1
|
Yu T, Hu T, Na K, Zhang L, Lu S, Guo X. Glutamine-derived peptides: Current progress and future directions. Compr Rev Food Sci Food Saf 2024; 23:e13386. [PMID: 38847753 DOI: 10.1111/1541-4337.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.
Collapse
Affiliation(s)
- Tianfei Yu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Tianshuo Hu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Wuhan City, China
| |
Collapse
|
2
|
Jovanović D, Schön JC, Zagorac D, Zarubica A, Matović B, Zagorac J. Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO 2 Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2688. [PMID: 37836329 PMCID: PMC10574630 DOI: 10.3390/nano13192688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems. Thus, in this study, we investigated the energy landscape of glutamine (L), an amino acid, on pristine and doped TiO2 surfaces. We first locally optimized 2D-slab structures of pristine and Au/Ag/Cu-doped anatase (001 and 101 surfaces) and similarly optimized a single molecule of glutamine in vacuum. Next, we placed the pre-optimized glutamine molecule in various orientations and on a variety of locations onto the relaxed substrate surfaces (in vacuum) and performed ab initio relaxations of the molecule on the substrate slabs. We employed the DFT method with a GGA-PBE functional implemented in the Quantum Espresso code. Comparisons of the optimized conformations and electronic structures of the amino acid in vacuum and on the surfaces yield useful insights into various biological processes.
Collapse
Affiliation(s)
- Dušica Jovanović
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia;
| | | | - Dejan Zagorac
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Center for Synthesis, Processing and Characterization of Materials for Application in the Extreme Conditions-Cextreme Lab, 11000 Belgrade, Serbia
| | - Aleksandra Zarubica
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Branko Matović
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Center for Synthesis, Processing and Characterization of Materials for Application in the Extreme Conditions-Cextreme Lab, 11000 Belgrade, Serbia
| | - Jelena Zagorac
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Center for Synthesis, Processing and Characterization of Materials for Application in the Extreme Conditions-Cextreme Lab, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Dresen E, Siepmann L, Weißbrich C, Weinhold L, Putensen C, Stehle P. Is the amino acid pattern in medical nutrition therapy crucial for successfully attenuating muscle mass loss in adult ICU patients? Secondary analysis of a RCT. Clin Nutr ESPEN 2022; 47:36-44. [PMID: 35063228 DOI: 10.1016/j.clnesp.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS We hypothesized that in long-term immobilized intensive care unit (ICU) patients, both the quantity and quality of protein nutrition are vital in supporting muscle mass maintenance. Hence, the aim of this secondary analysis of our recently performed RCT was to calculate the intake of individual amino acids and to evaluate the potential associations of amino acid patterns with muscle mass loss during the ICU stay. METHODS Clinical and nutritional data were collected from a recent RCT conducted in long-term immobilized, critically ill patients receiving medical nutrition therapy with either 1.8 g (interventional group) or 1.2 g (standard group) of protein/amino acids per kg body weight per day over 4 weeks. Intake of the individual amino acids as well as the sum scores of the indispensable, conditionally indispensable, and dispensable amino acids were calculated for all patients, both group specific (n = 21 in each group) and in total (n = 42), based on the detailed nutrition protocols; inter-group differences were analyzed by t-tests. Linear regression models were used to test the effects of individual amino acids and the sum scores on the extent of skeletal muscle loss by measuring the quadriceps muscle layer thickness during the study period. The significance level was adjusted for multiple testing according to the Bonferroni procedure (α = 0.002). RESULTS In both groups, the proportion of indispensable amino acids was approximately 41% of the total exogenous protein supply, with the proportion of enteral administration slightly over 50%. The intake of conditionally indispensable amino acids (glutamine, tyrosine, cysteine, histidine, and arginine) accounted for 17% and 18% of the total amino acids in the interventional and standard groups, respectively; glutamine (5% of total amino acids) was exclusively administered enterally. The intake of dispensable amino acid varied widely, with glutamic acid, proline, and asparagine/aspartic acid representing the highest proportions (10%, 8%, and 8% of total amino acids, respectively). For all amino acids, no statistically significant association was observed between the quantitative intake and the skeletal muscle changes after terminating the intervention phase. CONCLUSION This secondary analysis of the RCT conducted in routine clinical practice did not support our working hypothesis that the amino acid patterns of medical nutrition therapy have a statistically significant impact on the skeletal muscle loss in long-term immobilized ICU patients. Due to the limited variety of enteral/parenteral products used in this single-center study, the calculated amino acid patterns showed only small differences. Larger multi-center trials with adequate power are needed to evaluate the potential effects of the individual amino acids or defined amino acid patterns on the muscle protein metabolism in further detail. TRIAL REGISTRATION German Clinical Trials Register (http://www.drks.de); DRKS-ID: DRKS00013594.
Collapse
Affiliation(s)
- Ellen Dresen
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, Nussallee 9, 53115, Bonn, Germany.
| | - Lina Siepmann
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, Nussallee 9, 53115, Bonn, Germany.
| | - Carsten Weißbrich
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Leonie Weinhold
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Peter Stehle
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, Nussallee 9, 53115, Bonn, Germany.
| |
Collapse
|
4
|
Matsuyama T, Yoshinaga SK, Shibue K, Mak TW. Comorbidity-associated glutamine deficiency is a predisposition to severe COVID-19. Cell Death Differ 2021; 28:3199-3213. [PMID: 34663907 PMCID: PMC8522258 DOI: 10.1038/s41418-021-00892-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 vaccinations have greatly reduced COVID-19 cases, but we must continue to develop our understanding of the nature of the disease and its effects on human immunity. Previously, we suggested that a dysregulated STAT3 pathway following SARS-Co-2 infection ultimately leads to PAI-1 activation and cascades of pathologies. The major COVID-19-associated metabolic risks (old age, hypertension, cardiovascular diseases, diabetes, and obesity) share high PAI-1 levels and could predispose certain groups to severe COVID-19 complications. In this review article, we describe the common metabolic profile that is shared between all of these high-risk groups and COVID-19. This profile not only involves high levels of PAI-1 and STAT3 as previously described, but also includes low levels of glutamine and NAD+, coupled with overproduction of hyaluronan (HA). SARS-CoV-2 infection exacerbates this metabolic imbalance and predisposes these patients to the severe pathophysiologies of COVID-19, including the involvement of NETs (neutrophil extracellular traps) and HA overproduction in the lung. While hyperinflammation due to proinflammatory cytokine overproduction has been frequently documented, it is recently recognized that the immune response is markedly suppressed in some cases by the expansion and activity of MDSCs (myeloid-derived suppressor cells) and FoxP3+ Tregs (regulatory T cells). The metabolomics profiles of severe COVID-19 patients and patients with advanced cancer are similar, and in high-risk patients, SARS-CoV-2 infection leads to aberrant STAT3 activation, which promotes a cancer-like metabolism. We propose that glutamine deficiency and overproduced HA is the central metabolic characteristic of COVID-19 and its high-risk groups. We suggest the usage of glutamine supplementation and the repurposing of cancer drugs to prevent the development of severe COVID-19 pneumonia.
Collapse
Affiliation(s)
- Toshifumi Matsuyama
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | | | - Kimitaka Shibue
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Immunology, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Pathology, University of Hong Kong, Hong Kong, Pok Fu Lam, 999077, Hong Kong
| |
Collapse
|
5
|
Montejo González JC, de la Fuente O'Connor E, Martínez-Lozano Aranaga F, Servià Goixart L. Recommendations for specialized nutritional-metabolic treatment of the critical patient: Pharmaconutrients, specific nutrients, fiber, synbiotics. Metabolism and Nutrition Working Group of the Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC). Med Intensiva 2021; 44 Suppl 1:39-43. [PMID: 32532409 DOI: 10.1016/j.medin.2019.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
|
6
|
Liu Y, Yang Y, Yao R, Hu Y, Liu P, Lian S, Lv H, Xu B, Li S. Dietary supplementary glutamine and L-carnitine enhanced the anti-cold stress of Arbor Acres broilers. Arch Anim Breed 2021; 64:231-243. [PMID: 34159254 PMCID: PMC8209504 DOI: 10.5194/aab-64-231-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/01/2021] [Indexed: 01/16/2023] Open
Abstract
Newborn poultry in cold regions often suffer from cold stress,
causing a series of changes in their physiology and metabolism, leading to
slow growth and decreased production performance. However, a single
anti-stress substance cannot completely or maximally eliminate or alleviate
the various effects of cold stress on animals. Therefore, the effects of the
supplemented glutamine and L-carnitine on broilers under low temperature
were evaluated in this study. Broilers were randomly allocated into 16
groups which were respectively fed with different levels of glutamine and
L-carnitine according to the L16 (45) orthogonal experimental
design for 3 weeks (the first week is the adaptive feeding period; the
second and third weeks are the cold exposure period). Growth performance
was recorded, and blood samples were collected during cold exposure. The
results showed the supplementation had altered the plasma parameters, growth
performance and cold-induced oxidative stress. The increase of
corticosterone and suppression of thyroid hormone was ameliorated.
Supplemented groups had lower daily feed intake and feed-to-gain ratio, higher
daily weight gain and better relative weights of immune organs. Plasma
glucose, total protein, blood urea nitrogen and alkaline phosphatase
changed as well. Oxidative stress was mollified due to the improved
activities of superoxide dismutase and glutathione peroxidase, heightened
total antioxidant capacity and stable malondialdehyde. Dietary glutamine and
L-carnitine improve the growth performance, nutritional status and cold
stress response of broilers at low temperature, and their interaction
occurred.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Ruizhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China
| | - Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Hongming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| |
Collapse
|
7
|
Hasani M, Mansour A, Asayesh H, Djalalinia S, Mahdavi Gorabi A, Ochi F, Qorbani M. Effect of glutamine supplementation on cardiometabolic risk factors and inflammatory markers: a systematic review and meta-analysis. BMC Cardiovasc Disord 2021; 21:190. [PMID: 33865313 PMCID: PMC8053267 DOI: 10.1186/s12872-021-01986-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Background Evidence exists that glutamine plays multiple roles in glucose metabolism, insulin sensitivity, and anti-inflammatory effects. This systematic review and meta-analysis of controlled trials aimed to assess the effect of glutamine supplementation on cardio-metabolic risk factors and inflammatory markers. Methods The processes of systematic reviews and meta-analyses were performed according to the PRISMA checklist. PubMed, Web of Sciences, Cochrane library, and Scopus databases were search for relevant studies without time or language restrictions up to December 30, 2020. All randomized clinical trials which assessed the effect of glutamine supplementation on “glycemic indices”, “level of triglyceride, “and “inflammatory markers” were included in the study. The effect of glutamine supplementation on cardio-metabolic risk factors and inflammatory markers was assessed using a standardized mean difference (SMD) and 95% confidence interval (CI). Heterogeneity between among studies was assessed using Cochran Q-statistic and I-square. Random/fixed-effects meta-analysis method was used to estimate the pooled SMD. The risk of bias for the included trials was evaluated using the Cochrane quality assessment tool. Results In total, 12 studies that assessed the effect of glutamine supplementation on cardio-metabolic risk factors were included in the study. Meta-analysis showed that glutamine supplementation significantly decreased significantly serum levels of FPG [SMD: − 0.73, 95% CI − 1.35, − 0.11, I2: 84.1%] and CRP [SMD: − 0.58, 95% CI − 0.1, − 0.17, I2: 0%]. The effect of glutamine supplementation on other cardiometabolic risk factors was not statistically significant (P > 0.05). Conclusion Our findings showed that glutamine supplementation might have a positive effect on FPG and CRP; both of which are crucial as cardio-metabolic risk factors. However, supplementation had no significant effect on other cardio-metabolic risk factors.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Mansour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asayesh
- Department of Medical Emergencies, Qom University of Medical Sciences, Qom, Iran.
| | - Shirin Djalalinia
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Development of Research and Technology Center, Deputy of Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Ochi
- Students Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran. .,Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Santos HO, Tinsley GM, da Silva GAR, Bueno AA. Pharmaconutrition in the Clinical Management of COVID-19: A Lack of Evidence-Based Research But Clues to Personalized Prescription. J Pers Med 2020; 10:E145. [PMID: 32992693 PMCID: PMC7712662 DOI: 10.3390/jpm10040145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
A scientific interest has emerged to identify pharmaceutical and nutritional strategies in the clinical management of coronavirus disease 2019 (COVID-19). The purpose of this narrative review is to critically assess and discuss pharmaconutrition strategies that, secondary to accepted treatment methods, could be candidates in the current context of COVID-19. Oral medicinal doses of vitamin C (1-3 g/d) and zinc (80 mg/d elemental zinc) could be promising at the first signs and symptoms of COVID-19 as well as for general colds. In critical care situations requiring parenteral nutrition, vitamin C (3-10 g/d) and glutamine (0.3-0.5 g/kg/d) administration could be considered, whereas vitamin D3 administration (100,000 IU administered intramuscularly as a one-time dose) could possess benefits for patients with severe deficiency. Considering the presence of n-3 polyunsaturated fatty acids and arginine in immune-enhancing diets, their co-administration may also occur in clinical conditions where these formulations are recommended. However, despite the use of the aforementioned strategies in prior contexts, there is currently no evidence of the utility of any nutritional strategies in the management of SARS-CoV-2 infection and COVID-19. Nevertheless, ongoing and future clinical research is imperative to determine if any pharmaconutrition strategies can halt the progression of COVID-19.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Guilherme A. R. da Silva
- Hospital Universitário Gaffrée e Guinle, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 21941-901, Brazil;
| | - Allain A. Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK;
| |
Collapse
|
9
|
Mert S, Bulutoglu B, Chu C, Dylewski M, Lin FM, Yu YM, Yarmush ML, Sheridan RL, Uygun K. Multiorgan Metabolomics and Lipidomics Provide New Insights Into Fat Infiltration in the Liver, Muscle Wasting, and Liver-Muscle Crosstalk Following Burn Injury. J Burn Care Res 2020; 42:269-287. [PMID: 32877506 DOI: 10.1093/jbcr/iraa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Burn injury mediated hypermetabolic syndrome leads to increased mortality among severe burn victims, due to liver failure and muscle wasting. Metabolic changes may persist up to 2 years following the injury. Thus, understanding the underlying mechanisms of the pathology is crucially important to develop appropriate therapeutic approaches. We present detailed metabolomic and lipidomic analyses of the liver and muscle tissues in a rat model with a 30% body surface area burn injury located at the dorsal skin. Three hundred and thirty-eight of 1587 detected metabolites and lipids in the liver and 119 of 1504 in the muscle tissue exhibited statistically significant alterations. We observed excessive accumulation of triacylglycerols, decreased levels of S-adenosylmethionine, increased levels of glutamine and xenobiotics in the liver tissue. Additionally, the levels of gluconeogenesis, glycolysis, and tricarboxylic acid cycle metabolites are generally decreased in the liver. On the other hand, burn injury muscle tissue exhibits increased levels of acyl-carnitines, alpha-hydroxyisovalerate, ophthalmate, alpha-hydroxybutyrate, and decreased levels of reduced glutathione. The results of this preliminary study provide compelling observations that liver and muscle tissues undergo distinctly different changes during hypermetabolism, possibly reflecting liver-muscle crosstalk. The liver and muscle tissues might be exacerbating each other's metabolic pathologies, via excessive utilization of certain metabolites produced by each other.
Collapse
Affiliation(s)
- Safak Mert
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Beyza Bulutoglu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christopher Chu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maggie Dylewski
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Florence M Lin
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Yong-Ming Yu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Martin L Yarmush
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Robert L Sheridan
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
10
|
Jabłońska B, Mrowiec S. The Role of Immunonutrition in Patients Undergoing Pancreaticoduodenectomy. Nutrients 2020; 12:E2547. [PMID: 32842475 PMCID: PMC7551458 DOI: 10.3390/nu12092547] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreaticoduodenectomy (PD) is one of the most difficult and complex surgical procedures in abdominal surgery. Malnutrition and immune dysfunction in patients with pancreatic cancer (PC) may lead to a higher risk of postoperative infectious complications. Although immunonutrition (IN) is recommended for enhanced recovery after surgery (ERAS) in patients undergoing PD for 5-7 days perioperatively, its role in patients undergoing pancreatectomy is still unclear and controversial. It is known that the proper surgical technique is very important in order to reduce a risk of postoperative complications, such as a pancreatic fistula, and to improve disease-free survival in patients following PD. However, it has been proven that IN decreases the risk of infectious complications, and shortens hospital stays in patients undergoing PD. This is a result of the impact on altered inflammatory responses in patients with cancer. Both enteral and parenteral, as well as preoperative and postoperative IN, using various nutrients, such as glutamine, arginine, omega-3 fatty acids and nucleotides, is administered. The most frequently used preoperative oral supplementation is recommended. The aim of this paper is to present the indications and benefits of IN in patients undergoing PD.
Collapse
Affiliation(s)
- Beata Jabłońska
- Department of Digestive Tract Surgery, Medical University of Silesia, Medyków 14 St., 40-752 Katowice, Poland;
| | | |
Collapse
|
11
|
Zhu J, Yang W, Wang B, Liu Q, Zhong X, Gao Q, Liu J, Huang J, Lin B, Tao Y. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine. Microb Cell Fact 2020; 19:129. [PMID: 32527330 PMCID: PMC7291740 DOI: 10.1186/s12934-020-01369-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND L-Alanyl-L-glutamine (AQ) is a functional dipeptide with high water solubility, good thermal stability and high bioavailability. It is widely used in clinical treatment, post-operative rehabilitation, sports health care and other fields. AQ is mainly produced via chemical synthesis which is complicated, time-consuming, labor-intensive, and have a low yield accompanied with the generation of by-products. It is therefore highly desirable to develop an efficient biotechnological process for the industrial production of AQ. RESULTS A metabolically engineered E. coli strain for AQ production was developed by over-expressing L-amino acid α-ligase (BacD) from Bacillus subtilis, and inactivating the peptidases PepA, PepB, PepD, and PepN, as well as the dipeptide transport system Dpp. In order to use the more readily available substrate glutamic acid, a module for glutamine synthesis from glutamic acid was constructed by introducing glutamine synthetase (GlnA). Additionally, we knocked out glsA-glsB to block the first step in glutamine metabolism, and glnE-glnB involved in the ATP-dependent addition of AMP/UMP to a subunit of glutamine synthetase, which resulted in increased glutamine supply. Then the glutamine synthesis module was combined with the AQ synthesis module to develop the engineered strain that uses glutamic acid and alanine for AQ production. The expression of BacD and GlnA was further balanced to improve AQ production. Using the final engineered strain p15/AQ10 as a whole-cell biocatalyst, 71.7 mM AQ was produced with a productivity of 3.98 mM/h and conversion rate of 71.7%. CONCLUSION A metabolically engineered strain for AQ production was successfully developed via inactivation of peptidases, screening of BacD, introduction of glutamine synthesis module, and balancing the glutamine and AQ synthesis modules to improve the yield of AQ. This work provides a microbial cell factory for efficient production of AQ with industrial potential.
Collapse
Affiliation(s)
- Jiangming Zhu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Yang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bohua Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qun Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaotong Zhong
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quanxiu Gao
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Jiezheng Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Baixue Lin
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
12
|
Bellanti F, Buglio AL, Stasio ED, Bello GD, Tamborra R, Dobrakowski M, Kasperczyk A, Kasperczyk S, Vendemiale G. An open-label, single-center pilot study to test the effects of an amino acid mixture in older patients admitted to internal medicine wards. Nutrition 2020; 69:110588. [PMID: 31629306 DOI: 10.1016/j.nut.2019.110588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Older patients are frequently subjected to prolonged hospitalization and extended bed rest, with a negative effect on physical activity and caloric intake. This results in a consistent loss of muscle mass and function, which is associated with functional decline and high mortality. The aim of this study was to investigate the effect of 1 wk of oral amino acid (AA) supplementation in older patients subjected to low mobility during hospitalization. METHODS Hospitalized older patients (69-87) were included in the control group (n = 50) or were administered 25 g of AA mixture (n = 44) twice daily throughout 7 d of low mobility. We collected data related to length of stay as primary outcome measure. In-hospital mortality, 90-d postdischarge mortality, 90-d postdischarge rehospitalization, and falls also were considered. Moreover, variations of anthropometric measures, body composition and muscle architecture/strength, circulating interleukins, and oxidative stress markers between the beginning and the end of the supplementation period were analyzed as secondary outcomes. RESULTS Similar values were reported between the two groups regarding age (76.6 ± 6.8 versus 79 ± 7.2 y old), body weight (61.5 ± 14.3 versus 62.1 ± 16.1 kg), and body mass index (28.7 ± 4.15 versus 28.1 ± 3.62 kg/m2). Although no difference in terms of in-hospital, 90-d postdischarge, or overall mortality rate was observed between the two groups, a reduction in length of stay, 90-d postdischarge hospitalization, and falls was observed in the AA supplementation group rather than in controls. Furthermore, the AA mixture limited muscle architecture/strength impairment and circulating oxidative stress, which occurred during hospitalization-related bed rest. The latter data was associated with increased circulating levels of anti-inflammatory cytokines interleukin-4 and -10. CONCLUSIONS These results suggest that the AA mixture limits several alterations associated with low mobility in older hospitalized patients, such as length of stay, 90-d postdischarge hospitalization, and falls, preventing the loss of muscle function, as well as the increase of circulating interleukins and oxidative stress markers.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Aurelio Lo Buglio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elena Di Stasio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giorgia di Bello
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Tamborra
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Michał Dobrakowski
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
13
|
Berger MM, Heidegger CP, Pichard C. We Support Elevated Protein Requirements in the Intensive Care Unit but Need New Solutions. Nutr Clin Pract 2019; 32:563. [PMID: 28760112 DOI: 10.1177/0884533617712897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Tydeman-Edwards R. Glutamine and its use in selected oncology settings. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2017. [DOI: 10.1080/16070658.2017.1371467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Tan HWS, Sim AYL, Long YC. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat Commun 2017; 8:338. [PMID: 28835610 PMCID: PMC5569045 DOI: 10.1038/s41467-017-00369-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 06/26/2017] [Indexed: 01/08/2023] Open
Abstract
Activation of autophagy and elevation of glutamine synthesis represent key adaptations to maintain amino acid balance during starvation. In this study, we investigate the role of autophagy and glutamine on the regulation of mTORC1, a critical kinase that regulates cell growth and proliferation. We report that supplementation of glutamine alone is sufficient to restore mTORC1 activity during prolonged amino acid starvation. Inhibition of autophagy abolishes the restorative effect of glutamine, suggesting that reactivation of mTORC1 is autophagy-dependent. Inhibition of glutaminolysis or transamination impairs glutamine-mediated mTORC1 reactivation, suggesting glutamine reactivates mTORC1 specifically through its conversion to glutamate and restoration of non-essential amino acid pool. Despite a persistent drop in essential amino acid pool during amino acid starvation, crosstalk between glutamine and autophagy is sufficient to restore insulin sensitivity of mTORC1. Thus, glutamine metabolism and autophagy constitute a specific metabolic program which restores mTORC1 activity during amino acid starvation. mTORC1 is a critical kinase that regulates cell growth and proliferation. Here the authors show that glutamine metabolism is sufficient to restore mTORC1 activity during prolonged amino acid starvation in an autophagy-dependent manner.
Collapse
Affiliation(s)
- Hayden Weng Siong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arthur Yi Loong Sim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Functional and Transcriptomic Characterization of Peritoneal Immune-Modulation by Addition of Alanyl-Glutamine to Dialysis Fluid. Sci Rep 2017; 7:6229. [PMID: 28740213 PMCID: PMC5524796 DOI: 10.1038/s41598-017-05872-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023] Open
Abstract
Peritonitis remains a major cause of morbidity and mortality during chronic peritoneal dialysis (PD). Glucose-based PD fluids reduce immunological defenses in the peritoneal cavity. Low concentrations of peritoneal extracellular glutamine during PD may contribute to this immune deficit. For these reasons we have developed a clinical assay to measure the function of the immune-competent cells in PD effluent from PD patients. We then applied this assay to test the impact on peritoneal immune-competence of PD fluid supplementation with alanyl-glutamine (AlaGln) in 6 patients in an open-label, randomized, crossover pilot trial (EudraCT 2012-004004-36), and related the functional results to transcriptome changes in PD effluent cells. Ex-vivo stimulation of PD effluent peritoneal cells increased release of interleukin (IL) 6 and tumor necrosis factor (TNF) α. Both IL-6 and TNF-α were lower at 1 h than at 4 h of the peritoneal equilibration test but the reductions in cytokine release were attenuated in AlaGln-supplemented samples. AlaGln-supplemented samples exhibited priming of IL-6-related pathways and downregulation of TNF-α upstream elements. Results from measurement of cytokine release and transcriptome analysis in this pilot clinical study support the conclusion that suppression of PD effluent cell immune function in human subjects by standard PD fluid is attenuated by AlaGln supplementation.
Collapse
|
17
|
Urine metabolomics in neonates with late-onset sepsis in a case-control study. Sci Rep 2017; 7:45506. [PMID: 28374757 PMCID: PMC5379623 DOI: 10.1038/srep45506] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
Although late-onset sepsis (LOS) is a major cause of neonatal morbidity and mortality, biomarkers evaluated in LOS lack high diagnostic accuracy. In this prospective, case-control, pilot study, we aimed to determine the metabolic profile of neonates with LOS. Urine samples were collected at the day of initial LOS evaluation, the 3rd and 10th day, thereafter, from 16 septic neonates (9 confirmed and 7 possible LOS cases) and 16 non-septic ones (controls) at respective time points. Urine metabolic profiles were assessed using non-targeted nuclear magnetic resonance spectroscopy and targeted liquid chromatography-tandem mass spectrometry analysis. Multivariate statistical models with data from either analytical approach showed clear separation between the metabolic profiles of septic neonates (both possible and confirmed) and the controls. Metabolic changes appeared to be related to disease progression. Overall, neonates with confirmed or possible LOS exhibited comparable metabolic profiles indicating similar metabolic alternations upon the onset of clinical manifestations. This methodology therefore enabled the discrimination of neonates with LOS from non-septic individuals, providing potential for further research toward the discovery of LOS-related biomarkers.
Collapse
|
18
|
Tort S, Acartürk F. Preparation and characterization of electrospun nanofibers containing glutamine. Carbohydr Polym 2016; 152:802-814. [DOI: 10.1016/j.carbpol.2016.07.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 01/16/2023]
|