-base homeostasis. In most epithelia, a series of Cl-/HCO3- exchangers and Cl- channels that mediate Cl- absorption and HCO3- secretion have been detected in the luminal and basolateral membranes. Slc26a9 belongs to the solute carrier 26 (Slc26) family of anion transporters expressed in the epithelia of multiple organs. This review summarizes the expression pattern and functional diversity of Slc26a9 in different systems based on all investigations performed thus far. Furthermore, the physical and functional interactions between Slc26a9 and cystic fibrosis transmembrane conductance regulator (CFTR) are discussed due to their overlapping expression pattern in multiple organs. Finally, we focus on the relationship between slc26a9 mutations and disease onset. An understanding of the physiological and pathophysiological relevance of Slc26a9 in multiple organs offers new possibilities for disease therapy.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| |
Collapse
|
25
|
Li X, Hu W, Zhou J, Huang Y, Peng J, Yuan Y, Yu J, Zheng S. CLCA1 suppresses colorectal cancer aggressiveness via inhibition of the Wnt/beta-catenin signaling pathway. Cell Commun Signal 2017; 15:38. [PMID: 28974231 PMCID: PMC5627483 DOI: 10.1186/s12964-017-0192-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Background Chloride channel accessory 1 (CLCA1) belongs to the calcium-sensitive chloride conductance protein family, which is mainly expressed in the colon, small intestine and appendix. This study was conducted to investigate the functions and mechanisms of CLCA1 in colorectal cancer (CRC). Methods The CLCA1 protein expression level in CRC patients was evaluated by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and western blotting analysis. Using CRISPR/Cas9 technology, CLCA1-upregulated (CLCA1-ACT) and CLCA1-knockout cells (CLCA1-KO), as well as their respective negative controls (CLCA1-ACT-NC and CLCA1-KO-NC), were constructed from the SW620 cell line. Cell growth and metastatic ability were assessed both in vitro and in vivo. The association of CLCA1 with epithelial-mesenchymal transition (EMT) and other signaling pathways was determined by western blotting assays. Results The expression level of CLCA1 in CRC tissues was significantly decreased compared with that in adjacent normal tissue (P< 0.05). Meanwhile, the serum concentration of CLCA1 in CRC patients was also significantly lower when compared with that of healthy controls (1.48 ± 1.06 ng/mL vs 1.06 ± 0.73 ng/mL, P = 0.0018). In addition, CLCA1 serum concentration and mRNA expression level in CRC tissues were inversely correlated with CRC metastasis and tumor stage. Upregulated CLCA1 suppressed CRC growth and metastasis in vitro and in vivo, whereas inhibition of CLCA1 led to the opposite results. Increased expression levels of CLCA1 could repress Wnt signaling and the EMT process in CRC cells. Conclusions Our findings suggest that increased expression levels of CLCA1 can suppress CRC aggressiveness. CLCA1 functions as a tumor suppressor possibly via inhibition of the Wnt/beta-catenin signaling pathway and the EMT process. Electronic supplementary material The online version of this article (dio: 10.1186/s12964-017-0192-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaojiao Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanqin Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaping Peng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Mura CV, Delgado R, Delgado MG, Restrepo D, Bacigalupo J. A CLCA regulatory protein present in the chemosensory cilia of olfactory sensory neurons induces a Ca 2+-activated Cl - current when transfected into HEK293. BMC Neurosci 2017; 18:61. [PMID: 28800723 PMCID: PMC5553735 DOI: 10.1186/s12868-017-0379-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CLCA is a family of metalloproteases that regulate Ca2+-activated Cl- fluxes in epithelial tissues. In HEK293 cells, CLCA1 promotes membrane expression of an endogenous Anoctamin 1 (ANO1, also termed TMEM16A)-dependent Ca2+-activated Cl- current. Motif architecture similarity with CLCA2, 3 and 4 suggested that they have similar functions. We previously detected the isoform CLCA4L in rat olfactory sensory neurons, where Anoctamin 2 is the principal chemotransduction Ca2+-activated Cl- channel. We explored the possibility that this protein plays a role in odor transduction. RESULTS We cloned and expressed CLCA4L from rat olfactory epithelium in HEK293 cells. In the transfected HEK293 cells we measured a Cl--selective Ca2+-activated current, blocked by niflumic acid, not present in the non-transfected cells. Thus, CLCA4L mimics the CLCA1 current on its ability to induce the ANO1-dependent Ca2+-activated Cl- current endogenous to these cells. By immunocytochemistry, a CLCA protein, presumably CLCA4L, was detected in the cilia of olfactory sensory neurons co-expressing with ANO2. CONCLUSION These findings suggests that a CLCA isoform, namely CLCA4L, expressed in OSN cilia, might have a regulatory function over the ANO2-dependent Ca2+-activated Cl- channel involved in odor transduction.
Collapse
Affiliation(s)
- Casilda V Mura
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, 7800024, Santiago, Chile
| | - Ricardo Delgado
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, 7800024, Santiago, Chile
| | - María Graciela Delgado
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, 7800024, Santiago, Chile
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Juan Bacigalupo
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, 7800024, Santiago, Chile.
| |
Collapse
|
27
|
Ta CM, Acheson KE, Rorsman NJG, Jongkind RC, Tammaro P. Contrasting effects of phosphatidylinositol 4,5-bisphosphate on cloned TMEM16A and TMEM16B channels. Br J Pharmacol 2017; 174:2984-2999. [PMID: 28616863 PMCID: PMC5573538 DOI: 10.1111/bph.13913] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Ca2+‐activated Cl− channels (CaCCs) are gated open by a rise in intracellular Ca2+ concentration ([Ca2+]i), typically provoked by activation of Gq‐protein coupled receptors (GqPCR). GqPCR activation initiates depletion of plasmalemmal phosphatidylinositol 4,5‐bisphosphate (PIP2). Here, we determined whether PIP2 acts as a signalling lipid for CaCCs coded by the TMEM16A and TMEM16B genes. Experimental Approach Patch‐clamp electrophysiology, in conjunction with genetically encoded systems to control cellular PIP2 content, was used to define the mechanism of action of PIP2 on TMEM16A and TMEM16B channels. Key Results A water‐soluble PIP2 analogue (diC8‐PIP2) activated TMEM16A channels by up to fivefold and inhibited TMEM16B by ~0.2‐fold. The effects of diC8‐PIP2 on TMEM16A currents were especially pronounced at low [Ca2+]i. In contrast, diC8‐PIP2 modulation of TMEM16B channels did not vary over a broad [Ca2+]i range but was only detectable at highly depolarized membrane potentials. Modulation of TMEM16A and TMEM16B currents was due to changes in channel gating, while single channel conductance was unaltered. Co‐expression of TMEM16A or TMEM16B with a Danio rerio voltage‐sensitive phosphatase (DrVSP), which degrades PIP2, led to reduction and enhancement of TMEM16A and TMEM16B currents respectively. These effects were abolished by an inactivating mutation in DrVSP and antagonized by simultaneous co‐expression of a phosphatidylinositol‐4‐phosphate 5‐kinase that catalyses PIP2 formation. Conclusions and Implications PIP2 acts as a modifier of TMEM16A and TMEM16B channel gating. Drugs interacting with PIP2 signalling may affect TMEM16A and TMEM16B channel gating and have potential uses in basic science and implications for therapy.
Collapse
Affiliation(s)
- Chau M Ta
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Nils J G Rorsman
- Department of Pharmacology, University of Oxford, Oxford, UK.,OXION Wellcome Trust Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | | | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Oxford, UK.,OXION Wellcome Trust Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Hahn A, Faulhaber J, Srisawang L, Stortz A, Salomon JJ, Mall MA, Frings S, Möhrlen F. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium. Physiol Rep 2017; 5:e13290. [PMID: 28642338 PMCID: PMC5492199 DOI: 10.14814/phy2.13290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/17/2023] Open
Abstract
Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca2+- dependent and cAMP- dependent Cl- secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca2+-gated Cl- channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, the epithelial Na+ channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl- secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl- secretion and Na+ absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca2+-dependent Cl- secretion in this tissue. These characteristic features of Cl--dependent secretion reveal similarities and distinct differences to secretory processes in human airways.
Collapse
Affiliation(s)
- Anne Hahn
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Johannes Faulhaber
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Lalita Srisawang
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Andreas Stortz
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Johanna J Salomon
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC) German Center for Lung Research (DZL) University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC) German Center for Lung Research (DZL) University of Heidelberg, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Sala-Rabanal M, Yurtsever Z, Berry KN, Nichols CG, Brett TJ. Modulation of TMEM16A channel activity by the von Willebrand factor type A (VWA) domain of the calcium-activated chloride channel regulator 1 (CLCA1). J Biol Chem 2017; 292:9164-9174. [PMID: 28420732 DOI: 10.1074/jbc.m117.788232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
Calcium-activated chloride channels (CaCCs) are key players in transepithelial ion transport and fluid secretion, smooth muscle constriction, neuronal excitability, and cell proliferation. The CaCC regulator 1 (CLCA1) modulates the activity of the CaCC TMEM16A/Anoctamin 1 (ANO1) by directly engaging the channel at the cell surface, but the exact mechanism is unknown. Here we demonstrate that the von Willebrand factor type A (VWA) domain within the cleaved CLCA1 N-terminal fragment is necessary and sufficient for this interaction. TMEM16A protein levels on the cell surface were increased in HEK293T cells transfected with CLCA1 constructs containing the VWA domain, and TMEM16A-like currents were activated. Similar currents were evoked in cells exposed to secreted VWA domain alone, and these currents were significantly knocked down by TMEM16A siRNA. VWA-dependent TMEM16A modulation was not modified by the S357N mutation, a VWA domain polymorphism associated with more severe meconium ileus in cystic fibrosis patients. VWA-activated currents were significantly reduced in the absence of extracellular Mg2+, and mutation of residues within the conserved metal ion-dependent adhesion site motif impaired the ability of VWA to potentiate TMEM16A activity, suggesting that CLCA1-TMEM16A interactions are Mg2+- and metal ion-dependent adhesion site-dependent. Increase in TMEM16A activity occurred within minutes of exposure to CLCA1 or after a short treatment with nocodazole, consistent with the hypothesis that CLCA1 stabilizes TMEM16A at the cell surface by preventing its internalization. Our study hints at the therapeutic potential of the selective activation of TMEM16A by the CLCA1 VWA domain in loss-of-function chloride channelopathies such as cystic fibrosis.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- From the Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Zeynep Yurtsever
- Biochemistry Program.,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine
| | - Kayla N Berry
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.,Medical Scientist Training Program, and
| | - Colin G Nichols
- From the Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Tom J Brett
- From the Center for the Investigation of Membrane Excitability Diseases, .,Department of Cell Biology and Physiology.,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
30
|
Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases. Pharmacol Ther 2016; 169:113-123. [PMID: 27153991 DOI: 10.1016/j.pharmthera.2016.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels.
Collapse
|
31
|
Delgado R, Mura CV, Bacigalupo J. Single Ca(2+)-activated Cl(-) channel currents recorded from toad olfactory cilia. BMC Neurosci 2016; 17:17. [PMID: 27113933 PMCID: PMC4845334 DOI: 10.1186/s12868-016-0252-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Odor transduction, occurring in the chemosensory cilia of vertebrate olfactory sensory neurons, is triggered by guanosine triphosphate-coupled odor receptors and mediated by a cyclic adenosine monophosphate (cAMP) signaling cascade, where cAMP opens cationic non-selective cyclic nucleotide-gated (CNG) channels. Calcium enters through CNG gates Ca(2+)-activated Cl(-) channels, allowing a Cl(-) inward current that enhances the depolarization initiated by the CNG-dependent inward current. The anoctamin channel 2, ANO2, is considered the main Ca(2+)-activated Cl(-) channel of olfactory transduction. Although Ca(2+)-activated Cl(-) channel-dependent currents in olfactory sensory neurons were reported to be suppressed in ANO2-knockout mice, field potentials from their olfactory epithelium were only modestly diminished and their smell-dependent behavior was unaffected, suggesting the participation of additional Ca(2+)-activated Cl(-) channel types. The Bestrophin channel 2, Best2, was also detected in mouse olfactory cilia and ClCa4l, belonging to the ClCa family of Ca(2+)-activated Cl(-) channels, were found in rat cilia. Best2 knock-out mice present no electrophysiological or behavioral impairment, while the ClCa channels have not been functionally studied; therefore, the overall participation of all these channels in olfactory transduction remains unresolved. RESULTS We explored the presence of detectable Ca(2+)-activated Cl(-) channels in toad olfactory cilia by recording from inside-out membrane patches excised from individual cilia and detected unitary Cl(-) current events with a pronounced Ca(2+) dependence, corresponding to 12 and 24 pS conductances, over tenfold higher than the aforementioned channels, and a approx. fivefold higher Ca(2+) affinity (K0.5 = 0.38 µM). Remarkably, we observed immunoreactivity to anti-ClCa and anti-ANO2 antibodies in the olfactory cilia, suggesting a possible cooperative function of both channel type in chemotransduction. CONCLUSIONS These results are consistent with a novel olfactory cilia channel, which might play a role in odor transduction.
Collapse
Affiliation(s)
- Ricardo Delgado
- Department of Biology, Faculty of Sciences, University of Chile, 7800024, Ñuñoa, Santiago, Chile
| | - Casilda V Mura
- Department of Biology, Faculty of Sciences, University of Chile, 7800024, Ñuñoa, Santiago, Chile
| | - Juan Bacigalupo
- Department of Biology, Faculty of Sciences, University of Chile, 7800024, Ñuñoa, Santiago, Chile.
| |
Collapse
|
32
|
Piechowicz KA, Truong EC, Javed KM, Chaney RR, Wu JY, Phuan PW, Verkman AS, Anderson MO. Synthesis and evaluation of 5,6-disubstituted thiopyrimidine aryl aminothiazoles as inhibitors of the calcium-activated chloride channel TMEM16A/Ano1. J Enzyme Inhib Med Chem 2016; 31:1362-8. [PMID: 26796863 DOI: 10.3109/14756366.2015.1135912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmembrane protein 16A (TMEM16A), also called Ano1, is a Ca(2+) activated Cl(-) channel expressed widely in mammalian epithelia, as well as in vascular smooth muscle and some tumors and electrically excitable cells. TMEM16A inhibitors have potential utility for treatment of disorders of epithelial fluid and mucus secretion, hypertension, some cancers and other diseases. 4-Aryl-2-amino thiazole T16Ainh-01 was previously identified by high-throughput screening. Here, a library of 47 compounds were prepared that explored the 5,6-disubstituted pyrimidine scaffold found in T16Ainh-01. TMEM16A inhibition activity was measured using fluorescence plate reader and short-circuit current assays. We found that very little structural variation of T16Ainh-01 was tolerated, with most compounds showing no activity at 10 μM. The most potent compound in the series, 9bo, which substitutes 4-methoxyphenyl in T16Ainh-01 with 2-thiophene, had IC50 ∼1 μM for inhibition of TMEM16A chloride conductance.
Collapse
Affiliation(s)
- Katarzyna A Piechowicz
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| | - Eric C Truong
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| | - Kashif M Javed
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| | - Rachelle R Chaney
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| | - Johnny Y Wu
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| | - Puay W Phuan
- b Departments of Medicine and Physiology , University of California, San Francisco , San Francisco , CA , USA
| | - Alan S Verkman
- b Departments of Medicine and Physiology , University of California, San Francisco , San Francisco , CA , USA
| | - Marc O Anderson
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| |
Collapse
|