1
|
Shanahan R, Avsar P, Watson C, Moore Z, Patton D, McEvoy NL, Curley G, O'Connor T. The impact of brain tissue oxygenation monitoring on the Glasgow Outcome Scale/Glasgow Outcome Scale Extended in patients with moderate to severe traumatic brain injury: A systematic review. Nurs Crit Care 2024; 29:1460-1469. [PMID: 37735107 DOI: 10.1111/nicc.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Traumatic brain injuries (TBIs) are one of the leading causes of death or long-term disability around the world. As a result of improvements in supportive care, patients are surviving more severe insults with more pronounced dependency on their families, hospitals, and long-term care facilities. The introduction of brain tissue oxygenation (PbtO2) monitoring aims to recognize episodes of reduced cerebral perfusion with and without associated increased intracranial pressure (ICP). AIM The aim of this review is to determine the impact of PbtO2 on the Glasgow Outcome Scale/Glasgow Outcome Scale Extended (GOS/GOSE) in patients with moderate to severe TBI. STUDY DESIGN Systematic review with narrative and meta-analysis. All original research in which adult patients undergoing PbtO2 were compared with a control group of traditional ICP/cerebral perfusion pressure (CPP) monitoring. Both randomized controlled trials and observational studies were included in this review. METHODS Databases were searched in September 2022. The primary outcome of the review was the impact of PbtO2 monitoring on GOS/GOSE, while secondary outcomes were mortality and length of stay (LOS) in the intensive care unit (ICU). RESULTS Seven studies with a combined number of 770 patients were included in the review. These patients were adults ≥16 years of age. Only two of the studies included found a statistically significant association between PbtO2 monitoring and improved long-term neurological outcomes in patients with TBI (p = .01, p < .01). A meta-analysis of the secondary outcomes identified an associated reduction of mortality in favour of the group treated with PbtO2 monitoring (p < .0001). Results from studies examining LOS in ICU have demonstrated an associated increase of LOS in ICU in patients treated with PbtO2-guided therapy. CONCLUSION From the studies included in this review, only two found a statistically significant association between PbtO2 monitoring and long-term outcomes. It is unclear whether PbtO2 goal-directed therapy has a positive impact on the long-term neurological functions and mortality of patients suffering from TBI. A multicentre randomized controlled trial may provide further evidence, but not necessarily conclusive. RELEVANCE TO CLINICAL PRACTICE Further research is warranted to determine the efficacy of the introduction of this new monitoring system to guide local policy change.
Collapse
Affiliation(s)
- Ruth Shanahan
- Beaumont Hospital, Dublin, Ireland
- Department of Anaesthesia and Critical Care, Beaumont Hospital, Dublin, Ireland
| | - Pinar Avsar
- School of Nursing & Midwifery, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Chanel Watson
- School of Nursing & Midwifery, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Zena Moore
- School of Nursing & Midwifery, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing & Midwifery, Griffith University, Mount Gravatt, Queensland, Australia
- School of Health Sciences, Faculty of Life and Health Sciences Ulster University, UK
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
- Lida Institute, Shanghai, China
- Cardiff University, Cardiff, UK
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
| | - Declan Patton
- School of Nursing & Midwifery, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing & Midwifery, Griffith University, Mount Gravatt, Queensland, Australia
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Natalie L McEvoy
- Department of Anaesthesia and Critical Care, RCSI, Dublin, Ireland
| | - Ger Curley
- Beaumont Hospital, Dublin, Ireland
- Department of Anaesthesia and Critical Care, Beaumont Hospital, Dublin, Ireland
- Department of Anaesthesia and Critical Care, RCSI, Dublin, Ireland
| | - Tom O'Connor
- School of Nursing & Midwifery, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing & Midwifery, Griffith University, Mount Gravatt, Queensland, Australia
- Lida Institute, Shanghai, China
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Wang Z, Zhang R, Han Z, Wang J, Wu R, Zhao W, Zhang X, Bao J, Yang W, Zhang Z. Assessment of traumatic brain injury treatment guided by continuous monitoring of intracranial pressure and brain tissue oxygen partial pressure: A single-center pilot study. J Clin Neurosci 2024; 130:110884. [PMID: 39447393 DOI: 10.1016/j.jocn.2024.110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Severe traumatic brain injury (TBI) is a leading cause of death and disability. Monitoring intracranial pressure (ICP) is recommended, but the data on the outcomes are conflicting. Adding continuous brain tissue oxygen partial pressure (PbtO2) monitoring may have some benefit but the OXY-TC suggested it did not improve 6-month neurological outcomes. This single-center pilot randomized controlled study aimed to evaluate whether adding PbtO2 monitoring was feasible and could improve the prognosis of severe TBI. The participants were randomized into either an ICP alone or an ICP + PbtO2 group for 7 days, with treatment protocols based on existing guidelines. Clinical parameters were collected hourly. The primary outcome was the feasibility of using PbtO2 monitoring. The secondary outcomes were 6-month survival, analyzed by the log-rank test, the 3- and 6-month Glasgow Outcome Scale (GOS) scores, compared between groups by chi-squared test. Seventy patients were included (36 ICP, 34 ICP + PbtO2). The ICP + PbtO2 group had lower mean daily ICP (13.4 vs. 18.2 mmHg, P = 0.0024) and higher mean daily cerebral perfusion pressure (82.1 vs. 74.5 mmHg, P = 0.0055). The ICP + PbtO2 group had higher 6-month survival (79.4 % vs. 55.6 %, P = 0.0337) and more favorable outcomes at 3 months (67.6 % vs. 38.9 %, P = 0.0160) and 6 months (70.6 % vs. 41.7 %, P = 0.0149). Adding PbtO2 monitoring to ICP monitoring is feasible in patients with severe TBI and could maybe improve the intermediate-term outcomes. The results will serve to design larger trials.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China.
| | - Ruijian Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhitong Han
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Junqing Wang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Rile Wu
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Weiping Zhao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Xiaojun Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Weiran Yang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhilong Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Zhang C, Zhou L, Zhang K, Huang J, Cao L, Lou Y, Fan Y, Zhang X, Wang Y, Cui W, Hu L, Zhang G. Brain tissue oxygen pressure combined with intracranial pressure monitoring may improve clinical outcomes for patients with severe traumatic brain injury: a systemic review and meta-analysis. PeerJ 2024; 12:e18086. [PMID: 39399425 PMCID: PMC11468803 DOI: 10.7717/peerj.18086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/21/2024] [Indexed: 10/15/2024] Open
Abstract
Background Although the optimization of brain oxygenation is thought to improve the prognosis, the effect of brain tissue oxygen pressure (PbtO2) for patients with severe traumatic brain injury (STBI) remains controversial. Therefore, the present study aimed to determine whether adding PbtO2 to intracranial pressure (ICP) monitoring improves clinical outcomes for patients with STBI. Methods PubMed, Embase, Scopus and Cochrane Library were searched for eligible trials from their respective inception through April 10th, 2024. We included clinical trials contrasting the combined monitoring of PbtO2 and ICP versus isolated ICP monitoring among patients with STBI. The primary outcome was favorable neurological outcome at 6 months, and secondary outcomes including the in-hospital mortality, long-term mortality, length of stay in intensive care unit (ICU) and hospital. Results A total of 16 studies (four randomized studies and 12 cohort studies) were included in the meta-analysis. Compared with isolated ICP monitoring, the combined monitoring was associated with a higher favorable neurological outcome rate at 6 months (RR 1.33, 95% CI [1.17-1.51], P < 0.0001, I2 = 0%), reduced long-term mortality (RR 0.72, 95% CI [0.59-0.87], P = 0.0008, I2 = 2%). No significant difference was identified in the in-hospital mortality (RR 0.81, 95% CI 0.66 to 1.01, P = 0.06, I2 = 32%), length of stay in ICU (MD 2.10, 95% CI [-0.37-4.56], P = 0.10, I2 = 78%) and hospital (MD 1.07, 95% CI [-2.54-4.67], P = 0.56, I2 = 49%) between two groups. However, the pooled results of randomized studies did not show beneficial effect of combined monitoring in favorable neurological outcome and long-term mortality. Conclusions Currently, there is limited evidence to prove that the combined PbtO2 and ICP monitoring may contribute to improved neurological outcome and long-term mortality for patients with STBI. However, the benefit of combined monitoring should be further validated in more randomized studies.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Emergency Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lingmin Zhou
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Critical Care Medicine, First People’s Hospital of Taizhou, Taizhou, China
| | - Kai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Critical Care Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Lanxin Cao
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhang Lou
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushi Fan
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyun Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yesong Wang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cui
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Hu
- Department of Critical Care Medicine, Hospital of Zhejiang People’s Armed Police, Hangzhou, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
4
|
Santana LS, Diniz JBC, Solla DJF, Neville IS, Figueiredo EG, Mota Telles JP. Brain tissue oxygen combined with intracranial pressure monitoring versus isolated intracranial pressure monitoring in patients with traumatic brain injury: an updated systematic review and meta-analysis. Neurol Sci 2024; 45:3051-3059. [PMID: 38353849 DOI: 10.1007/s10072-024-07392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 06/15/2024]
Abstract
Monitoring intracranial pressure (ICP) is pivotal in the management of severe traumatic brain injury (TBI), but secondary brain injuries can arise despite normal ICP levels. Cerebral tissue oxygenation monitoring (PbtO2) may detect neuronal tissue infarction thresholds, enhancing neuroprotection. We performed a systematic review and meta-analysis to evaluate the effects of combined cerebral tissue oxygenation (PbtO2) and ICP compared to isolated ICP monitoring in patients with TBI. PubMed, Embase, Cochrane, and Web of Sciences databases were searched for trials published up to June 2023. A total of 16 studies comprising 37,820 patients were included. ICP monitoring was universal, with additional placement of PbtO2 in 2222 individuals (5.8%). The meta-analysis revealed a reduction in mortality (OR 0.57, 95% CI 0.37-0.89, p = 0.01), a greater likelihood of favorable outcomes (OR 2.28, 95% CI 1.66-3.14, p < 0.01), and a lower chance of poor outcomes (OR 0.51, 95% CI 0.34-0.79, p < 0.01) at 6 months for the PbtO2 plus ICP group. However, these patients experienced a longer length of hospital stay (MD 2.35, 95% CI 0.50-4.20, p = 0.01). No significant difference was found in hospital mortality rates (OR 0.81, 95% CI 0.61-1.08, p = 0.16) or intensive care unit length of stay (MD 2.46, 95% CI - 0.11-5.04, p = 0.06). The integration of PbtO2 to ICP monitoring improved mortality outcomes and functional recovery at 6 months in patients with TBI. PROSPERO (International Prospective Register of Systematic Reviews) CRD42022383937; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=383937.
Collapse
Affiliation(s)
| | | | - Davi Jorge Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Iuri Santana Neville
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Eberval Gadelha Figueiredo
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - João Paulo Mota Telles
- Department of Neurology, University of São Paulo, Av Dr Arnaldo, 455 - Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
5
|
Pustilnik HN, Medrado-Nunes GS, Cerqueira GA, Meira DA, da Cunha BLB, Porto Junior S, Fontes JHM, da Silva da Paz MG, Alcântara T, de Avellar LM. Brain tissue oxygen plus intracranial pressure monitoring versus isolated intracranial pressure monitoring in patients with traumatic brain injury: an updated meta-analysis of randomized controlled trials. Acta Neurochir (Wien) 2024; 166:240. [PMID: 38814348 DOI: 10.1007/s00701-024-06125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Intracranial pressure (ICP) monitoring plays a key role in patients with traumatic brain injury (TBI), however, cerebral hypoxia can occur without intracranial hypertension. Aiming to improve neuroprotection in these patients, a possible alternative is the association of Brain Tissue Oxygen Pressure (PbtO2) monitoring, used to detect PbtO2 tension. METHOD We systematically searched PubMed, Embase and Cochrane Central for RCTs comparing combined PbtO2 + ICP monitoring with ICP monitoring alone in patients with severe or moderate TBI. The outcomes analyzed were mortality at 6 months, favorable outcome (GOS ≥ 4 or GOSE ≥ 5) at 6 months, pulmonary events, cardiovascular events and sepsis rate. RESULTS We included 4 RCTs in the analysis, totaling 505 patients. Combined PbtO2 + ICP monitoring was used in 241 (47.72%) patients. There was no significant difference between the groups in relation to favorable outcome at 6 months (RR 1.17; 95% CI 0.95-1.43; p = 0.134; I2 = 0%), mortality at 6 months (RR 0.82; 95% CI 0.57-1.18; p = 0.281; I2 = 34%), cardiovascular events (RR 1.75; 95% CI 0.86-3.52; p = 0.120; I2 = 0%) or sepsis (RR 0.75; 95% CI 0.25-2.22; p = 0.604; I2 = 0%). The risk of pulmonary events was significantly higher in the group with combined PbtO2 + ICP monitoring (RR 1.44; 95% CI 1.11-1.87; p = 0.006; I2 = 0%). CONCLUSIONS Our findings suggest that combined PbtO2 + ICP monitoring does not change outcomes such as mortality, functional recovery, cardiovascular events or sepsis. Furthermore, we found a higher risk of pulmonary events in patients undergoing combined monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tancredo Alcântara
- Neurosurgery Department, General Hospital Roberto Santos, Salvador, Brazil
| | | |
Collapse
|
6
|
Shen Y, Wen D, Liang Z, Wan L, Jiang Q, He H, He M. Brain tissue oxygen partial pressure monitoring and prognosis of patients with traumatic brain injury: a meta-analysis. Neurosurg Rev 2024; 47:222. [PMID: 38758384 PMCID: PMC11101534 DOI: 10.1007/s10143-024-02439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
To assess whether monitoring brain tissue oxygen partial pressure (PbtO2) or employing intracranial pressure (ICP)/cerebral perfusion pressure (CCP)-guided management improves patient outcomes, including mortality, hospital length of stay (LOS), mean daily ICP and mean daily CCP during the intensive care unit(ICU)stay. We searched the Web of Science, EMBASE, PubMed, Cochrane Library, and MEDLINE databases until December 12, 2023. Prospective randomized controlled and cohort studies were included. A meta-analysis was performed for the primary outcome measure, mortality, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eleven studies with a total of 37,492 patients were included. The mortality in the group with PbtO2 was 29.0% (odds ratio: 0.73;95% confidence interval [CI]:0.56-0.96; P = 0.03; I = 55%), demonstrating a significant benefit. The overall hospital LOS was longer in the PbtO2 group than that in the ICP/CPP group (mean difference:2.03; 95% CI:1.03-3.02; P<0.0001; I = 39%). The mean daily ICP in the PbtO2 monitoring group was lower than that in the ICP/CPP group (mean difference:-1.93; 95% CI: -3.61 to -0.24; P = 0.03; I = 41%). Moreover, PbtO2 monitoring did not improve the mean daily CPP (mean difference:2.43; 95%CI: -1.39 to 6.25;P = 0.21; I = 56%).Compared with ICP/CPP monitoring, PbtO2 monitoring reduced the mortality and the mean daily ICP in patients with severe traumatic brain injury; however, no significant effect was noted on the mean daily CPP. In contrast, ICP/CPP monitoring alone was associated with a short hospital stay.
Collapse
Affiliation(s)
- Yuqi Shen
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Dan Wen
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Zhenghua Liang
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Li Wan
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Qingli Jiang
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Haiyan He
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Mei He
- Department of Nursing, School of Medicine, Mei He: RN, BSN, Mianyang Central Hospital, University of Electronic Science and Technology of China, No.12 Changjia Alley, Jingzhong Street, Fucheng District, Mianyang, 621000, Sichuan Province, China.
| |
Collapse
|
7
|
Yan J, Zha F, Zhou J, Zhou J, Zhao J, Zhang Q, Long J, Hou D, Song Z, Wang Y. Combining HD-tDCS with music stimulation for patients with prolonged disorders of consciousness: Study protocol for an RCT trial. NeuroRehabilitation 2024; 54:495-504. [PMID: 38457160 PMCID: PMC11091638 DOI: 10.3233/nre-230282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/27/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Patients with prolonged disorders of consciousness (pDOC) pose significant challenges to healthcare workers due to their severe motor impairments and limited interaction with the environment. Non-invasive brain stimulation such as high-definition transcranial direct current stimulation (HD-tDCS) and music stimulation show promise in awakening this population. OBJECTIVE In this study, we present a protocol aiming at investigating the efficacy of combined HD-tDCS and music stimulation in awakening patients with pDOC through a single-blind, randomized controlled trial. METHODS Ninety patients with pDOC will be randomly divided into three groups: active HD-tDCS with music stimulation, active HD-tDCS, and sham HD-tDCS. All participants will receive 20 treatment sessions over a period of 10 days and the Coma Recovery Scale-Revised, Glasgow Outcome Scale and electroencephalogram will be used as assessment measures to evaluate their level of consciousness throughout the study. Adverse events and complications will be recorded during treatment. Within-group pre-post comparisons and between-group efficacy comparisons will be conducted to identify the most effective intervention approach. Statistical analysis will be performed using SPSS software with a significance level set at P < 0.05. CONCLUSION The pursuit of awakening therapy for patients with pDOC remains a clinical research challenge. This study protocol is designed with the aim of introducing an innovative non-pharmacological approach which combined HD-tDCS and music stimulation to facilitate the reinstatement of consciousness in patients with pDOC.
Collapse
Affiliation(s)
- Jie Yan
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fubing Zha
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Juan Zhou
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jing Zhou
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jingpu Zhao
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qingfang Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianjun Long
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Dianrui Hou
- Department of Rehabilitation, Nan’ao People’s Hospital of Shenzhen, Dapeng New District, Shenzhen, China
| | - Zhenhua Song
- Department of Rehabilitation Medicine, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou, China
| | - Yulong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
8
|
Vitt JR, Loper NE, Mainali S. Multimodal and autoregulation monitoring in the neurointensive care unit. Front Neurol 2023; 14:1155986. [PMID: 37153655 PMCID: PMC10157267 DOI: 10.3389/fneur.2023.1155986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Given the complexity of cerebral pathology in patients with acute brain injury, various neuromonitoring strategies have been developed to better appreciate physiologic relationships and potentially harmful derangements. There is ample evidence that bundling several neuromonitoring devices, termed "multimodal monitoring," is more beneficial compared to monitoring individual parameters as each may capture different and complementary aspects of cerebral physiology to provide a comprehensive picture that can help guide management. Furthermore, each modality has specific strengths and limitations that depend largely on spatiotemporal characteristics and complexity of the signal acquired. In this review we focus on the common clinical neuromonitoring techniques including intracranial pressure, brain tissue oxygenation, transcranial doppler and near-infrared spectroscopy with a focus on how each modality can also provide useful information about cerebral autoregulation capacity. Finally, we discuss the current evidence in using these modalities to support clinical decision making as well as potential insights into the future of advanced cerebral homeostatic assessments including neurovascular coupling.
Collapse
Affiliation(s)
- Jeffrey R. Vitt
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Department of Neurology, UC Davis Medical Center, Sacramento, CA, United States
| | - Nicholas E. Loper
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
9
|
Jia H, Chen Y, Wang Y, Jia L, Tian Y, Jiang H. The neuroprotective effect of electro-acupuncture on cognitive recovery for patients with mild traumatic brain injury: A randomized controlled clinical trial. Medicine (Baltimore) 2023; 102:e32885. [PMID: 36820591 PMCID: PMC9907991 DOI: 10.1097/md.0000000000032885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major health and socioeconomic problem that affects all societies. Consciousness disorder is a common complication after TBI while there is still no effective treatment currently. The aim of this study was to investigate the protective effect of electro-acupuncture (EA) on cognitive recovery for patients with mild TBI. METHODS A total of 83 patients with initial Glasgow coma scale score higher than 12 points were assigned into this study. Then patients were randomly divided into 2 groups: EA group and control group (group C). Patients in group EA received EA treatment at Neiguan and Shuigou for 2 weeks. At 0 minute before EA treatment (T1), 0 minute after EA treatment (T2), and 8 weeks after EA treatment (T3), level of neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), hypoxia inducible factor-1α (HIF-1α), and malondialdehyde were tested by enzyme-linked immunosorbent assay. The score of Montreal Cognitive Function Assessment (MoCA) and mini-mental state examination (MMSE) as well as cerebral oxygen saturation (rSO2) were detected at the same time. RESULTS Compared with the baseline at T1, the level of NSE, GFAP, HIF-1α, MDA, and rSO2 decreased, and the score of MoCA and MMSE increased in the 2 groups were significantly increased at T2-3 (P < .05). Compared with group C, the level of NSE, GFAP, HIF-1α, MDA, and rSO2 decreased, and the score of MoCA and MMSE increased were significantly increased at T2-3 in group EA; the difference were statistically significant (P < .05). CONCLUSIONS EA treatment could improve the cognitive recovery for patients with mild TBI and the potential mechanism may be related to improving cerebral hypoxia and alleviating brain injury.
Collapse
Affiliation(s)
- Haokun Jia
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
- * Correspondence: Haokun Jia, Department of Neurosurgery, Cangzhou Central Hospital, No. 50, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province, 061017, China (e-mail: )
| | - Yonghan Chen
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Yi Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Linwei Jia
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Yaohui Tian
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Hao Jiang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| |
Collapse
|
10
|
Brain Tissue Oxygen Levels as a Perspective Therapeutic Target in Traumatic Brain Injury. Retrospective Cohort Study. J Crit Care Med (Targu Mures) 2023; 9:12-19. [PMID: 36890978 PMCID: PMC9987269 DOI: 10.2478/jccm-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/30/2022] [Indexed: 02/10/2023] Open
Abstract
Introduction Management of traumatic brain injury (TBI) requires a multidisciplinary approach and represents a significant challenge for both neurosurgeons and intensivists. The role of brain tissue oxygenation (PbtO2) monitoring and its impact on posttraumatic outcomes remains a controversial topic. Aim of the study Our study aimed to evaluate the impact of PbtO2 monitoring on mortality, 30 days and 6 months neurological outcomes in patients with severe TBI compared with those resulting from standard intracranial pressure (ICP) monitoring. Material and methods In this retrospective cohort study, we analysed the outcomes of 77 patients with severe TBI who met the inclusion criteria. These patients were divided into two groups, including 37 patients who were managed with ICP and PbtO2 monitoring protocols and 40 patients who were managed using ICP protocols alone. Results There were no significant differences in demographic data between the two groups. We found no statistically significant differences in mortality or Glasgow Outcome Scale (GOS) scores one month after TBI. However, our results revealed that GOS scores at 6 months had improved significantly among patients managed with PbtO2; this finding was particularly notable for Glasgow Outcome Scale (GOS) scores of 4-5. Close monitoring and management of reductions in PbtO2, particularly by increasing the fraction of inspired oxygen, was associated with higher partial pressures of oxygen in this group. Conclusions Monitoring of PbtO2 may facilitate the appropriate evaluation and treatment of low PbtO2 and represents a promising tool for the management of patients with severe TBI. Additional studies will be needed to confirm these findings.
Collapse
|
11
|
Tas J, Czosnyka M, van der Horst ICC, Park S, van Heugten C, Sekhon M, Robba C, Menon DK, Zeiler FA, Aries MJH. Cerebral multimodality monitoring in adult neurocritical care patients with acute brain injury: A narrative review. Front Physiol 2022; 13:1071161. [PMID: 36531179 PMCID: PMC9751622 DOI: 10.3389/fphys.2022.1071161] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 07/27/2023] Open
Abstract
Cerebral multimodality monitoring (MMM) is, even with a general lack of Class I evidence, increasingly recognized as a tool to support clinical decision-making in the neuroscience intensive care unit (NICU). However, literature and guidelines have focused on unimodal signals in a specific form of acute brain injury. Integrating unimodal signals in multiple signal monitoring is the next step for clinical studies and patient care. As such, we aimed to investigate the recent application of MMM in studies of adult patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), acute ischemic stroke (AIS), and hypoxic ischemic brain injury following cardiac arrest (HIBI). We identified continuous or daily updated monitoring modalities and summarized the monitoring setting, study setting, and clinical characteristics. In addition, we discussed clinical outcome in intervention studies. We identified 112 MMM studies, including 11 modalities, over the last 7 years (2015-2022). Fifty-eight studies (52%) applied only two modalities. Most frequently combined were ICP monitoring (92 studies (82%)) together with PbtO2 (63 studies (56%). Most studies included patients with TBI (59 studies) or SAH (53 studies). The enrollment period of 34 studies (30%) took more than 5 years, whereas the median sample size was only 36 patients (q1- q3, 20-74). We classified studies as either observational (68 studies) or interventional (44 studies). The interventions were subclassified as systemic (24 studies), cerebral (10 studies), and interventions guided by MMM (11 studies). We identified 20 different systemic or cerebral interventions. Nine (9/11, 82%) of the MMM-guided studies included clinical outcome as an endpoint. In 78% (7/9) of these MMM-guided intervention studies, a significant improvement in outcome was demonstrated in favor of interventions guided by MMM. Clinical outcome may be improved with interventions guided by MMM. This strengthens the belief in this application, but further interdisciplinary collaborations are needed to overcome the heterogeneity, as illustrated in the present review. Future research should focus on increasing sample sizes, improved data collection, refining definitions of secondary injuries, and standardized interventions. Only then can we proceed with complex outcome studies with MMM-guided treatment.
Collapse
Affiliation(s)
- Jeanette Tas
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Marek Czosnyka
- Brain Physics Laboratory, Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Iwan C. C. van der Horst
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, Netherlands
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY, United States
| | - Caroline van Heugten
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico Santino IRCCS for Oncology and Neuroscience, Dipartimento di Scienze Chirurgiche Diagnostiche Integrate, University of Genova, Genova, Italy
| | - David K. Menon
- University Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frederick A. Zeiler
- University Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcel J. H. Aries
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
12
|
The Impact of Invasive Brain Oxygen Pressure Guided Therapy on the Outcome of Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Neurocrit Care 2022; 37:779-789. [PMID: 36180764 DOI: 10.1007/s12028-022-01613-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a major public health burden, causing death and disability worldwide. Intracranial hypertension and brain hypoxia are the main mechanisms of secondary brain injury. As such, management strategies guided by intracranial pressure (ICP) and brain oxygen (PbtO2) monitoring could improve the prognosis of these patients. Our objective was to summarize the current evidence regarding the impact of PbtO2-guided therapy on the outcome of patients with TBI. We performed a systematic search of PubMed, Scopus, and the Cochrane library databases, following the protocol registered in PROSPERO. Only studies comparing PbtO2/ICP-guided therapy with ICP-guided therapy were selected. Primary outcome was neurological outcome at 3 and 6 months assessed by using the Glasgow Outcome Scale; secondary outcomes included hospital and long-term mortality, burden of intracranial hypertension, and brain tissue hypoxia. Out of 6254 retrieved studies, 15 studies (n = 37,245 patients, of who 2184 received PbtO2-guided therapy) were included in the final analysis. When compared with ICP-guided therapy, the use of combined PbO2/ICP-guided therapy was associated with a higher probability of favorable neurological outcome (odds ratio 2.21 [95% confidence interval 1.72-2.84]) and of hospital survival (odds ratio 1.15 [95% confidence interval 1.04-1.28]). The heterogeneity (I2) of the studies in each analysis was below 40%. However, the quality of evidence was overall low to moderate. In this meta-analysis, PbtO2-guided therapy was associated with reduced mortality and more favorable neurological outcome in patients with TBI. The low-quality evidence underlines the need for the results from ongoing phase III randomized trials.
Collapse
|
13
|
Barrit S, Al Barajraji M, El Hadweh S, Dewitte O, Torcida N, Andre J, Taccone FS, Schuind S, Gouvêa Bogossian E. Brain Tissue Oxygenation-Guided Therapy and Outcome in Traumatic Brain Injury: A Single-Center Matched Cohort Study. Brain Sci 2022; 12:brainsci12070887. [PMID: 35884694 PMCID: PMC9315682 DOI: 10.3390/brainsci12070887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
Brain tissue oxygenation (PbtO2)-guided therapy can improve the neurological outcome of traumatic brain injury (TBI) patients. With several Phase-III ongoing studies, most of the existing evidence is based on before-after cohort studies and a phase-II randomized trial. The aim of this study was to assess the effectiveness of PbtO2-guided therapy in a single-center cohort. We performed a retrospective analysis of consecutive severe TBI patients admitted to our center who received either intracranial pressure (ICP) guided therapy (from January 2012 to February 2016) or ICP/PbtO2-guided therapy (February 2017 to December 2019). A genetic matching was performed based on covariates including demographics, comorbidities, and severity scores on admission. Intracranial hypertension (IH) was defined as ICP > 20 mmHg for at least 5 min. Brain hypoxia (BH) was defined as PbtO2 < 20 mmHg for at least 10 min. IH and BH were targeted by specific interventions. Mann−Whitney U and Fisher’s exact tests were used to assess differences between groups. A total of 35 patients were matched in both groups: significant differences in the occurrence of IH (ICP 85.7% vs. ICP/PbtO2 45.7%, p < 0.01), ICU length of stay [6 (3−13) vs. 16 (9−25) days, p < 0.01] and Glasgow Coma Scale at ICU discharge [10 (5−14) vs. 13 (11−15), p = 0.036] were found. No significant differences in ICU mortality and Glasgow Outcome Scales at 3 months were observed. This study suggests that the role of ICP/PbtO2-guided therapy should await further confirmation in well-conducted large phase III studies.
Collapse
Affiliation(s)
- Sami Barrit
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Mejdeddine Al Barajraji
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Salim El Hadweh
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Olivier Dewitte
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Nathan Torcida
- Department of Neurology, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Joachim Andre
- Department of Radiology, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Sophie Schuind
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Elisa Gouvêa Bogossian
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
- Correspondence:
| |
Collapse
|
14
|
What Are We Measuring? A Refined Look at the Process of Disrupted Autoregulation and the Limitations of Cerebral Perfusion Pressure in Preventing Secondary Injury after Traumatic Brain Injury. Clin Neurol Neurosurg 2022; 221:107389. [PMID: 35961231 DOI: 10.1016/j.clineuro.2022.107389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
|
15
|
Pinggera D, Rhomberg P, Beer R, Thomé C, Petr O. Brain Tissue Damage Induced by Multimodal Neuromonitoring In Situ during MRI after Severe Traumatic Brain Injury: Incidence and Clinical Relevance. J Clin Med 2022; 11:jcm11113169. [PMID: 35683575 PMCID: PMC9181231 DOI: 10.3390/jcm11113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
Both neuromonitoring and early magnetic resonance imaging (MRI) provide crucial information for treatment management and prognosis in patients with severe traumatic brain injury (sTBI). So far, neuromonitoring in situ impedes the routine implementation of MRI due to safety concerns. We aimed to evaluate the brain tissue damage induced by inserted neuromonitoring devices and its clinical relevance. Nineteen patients with sTBI and being exposed to at least one MRI with neuromonitoring in situ and one follow-up MRI after neuromonitoring removal were analyzed. All MRIs were reviewed for specific tissue damage. Three females and sixteen males (aged 20–74 years, mean 42.8 years) with an initial median GCS of 5 (range 3–8) were analyzed. No lesion was observed in six patients (31.6%), whereas another six patients (31.6%) demonstrated a detectable probe trajectory. Probe-related tissue damage was visible in seven patients (36.8%) with the size of the lesion prone to further enlarge with increasing cumulative duration of MRI examinations. Upon interdisciplinary evaluation, the lesions were not considered clinically relevant. Neuromonitoring probes in situ during MRI examinations may cause local brain tissue damage, yet without any clinical implications if placed correctly. Therefore, indications must be strictly based on joint decision from all involved disciplines.
Collapse
Affiliation(s)
- Daniel Pinggera
- Department of Neurosurgery, Medical University Innsbruck, 6020 Innsbruck, Austria; (C.T.); (O.P.)
- Correspondence: ; Tel.: +43-512-504-27452
| | - Paul Rhomberg
- Department of Neuroradiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Ronny Beer
- Department of Neurology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Claudius Thomé
- Department of Neurosurgery, Medical University Innsbruck, 6020 Innsbruck, Austria; (C.T.); (O.P.)
| | - Ondra Petr
- Department of Neurosurgery, Medical University Innsbruck, 6020 Innsbruck, Austria; (C.T.); (O.P.)
| |
Collapse
|
16
|
Riberholt CG, Olsen MH, Berg RMG, Møller K. Mobilising patients with severe acquired brain injury in intensive care (MAWERIC) - Protocol for a randomised cross-over trial. Contemp Clin Trials 2022; 116:106738. [PMID: 35331944 DOI: 10.1016/j.cct.2022.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION In the early phase after severe brain injury, patients are often bedridden in an attempt to control intracranial homeostasis; however, prolonged immobilisation may trigger complications. There is limited knowledge about the physiological effects of mobilisation in this early phase. OBJECTIVE To investigate changes in brain tissue oxygen tension when patients are mobilised using a Sara Combilizer® in the early phase after severe brain injury, in a randomised cross-over design. METHODS Patients with traumatic brain injury, subarachnoid haemorrhage or intracranial haematoma, will be randomised to early mobilisation or rest (no mobilisation = control) on the first day that the patient is deemed to be fit for mobilisation, and the opposite on the next day. On both days, patients will undergo continuous multimodal monitoring measuring brain tissue oxygen tension (primary outcome), invasive blood pressure, heart rate, middle cerebral artery blood flow velocity by transcranial Doppler ultrasound, intracranial pressure, and microdialysis markers of cerebral oxidative metabolism. DISCUSSION Intensive care unit patients with acute brain injury are frequently immobilised in the early phase after the ictus. The optimal timing and intensity of mobilisation is unknown. The present study attempts to establish if early mobilisation is safe with respect to intracranial homeostasis. Protocol version 1.1. Date: 19.02.2022. Ethical registration: H-21002728; approved on August 11, 2021. GDPR registration: P-2021 - 105; approved on February 10, 2021. CLINICALTRIALS govidentifier:NCT05038930; approved on September 8, 2021. Electronic case report file: REDCap-database; created on August 13, 2021.
Collapse
Affiliation(s)
- Christian Gunge Riberholt
- Department of Neurorehabilitation, Traumatic Brain Injury, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Denmark; Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Denmark.
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ronan M G Berg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark; Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Denmark; Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Cruz Navarro J, Ponce Mejia LL, Robertson C. A Precision Medicine Agenda in Traumatic Brain Injury. Front Pharmacol 2022; 13:713100. [PMID: 35370671 PMCID: PMC8966615 DOI: 10.3389/fphar.2022.713100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury remains a leading cause of death and disability across the globe. Substantial uncertainty in outcome prediction continues to be the rule notwithstanding the existing prediction models. Additionally, despite very promising preclinical data, randomized clinical trials (RCTs) of neuroprotective strategies in moderate and severe TBI have failed to demonstrate significant treatment effects. Better predictive models are needed, as the existing validated ones are more useful in prognosticating poor outcome and do not include biomarkers, genomics, proteonomics, metabolomics, etc. Invasive neuromonitoring long believed to be a "game changer" in the care of TBI patients have shown mixed results, and the level of evidence to support its widespread use remains insufficient. This is due in part to the extremely heterogenous nature of the disease regarding its etiology, pathology and severity. Currently, the diagnosis of traumatic brain injury (TBI) in the acute setting is centered on neurological examination and neuroimaging tools such as CT scanning and MRI, and its treatment has been largely confronted using a "one-size-fits-all" approach, that has left us with many unanswered questions. Precision medicine is an innovative approach for TBI treatment that considers individual variability in genes, environment, and lifestyle and has expanded across the medical fields. In this article, we briefly explore the field of precision medicine in TBI including biomarkers for therapeutic decision-making, multimodal neuromonitoring, and genomics.
Collapse
Affiliation(s)
- Jovany Cruz Navarro
- Departments of Anesthesiology and Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Lucido L. Ponce Mejia
- Departments of Neurosurgery and Neurology, LSU Health Science Center, New Orleans, LA, United States
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
18
|
Hoffman H, Abi-Aad K, Bunch KM, Beutler T, Otite FO, Chin LS. Outcomes associated with brain tissue oxygen monitoring in patients with severe traumatic brain injury undergoing intracranial pressure monitoring. J Neurosurg 2021; 135:1799-1806. [PMID: 34852324 DOI: 10.3171/2020.11.jns203739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Brain tissue oxygen monitoring combined with intracranial pressure (ICP) monitoring in patients with severe traumatic brain injury (sTBI) may confer better outcomes than ICP monitoring alone. The authors sought to investigate this using a national database. METHODS The National Trauma Data Bank from 2013 to 2017 was queried to identify patients with sTBI who had an external ventricular drain or intraparenchymal ICP monitor placed. Patients were stratified according to the placement of an intraparenchymal brain tissue oxygen tension (PbtO2) monitor, and a 2:1 propensity score matching pair was used to compare outcomes in patients with and those without PbtO2 monitoring. Sensitivity analyses were performed using the entire cohort, and each model was adjusted for age, sex, Glasgow Coma Scale score, Injury Severity Score, presence of hypotension, insurance, race, and hospital teaching status. The primary outcome of interest was in-hospital mortality, and secondary outcomes included ICU length of stay (LOS) and overall LOS. RESULTS A total of 3421 patients with sTBI who underwent ICP monitoring were identified. Of these, 155 (4.5%) patients had a PbtO2 monitor placed. Among the propensity score-matched patients, mortality occurred in 35.4% of patients without oxygen monitoring and 23.4% of patients with oxygen monitoring (OR 0.53, 95% CI 0.33-0.85; p = 0.007). The unfavorable discharge rates were 56.3% and 47.4%, respectively, in patients with and those without oxygen monitoring (OR 1.41, 95% CI 0.87-2.30; p = 0.168). There was no difference in overall LOS, but patients with PbtO2 monitoring had a significantly longer ICU LOS and duration of mechanical ventilation. In the sensitivity analysis, PbtO2 monitoring was associated with decreased odds of mortality (OR 0.56, 95% CI 0.37-0.84) but higher odds of unfavorable discharge (OR 1.59, 95% CI 1.06-2.40). CONCLUSIONS When combined with ICP monitoring, PbtO2 monitoring was associated with lower inpatient mortality for patients with sTBI. This supports the findings of the recent Brain Oxygen Optimization in Severe Traumatic Brain Injury phase 2 (BOOST 2) trial and highlights the importance of the ongoing BOOST3 trial.
Collapse
Affiliation(s)
| | | | | | - Timothy Beutler
- Departments of1Neurosurgery
- 3Neurology, State University of New York Upstate Medical University, Syracuse, New York
| | - Fadar O Otite
- 3Neurology, State University of New York Upstate Medical University, Syracuse, New York
| | | |
Collapse
|
19
|
A Retrospective Analysis of Randomized Controlled Trials on Traumatic Brain Injury: Evaluation of CONSORT Item Adherence. Brain Sci 2021; 11:brainsci11111504. [PMID: 34827503 PMCID: PMC8615648 DOI: 10.3390/brainsci11111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) contributes to death and disability, resulting in an enormous individual and socio-economic challenges. Despite huge efforts, there are still controversies on treatment strategies and early outcome estimation. We evaluate current randomized controlled trials (RCTs) on TBI according to their fulfillment of the CONSORT (Consolidated Statement of Reporting Trials) statement’s criteria as a marker of transparency and the quality of study planning and realization. A PubMed search for RCTs on TBI (January 2014–December 2019) was carried out. After screening of the abstracts (n = 1.926), the suitable full text manuscripts (n = 72) were assessed for the fulfillment of the CONSORT criteria. The mean ratio of consort statement fulfillment was 59% (±13%), 31% of the included studies (n = 22) complied with less than 50% of the CONSORT criteria. Citation frequency was moderately related to ratio of CONSORT item fulfillment (r = 0.4877; p < 0.0001) and citation frequency per year (r = 0.5249; p < 0.0001). The ratio of CONSORT criteria fulfillment was associated with the impact factor of the publishing journal (r = 0.6428; p < 0.0001). Essential data for study interpretation, such as sample size determination (item 7a), participant flow (item 13a) as well as losses and exclusions (item 13b), were only reported in 53%, 60% and 63%, respectively. Reporting and methodological aspects in RCTs on TBI still may be improved. Thus, the interpretation of study results may be hampered due to methodological weaknesses.
Collapse
|
20
|
Wilson JE, Shinall MC, Leath TC, Wang L, Harrell FE, Wilson LD, Nordness MF, Rakhit S, de Riesthal MR, Duff MC, Pandharipande PP, Patel MB. Worse Than Death: Survey of Public Perceptions of Disability Outcomes After Hypothetical Traumatic Brain Injury. Ann Surg 2021; 273:500-506. [PMID: 31972638 PMCID: PMC8558681 DOI: 10.1097/sla.0000000000003389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to determine the health utility states of the most commonly used traumatic brain injury (TBI) clinical trial endpoint, the Extended Glasgow Outcome Scale (GOSE). SUMMARY BACKGROUND DATA Health utilities represent the strength of one's preferences under conditions of uncertainty. There are insufficient data to indicate how an individual would value levels of disability after a TBI. METHODS This was a cross-sectional web-based online convenience sampling adaptive survey. Using a standard gamble approach, participants evaluated their preferences for GOSE health states 1 year after a hypothetical TBI. The categorical GOSE was studied from vegetative state (GOSE2) to upper good recovery (GOSE8). Median (25th percentile, 75th percentile) health utility values for different GOSE states after TBI, ranging from -1 (worse than death) to 1 (full health), with 0 as reference (death). RESULTS Of 3508 eligible participants, 3235 (92.22%) completed the survey. Participants rated lower GOSE states as having lower utility, with some states rated as worse than death, though the relationship was nonlinear and intervals were unequal between health states. Over 75% of participants rated a vegetative state (GOSE2, absence of awareness and bedridden) and about 50% rated lower severe disability (GOSE3, housebound needing all-day assistance) as conditions worse than death. CONCLUSIONS In the largest investigation of public perceptions about post-TBI disability, we demonstrate unequally rated health states, with some states perceived as worse than death. Although limited by selection bias, these results may guide future comparative-effectiveness research and shared medical decision-making after neurologic injury.
Collapse
Affiliation(s)
- Jo Ellen Wilson
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN
- Division of General Psychiatry, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Myrick C. Shinall
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN
- Division of General Surgery, Department of Surgery, Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Taylor C. Leath
- Division of Trauma, Emergency General Surgery, and Surgical Critical Care, Departments of Surgery and Neurosurgery, Section of Surgical Sciences; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Li Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Frank E. Harrell
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Laura D. Wilson
- Department of Communication Sciences and Disorders, Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Mina F. Nordness
- Division of Trauma, Emergency General Surgery, and Surgical Critical Care, Departments of Surgery and Neurosurgery, Section of Surgical Sciences; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Shayan Rakhit
- Division of Trauma, Emergency General Surgery, and Surgical Critical Care, Departments of Surgery and Neurosurgery, Section of Surgical Sciences; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Michael R. de Riesthal
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Melissa C. Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Pratik P. Pandharipande
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
- Center for Health Services Research, Vanderbilt University Medical Center, Nashville, TN
- Nashville Veterans Affairs (VA) Medical Center, Geriatric Research Education and Clinical Centers; Tennessee Valley Healthcare System, United States Department of Veterans Affairs, Nashville, TN
| | - Mayur B. Patel
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN
- Division of Trauma, Emergency General Surgery, and Surgical Critical Care, Departments of Surgery and Neurosurgery, Section of Surgical Sciences; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Center for Health Services Research, Vanderbilt University Medical Center, Nashville, TN
- Nashville Veterans Affairs (VA) Medical Center, Geriatric Research Education and Clinical Centers; Tennessee Valley Healthcare System, United States Department of Veterans Affairs, Nashville, TN
| |
Collapse
|
21
|
Multifaceted Benefit of Whole Blood Versus Lactated Ringer's Resuscitation After Traumatic Brain Injury and Hemorrhagic Shock in Mice. Neurocrit Care 2020; 34:781-794. [PMID: 32886294 DOI: 10.1007/s12028-020-01084-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Despite increasing use in hemorrhagic shock (HS), whole blood (WB) resuscitation for polytrauma with traumatic brain injury (TBI) is largely unexplored. Current TBI guidelines recommend crystalloid for prehospital resuscitation. Although WB outperforms lactated Ringer's (LR) in increasing mean arterial pressure (MAP) in TBI + HS models, effects on brain tissue oxygenation (PbtO2), and optimal MAP remain undefined. METHODS C57BL/6 mice (n = 72) underwent controlled cortical impact followed by HS (MAP = 25-27 mmHg). Ipsilateral hippocampal PbtO2 (n = 40) was measured by microelectrode. Mice were assigned to four groups (n = 18/group) for "prehospital" resuscitation (90 min) with LR or autologous WB, and target MAPs of 60 or 70 mmHg (LR60, WB60, LR70, WB70). Additional LR (10 ml/kg) was bolused every 5 min for MAP below target. RESULTS LR requirements in WB60 (7.2 ± 5.0 mL/kg) and WB70 (28.3 ± 9.6 mL/kg) were markedly lower than in LR60 (132.8 ± 5.8 mL/kg) or LR70 (152.2 ± 4.8 mL/kg; all p < 0.001). WB70 MAP (72.5 ± 2.9 mmHg) was higher than LR70 (59.8 ± 4.0 mmHg, p < 0.001). WB60 MAP (68.7 ± 4.6 mmHg) was higher than LR60 (53.5 ± 3.2 mmHg, p < 0.001). PbtO2 was higher in WB60 (43.8 ± 11.6 mmHg) vs either LR60 (25.9 ± 13.0 mmHg, p = 0.04) or LR70 (24.1 ± 8.1 mmHg, p = 0.001). PbtO2 in WB70 (40.7 ± 8.8 mmHg) was higher than in LR70 (p = 0.007). Despite higher MAP in WB70 vs WB60 (p = .002), PbtO2 was similar. CONCLUSION WB resuscitation after TBI + HS results in robust improvements in brain oxygenation while minimizing fluid volume when compared to standard LR resuscitation. WB resuscitation may allow for a lower prehospital MAP without compromising brain oxygenation when compared to LR resuscitation. Further studies evaluating the effects of these physiologic benefits on outcome after TBI with HS are warranted, to eventually inform clinical trials.
Collapse
|
22
|
Brain Tissue Oxygen Response as Indicator for Cerebral Lactate Levels in Aneurysmal Subarachnoid Hemorrhage Patients. J Neurosurg Anesthesiol 2020; 34:193-200. [PMID: 32701532 DOI: 10.1097/ana.0000000000000713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Early detection of cerebral ischemia and metabolic crisis is crucial in critically ill subarachnoid hemorrhage (SAH) patients. Variable increases in brain tissue oxygen tension (PbtO2) are observed when the fraction of inspired oxygen (FiO2) is increased to 1.0. The aim of this prospective study was to evaluate whether a 3-minute hyperoxic challenge can identify patients at risk for cerebral ischemia detected by cerebral microdialysis. METHODS Twenty consecutive severe SAH patients undergoing continuous cerebral PbtO2 and microdialysis monitoring were included. FiO2 was increased to 1.0 for 3 minutes (the FiO2 challenge) twice a day and PbtO2 responses during the FiO2 challenges were related to cerebral microdialysis-measures, ie, lactate, the lactate-pyruvate ratio, and glycerol. Multivariable linear and logistic regression models were created for each outcome parameter. RESULTS After predefined exclusions, 274 of 400 FiO2 challenges were included in the analysis. Lower absolute increases in PbtO2 ([INCREMENT]PbtO2) during FiO2 challenges were significantly associated with higher cerebral lactate concentration (P<0.001), and patients were at higher risk for ischemic lactate levels >4 mmol/L (odds ratio 0.947; P=0.04). Median (interquartile range) [INCREMENT]PbtO2 was 7.1 (4.6 to 12.17) mm Hg when cerebral lactate was >4 mmol/L and 10.2 (15.76 to 14.24) mm Hg at normal lactate values (≤4 mmol/L). Median [INCREMENT]PbtO2 was significantly lower during hypoxic than during hyperglycolytic lactate elevations (4.6 vs. 10.6 mm Hg, respectively; P<0.001). Lactate-pyruvate ratio and glycerol levels were mainly determined by baseline characteristics. CONCLUSIONS A 3-minute FiO2 challenge is an easy to perform and feasible bedside diagnostic tool in SAH patients. The absolute increase in PbtO2 during the FiO2 challenge might be a useful surrogate marker to estimate cerebral lactate concentrations and might be used to identify patients at risk for impending ischemia.
Collapse
|
23
|
Consenso internacional sobre la monitorización de la presión tisular cerebral de oxígeno en pacientes neurocríticos. Neurocirugia (Astur) 2020; 31:24-36. [DOI: 10.1016/j.neucir.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/11/2019] [Indexed: 01/20/2023]
|
24
|
Hirschi R, Hawryluk GWJ, Nielson JL, Huie JR, Zimmermann LL, Saigal R, Ding Q, Ferguson AR, Manley G. Analysis of high-frequency PbtO2 measures in traumatic brain injury: insights into the treatment threshold. J Neurosurg 2019; 131:1216-1226. [PMID: 30497191 PMCID: PMC8979548 DOI: 10.3171/2018.4.jns172604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/23/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Brain tissue hypoxia is common after traumatic brain injury (TBI). Technology now exists that can detect brain hypoxia and guide corrective therapy. Current guidelines for the management of severe TBI recommend maintaining partial pressure of brain tissue oxygen (PbtO2) > 15-20 mm Hg; however, uncertainty persists as to the optimal treatment threshold. The object of this study was to better inform the relationship between PbtO2 values and outcome for patients with TBI. METHODS PbtO2 measurements were prospectively and automatically collected every minute from consecutive patients admitted to the San Francisco General Hospital neurological ICU during a 6-year period. Mean PbtO2 values in TBI patients as well as the proportion of PbtO2 values below each of 75 thresholds between 0 mm Hg and 75 mm Hg over various epochs up to 30 days from the time of admission were analyzed. Patient outcomes were determined using the Glasgow Outcome Scale. The authors explored putative treatment thresholds by generating 675 separate receiver operating characteristic curves and 675 generalized linear models to examine each 1-mm Hg threshold for various epochs. RESULTS A total of 1,380,841 PbtO2 values were recorded in 190 TBI patients. A high proportion of PbtO2 measures were below 20 mm Hg irrespective of the examined epoch. Time below treatment thresholds was more strongly associated with outcome than mean PbtO2. A treatment window was suggested: a threshold of 19 mm Hg most robustly distinguished patients by outcome, especially from days 3-5; however, benefit was suggested from maintaining values at least as high as 33 mm Hg. CONCLUSIONS This analysis of high-frequency physiological data substantially informs the relationship between PbtO2 values and outcome. The results suggest a therapeutic window for PbtO2 in TBI patients along with minimum and preferred PbtO2 treatment thresholds, which may be examined in future studies. Traditional treatment thresholds that have the strongest association with outcome may not be optimal.
Collapse
Affiliation(s)
- Ryan Hirschi
- School of Medicine, University of Utah, Salt Lake City
| | - Gregory W. J. Hawryluk
- Department of Neurological Surgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah
| | - Jessica L. Nielson
- Department of Psychiatry, Institute of Health Informatics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - J. Russell Huie
- Brain and Spinal Injury Center, Weill Institute for Neurosciences, Department of Neurosurgery, San Francisco General Hospital, University of California, San Francisco
| | - Lara L. Zimmermann
- Department of Neurological Surgery, University of California, Davis, Sacramento, California
| | - Rajiv Saigal
- Department of Neurosurgery, University of Washington, Seattle, Washington
| | - Quan Ding
- Department of Physiologic Nursing, University of California, San Francisco, California
| | - Adam R. Ferguson
- Brain and Spinal Injury Center, Weill Institute for Neurosciences, Department of Neurosurgery, San Francisco General Hospital, University of California, San Francisco
| | - Geoffrey Manley
- Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
25
|
"Don't lose hope early": Hemorrhagic diffuse axonal injury on head computed tomography is not associated with poor outcome in moderate to severe traumatic brain injury patients. J Trauma Acute Care Surg 2019; 84:473-482. [PMID: 29140952 DOI: 10.1097/ta.0000000000001733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diffuse axonal injury (DAI) on magnetic resonance imaging has been associated with poor functional outcome after moderate-severe traumatic brain injury (msTBI). Yet, DAI assessment with highly sensitive magnetic resonance imaging techniques is unfeasible in the acute trauma setting, and computed tomography (CT) remains the key diagnostic modality despite its lower sensitivity. We sought to determine whether CT-defined hemorrhagic DAI (hDAI) is associated with discharge and favorable 3- and 12-month functional outcome (Glasgow Coma Scale score ≥4) after msTBI. METHODS We analyzed 361 msTBI patients from the single-center longitudinal Outcome Prognostication in Traumatic Brain Injury study collected over 6 years (November 2009 to November 2015) with prospective outcome assessments at 3 months and 12 months. Patients with microhemorrhages on CT were designated "CT-hDAI-positive" and those without as "CT-hDAI-negative." For secondary analyses "CT-hDAI-positive" was stratified into two phenotypes according to presence ("associated") versus absence ("predominant") of concomitant large acute traumatic lesions to determine whether presence versus absence of additional focal mass lesions portends a different prognosis. RESULTS Seventy (19%) patients were CT-hDAI-positive (n = 36 predominant; n = 34 associated hDAI). In univariate analyses, CT-hDAI-positive status was associated with discharge survival (p = 0.004) and favorable outcome at 3 months (p = 0.003) and 12 months (p = 0.005). After multivariable adjustment, CT-hDAI positivity was no longer associated with discharge survival and functional outcome (all ps > 0.05). Stratified by hDAI phenotype, predominant hDAI patients had worse trauma severity, longer intensive care unit stays, and more systemic medical complications. Predominant hDAI, but not associated hDAI, was an independent predictor of discharge survival (adjusted odds ratio, 24.7; 95% confidence interval [CI], 3.2-192.6; p = 0.002) and favorable 12-month outcome (adjusted odds ratio, 4.7; 95% CI, 1.5-15.2; p = 0.01). Sensitivity analyses using Cox regression confirmed this finding for 1-year survival (adjusted hazard ratio, 5.6; 95% CI, 1.3-23; p = 0.048). CONCLUSION The CT-defined hDAI was not an independent predictor of unfavorable short- and long-term outcomes and should not be used for acute prognostication in msTBI patients. Predominant hDAI patients had good clinical outcomes when supported to intensive care unit discharge and beyond. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
|
26
|
Synnot A, Bragge P, Lunny C, Menon D, Clavisi O, Pattuwage L, Volovici V, Mondello S, Cnossen MC, Donoghue E, Gruen RL, Maas A. The currency, completeness and quality of systematic reviews of acute management of moderate to severe traumatic brain injury: A comprehensive evidence map. PLoS One 2018; 13:e0198676. [PMID: 29927963 PMCID: PMC6013193 DOI: 10.1371/journal.pone.0198676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To appraise the currency, completeness and quality of evidence from systematic reviews (SRs) of acute management of moderate to severe traumatic brain injury (TBI). METHODS We conducted comprehensive searches to March 2016 for published, English-language SRs and RCTs of acute management of moderate to severe TBI. Systematic reviews and RCTs were grouped under 12 broad intervention categories. For each review, we mapped the included and non-included RCTs, noting the reasons why RCTs were omitted. An SR was judged as 'current' when it included the most recently published RCT we found on their topic, and 'complete' when it included every RCT we found that met its inclusion criteria, taking account of when the review was conducted. Quality was assessed using the AMSTAR checklist (trichotomised into low, moderate and high quality). FINDINGS We included 85 SRs and 213 RCTs examining the effectiveness of treatments for acute management of moderate to severe TBI. The most frequently reviewed interventions were hypothermia (n = 17, 14.2%), hypertonic saline and/or mannitol (n = 9, 7.5%) and surgery (n = 8, 6.7%). Of the 80 single-intervention SRs, approximately half (n = 44, 55%) were judged as current and two-thirds (n = 52, 65.0%) as complete. When considering only the most recently published review on each intervention (n = 25), currency increased to 72.0% (n = 18). Less than half of the 85 SRs were judged as high quality (n = 38, 44.7%), and nearly 20% were low quality (n = 16, 18.8%). Only 16 (20.0%) of the single-intervention reviews (and none of the five multi-intervention reviews) were judged as current, complete and high-quality. These included reviews of red blood cell transfusion, hypothermia, management guided by intracranial pressure, pharmacological agents (various) and prehospital intubation. Over three-quarters (n = 167, 78.4%) of the 213 RCTs were included in one or more SR. Of the remainder, 17 (8.0%) RCTs post-dated or were out of scope of existing SRs, and 29 (13.6%) were on interventions that have not been assessed in SRs. CONCLUSION A substantial number of SRs in acute management of moderate to severe TBI lack currency, completeness and quality. We have identified both potential evidence gaps and also substantial research waste. Novel review methods, such as Living Systematic Reviews, may ameliorate these shortcomings and enhance utility and reliability of the evidence underpinning clinical care.
Collapse
Affiliation(s)
- Anneliese Synnot
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- National Trauma Research Institute, The Alfred, Monash University, Melbourne, Victoria, Australia
- Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Cochrane Consumers and Communication, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Peter Bragge
- BehaviourWorks Australia, Monash Sustainable Development Institute, Monash University, Melbourne, Victoria, Australia
| | - Carole Lunny
- Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David Menon
- Division of Anaesthesia, University of Cambridge; Neurosciences Critical Care Unit, Addenbrooke’s Hospital; Queens’ College, Cambridge, United Kingdom
| | - Ornella Clavisi
- National Trauma Research Institute, The Alfred, Monash University, Melbourne, Victoria, Australia
- MOVE: Muscle, Bone and Joint Health Ltd, Melbourne, Victoria, Australia
| | - Loyal Pattuwage
- National Trauma Research Institute, The Alfred, Monash University, Melbourne, Victoria, Australia
- Monash Centre for Occupational and Environmental Health (MonCOEH), Monash University, Melbourne, Victoria, Australia
| | - Victor Volovici
- Department of Public Health, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Maryse C. Cnossen
- Center for Medical Decision Making, Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Emma Donoghue
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Russell L. Gruen
- Nanyang Technical University, Singapore
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| |
Collapse
|
27
|
Adjustable and Rigid Fixation of Brain Tissue Oxygenation Probe (Licox) in Neurosurgery: From Bench to Bedside. World Neurosurg 2018; 117:62-64. [PMID: 29859358 DOI: 10.1016/j.wneu.2018.05.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 11/22/2022]
Abstract
Multimodal neuromonitoring has become a fundamental part of management for many neurosurgical disorders such as subarachnoid hemorrhage and severe traumatic brain injury. Brain tissue oxygen tension monitoring requires insertion of a probe into the brain parenchyma through a single multiple lumen bolt, or in a subcutaneously tunneled fashion. As those patients often require early magnetic resonance imaging, typically using bolts is disadvantageous due to massive metal artifact. Similarly, subcutaneous tunneling is often problematic as suture fixation can loosen over time. We hereby report a new method of fixation of the Licox brain tissue oxygenation probe with 1 or 2 3-way taps that are attached to a standard plastic cannula, resulting in a stable connection with no need for further direct sutures around the probe and above all with no metal artifacts, which negates magnetic resonance imaging. The extended fixation system was first tested with cardiopulmonary resuscitation in a brain injured porcine model. It was thereafter adopted in our daily clinical practice.
Collapse
|
28
|
Mortality and Outcome Comparison Between Brain Tissue Oxygen Combined with Intracranial Pressure/Cerebral Perfusion Pressure–Guided Therapy and Intracranial Pressure/Cerebral Perfusion Pressure–Guided Therapy in Traumatic Brain Injury: A Meta-Analysis. World Neurosurg 2017; 100:118-127. [DOI: 10.1016/j.wneu.2016.12.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/21/2022]
|
29
|
Sahoo S, Sheshadri V, Sriganesh K, Madhsudana Reddy K, Radhakrishnan M, Umamaheswara Rao GS. Effect of Hyperoxia on Cerebral Blood Flow Velocity and Regional Oxygen Saturation in Patients Operated on for Severe Traumatic Brain Injury–The Influence of Cerebral Blood Flow Autoregulation. World Neurosurg 2017; 98:211-216. [DOI: 10.1016/j.wneu.2016.10.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 01/22/2023]
|
30
|
Abstract
Neurocritical care has two main objectives. Initially, the emphasis is on treatment of patients with acute damage to the central nervous system whether through infection, trauma, or hemorrhagic or ischemic stroke. Thereafter, attention shifts to the identification of secondary processes that may lead to further brain injury, including fever, seizures, and ischemia, among others. Multimodal monitoring is the concept of using various tools and data integration to understand brain physiology and guide therapeutic interventions to prevent secondary brain injury. This chapter will review the use of electroencephalography, intracranial pressure monitoring, brain tissue oxygenation, cerebral microdialysis and neurochemistry, near-infrared spectroscopy, and transcranial Doppler sonography as they relate to neuromonitoring in the critically ill. The concepts and design of each monitor, in addition to the patient population that may most benefit from each modality, will be discussed, along with the various tools that can be used together to guide individualized patient treatment options. Major clinical trials, observational studies, and their effect on clinical outcomes will be reviewed. The future of multimodal monitoring in the field of bioinformatics, clinical research, and device development will conclude the chapter.
Collapse
Affiliation(s)
- G Korbakis
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - P M Vespa
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, USA; Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Jones S, Schwartzbauer G, Jia X. Brain Monitoring in Critically Neurologically Impaired Patients. Int J Mol Sci 2016; 18:E43. [PMID: 28035993 PMCID: PMC5297678 DOI: 10.3390/ijms18010043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Assessment of neurologic injury and the evolution of severe neurologic injury is limited in comatose or critically ill patients that lack a reliable neurologic examination. For common yet severe pathologies such as the comatose state after cardiac arrest, aneurysmal subarachnoid hemorrhage (aSAH), and severe traumatic brain injury (TBI), critical medical decisions are made on the basis of the neurologic injury. Decisions regarding active intensive care management, need for neurosurgical intervention, and withdrawal of care, depend on a reliable, high-quality assessment of the true state of neurologic injury, and have traditionally relied on limited assessments such as intracranial pressure monitoring and electroencephalogram. However, even within TBI there exists a spectrum of disease that is likely not captured by such limited monitoring and thus a more directed effort towards obtaining a more robust biophysical signature of the individual patient must be undertaken. In this review, multimodal monitoring including the most promising serum markers of neuronal injury, cerebral microdialysis, brain tissue oxygenation, and pressure reactivity index to access brain microenvironment will be discussed with their utility among specific pathologies that may help determine a more complete picture of the neurologic injury state for active intensive care management and long-term outcomes. Goal-directed therapy guided by a multi-modality approach appears to be superior to standard intracranial pressure (ICP) guided therapy and should be explored further across multiple pathologies. Future directions including the application of optogenetics to evaluate brain injury and recovery and even as an adjunct monitoring modality will also be discussed.
Collapse
Affiliation(s)
- Salazar Jones
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gary Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|