1
|
Lawrence SR, Shah KM. Prospects and Current Challenges of Extracellular Vesicle-Based Biomarkers in Cancer. BIOLOGY 2024; 13:694. [PMID: 39336121 PMCID: PMC11428408 DOI: 10.3390/biology13090694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Cancer continues to impose a substantial global health burden, particularly among the elderly, where the ongoing global demographic shift towards an ageing population underscores the growing need for early cancer detection. This is essential for enabling personalised cancer care and optimised treatment throughout the disease course to effectively mitigate the increasing societal impact of cancer. Liquid biopsy has emerged as a promising strategy for cancer diagnosis and treatment monitoring, offering a minimally invasive method for the isolation and molecular profiling of circulating tumour-derived components. The expansion of the liquid biopsy approach to include the detection of tumour-derived extracellular vesicles (tdEVs) holds significant therapeutic opportunity. Evidence suggests that tdEVs carry cargo reflecting the contents of their cell-of-origin and are abundant within the blood, exhibiting superior stability compared to non-encapsulated tumour-derived material, such as circulating tumour nucleic acids and proteins. However, despite theoretical promise, several obstacles hinder the translation of extracellular vesicle-based cancer biomarkers into clinical practice. This critical review assesses the current prospects and challenges facing the adoption of tdEV biomarkers in clinical practice, offering insights into future directions and proposing strategies to overcome translational barriers. By addressing these issues, EV-based liquid biopsy approaches could revolutionise cancer diagnostics and management.
Collapse
Affiliation(s)
- Samuel R Lawrence
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Karan M Shah
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
2
|
Feng Y, Lau S, Chen Q, Oyston C, Groom K, Barrett CJ, Chamley LW. Normotensive placental extracellular vesicles provide long-term protection against hypertension and cardiovascular disease. Am J Obstet Gynecol 2024; 231:350.e1-350.e24. [PMID: 38158074 DOI: 10.1016/j.ajog.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Women with normotensive pregnancy are at a reduced risk of developing cardiovascular disease postpartum compared with those who experience hypertensive conditions during pregnancy. However, the underlying mechanisms remain poorly understood. During normotensive pregnancy, vast numbers of placental extracellular vesicles are released into the maternal circulation, which protect endothelial cells from activation and alter maternal vascular tone. We hypothesized that placental extracellular vesicles play a mechanistic role in lowering the risk of cardiovascular disease following normotensive pregnancy. OBJECTIVE This study aimed to investigate the long-term effects of placental extracellular vesicles derived from normotensive term placentae on the cardiovascular system and explore the mechanisms underlying their biological effects. STUDY DESIGN Spontaneously hypertensive rats were injected with placental extracellular vesicles from normotensive term pregnancies (2 mg/kg each time, n=8) or vehicle control (n=9) at 3 months of age. Blood pressure and cardiac function were regularly monitored from 3 months to 15 months of age. The response of mesenteric resistance arteries to vasoactive substances was investigated to evaluate vascular function. Cardiac remodeling, small artery remodeling, and renal function were investigated to comprehensively assess the impact of placental extracellular vesicles on cardiovascular and renal health. RESULTS Compared with vehicle-treated control animals, rats treated with normotensive placental extracellular vesicles exhibited a significantly lower increase in blood pressure and improved cardiac function. Furthermore, the vasodilator response to the endothelium-dependent agonist acetylcholine was significantly enhanced in the normotensive placental extracellular vesicle-treated spontaneously hypertensive rats compared with the control. Moreover, treatment with placental extracellular vesicles reduced wall thickening of small renal vessels and attenuated renal fibrosis. CONCLUSION Placental extracellular vesicles from normotensive term pregnancies have long-lasting protective effects reducing hypertension and mitigating cardiovascular damage in vivo.
Collapse
Affiliation(s)
- Yourong Feng
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Sandy Lau
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charlotte Oyston
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Katie Groom
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Carolyn J Barrett
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Aycan M, Nahar L, Baslam M, Mitsui T. Transgenerational plasticity in salinity tolerance of rice: unraveling non-genetic phenotypic modifications and environmental influences. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5037-5053. [PMID: 38727615 DOI: 10.1093/jxb/erae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 08/29/2024]
Abstract
Transgenerational plasticity in plants enables rapid adaptation to environmental changes, allowing organisms and their offspring to adapt to the environment without altering their underlying DNA. In this study, we investigated the transgenerational plasticity in salinity tolerance of rice plants using a reciprocal transplant experimental strategy. Our aim was to assess whether non-genetic environment-induced phenotypic modifications and transgenerational salinity affect the salinity tolerance of progeny while excluding nuclear genomic factors for two generations. Using salt-tolerant and salt-sensitive rice genotypes, we observed that the parentally salt-stressed salt-sensitive genotype displayed greater growth performance, photosynthetic activity, yield performance, and transcriptional responses than the parentally non-stressed salt-sensitive plants under salt stress conditions. Surprisingly, salt stress-exposed salt-tolerant progeny did not exhibit as much salinity tolerance as salt stress-exposed salt-sensitive progeny under salt stress. Our findings indicate that the phenotypes of offspring plants differed based on the environment experienced by their ancestors, resulting in heritable transgenerational phenotypic modifications in salt-sensitive genotypes via maternal effects. These results elucidated the mechanisms underlying transgenerational plasticity in salinity tolerance, providing valuable insights into how plants respond to changing environmental conditions.
Collapse
Affiliation(s)
- Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Lutfun Nahar
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
- GrowSmart, Seoul 03129, Republic of Korea
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche labellisée CNRST (Centre AgroBio-tech-URL-CNRST-05), Université Cadi Ayyad, Marrakech, 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Université Cadi Ayyad, Marrakech, 40000, Morocco
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
4
|
Kooshari A, Shahriyary F, Shahidi M, Vafajoo M, Amirzargar MR. Tetrahydroisoquinoline reduces angiogenesis by interacting myeloma cells with HUVECs mediated by extracellular vesicles. Med Oncol 2024; 41:217. [PMID: 39102060 DOI: 10.1007/s12032-024-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Multiple myeloma (MM) is a neoplastic condition resulting from the uncontrolled expansion of B-cell-derived plasma cells. The importance of angiogenesis in MM development has also been demonstrated. Extracellular vesicles (EVs) have vital functions in interactions between neighboring cells, such as angiogenesis. The objective of this in vitro study was to examine the transfection and angiogenesis effects of MM-EVs on endothelial cells (ECs) upon treatment with Tetrahydroisoquinoline (THIQ) as a bioactive organic compound derivative from isoquinoline. Following treatment of multiple myeloma cells (U266) with THIQ, MM-EVs were harvested and transmigrated to human umbilical vein endothelial cells (HUVEC) in a co-culture model. EVs transmigration was traced by flow cytometry. Correspondingly, the expression of angiogenic genes and/or proteins in U266 cells and HUVECs was measured by RT-PCR and ELISA methods. Likewise, the proliferation and migration of HUVECs treated with THIQ-treated MM-EVs were visualized and estimated by performing both tube formation and scratch wound healing methods. Surprisingly, the anti-angiogenic effect of THIQ-treated MM-EVs was evident by the decreased expression of CD34, VEGFR2, and IL-6 at the mRNA and/or protein levels after internalization of MM-EVs in HUVEC. Finally, tube formation and scratch wound healing experiments showed inhibition of HUVEC cell proliferation and migration by THIQ-treated MM-EVs compared to control MM-EVs. MM-EVs derived from THIQ-treated myeloma cells (U266) inhibited angiogenesis in HUVECs. This phenomenon is coordinated by the internalized THIQ-treated MM-EVs in HUVECs, and ultimately the reduction of angiogenic factors and inhibition of tube formation and scratch wound healing.
Collapse
Affiliation(s)
- Ahmad Kooshari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Fahimeh Shahriyary
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran.
| | - Mahshid Vafajoo
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| |
Collapse
|
5
|
Perez Hurtado EC, Henao Agudelo JS, Foganholi da Silva RA, Viração TA, Fernandes CJDC. The role of extracellular vesicles in cancer. CURRENT TOPICS IN MEMBRANES 2024; 94:247-285. [PMID: 39370209 DOI: 10.1016/bs.ctm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Extracellular vesicles (EVs), which include small EVs such as exosomes, play a critical role in intercellular communication and are produced by both cancer and non-cancer cells. Several studies have shown that cancer cells exploit various strategies to regulate the biogenesis, composition, and functions of EVs primarily to promote cancer progression. Given that exosomes originate from major sorting hubs at the limiting membrane of endosomes, they are central to a signaling network that connects external stimuli with intrinsic tumor cell features. Exosomes contain diverse repertoires of molecular cargos, such as proteins, lipids, and nucleic acids, which determine their heterogeneity and functional properties in cancer progression. Therefore, targeting exosome biogenesis will enhance our understanding of tumorigenesis and also promote the discovery of novel approaches for cancer therapy. In this chapter we summarize the machinery of exosome biogenesis and the local, distant, and systemic effects of exosomes released by cancer cells. Furthermore, we explore how these exosomes regulate the anti-tumor immune response and epigenetic mechanisms to sustain cancer progression and their implications in cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Thiago Albuquerque Viração
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Célio Junior da Costa Fernandes
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
6
|
Sun DS, Chang HH. Extracellular vesicles: Function, resilience, biomarker, bioengineering, and clinical implications. Tzu Chi Med J 2024; 36:251-259. [PMID: 38993825 PMCID: PMC11236075 DOI: 10.4103/tcmj.tcmj_28_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key players in intercellular communication, disease pathology, and therapeutic innovation. Initially overlooked as cellular debris, EVs are now recognized as vital mediators of cell-to-cell communication, ferrying a cargo of proteins, nucleic acids, and lipids, providing cellular resilience in response to stresses. This review provides a comprehensive overview of EVs, focusing on their role as biomarkers in disease diagnosis, their functional significance in physiological and pathological processes, and the potential of bioengineering for therapeutic applications. EVs offer a promising avenue for noninvasive disease diagnosis and monitoring, reflecting the physiological state of originating cells. Their diagnostic potential spans a spectrum of diseases, including cancer, cardiovascular disorders, neurodegenerative diseases, and infectious diseases. Moreover, their presence in bodily fluids such as blood, urine, and cerebrospinal fluid enhances their diagnostic utility, presenting advantages over traditional methods. Beyond diagnostics, EVs mediate crucial roles in intercellular communication, facilitating the transfer of bioactive molecules between cells. This communication modulates various physiological processes such as tissue regeneration, immune modulation, and neuronal communication. Dysregulation of EV-mediated communication is implicated in diseases such as cancer, immune disorders, and neurodegenerative diseases, highlighting their therapeutic potential. Bioengineering techniques offer avenues for manipulating EVs for therapeutic applications, from isolation and purification to engineering cargo and targeted delivery systems. These approaches hold promise for developing novel therapeutics tailored to specific diseases, revolutionizing personalized medicine. However, challenges such as standardization, scalability, and regulatory approval need addressing for successful clinical translation. Overall, EVs represent a dynamic frontier in biomedical research with vast potential for diagnostics, therapeutics, and personalized medicine.
Collapse
Affiliation(s)
- Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
7
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
8
|
Papakonstantinou E, Dragoumani K, Chrousos GP, Vlachakis D. Exosomal Epigenetics. EMBNET.JOURNAL 2024; 29:e1049. [PMID: 38845750 PMCID: PMC11155272 DOI: 10.14806/ej.29.0.1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without changes to the underlying DNA sequence. Epigenetic modifications can include DNA methylation, histone modifications, and non-coding RNAs, among others. These modifications can influence the expression of genes by altering the way DNA is packaged and accessed by transcriptional machinery, thereby affecting cellular function and behavior. Epigenetic modifications can be influenced by a variety of factors, including environmental exposures, lifestyle factors, and aging, whilst abnormal epigenetic modifications have been implicated in a range of diseases, including cancer, neurodegenerative disorders, and cardiovascular disease. The study of epigenetics has the potential to provide new insights into the mechanisms of disease and could lead to the development of new diagnostic and therapeutic strategies. Exosomes can transfer epigenetic information to recipient cells, thereby influencing various physiological and pathological processes, and the identification of specific epigenetic modifications that are associated with a particular disease could lead to the development of targeted therapies that restore normal gene expression patterns. In recent years, the emerging role of exosomal epigenetics in human breast milk, highlighting its significance in infant nutrition and immune development. Milk exosomes are shown to carry epigenetic regulators, including miRNAs and long non-coding RNAs, which can modulate gene expression in recipient cells. These epigenetic modifications mediated by milk exosomal RNAs have implications for the development of the gastrointestinal tract, immune system, and metabolic processes in infants.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
- School of Informatics, Faculty of Natural & Mathematical Sciences, King's College London, London, U.K
| |
Collapse
|
9
|
Chu D, Chen L, Li W, Zhang H. An exosomes-related lncRNA prognostic model correlates with the immune microenvironment and therapy response in lung adenocarcinoma. Clin Exp Med 2024; 24:104. [PMID: 38761234 PMCID: PMC11102376 DOI: 10.1007/s10238-024-01319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 05/20/2024]
Abstract
Recent research highlights the significance of exosomes and long noncoding RNAs (lncRNAs) in cancer progression and drug resistance, but their role in lung adenocarcinoma (LUAD) is not fully understood. We analyzed 121 exosome-related (ER) mRNAs from the ExoBCD database, along with mRNA and lncRNA expression profiles of TCGA-LUAD using "DESeq2", "survival," "ConsensusClusterPlus," "GSVA," "estimate," "glmnet," "clusterProfiler," "rms," and "pRRophetic" R packages. This comprehensive approach included univariate cox regression, unsupervised consensus clustering, GSEA, functional enrichment analysis, and prognostic model construction. Our study identified 134 differentially expressed ER-lncRNAs, with 19 linked to LUAD prognosis. These ER-lncRNAs delineated two patient subtypes, one with poorer outcomes. Additionally, 286 differentially expressed genes were related to these ER-lncRNAs, 261 of which also correlated with LUAD prognosis. We constructed an ER-lncRNA-related prognostic model and calculated an ER-lncRNA-related risk score (ERS), revealing that a higher ERS correlates with poor overall survival in both the Meta cohort and two validation cohorts. The ERS potentially serves as an independent prognostic factor, and the prognostic model demonstrates superior predictive power. Notably, significant differences in the immune landscape were observed between the high- and low-ERS groups. Drug sensitivity analysis indicated varying responses to common chemotherapy drugs based on ERS stratification, with the high-ERS group showing greater sensitivity, except to rapamycin and erlotinib. Experimental validation confirmed that thymidine kinase 1 enhances lung cancer invasion, metastasis, and cell cycle progression. Our study pioneers an ER-lncRNA-related prognostic model for LUAD, proposing that ERS-based risk stratification could inform personalized treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Daifang Chu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Liulin Chen
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Wangping Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Haitao Zhang
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
10
|
Lin Y, Jiang H, Li J, Ren F, Wang Y, Qiu Y, Li J, Li M, Wang Y, Yang L, Song Y, Jia H, Zhai W, Kuang Y, Yu H, Zhu W, Liu S, Morii E, Ensinger C, David C, Zheng H, Ji J, Wang H, Chang Z. Microenvironment-induced CREPT expression by cancer-derived small extracellular vesicles primes field cancerization. Theranostics 2024; 14:662-680. [PMID: 38169511 PMCID: PMC10758052 DOI: 10.7150/thno.87344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.
Collapse
Affiliation(s)
- Yuting Lin
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Hanguo Jiang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Jun Li
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Ying Qiu
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Jianghua Li
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Yunhao Song
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Huihui Jia
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Yanshen Kuang
- Department of General Surgery, General Hospital of PLA, Beijing 100700, China
| | - Hanyang Yu
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian Ensinger
- Institute of Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Charles David
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Hanqiu Zheng
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Phatale V, Famta P, Srinivasarao DA, Vambhurkar G, Jain N, Pandey G, Kolipaka T, Khairnar P, Shah S, Singh SB, Raghuvanshi RS, Srivastava S. Neutrophil membrane-based nanotherapeutics: Propitious paradigm shift in the management of cancer. Life Sci 2023; 331:122021. [PMID: 37582468 DOI: 10.1016/j.lfs.2023.122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Cancer is the leading cause of death across the globe, with 19.3 million new cancer cases and 10 million deaths in the year 2020. Conventional treatment modalities have numerous pitfalls, such as off-site cytotoxicity and poor bioavailability. Nanocarriers (NCs) have been explored to deliver various therapeutic moieties such as chemotherapeutic agents and photothermal agents, etc. However, several limitations, such as rapid clearance by the reticuloendothelial system, poor extravasation into the tumor microenvironment, and low systemic half-life are roadblocks to successful clinical translation. To circumvent the pitfalls of currently available treatment modalities, neutrophil membrane (NM)-based nanotherapeutics have emerged as a promising platform for cancer management. Their versatile features such as natural tumor tropism, tumor-specific accumulation, and prevention from rapid clearance owing to their autologous nature make them an effective anticancer NCs. In this manuscript, we have discussed various methods for isolation, coating and characterization of NM. We have discussed the role of NM-coated nanotherapeutics as neoadjuvant and adjuvant in different treatment modalities, such as chemotherapy, photothermal and photodynamic therapies with rationales behind their inclusion. Clinical hurdles faced during the bench-to-bedside translation with possible solutions have been discussed. We believe that in the upcoming years, NM-coated nanotherapeutics will open a new horizon in cancer management.
Collapse
Affiliation(s)
- Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
12
|
Ko H, Peng H, Cheng AN, Chou HE, Hou H, Kuo W, Liu W, Kuo MY, Lee AY, Cheng S. Metastasis and immunosuppression promoted by mtDNA and PD-L1 in extracellular vesicles are reversed by WGP β-glucan in oral squamous cell carcinoma. Cancer Sci 2023; 114:3857-3872. [PMID: 37525561 PMCID: PMC10551585 DOI: 10.1111/cas.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
The suppressive regulatory T cells (Treg) are frequently upregulated in cancer patients. This study aims to demonstrate the hypothesis that arecoline could induce the secretion of mitochondrial (mt) DNA D-loop and programmed cell death-ligand 1 (PD-L1) in extracellular vesicles (EVs), and attenuate T-cell immunity by upregulated Treg cell numbers. However, the immunosuppression could be reversed by whole glucan particle (WGP) β-glucan in oral squamous cell (OSCC) patients. Arecoline-induced reactive oxygen specimen (ROS) production and cytosolic mtDNA D-loop were analyzed in OSCC cell lines. mtDNA D-loop, PD-L1, IFN-γ, and Treg cells were also identified for the surgical specimens and sera of 60 OSCC patients. We demonstrated that higher mtDNA D-loop, PD-L1, and Treg cell numbers were significantly correlated with larger tumor size, nodal metastasis, advanced clinical stage, and areca quid chewing. Furthermore, multivariate analysis confirmed that higher mtDNA D-loop levels and Treg cell numbers were unfavorable independent factors for survival. Arecoline significantly induced cytosolic mtDNA D-loop leakage and PD-L1 expression, which were packaged by EVs to promote immunosuppressive Treg cell numbers. However, WGP β-glucan could elevate CD4+ and CD8+ T-cell numbers, mitigate Treg cell numbers, and promote oral cancer cell apoptosis. To sum up, arecoline induces EV production carrying mtDNA D-loop and PD-L1, and in turn elicits immune suppression. However, WGP β-glucan potentially enhances dual effects on T-cell immunity and cell apoptosis and we highly recommend its integration with targeted and immune therapies against OSCC.
Collapse
Affiliation(s)
- Hui‐Hsin Ko
- Graduate Institute of Clinical Dentistry, School of DentistryNational Taiwan UniversityTaipeiTaiwan
- School of DentistryNational Taiwan UniversityTaipeiTaiwan
- Department of Dentistry, College of MedicineNational Taiwan University HospitalTaipeiTaiwan
- Department of DentistryNational Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
| | - Hsin‐Hui Peng
- Graduate Institute of Clinical Dentistry, School of DentistryNational Taiwan UniversityTaipeiTaiwan
- School of DentistryNational Taiwan UniversityTaipeiTaiwan
- Department of Dentistry, College of MedicineNational Taiwan University HospitalTaipeiTaiwan
- Department of DentistryNational Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
| | | | - Han‐Yi Elizabeth Chou
- School of DentistryNational Taiwan UniversityTaipeiTaiwan
- Department of Dentistry, College of MedicineNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oral Biology, School of DentistryNational Taiwan UniversityTaipeiTaiwan
| | - Hsin‐Han Hou
- School of DentistryNational Taiwan UniversityTaipeiTaiwan
- Department of Dentistry, College of MedicineNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oral Biology, School of DentistryNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Ting Kuo
- School of DentistryNational Taiwan UniversityTaipeiTaiwan
- Department of Dentistry, College of MedicineNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oral Biology, School of DentistryNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Wen Liu
- School of DentistryNational Taiwan UniversityTaipeiTaiwan
- Department of Dentistry, College of MedicineNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oral Biology, School of DentistryNational Taiwan UniversityTaipeiTaiwan
| | - Mark Yen‐Ping Kuo
- Graduate Institute of Clinical Dentistry, School of DentistryNational Taiwan UniversityTaipeiTaiwan
- School of DentistryNational Taiwan UniversityTaipeiTaiwan
- Department of Dentistry, College of MedicineNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oral Biology, School of DentistryNational Taiwan UniversityTaipeiTaiwan
| | - Alan Yueh‐Luen Lee
- National Institute of Cancer ResearchNational Health Research InstitutesMiaoliTaiwan
- Department of Biotechnology, College of Life ScienceKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shih‐Jung Cheng
- Graduate Institute of Clinical Dentistry, School of DentistryNational Taiwan UniversityTaipeiTaiwan
- School of DentistryNational Taiwan UniversityTaipeiTaiwan
- Department of Dentistry, College of MedicineNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oral Biology, School of DentistryNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
13
|
Xue J, Qin S, Ren N, Guo B, Shi X, Jia E. Extracellular vesicle biomarkers in circulation for the diagnosis of gastric cancer: A systematic review and meta‑analysis. Oncol Lett 2023; 26:423. [PMID: 37664665 PMCID: PMC10472029 DOI: 10.3892/ol.2023.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/14/2023] [Indexed: 09/05/2023] Open
Abstract
The prognosis of a gastric cancer (GC) diagnosis is poor due to the current lack of effective early diagnostic methods. Extracellular vesicle (EV) biomarkers have previously demonstrated strong diagnostic efficiency for certain types of cancer, including pancreatic and lung cancer. The present review aimed to summarize the diagnostic value of circulating EV biomarkers for early stage GC. The PubMed, Medline and Web of Science databases were searched from May 1983 to September 18, 2022. All studies that reported the diagnostic performance of EV biomarkers for GC were included for analysis. Overall, 27 studies were selected containing 2,831 patients with GC and 2,117 controls. A total of 58 EV RNAs were reported in 26 studies, including 39 microRNAs (miRNAs), 10 long non-coding RNAs (lncRNAs), five circular RNAs, three PIWI-interacting RNAs and one mRNA, in addition to one protein in the remaining study. Meta-analysis of the aforementioned studies demonstrated that the pooled sensitivity, specificity and AUC value of the total RNAs were 84, 67% and 0.822, respectively. The diagnostic values of miRNAs were consistent with the total RNA, as the pooled sensitivity, specificity and AUC value were 84, 67% and 0.808, respectively. The pooled sensitivity, specificity and AUC values of lncRNAs were 89, 69% and 0.872, respectively, markedly higher compared with that of miRNAs. A total of five studies reported the diagnostic performance of EV RNA panels for early stage GC and reported powerful diagnostic values with a pooled sensitivity, specificity and AUC value of 80, 77% and 0.879, respectively. Circulating EV RNAs could have the potential to be used in the future as effective, noninvasive biomarkers for early GC diagnosis. Further research in this field is necessary to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Shaoyou Qin
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Na Ren
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Bo Guo
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, P.R. China
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| |
Collapse
|
14
|
Nedeljkovic A, Ilic R, Nedeljkovic Z, Milicevic M, Raicevic S, Grujicic D. A unique case of intracranial collision tumor composed of ganglioglioma WHO gr I and supratentorial ependymoma WHO gr III: case-based literature review. Childs Nerv Syst 2023; 39:2407-2411. [PMID: 37328662 DOI: 10.1007/s00381-023-06028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE Intracranial collision tumor is a rare entity that represents the coexistence of two histopathological different tumor types in the same area without histological admixture or an intermediate cell population zone. So far, several cases of collision tumors with ganglioglioma as its component have been reported in the literature, while supratentorial ependymoma has never been reported as a collision tumor component. We are presenting a unique case of collision tumor in patient without previous history of head trauma, neurological surgery, radiotherapy, or phakomatosis. METHODS AND RESULTS A 17-year-old male with no previous history of head trauma, neurological surgery, radiotherapy, or phakomatosis was presented to our clinic with grand mal seizure. Brain magnetic resonance imaging with gadolinium contrast was done revealing a contrast-enhancing lesion of right frontal lobe closely related to dura, surrounded by perifocal edema. The patient underwent a gross total tumor resection. Histological examination revealed collision tumor with two distinct components: ganglioglioma and supratentorial ependymoma. CONCLUSION To our best knowledge, no previous reports of collision tumor composed of ganglioglioma and supratentorial ependymoma in a single patient have been reported. We believe that this report could significantly contribute to further surgical practice as well as to treatment decision for these types of collision tumors.
Collapse
Affiliation(s)
- Aleksandra Nedeljkovic
- Clinic for Neurosurgery, Clinical Center of Serbia, Koste Todorovica 4, Beograd, Serbia.
| | - Rosanda Ilic
- Clinic for Neurosurgery, Clinical Center of Serbia, Koste Todorovica 4, Beograd, Serbia
- Faculty of Medicine, University of Belgrade, Doktora Subotica Starijeg 8, Belgrade, Serbia
| | - Zarko Nedeljkovic
- Clinic for Neurosurgery, Clinical Center of Serbia, Koste Todorovica 4, Beograd, Serbia
| | - Mihailo Milicevic
- Clinic for Neurosurgery, Clinical Center of Serbia, Koste Todorovica 4, Beograd, Serbia
- Faculty of Medicine, University of Belgrade, Doktora Subotica Starijeg 8, Belgrade, Serbia
| | - Savo Raicevic
- Clinic for Neurosurgery, Clinical Center of Serbia, Koste Todorovica 4, Beograd, Serbia
- Institut for Pathology, Faculty of Medicine, University of Belgrade, Doktora Subotica starijeg 1, Belgrade, Serbia
| | - Danica Grujicic
- Clinic for Neurosurgery, Clinical Center of Serbia, Koste Todorovica 4, Beograd, Serbia
- Faculty of Medicine, University of Belgrade, Doktora Subotica Starijeg 8, Belgrade, Serbia
| |
Collapse
|
15
|
Norollahi SE, Vahidi S, Shams S, Keymoradzdeh A, Soleymanpour A, Solymanmanesh N, Mirzajani E, Jamkhaneh VB, Samadani AA. Analytical and therapeutic profiles of DNA methylation alterations in cancer; an overview of changes in chromatin arrangement and alterations in histone surfaces. Horm Mol Biol Clin Investig 2023; 44:337-356. [PMID: 36799246 DOI: 10.1515/hmbci-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzdeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazanin Solymanmanesh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
16
|
Wang J, Liu Q, Zhao Y, Fu J, Su J. Tumor Cells Transmit Drug Resistance via Cisplatin-Induced Extracellular Vesicles. Int J Mol Sci 2023; 24:12347. [PMID: 37569723 PMCID: PMC10418773 DOI: 10.3390/ijms241512347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a first-line clinical agent used for treating solid tumors. Cisplatin damages the DNA of tumor cells and induces the production of high levels of reactive oxygen species to achieve tumor killing. Tumor cells have evolved several ways to tolerate this damage. Extracellular vesicles (EVs) are an important mode of information transfer in tumor cells. EVs can be substantially activated under cisplatin treatment and mediate different responses of tumor cells under cisplatin treatment depending on their different cargoes. However, the mechanism of action of tumor-cell-derived EVs under cisplatin treatment and their potential cargoes are still unclear. This review considers recent advances in cisplatin-induced release of EVs from tumor cells, with the expectation of providing a new understanding of the mechanisms of cisplatin treatment and drug resistance, as well as strategies for the combined use of cisplatin and other drugs.
Collapse
Affiliation(s)
| | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (J.W.); (Q.L.); (Y.Z.); (J.F.)
| |
Collapse
|
17
|
Shchegolev YY, Sorokin DV, Scherbakov AM, Andreeva OE, Salnikova DI, Mikhaevich EI, Gudkova MV, Krasil’nikov MA. Exosomes are involved in the intercellular transfer of rapamycin resistance in the breast cancer cells. BIOIMPACTS : BI 2023; 13:313-321. [PMID: 37645026 PMCID: PMC10460766 DOI: 10.34172/bi.2023.27490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 08/31/2023]
Abstract
Introduction Resistance to chemotherapy and/or irradiation remains one of the key features of malignant tumors, which largely limits the efficiency of antitumor therapy. In this work, we studied the progression mechanism of breast cancer cell resistance to target drugs, including mTOR blockers, and in particular, we studied the exosome function in intercellular resistance transfer. Methods The cell viability was assessed by the MTT assay, exosomes were purified by successive centrifugations, immunoblotting was used to evaluate protein expression, AP-1 activity was analyzed using reporter assay. Results In experiments on the MCF-7 cell line (breast cancer) and the MCF-7/Rap subline that is resistant to rapamycin, the capability of resistant cell exosomes to trigger a similar rapamycin resistance in the parent MCF-7 cells was demonstrated. Exosome-induced resistance reproduces the changes revealed in MCF-7/Rap resistant cells, including the activation of ERK/AP-1 signaling, and it remains for a long time, for at least several months, after exosome withdrawal. We have shown that both the MCF-7 subline resistant to rapamycin and cells having exosome-triggered resistance demonstrate a stable decrease in the expression of DNMT3A, the key enzyme responsible for DNA methylation. Knockdown of DNMT3A in MCF-7 cells by siRNA leads to partial cell resistance to rapamycin; thus, the DNMT3A suppression is regarded as one of the necessary elements for the development of acquired rapamycin resistance. Conclusion We propose that DNA demethylation followed by increased expression of key genes may be one of the factors responsible for the progression and maintenance of the resistant cell phenotype that includes exosome-induced resistance.
Collapse
Affiliation(s)
- Yuri Yu. Shchegolev
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Olga E. Andreeva
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Ekaterina I. Mikhaevich
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Margarita V. Gudkova
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Mikhail A. Krasil’nikov
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| |
Collapse
|
18
|
Gupta S, Dutta S, Hui SP. Regenerative Potential of Injured Spinal Cord in the Light of Epigenetic Regulation and Modulation. Cells 2023; 12:1694. [PMID: 37443728 PMCID: PMC10341208 DOI: 10.3390/cells12131694] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
A spinal cord injury is a form of physical harm imposed on the spinal cord that causes disability and, in many cases, leads to permanent mammalian paralysis, which causes a disastrous global issue. Because of its non-regenerative aspect, restoring the spinal cord's role remains one of the most daunting tasks. By comparison, the remarkable regenerative ability of some regeneration-competent species, such as some Urodeles (Axolotl), Xenopus, and some teleost fishes, enables maximum functional recovery, even after complete spinal cord transection. During the last two decades of intensive research, significant progress has been made in understanding both regenerative cells' origins and the molecular signaling mechanisms underlying the regeneration and reconstruction of damaged spinal cords in regenerating organisms and mammals, respectively. Epigenetic control has gradually moved into the center stage of this research field, which has been helped by comprehensive work demonstrating that DNA methylation, histone modifications, and microRNAs are important for the regeneration of the spinal cord. In this review, we concentrate primarily on providing a comparison of the epigenetic mechanisms in spinal cord injuries between non-regenerating and regenerating species. In addition, we further discuss the epigenetic mediators that underlie the development of a regeneration-permissive environment following injury in regeneration-competent animals and how such mediators may be implicated in optimizing treatment outcomes for spinal cord injurie in higher-order mammals. Finally, we briefly discuss the role of extracellular vesicles (EVs) in the context of spinal cord injury and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Samudra Gupta
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India;
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
| | - Subhra Prakash Hui
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India;
| |
Collapse
|
19
|
Mastrolia I, Catani V, Oltrecolli M, Pipitone S, Vitale MG, Masciale V, Chiavelli C, Bortolotti CA, Nasso C, Grisendi G, Sabbatini R, Dominici M. Chasing the Role of miRNAs in RCC: From Free-Circulating to Extracellular-Vesicle-Derived Biomarkers. BIOLOGY 2023; 12:877. [PMID: 37372161 DOI: 10.3390/biology12060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Renal cell carcinoma (RCC) is the second most common cancer of the urinary system. The current therapeutic strategies are based on partial or total nephrectomy and/or targeted therapies based on immune checkpoint inhibitors to which patients are often refractory. Preventive and screening strategies do not exist and the few available biomarkers for RCC are characterized by a lack of sensitivity, outlining the need for novel noninvasive and sensitive biomarkers for early diagnosis and better disease monitoring. Blood liquid biopsy (LB) is a non- or minimally invasive procedure for a more representative view of tumor heterogeneity than a tissue biopsy, potentially allowing the real-time monitoring of cancer evolution. Growing interest is focused on the extracellular vesicles (EVs) secreted by either healthy or tumoral cells and recovered in a variety of biological matrices, blood included. EVs are involved in cell-to-cell crosstalk transferring their mRNAs, microRNAs (miRNAs), and protein content. In particular, transferred miRNAs may regulate tumorigenesis and proliferation also impacting resistance to apoptosis, thus representing potential useful biomarkers. Here, we present the latest efforts in the identification of circulating miRNAs in blood samples, focusing on the potential use of EV-derived miRNAs as RCC diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Virginia Catani
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | | | - Cecilia Nasso
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
- Division of Oncology, S. Corona Hospital, 17027 Pietra Ligure, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
20
|
Arena GO, Forte S, Abdouh M, Vanier C, Corbeil D, Lorico A. Horizontal Transfer of Malignant Traits and the Involvement of Extracellular Vesicles in Metastasis. Cells 2023; 12:1566. [PMID: 37371036 PMCID: PMC10297028 DOI: 10.3390/cells12121566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Metastases are responsible for the vast majority of cancer deaths, yet most therapeutic efforts have focused on targeting and interrupting tumor growth rather than impairing the metastatic process. Traditionally, cancer metastasis is attributed to the dissemination of neoplastic cells from the primary tumor to distant organs through blood and lymphatic circulation. A thorough understanding of the metastatic process is essential to develop new therapeutic strategies that improve cancer survival. Since Paget's original description of the "Seed and Soil" hypothesis over a hundred years ago, alternative theories and new players have been proposed. In particular, the role of extracellular vesicles (EVs) released by cancer cells and their uptake by neighboring cells or at distinct anatomical sites has been explored. Here, we will outline and discuss these alternative theories and emphasize the horizontal transfer of EV-associated biomolecules as a possibly major event leading to cell transformation and the induction of metastases. We will also highlight the recently discovered intracellular pathway used by EVs to deliver their cargoes into the nucleus of recipient cells, which is a potential target for novel anti-metastatic strategies.
Collapse
Affiliation(s)
- Goffredo O. Arena
- Department of Surgery, McGill University, Montréal, QC H3A 0G4, Canada;
- Fondazione Istituto G. Giglio, 90015 Cefalù, Italy
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute, McGill University Health Centre, Montréal, QC H3A 0G4, Canada;
| | - Cheryl Vanier
- Touro University Nevada College of Medicine, Henderson, NV 89014, USA;
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Aurelio Lorico
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
- Touro University Nevada College of Medicine, Henderson, NV 89014, USA;
| |
Collapse
|
21
|
Rubio K, Hernández-Cruz EY, Rogel-Ayala DG, Sarvari P, Isidoro C, Barreto G, Pedraza-Chaverri J. Nutriepigenomics in Environmental-Associated Oxidative Stress. Antioxidants (Basel) 2023; 12:771. [PMID: 36979019 PMCID: PMC10045733 DOI: 10.3390/antiox12030771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Complex molecular mechanisms define our responses to environmental stimuli. Beyond the DNA sequence itself, epigenetic machinery orchestrates changes in gene expression induced by diet, physical activity, stress and pollution, among others. Importantly, nutrition has a strong impact on epigenetic players and, consequently, sustains a promising role in the regulation of cellular responses such as oxidative stress. As oxidative stress is a natural physiological process where the presence of reactive oxygen-derived species and nitrogen-derived species overcomes the uptake strategy of antioxidant defenses, it plays an essential role in epigenetic changes induced by environmental pollutants and culminates in signaling the disruption of redox control. In this review, we present an update on epigenetic mechanisms induced by environmental factors that lead to oxidative stress and potentially to pathogenesis and disease progression in humans. In addition, we introduce the microenvironment factors (physical contacts, nutrients, extracellular vesicle-mediated communication) that influence the epigenetic regulation of cellular responses. Understanding the mechanisms by which nutrients influence the epigenome, and thus global transcription, is crucial for future early diagnostic and therapeutic efforts in the field of environmental medicine.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Estefani Y. Hernández-Cruz
- Postgraduate in Biological Sciences, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| | - Diana G. Rogel-Ayala
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Via Paolo Solaroli 17, 28100 Novara, Italy
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
22
|
Sulewska A, Pilz L, Manegold C, Ramlau R, Charkiewicz R, Niklinski J. A Systematic Review of Progress toward Unlocking the Power of Epigenetics in NSCLC: Latest Updates and Perspectives. Cells 2023; 12:cells12060905. [PMID: 36980246 PMCID: PMC10047383 DOI: 10.3390/cells12060905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic research has the potential to improve our understanding of the pathogenesis of cancer, specifically non-small-cell lung cancer, and support our efforts to personalize the management of the disease. Epigenetic alterations are expected to have relevance for early detection, diagnosis, outcome prediction, and tumor response to therapy. Additionally, epi-drugs as therapeutic modalities may lead to the recovery of genes delaying tumor growth, thus increasing survival rates, and may be effective against tumors without druggable mutations. Epigenetic changes involve DNA methylation, histone modifications, and the activity of non-coding RNAs, causing gene expression changes and their mutual interactions. This systematic review, based on 110 studies, gives a comprehensive overview of new perspectives on diagnostic (28 studies) and prognostic (25 studies) epigenetic biomarkers, as well as epigenetic treatment options (57 studies) for non-small-cell lung cancer. This paper outlines the crosstalk between epigenetic and genetic factors as well as elucidates clinical contexts including epigenetic treatments, such as dietary supplements and food additives, which serve as anti-carcinogenic compounds and regulators of cellular epigenetics and which are used to reduce toxicity. Furthermore, a future-oriented exploration of epigenetic studies in NSCLC is presented. The findings suggest that additional studies are necessary to comprehend the mechanisms of epigenetic changes and investigate biomarkers, response rates, and tailored combinations of treatments. In the future, epigenetics could have the potential to become an integral part of diagnostics, prognostics, and personalized treatment in NSCLC.
Collapse
Affiliation(s)
- Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| | - Lothar Pilz
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Manegold
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| |
Collapse
|
23
|
Malgundkar SH, Tamimi Y. Exosomes as crucial emerging tools for intercellular communication with therapeutic potential in ovarian cancer. Future Sci OA 2023; 9:FSO833. [PMID: 37006229 PMCID: PMC10051132 DOI: 10.2144/fsoa-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
More than two-thirds of epithelial ovarian cancer (EOC) patients are diagnosed at advanced stages due to the lack of sensitive biomarkers. Currently, exosomes are intensively investigated as non-invasive cancer diagnostic markers. Exosomes are nanovesicles released in the extracellular milieu with the potential to modulate recipient cells' behavior. EOC cells release many altered exosomal cargoes that exhibit clinical relevance to tumor progression. Exosomes represent powerful therapeutic tools (drug carriers or vaccines), posing a promising option in clinical practice for curing EOC in the near future. In this review, we highlight the importance of exosomes in cell–cell communication, epithelial–mesenchymal transition (EMT), and their potential to serve as diagnostic and prognostic factors, particularly in EOC.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| |
Collapse
|
24
|
Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci 2022; 23:ijms231911712. [PMID: 36233012 PMCID: PMC9570183 DOI: 10.3390/ijms231911712] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 02/06/2023] Open
Abstract
Human diseases such as cancer can be caused by aberrant epigenetic regulation. Polyphenols play a major role in mammalian epigenome regulation through mechanisms and proteins that remodel chromatin. In fruits, seeds, and vegetables, as well as food supplements, polyphenols are found. Compounds such as these ones are powerful anticancer agents and antioxidants. Gallic acid, kaempferol, curcumin, quercetin, and resveratrol, among others, have potent anti-tumor effects by helping reverse epigenetic changes associated with oncogene activation and tumor suppressor gene inactivation. The role dietary polyphenols plays in restoring epigenetic alterations in cancer cells with a particular focus on DNA methylation and histone modifications was summarized. We also discussed how these natural compounds modulate gene expression at the epigenetic level and described their molecular targets in cancer. It highlights the potential of polyphenols as an alternative therapeutic approach in cancer since they modulate epigenetic activity.
Collapse
|
25
|
Khan MI, Alsayed RKME, Choudhry H, Ahmad A. Exosome-Mediated Response to Cancer Therapy: Modulation of Epigenetic Machinery. Int J Mol Sci 2022; 23:ijms23116222. [PMID: 35682901 PMCID: PMC9181065 DOI: 10.3390/ijms23116222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Exosomes, the extracellular vesicles produced in the endosomal compartments, facilitate the transportation of proteins as well as nucleic acids. Epigenetic modifications are now considered important for fine-tuning the response of cancer cells to various therapies, and the acquired resistance against targeted therapies often involves dysregulated epigenetic modifications. Depending on the constitution of their cargo, exosomes can affect several epigenetic events, thus impacting post-transcriptional regulations. Thus, a role of exosomes as facilitators of epigenetic modifications has come under increased scrutiny in recent years. Exosomes can deliver methyltransferases to recipient cells and, more importantly, non-coding RNAs, particularly microRNAs (miRNAs), represent an important exosome cargo that can affect the expression of several oncogenes and tumor suppressors, with a resulting impact on cancer therapy resistance. Exosomes often harbor other non-coding RNAs, such as long non-coding RNAs and circular RNAs that support resistance. The exosome-mediated transfer of all this cargo between cancer cells and their surrounding cells, especially tumor-associated macrophages and cancer-associated fibroblasts, has a profound effect on the sensitivity of cancer cells to several chemotherapeutics. This review focuses on the exosome-induced modulation of epigenetic events with resulting impact on sensitivity of cancer cells to various therapies, such as, tamoxifen, cisplatin, gemcitabine and tyrosine kinase inhibitors. A better understanding of the mechanisms by which exosomes can modulate response to therapy in cancer cells is critical for the development of novel therapeutic strategies to target cancer drug resistance.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.I.K.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reem K. M. E. Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.I.K.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
- Correspondence: ; Tel.: +974-44390984
| |
Collapse
|
26
|
The Neuropeptide-Related HERC5/TAC1 Interactions May Be Associated with the Dysregulation of lncRNA GAS5 Expression in Gestational Diabetes Mellitus Exosomes. DISEASE MARKERS 2022; 2022:8075285. [PMID: 35178132 PMCID: PMC8847027 DOI: 10.1155/2022/8075285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022]
Abstract
Objective The goal of this work was to look at the expression and probable role of exosomal long noncoding RNA (lncRNA) GAS5 in gestational diabetes mellitus (GDM), as well as forecast the importance of its interaction with neuropeptides in the progression of the disease. Methods We divided 44 pregnant women visiting the obstetric outpatient clinics at the Affiliated Hospital of Guilin Medical College from January 2021 to December 2021 into healthy and GDM groups. We measured the expression levels of the lncRNA GAS5 in peripheral blood using PCR and compared the expression levels between the 2 groups. The Gene Expression Omnibus (GEO) database and the R software were used to analyse the differences in the genes expressed in the amniotic fluid cells in the GDM and normal groups. catRAPID was used to identify potential target proteins for GAS5. Key neuropeptide-related proteins and potential target proteins of GAS5 were extracted, and protein interaction networks were mapped. AlphaFold 2 was used to predict the structure of the target protein. The ClusPro tool was used to predict protein-protein interactions. ZDOCK was used to further confirm the protein–nucleic acid docking. Results The lncRNA GAS5 was downregulated in the peripheral blood of pregnant women with GDM compared with normal pregnant women. The subcellular localization sites of GAS5 were the nucleus, cytoplasm, and ribosome; in addition, GAS5 was present in exosomes. Intercellular interactions, including neuropeptide receptors, were increased in the amniotic fluid cells of patients with GDM. Venn diagram analysis yielded seven neuropeptide-related proteins and three GAS5 target proteins. Among them, HERC5/TAC1 interacted and GAS5 docked well with HERC5. Conclusion The lncRNA GAS5 in the peripheral blood exosomes in patients with GDM may be a new target for the detection of GDM, and the interaction between GAS5 and HERC5/TAC1 may be involved in the pathogenesis of GDM.
Collapse
|
27
|
Takagane K, Umakoshi M, Itoh G, Kuriyama S, Goto A, Tanaka M. SKAP2 suppresses inflammation-mediated tumorigenesis by regulating SHP-1 and SHP-2. Oncogene 2022; 41:1087-1099. [PMID: 35034964 DOI: 10.1038/s41388-021-02153-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
Inflammatory bowel diseases, like ulcerative colitis and Crohn's disease are frequently accompanied by colorectal cancers. However, the mechanisms underlying colitis-associated cancers are not fully understood. Src Kinase Associated Phosphoprotein 2 (SKAP2), a substrate of Src family kinases, is highly expressed in macrophages. Here, we examined the effects of SKAP2 on inflammatory responses in a mouse model of tumorigenesis with colitis induced by azoxymethane/dextran sulfate sodium. SKAP2 knockout increased the severity of colitis and tumorigenesis, as well as lipopolysaccharide (LPS) induced acute inflammation. SKAP2 attenuated inflammatory signaling in macrophages induced by uptake of cancer cell-derived exosomes. SKAP2-/- mice were characterized by the activation of NF-κB signaling and the upregulation and release of cytokines including TNFα, IL-1β, IL-6, CXCL-9/-10/-13, and sICAM1; SKAP2 overexpression attenuated NF-κB activation. Mechanistically, SKAP2 formed a complex with the SHP-1 tyrosine phosphatase via association with the Sirpα transmembrane receptor. SKAP2 also physically associated with the TIR domain of MyD88, TIRAP, and TRAM, adaptors of toll-like receptor 4 (TLR4). SKAP2-mediated recruitment of the Sirpα/SHP-1 complex to TLR4 attenuated inflammatory responses, whereas direct interaction of SKAP2 with SHP-2 decreased SHP-2 activation. SHP-2 is required for efficient NF-κB activation and suppresses the TRAM/TRIF-INFβ pathway; therefore, SKAP2-mediated SHP-2 inhibition affected two signaling axes from TLR4. The present findings indicate that SKAP2 prevents excess inflammation by inhibiting the TLR4-NF-κB pathway, and it activates the TLR4-IFNβ pathway through SHP-1 and SHP-2, thereby suppressing inflammation-mediated tumorigenesis.
Collapse
Affiliation(s)
- Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
- Technical Division, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Michinobu Umakoshi
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
28
|
Jahan S, Mukherjee S, Ali S, Bhardwaj U, Choudhary RK, Balakrishnan S, Naseem A, Mir SA, Banawas S, Alaidarous M, Alyenbaawi H, Iqbal D, Siddiqui AJ. Pioneer Role of Extracellular Vesicles as Modulators of Cancer Initiation in Progression, Drug Therapy, and Vaccine Prospects. Cells 2022; 11:490. [PMID: 35159299 PMCID: PMC8833976 DOI: 10.3390/cells11030490] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading diseases, causing deaths worldwide. Nearly 10 million deaths were reported in 2020 due to cancer alone. Several factors are involved in cancer progressions, such as lifestyle and genetic characteristics. According to a recent report, extracellular vesicles (EVs) are involved in cancer initiation, progression, and therapy failure. EVs can play a major role in intracellular communication, the maintenance of tissue homeostasis, and pathogenesis in several types of diseases. In a healthy person, EVs carry different cargoes, such as miRNA, lncRNA etc., to help other body functions. On the other hand, the same EV in a tumor microenvironment carries cargoes such as miRNA, lncRNA, etc., to initiate or help cancer progression at various stages. These stages may include the proliferation of cells and escape from apoptosis, angiogenesis, cell invasion, and metastasis, reprogramming energy metabolism, evasion of the immune response, and transfer of mutations. Tumor-derived EVs manipulate by altering normal functions of the body and affect the epigenetics of normal cells by limiting the genetic makeup through transferring mutations, histone modifications, etc. Tumor-derived EVs also pose therapy resistance through transferring drug efflux pumps and posing multiple drug resistances. Such EVs can also help as biomarkers for different cancer types and stages, which ultimately help with cancer diagnosis at early stages. In this review, we will shed light on EVs' role in performing normal functions of the body and their position in different hallmarks of cancer, in altering the genetics of a normal cell in a tumor microenvironment, and their role in therapy resistance, as well as the importance of EVs as diagnostic tools.
Collapse
Affiliation(s)
- Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shouvik Mukherjee
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Shaheen Ali
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Urvashi Bhardwaj
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Ranjay Kumar Choudhary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Santhanaraj Balakrishnan
- Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Asma Naseem
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 81451, Saudi Arabia
| |
Collapse
|
29
|
Famta P, Shah S, Khatri DK, Guru SK, Singh SB, Srivastava S. Enigmatic role of exosomes in breast cancer progression and therapy. Life Sci 2022; 289:120210. [PMID: 34875250 DOI: 10.1016/j.lfs.2021.120210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is reported to be the leading cause of mortality in females worldwide. At the beginning of the year 2021, about 7.8 million women were diagnosed with BC in past 5 years. High prevalence and poor neoadjuvant chemotherapeutic efficacy has motivated the scientists around the globe to investigate alternative management strategies. In recent years, there has been an exponential rise in the scientific studies reporting the role of tumor derived exosomes (TDEs) in the BC pathophysiology and management. TDEs play an important role in the intercellular communication and transportation of biomolecules. This manuscript reviews the role of exosomes in the BC pathophysiology, diagnosis, and therapy. Role of TDEs in the mechanistic pathways of BC metastasis, immunosuppression, migration, dormancy and chemo-resistance is extensively reviewed. We have also highlighted the epigenetic modulations orchestrated by exosomal miRNAs and long noncoding RNAs (lnc RNAs) in the BC environment. Liquid biopsies analyzing blood circulating exosomes for early and accurate detection of the BC have been discussed. Characterization of exosomes, strategies to use them in BC chemotherapy, BC immunotherapy and potential challenges that will present themselves in translating exosomes based technologies to market are discussed.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
30
|
Extracellular Vesicles in Musculoskeletal Regeneration: Modulating the Therapy of the Future. Cells 2021; 11:cells11010043. [PMID: 35011605 PMCID: PMC8750529 DOI: 10.3390/cells11010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue regeneration is a hot topic in health sciences, particularly because effective therapies promoting the healing of several cell types are lacking, specifically those of the musculoskeletal system. Mesenchymal Stem/Stromal Cells (MSCs) have been identified as crucial players in bone homeostasis, and are considered a promising therapy for diseases such as osteoarthritis (OA) and Rheumatoid Arthritis (RA). However, some known drawbacks limit their use, particularly ethical issues and immunological rejections. Thus, MSCs byproducts, namely Extracellular Vesicles (EVs), are emerging as potential solutions to overcome some of the issues of the original cells. EVs can be modulated by either cellular preconditioning or vesicle engineering, and thus represent a plastic tool to be implemented in regenerative medicine. Further, the use of biomaterials is important to improve EV delivery and indirectly to modulate their content and secretion. This review aims to connect the dots among MSCs, EVs, and biomaterials, in the context of musculoskeletal diseases.
Collapse
|
31
|
Montezuma D, Teixeira-Marques A, Jerónimo C, Henrique R. Epigenetic extracellular vesicle-based biomarkers for urological malignancies: is the hope worth the hype? Epigenomics 2021; 13:1514-1521. [PMID: 34617453 DOI: 10.2217/epi-2021-0333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Diana Montezuma
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Doctoral Programme in Medical Sciences, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Ana Teixeira-Marques
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Master in Medicine & Molecular Oncology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, 4200-319, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology & Molecular Immunology, ICBAS, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology & Molecular Immunology, ICBAS, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| |
Collapse
|
32
|
Peng Q, Wang J. Non-coding RNAs in melanoma: Biological functions and potential clinical applications. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:219-231. [PMID: 34514101 PMCID: PMC8424110 DOI: 10.1016/j.omto.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant melanoma (MM) is a malignant tumor that originates from melanocytes and has a high mortality rate. Therefore, early diagnosis and treatment are very important for survival. So far, the exact molecular mechanism leading to the occurrence of melanoma, especially the molecular metastatic mechanism, remains largely unknown. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs), have been investigated and found to play vital roles in regulating tumor occurrence and development, including melanoma. In this review, we summarize the progress of recent research on the effects of ncRNAs on melanoma and attempt to elucidate the role of ncRNAs as molecular markers or potential targets that will provide promising application perspectives on melanoma.
Collapse
Affiliation(s)
- Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi 046000 China
| |
Collapse
|
33
|
Bonde A, Eskesen TG, Steinmetz J, Schoof EM, Blicher LHD, Rasmussen LS, Sillesen M. Hemorrhage and saline resuscitation are associated with epigenetic and proteomic reprogramming in the rat lung. Injury 2021; 52:2095-2103. [PMID: 33814129 DOI: 10.1016/j.injury.2021.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/15/2021] [Accepted: 03/20/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Epigenetic changes have been described in trauma patients in the form of histone acetylation events, but whether DNA-methylation occurs remains unknown. We hypothesized that the combination of hemorrhage and saline resuscitation would alter DNA-methylation and associated proteomic profiles in the rat lung. METHODS Ten rats were subjected to a pressure-controlled hemorrhage and resuscitation model consisting of hemorrhage to a mean arterial pressure (MAP) of 35mmHg for 90 minutes, followed by saline resuscitation to a MAP >70mmHg for 90 minutes (n=5) or sham (only anesthesia and cannulation). Lungs were harvested and subjected to reduced genome wide DNA-methylation analysis through bisulphite sequencing as well as proteomics analysis. Data was analyzed for differentially methylated regions and associated alterations in proteomic networks through a weighted correlation network analysis (WCNA). Pathway analysis was used to establish biological relevance of findings. RESULTS Hemorrhage and saline resuscitation were associated with differential methylation of 353 sites across the genome compared to the sham group. Of these, 30 were localized to gene promoter regions, 31 to exon regions and 87 to intron regions. Network analysis identified an association between hemorrhage/resuscitation and DNA-methylation events located to genes involved in areas of endothelial and immune response signaling. The associated proteomic response was characterized by activations of mRNA processing as well as endothelial Nitric Oxide Synthase (eNOS) metabolism. CONCLUSION We demonstrated an association between DNA-methylation and hemorrhage/saline resuscitation. These results suggest a potential role of DNA-methylation in the host response to injury.
Collapse
Affiliation(s)
- Alexander Bonde
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Denmark; Center for Surgical Translational and Artificial Intelligence Research (CSTAR), Rigshospitalet, University of Copenhagen, Denmark
| | - Trine G Eskesen
- Department of Anesthesia, Center of Head and Orthopedics, Rigshospitalet, University of Copenhagen, Denmark
| | - Jacob Steinmetz
- Department of Anesthesia, Center of Head and Orthopedics, Rigshospitalet, University of Copenhagen, Denmark
| | - Erwin M Schoof
- Proteomics Core, Technical University of Denmark, Lyngby, Denmark
| | - Lene H D Blicher
- Proteomics Core, Technical University of Denmark, Lyngby, Denmark
| | - Lars S Rasmussen
- Department of Anesthesia, Center of Head and Orthopedics, Rigshospitalet, University of Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Martin Sillesen
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Denmark; Center for Surgical Translational and Artificial Intelligence Research (CSTAR), Rigshospitalet, University of Copenhagen, Denmark.; Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
34
|
Zhao LJ, Li YY, Zhang YT, Fan QQ, Ren HM, Zhang C, Mardinoglu A, Chen WC, Pang JR, Shen DD, Wang JW, Zhao LF, Zhang JY, Wang ZY, Zheng YC, Liu HM. Lysine demethylase LSD1 delivered via small extracellular vesicles promotes gastric cancer cell stemness. EMBO Rep 2021; 22:e50922. [PMID: 34060205 DOI: 10.15252/embr.202050922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Several studies have examined the functions of nucleic acids in small extracellular vesicles (sEVs). However, much less is known about the protein cargos of sEVs and their functions in recipient cells. This study demonstrates the presence of lysine-specific demethylase 1 (LSD1), which is the first identified histone demethylase, in the culture medium of gastric cancer cells. We show that sEVs derived from gastric cancer cells and the plasma of patients with gastric cancer harbor LSD1. The shuttling of LSD1-containing sEVs from donor cells to recipient gastric cancer cells promotes cancer cell stemness by positively regulating the expression of Nanog, OCT4, SOX2, and CD44. Additionally, sEV-delivered LSD1 suppresses oxaliplatin response of recipient cells in vitro and in vivo, whereas LSD1-depleted sEVs do not. Taken together, we demonstrate that LSD1-loaded sEVs can promote stemness and chemoresistance to oxaliplatin. These findings suggest that the LSD1 content of sEV could serve as a biomarker to predict oxaliplatin response in gastric cancer patients.
Collapse
Affiliation(s)
- Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ying-Ying Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yu-Tong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Qi-Qi Fan
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hong-Mei Ren
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.,Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - Wen-Chao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Ru Pang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Dan-Dan Shen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jun-Wei Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Long-Fei Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jian-Ying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen-Ya Wang
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Bryzgunova O, Konoshenko M, Zaporozhchenko I, Yakovlev A, Laktionov P. Isolation of Cell-Free miRNA from Biological Fluids: Influencing Factors and Methods. Diagnostics (Basel) 2021; 11:865. [PMID: 34064927 PMCID: PMC8151063 DOI: 10.3390/diagnostics11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
A vast wealth of recent research has seen attempts of using microRNA (miRNA) found in biological fluids in clinical research and medicine. One of the reasons behind this trend is the apparent their high stability of cell-free miRNA conferred by small size and packaging in supramolecular complexes. However, researchers in both basic and clinical settings often face the problem of selecting adequate methods to extract appropriate quality miRNA preparations for use in specific downstream analysis pipelines. This review outlines the variety of different methods of miRNA isolation from biofluids and examines the key determinants of their efficiency, including, but not limited to, the structural properties of miRNA and factors defining their stability in the extracellular environment.
Collapse
Affiliation(s)
- Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Zaporozhchenko
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Yakovlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|
36
|
Teotia AK, Qayoom I, Singh P, Mishra A, Jaiman D, Seppälä J, Lidgren L, Kumar A. Exosome-Functionalized Ceramic Bone Substitute Promotes Critical-Sized Bone Defect Repair in Rats. ACS APPLIED BIO MATERIALS 2021; 4:3716-3726. [DOI: 10.1021/acsabm.1c00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Arun K. Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 201806, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 201806, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 201806, India
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 201806, India
| | - Ankita Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 201806, India
| | - Deepika Jaiman
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 201806, India
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Lars Lidgren
- Department of Orthopedics, Clinical Sciences Lund, Lund University, Lund 221 85, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 201806, India
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 201806, India
- Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 201806, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
37
|
Isolation of Extracellular Vesicles from Biological Fluids via the Aggregation-Precipitation Approach for Downstream miRNAs Detection. Diagnostics (Basel) 2021; 11:diagnostics11030384. [PMID: 33668297 PMCID: PMC7996260 DOI: 10.3390/diagnostics11030384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) have high potential as sources of biomarkers for non-invasive diagnostics. Thus, a simple and productive method of EV isolation is demanded for certain scientific and medical applications of EVs. Here we aim to develop a simple and effective method of EV isolation from different biofluids, suitable for both scientific, and clinical analyses of miRNAs transported by EVs. The proposed aggregation-precipitation method is based on the aggregation of EVs using dextran blue and the subsequent precipitation of EVs using 1.5% polyethylene glycol solutions. The developed method allows the effective isolation of EVs from plasma and urine. As shown using TEM, dynamic light scattering, and miRNA analyses, this method is not inferior to ultracentrifugation-based EV isolation in terms of its efficacy, lack of inhibitors for polymerase reactions and applicable for both healthy donors and cancer patients. This method is fast, simple, does not need complicated equipment, can be adapted for different biofluids, and has a low cost. The aggregation-precipitation method of EV isolation accessible and suitable for both research and clinical laboratories. This method has the potential to increase the diagnostic and prognostic utilization of EVs and miRNA-based diagnostics of urogenital pathologies.
Collapse
|
38
|
Lv E, Sheng J, Yu C, Rao D, Huang W. LncRNA influence sequential steps of hepatocellular carcinoma metastasis. Biomed Pharmacother 2021; 136:111224. [PMID: 33450489 DOI: 10.1016/j.biopha.2021.111224] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/20/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
As a class of new and crucial molecules involved in the regulation of biological function, long noncoding RNA (lncRNA) have obtained widespread attention in recent days. While it was thought that lncRNA would be redundant in the past, it is proved that lncRNA identify a class of molecular that regulate the homeostasis including hepatocellular carcinoma in the present. All kinds of lncRNA have been implicated in a various of diseases, particularly in tumorigenesis and metastasis. But the mechanisms how they act is still not entirely clear. Metastasis is a major factor affecting long-term survival in hepatocellular carcinoma (HCC) patients. Recently, growing numbers of experiments demonstrate that there is close connection between lncRNA and HCC metastasis. Here, we will briefly introduce a series of steps (primary tumor growth, angiogenesis, epithelial-to-mesenchymal transition, invasion, intravasation, survival in circulatory system, extravasation, dormancy and subsequent secondary tumor growth) of tumor metastasis, its classical but promising theories, the role of lncRNA in metastasis and the possible mechanisms involved. LncRNA, as potentially new and important tumor diagnostic and therapeutic molecules, has attracted much attention in recent years.
Collapse
Affiliation(s)
- Enjun Lv
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Jiaqi Sheng
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Chengpeng Yu
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Dean Rao
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
39
|
Yee NS, Zhang S, He HZ, Zheng SY. Extracellular Vesicles as Potential Biomarkers for Early Detection and Diagnosis of Pancreatic Cancer. Biomedicines 2020; 8:biomedicines8120581. [PMID: 33297544 PMCID: PMC7762339 DOI: 10.3390/biomedicines8120581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic carcinoma (PC) is highly metastatic, and it tends to be detected at advanced stages. Identifying and developing biomarkers for early detection of PC is crucial for a potentially curative treatment. Extracellular vesicles (EVs) are bilayer lipid membrane-structured nanovesicles found in various human bodily fluids, and they play important roles in tumor biogenesis and metastasis. Cancer-derived EVs are enriched with DNA, RNA, protein, and lipid, and they have emerged as attractive diagnostic biomarkers for early detection of PC. In this article, we provided an overview of the cell biology of EVs and their isolation and analysis, and their roles in cancer pathogenesis and progression. Multiplatform analyses of plasma-based exosomes for genomic DNA, micro RNA, mRNA, circular RNA, and protein for diagnosis of PC were critically reviewed. Numerous lines of evidence demonstrate that liquid biopsy with analysis of EV-based biomarkers has variable performance for diagnosis of PC. Future investigation is indicated to optimize the methodology for isolating and analyzing EVs and to identify the combination of EV-based biomarkers and other clinical datasets, with the goal of improving the predictive value, sensitivity, and specificity of screening tests for early detection and diagnosis of PC.
Collapse
Affiliation(s)
- Nelson S. Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Next-Generation Therapies Program, Penn State Cancer Institute, Hershey, PA 17033, USA
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.S.Y.); (H.-Z.H.); (S.-Y.Z.); Tel.: +1-717-531-8678 (N.S.Y.); +1-949-878-2679 (H.-Z.H.); +1-412-268-3684 (S.-Y.Z.)
| | - Sheng Zhang
- Micro & Nano Integrated Biosystem Laboratory, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Hong-Zhang He
- Micro & Nano Integrated Biosystem Laboratory, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
- Captis Diagnostics, Inc., Pittsburgh, PA 15213, USA
- Correspondence: (N.S.Y.); (H.-Z.H.); (S.-Y.Z.); Tel.: +1-717-531-8678 (N.S.Y.); +1-949-878-2679 (H.-Z.H.); +1-412-268-3684 (S.-Y.Z.)
| | - Si-Yang Zheng
- Micro & Nano Integrated Biosystem Laboratory, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
- Correspondence: (N.S.Y.); (H.-Z.H.); (S.-Y.Z.); Tel.: +1-717-531-8678 (N.S.Y.); +1-949-878-2679 (H.-Z.H.); +1-412-268-3684 (S.-Y.Z.)
| |
Collapse
|
40
|
Abeysinghe P, Turner N, Morean Garcia I, Mosaad E, Peiris HN, Mitchell MD. The Role of Exosomal Epigenetic Modifiers in Cell Communication and Fertility of Dairy Cows. Int J Mol Sci 2020; 21:ijms21239106. [PMID: 33266010 PMCID: PMC7731370 DOI: 10.3390/ijms21239106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal uterine function affects conception rate and embryo development, thereby leading to poor fertility and reproduction failure. Exosomes are a nanosized subclass of extracellular vesicles (EV) that have important functions as intercellular communicators. They contain and carry transferable bioactive substances including micro RNA (miRNA) for target cells. Elements of the cargo can provide epigenetic modifications of the recipient cells and may have crucial roles in mechanisms of reproduction. The dairy industry accounts for a substantial portion of the economy of many agricultural countries. Exosomes can enhance the expression of inflammatory mediators in the endometrium, which contribute to various inflammatory diseases in transition dairy cows. This results in reduced fertility which leads to reduced milk production and increased cow maintenance costs. Thus, gaining a clear knowledge of exosomal epigenetic modifiers is critical to improving the breeding success and profitability of dairy farms. This review provides a brief overview of how exosomal miRNA contributes to inflammatory diseases and hence to poor fertility, particularly in dairy cows.
Collapse
|
41
|
Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken) 2020; 5:e1291. [PMID: 33052041 PMCID: PMC9780431 DOI: 10.1002/cnr2.1291] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The acquisition of resistance to chemotherapy is a major hurdle in the successful application of cancer therapy. Several anticancer approaches, including chemotherapies, radiotherapy, surgery and targeted therapies are being employed for the treatment of cancer. However, cancer cells reprogram themselves in multiple ways to evade the effect of these therapies, and over a period of time, the drug becomes inactive due to the development of multi-drug resistance (MDR). MDR is a complex phenomenon where malignant cells become insensitive to anticancer drugs and attain the ability to survive even after several exposures of anticancer drugs. In this review, we have discussed the molecular and cellular paradigms of multidrug resistance in cancer. RECENT FINDINGS An Extensive research in cancer biology revealed that drug resistance in cancer is the result of perpetuated intracellular and extracellular mechanisms such as drug efflux, drug inactivation, drug target alteration, oncogenic mutations, altered DNA damage repair mechanism, inhibition of programmed cell death signaling, metabolic reprogramming, epithelial mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic changes, redox imbalance, or any combination of these mechanisms. An inevitable cross-link between inflammation and drug resistance has been discussed. This review provided insight molecular mechanism to understand the vulnerabilities of cancer cells to develop drug resistance. CONCLUSION MDR is an outcome of interplays between multiple intricate pathways responsible for the inactivation of drug and development of resistance. MDR is a major obstacle in regimens of successful application of anti-cancer therapy. An improved understanding of the molecular mechanism of multi drug resistance and cellular reprogramming can provide a promising opportunity to combat drug resistance in cancer and intensify anti-cancer therapy for the upcoming future.
Collapse
Affiliation(s)
- Foram U. Vaidya
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Vinita Mishra
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | | | | | - Ajay Kumar
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| |
Collapse
|
42
|
Arasu UT, Deen AJ, Pasonen-Seppänen S, Heikkinen S, Lalowski M, Kärnä R, Härkönen K, Mäkinen P, Lázaro-Ibáñez E, Siljander PRM, Oikari S, Levonen AL, Rilla K. HAS3-induced extracellular vesicles from melanoma cells stimulate IHH mediated c-Myc upregulation via the hedgehog signaling pathway in target cells. Cell Mol Life Sci 2020; 77:4093-4115. [PMID: 31820036 PMCID: PMC7532973 DOI: 10.1007/s00018-019-03399-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.
Collapse
Affiliation(s)
- Uma Thanigai Arasu
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maciej Lalowski
- Faculty of Medicine, Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riikka Kärnä
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Härkönen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
- EV Group and EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
43
|
The Potential Diagnostic Value of Exosomal Long Noncoding RNAs in Solid Tumors: A Meta-Analysis and Systematic Review. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6786875. [PMID: 32879887 PMCID: PMC7448226 DOI: 10.1155/2020/6786875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/27/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Background Exosomes are defined as small membranous vesicles. After RNA content was discovered in exosomes, they emerged as a novel approach for the treatment and diagnosis of cancer. Long noncoding RNAs (lncRNA), a kind of specific RNA transcript, have been reported to function as tumor growth, metastasis, invasion, and prognosis by regulating the tumor microenvironment in exosomes. This study aims at exploring the potential diagnostic of exosomal lncRNA in solid tumors. Methods A meta-analysis conducted from January 2000 to October 2019 identified publications in the English language. We searched all relevant English literature from the Web of Science, EMBASE, and PubMed databases through October 1, 2019. The articles were strictly screened by our criteria and critiqued using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results There were 28 studies with 19 articles (4017 patients) identified, including studies on gastric cancer, laryngeal squamous cell carcinoma, colorectal cancer, cholangiocarcinoma, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, nonsmall cell lung cancer, and prostate cancer. A meta-analysis showed that the combined value of sensitivity in 29 studies was 0.74 (95% confidence interval [CI], 0.7-0.78), and the combined value of specificity in the studies was 0.81 (95% CI, 0.78-0.83). This suggests the high diagnostic efficacy of liquid exosomes in cancer patients. It is statistically insignificant in terms of sex, ethnicity, and year. The diagnostic power of urinary system tumors was found to be higher than that of digestive system tumors by several subgroup analyses. Conclusions We performed a meta-analysis and literature review of 28 studies that included 4017 patients with 10 malignant cancer types. Mechanistically, our study demonstrated that lncRNAs in exosomes could be a promising bioindicator for the diagnosis and prognosis of solid tumors. INPLASY Registration Number: INPLASY202060083.
Collapse
|
44
|
Jurj A, Pasca S, Teodorescu P, Tomuleasa C, Berindan-Neagoe I. Basic knowledge on BCR-ABL1-positive extracellular vesicles. Biomark Med 2020; 14:451-458. [PMID: 32270699 DOI: 10.2217/bmm-2019-0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematological malignancy characterized by the excessive proliferation of myeloid progenitors. In the case of CML, these extracellular vesicles (EVs) were shown to communicate with hematopoietic stem cells, mesenchymal stem cells, myeloid derived suppressor cells and endothelial cells determining a beneficial microenvironment for the CML clone. Moreover, as these EVs are marked through BCR-ABL1, they were shown to be useful in clinical research in determining the grade of molecular remission with further studies being needed to determine if they are better or worse at predicting CML relapse. More than this, we consider BCR-ABL1-positive EVs to represent only a stepping-stone for other malignancies that also present fusion genes that are loaded in EVs.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine & Translational Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Republicii Street 34-36, 400015, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine & Translational Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Republicii Street 34-36, 400015, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania
| |
Collapse
|
45
|
Dissanayake K, Nõmm M, Lättekivi F, Ressaissi Y, Godakumara K, Lavrits A, Midekessa G, Viil J, Bæk R, Jørgensen MM, Bhattacharjee S, Andronowska A, Salumets A, Jaakma Ü, Fazeli A. Individually cultured bovine embryos produce extracellular vesicles that have the potential to be used as non-invasive embryo quality markers. Theriogenology 2020; 149:104-116. [PMID: 32259747 DOI: 10.1016/j.theriogenology.2020.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound biological nanoparticles (NPs) and have gained wide attention as potential biomarkers. We aimed to isolate and characterize EVs from media conditioned by individually cultured preimplantation bovine embryos and to assess their relationship with embryo quality. Presumptive zygotes were cultured individually in 60 μl droplets of culture media, and 50 μl of media were collected from the droplets either on day 2, 5 or 8 post-fertilization. After sampling, the embryo cultures were continued in the remaining media until day 8, and the embryo development was evaluated at day 2 (cleavage), day 5 (morula stage) and day 8 (blastocyst stage). EVs were isolated using qEVsingle® columns and characterized. Based on EV Array, EVs isolated from embryo conditioned media were strongly positive for EV-markers CD9 and CD81 and weakly positive for CD63 and Alix among others. They had a cup-like shape typical to EVs as analyzed by transmission electron microscopy and spherical shape in scanning electron microscopy, and hence regarded as EVs. However, the NPs isolated from control media were negative for EV markers. Based on nanoparticle tracking analysis, at day 2, the mean concentration of EVs isolated from media conditioned by embryos that degenerated after cleaving (8.25 × 108/ml) was higher compared to that of embryos that prospectively developed to blastocysts (5.86 × 108/ml, p < 0.05). Moreover, at day 8, the concentration of EVs isolated from media conditioned by degenerating embryos (7.17 × 108/ml) was higher compared to that of blastocysts (5.68 × 108/ml, p < 0.05). Furthermore, at day 8, the mean diameter of EVs isolated from media conditioned by degenerating embryos (153.7 nm) was smaller than EVs from media conditioned by blastocysts (163.5 nm, p < 0.05). In conclusion, individually cultured preimplantation bovine embryos secrete EVs in the culture media and their concentration and size are influenced by embryo quality and may indicate their prospective development potential.
Collapse
Affiliation(s)
- Keerthie Dissanayake
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Department of Anatomy, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - Monika Nõmm
- Chair of Animal Breeding and Biotechnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Freddy Lättekivi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yosra Ressaissi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Faculty of Veterinary Medicine, University of Teramo, Italy
| | - Kasun Godakumara
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Arina Lavrits
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Getnet Midekessa
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Janeli Viil
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Denmark
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Poland
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia; Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ülle Jaakma
- Chair of Animal Breeding and Biotechnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Alireza Fazeli
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Department of Oncology and Metabolism, University of Sheffield, United Kingdom.
| |
Collapse
|
46
|
Lorusso C, De Summa S, Pinto R, Danza K, Tommasi S. miRNAs as Key Players in the Management of Cutaneous Melanoma. Cells 2020; 9:E415. [PMID: 32054078 PMCID: PMC7072468 DOI: 10.3390/cells9020415] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
The number of treatment options for melanoma patients has grown in the past few years, leading to considerable improvements in both overall and progression-free survival. Targeted therapies and immune checkpoint inhibitors have opened a new era in the management of melanoma patients. Despite the clinical advances, further research efforts are needed to identify other "druggable" targets and new biomarkers to improve the stratification of melanoma patients who could really benefit from targeted and immunotherapies. To this end, many studies have focused on the role of microRNAs (miRNAs) that are small non-coding RNAs (18-25 nucleotides in length), which post-transcriptionally regulate the expression of their targets. In cancer, they can behave either as oncogenes or oncosuppressive genes and play a central role in many intracellular pathways involved in proliferation and invasion. Given their modulating activity on the transcriptional landscape, their biological role is under investigation to study resistance mechanisms. They are able to mediate the communication between tumor cells and their microenvironment and regulate tumor immunity through direct regulation of the genes involved in immune activation or suppression. To date, a very promising miRNA-based strategy is to use them as prognosis and diagnosis biomarkers both as cell-free miRNAs and extracellular-vesicle miRNAs. However, miRNAs have a complex role since they target different genes in different cellular conditions. Thus, the ultimate aim of studies has been to recapitulate their role in melanoma in biological networks that account for miRNA/gene expression and mutational state. In this review, we will provide an overview of current scientific knowledge regarding the oncogenic or oncosuppressive role of miRNAs in melanoma and their use as biomarkers, with respect to approved therapies for melanoma treatment.
Collapse
|
47
|
Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, S N, Rao DN, Malla RR. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res 2020; 153:104683. [PMID: 32050092 DOI: 10.1016/j.phrs.2020.104683] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is most aggressive subtype of breast cancers with high probability of metastasis as well as lack of specific targets and targeted therapeutics. TNBC is characterized with unique tumor microenvironment (TME), which differs from other subtypes. TME is associated with induction of proliferation, angiogenesis, inhibition of apoptosis and immune system suppression, and drug resistance. Exosomes are promising nanovesicles, which orchestrate the TME by communicating with different cells within TME. The components of TME including transformed ECM, soluble factors, immune suppressive cells, epigenetic modifications and re-programmed fibroblasts together hamper antitumor response and helps progression and metastasis of TNBCs. Therefore, TME could be a therapeutic target of TNBC. The current review presents latest updates on the role of exosomes in modulation of TME, approaches for targeting TME and combination of immune checkpoint inhibitors and target chemotherapeutics. Finally, we also discussed various phytochemicals that alter genetic, transcriptomic and proteomic profiles of TME along with current challenges and future implications. Thus, as TME is associated with the hallmarks of TNBC, the understanding of the impact of different components can improve the clinical benefits of TNBC patients.
Collapse
Affiliation(s)
- K G K Deepak
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Rahul Vempati
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Venkata Ramesh Dasari
- Department of Molecular and Functional Genomics, Geisinger Clinic, 100 N. Academy Ave, Danville, PA, 17822, USA
| | - Nagini S
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, India
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| |
Collapse
|
48
|
The Epigenetics of the Endocannabinoid System. Int J Mol Sci 2020; 21:ijms21031113. [PMID: 32046164 PMCID: PMC7037698 DOI: 10.3390/ijms21031113] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ES) is a cell-signalling system widely distributed in biological tissues that includes endogenous ligands, receptors, and biosynthetic and hydrolysing machineries. The impairment of the ES has been associated to several pathological conditions like behavioural, neurological, or metabolic disorders and infertility, suggesting that the modulation of this system may be critical for the maintenance of health status and disease treatment. Lifestyle and environmental factors can exert long-term effects on gene expression without any change in the nucleotide sequence of DNA, affecting health maintenance and influencing both disease load and resistance. This potentially reversible "epigenetic" modulation of gene expression occurs through the chemical modification of DNA and histone protein tails or the specific production of regulatory non-coding RNA (ncRNA). Recent findings demonstrate the epigenetic modulation of the ES in biological tissues; in the same way, endocannabinoids, phytocannabinoids, and cannabinoid receptor agonists and antagonists induce widespread or gene-specific epigenetic changes with the possibility of trans-generational epigenetic inheritance in the offspring explained by the transmission of deregulated epigenetic marks in the gametes. Therefore, this review provides an update on the epigenetics of the ES, with particular attention on the emerging role in reproduction and fertility.
Collapse
|
49
|
Chen L, Yang F, Li T, Xiao P, Han ZJ, Shu LF, Yuan ZZ, Liu WJ, Long YQ. Extracellular Histone Promotes Prostate Cancer Migration and Epithelial-Mesenchymal Transition through NF-κB-Mediated Inflammatory Responses. Chemotherapy 2020; 64:177-186. [PMID: 31935733 DOI: 10.1159/000504247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/20/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aims to explore the relationship betweenextracellular histone and prostate cancer and its mechanism. METHODS Migration of prostate cancer cells was detected by Transwell. Inflammatory factor expression was investigated by ELISA. Epithelial-mesenchymal transition and expression of NF-κB pathway-related proteins were investigated using Western blotting. RESULTS Under the induction of extracellular histones, the migration rate of prostate cancer cells and the levels of IL-1β, TNF-α, and IL-6 were notably enhanced. Then, expression of E-cadherin was significantly down-regulated, while levels of N-cadherin, vimentin, β-catenin, Snail, p-p65 and p-IκBα were significantly up-regulated, which was reversed by PDTC (pyrrolidine dithiocarbamate). CONCLUSION Extracellular histone significantly promotes the progression of prostate cancer cells via NF-κB pathway-mediated inflammatory responses, which may serve as a novel target for treating prostate cancer.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Fan Yang
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Tao Li
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Pin Xiao
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Zhi-Jun Han
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Lin-Fei Shu
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Zhi-Zhou Yuan
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Wen-Jin Liu
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Yong-Qi Long
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China,
| |
Collapse
|
50
|
Hu X, Yi Y, Zhu Y, Wang Z, Wu S, Zhang J, Wang J, Nie J. [Effect of adipose-derived stem cell derived exosomes on angiogenesis after skin flap transplantation in rats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:1560-1565. [PMID: 31823559 DOI: 10.7507/1002-1892.201904023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective To investigate the effect of adipose-derived stem cell derived exosomes (ADSC-Exos) on angiogenesis after skin flap transplantation in rats. Methods ADSCs were isolated and cultured by enzymatic digestion from voluntary donated adipose tissue of patients undergoing liposuction. The 3rd generation cells were observed under microscopy and identified by flow cytometry and oil red O staining at 14 days after induction of adipogenesis. After cells were identified as ADSCs, ADSC-Exos was extracted by density gradient centrifugation. And the morphology was observed by transmission electron microscopy, the surface marker proteins (CD63, TSG101) were detected by Western blot, and particle size distribution was measured by nanoparticle size tracking analyzer. Twenty male Sprague Dawley rats, weighing 250-300 g, were randomly divided into ADSC-Exos group and PBS group with 10 rats in each group. ADSC-Exos (ADSC-Exos group) and PBS (PBS group) were injected into the proximal, middle, and distal regions of the dorsal free flaps with an area of 9 cm×3 cm along the long axis in the two groups. The survival rate of the flap was measured on the 7th day, and then the flap tissue was harvested. The tissue morphology was observed by HE staining, and mean blood vessel density (MVD) was measured by CD31 immunohistochemical staining. Results ADSCs were identified by microscopy, flow cytometry, and adipogenic induction culture. ADSC-Exos was a round or elliptical membrane vesicle with clear edge and uniform size. It has high expression of CD63 and TSG101, and its size distribution was 30-200 nm, which was in accordance with the size range of Exos. The distal necrosis of the flaps in the ADSC-Exos group was milder than that in the PBS group. On the 7th day, the survival rate of the flaps in the ADSC-Exos group was 64.2%±11.5%, which was significantly higher than that in the PBS group (31.0%±6.6%; t=7.945, P=0.000); the skin appendages in the middle region of the flap in the ADSC-Exos group were more complete, the edema in the proximal region was lighter and the vasodilation was more extensive. MVD of the ADSC-Exos group was (103.3±27.0) /field, which was significantly higher than that of the PBS group [(45.3±16.2)/field; t=3.190, P=0.011]. Conclusion ADSC-Exos can improve the blood supply of skin flaps by promoting the formation of neovascularization after skin flap transplantation, thereby improve the survival rate of skin flaps in rats.
Collapse
Affiliation(s)
- Xuan Hu
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Yangyan Yi
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006,
| | - Yuanzheng Zhu
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Zhaohui Wang
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Shu Wu
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Jing Zhang
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Jiangwen Wang
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Jiaying Nie
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| |
Collapse
|