1
|
Castro J, Clauss G, Fontes JV, Oliveira LS, Abbehausen C. Oxidative Stress Mechanism by Gold Compounds: A Close Look at Total ROS Increase and the Inhibition of Antioxidant Enzymes. Chem Asian J 2025; 20:e202400792. [PMID: 39441590 DOI: 10.1002/asia.202400792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
The antitumor activity of various gold compounds is a promising field of investigation, attracting researchers seeking potential clinical candidates. To advance this research, they explore the complex mechanisms of action of these compounds. Since the discovery of the strong inhibition of thioredoxin reductase by auranofin, the primary mechanism explored has been the inhibition of this enzyme. This inhibition disrupts the redox balance in cells, promoting oxidative stress and triggering cell death. In this review, we analyzed studies from the past decade that measured cellular ROS increase and examined the coordination structures of gold compounds. We also correlate ROS increase with the inhibition of redox-regulating enzymes, thioredoxin reductase, and glutathione reductase, to elucidate the relationship between these cellular effects and chemical structures. Our data compilation reveals that different structures exhibit varying efficacy: some significantly increase ROS production and inhibit thioredoxin reductase or glutathione reductase, while others elevate ROS levels without affecting these target enzymes, suggesting alternative mechanisms of action. This review consolidates critical evidence, enhancing our understanding of the mechanisms by which these gold complexes act and providing valuable insights for developing new therapeutic strategies against tumor cells.
Collapse
Affiliation(s)
- Jennyfer Castro
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo Clauss
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Chen CY, Ye YZ, Huang YH, Tzeng YM, Gurbanov R, Wang WL, Chang WW. Ovatodiolide inhibits endometrial cancer stemness via reactive oxygen species-mediated DNA damage and cell cycle arrest. Chem Biol Interact 2024; 403:111244. [PMID: 39276908 DOI: 10.1016/j.cbi.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Endometrial cancer (EC) is a common gynecological cancer worldwide, often associated with a poor prognosis after recurrence or metastasis. Ovatodiolide (OVA) is a macrocyclic diterpenoid derived from Anisomeles indica that shows anticancer effects in various malignancies. This study aimed to evaluate the cytotoxic effects of OVA on EC cell proliferation and cancer stem cell (CSC) activity and explore its underlying molecular mechanisms. OVA treatment dose-dependently reduced the viability and colony formation of three EC cell lines (AN3CA, HEC-1A, and EMC6). It induced G2/M phase cell cycle arrest, associated with decreased cell division cycle 25C (CDC25C) expression and reduced activation of cyclin-dependent kinases 1 (CDK1) and 2 (CDK2). OVA also increased reactive oxygen species (ROS) production and DNA damage, activating the DNA damage-sensitive cell cycle checkpoint kinases 1 (CHK1) and 2 (CHK2) and upregulating the DNA damage marker γ-H2A.X variant histone (H2AX). It also suppressed the activation of mechanistic target of rapamycin kinase (mTOR) and nuclear factor kappa B (NF-κB) and downregulated glutathione peroxidase 1 (GPX1), an antioxidant enzyme counteracting oxidative stress. Moreover, OVA reduced the self-renewal capacity of CSCs, reducing the expression of key stemness proteins Nanog homeobox (NANOG) and octamer-binding transcription factor 4 (OCT4). The ROS inhibitor N-acetylcysteine attenuated the anti-proliferative and anti-CSC effects of OVA. Our findings suggest that OVA acts via ROS generation, leading to oxidative stress and DNA damage, culminating in cell cycle arrest and the suppression of CSC activity in EC. Therefore, OVA is a promising therapeutic agent for EC, either as a standalone treatment or an adjunct to existing therapies.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Emergency Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, 435403, Taiwan; Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, 35664, Taiwan.
| | - Yu-Zhen Ye
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| | - Yu-Hao Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Sec. 2, University Rd., Taitung, 95092, Taiwan.
| | - Ranal Gurbanov
- School of Medicine, Gazi University, Emniyet Mah., Bandırma Cad., No:6/1, 06560, Yenimahalle, Ankara, Turkey.
| | - Wen-Ling Wang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| |
Collapse
|
3
|
Tagliari de Oliveira S, Binato R, Ellen Broto G, Tomie Takakura E, Navarro Gordan Ferreira Martins L, Abdelhay E, Panis C. Transcriptome of bone marrow-Derived stem cells reveals new inflammatory mediators related to increased survival in patients with multiple myeloma. Cytokine 2024; 179:156613. [PMID: 38643632 DOI: 10.1016/j.cyto.2024.156613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Although multiple myeloma (MM) is a neoplasm that leads affected individuals to death, little is known about why some patients survive much longer than others. In this context, we investigated the transcriptomic profile of bone marrow hematopoietic stem cells obtained from MM patients and compared the clinical outcomes of death and survival six months after bone marrow transplantation. The leukapheresis products of 39 patients with MM eligible for autologous transplantation were collected and analyzed. After extraction, the RNA was analyzed using the GeneChip Human Exon 1.0 Array method. The transcriptome profile was analyzed in silico, and the differentially expressed signaling pathways of interest were validated. The results showed a difference in the expression of inflammation-related genes, immune response processes, and the oxidative stress pathway. The in silico study also pointed out the involvement of the NFκB transcription factor in the possible modulation of these genes. We chose to validate molecules participating in these processes, including the cytokines TNF-α, IFN-γ, and TGF-β1; in addition, we measured the levels of oxidative stress mediators (pro-oxidant profile and the total antioxidant capacity). TNF-α levels were significantly reduced in patients who died and were over 50 years old at diagnosis, as well as in patients with plasmacytoma. Increased TNF-α was detected in patients with very high levels of β2-microglobulin. IFN-γ reduction was observed in patients with a complete response to treatment compared to those with a very good response. Patients with plasmacytoma who died also had an increased pro-oxidant profile. These data show the profile of inflammatory response markers that are altered in patients with MM who die quickly and serve as a basis for the development of future studies of markers to predict better survival in this disease.
Collapse
Affiliation(s)
- Stefania Tagliari de Oliveira
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil; Rede de Assistência a Saúde Metropolitana de Sarandi - Programa de Residência Médica em Clínica Médica - Sarandi - Paraná, Brazil
| | - Renata Binato
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, Brazil
| | - Geise Ellen Broto
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil
| | - Erika Tomie Takakura
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil
| | | | - Eliana Abdelhay
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, Brazil
| | - Carolina Panis
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil.
| |
Collapse
|
4
|
Hermansyah D, Paramita DA, Muhar AM, Amalina ND. Curcuma longa extract inhibits migration by reducing MMP-9 and Rac-1 expression in highly metastatic breast cancer cells. Res Pharm Sci 2024; 19:157-166. [PMID: 39035580 PMCID: PMC11257204 DOI: 10.4103/rps.rps_46_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Highly metastatic breast cancer is a population of cancer cells that has metastasized to other organs in the body leading to apoptosis resistance. It was reported that MDAMB-231 cells contain lower levels of reactive oxygen species associated with metastatic capability. Curcuma longa (CL) possesses cytotoxic effects in several cancer cells including metastatic breast cancer cells. This study aimed to investigate the effect of CL-inhibited cell migration in highly metastatic breast cancer MDAMB-231 cells. Experimental approach CL was extracted under maceration with methanol. The cytotoxic effect on single and combination treatment of CL was assessed through the MTT assay. Migration analysis was evaluated using scratch wound healing assay, MMP-9 expression by gelatine zymography, Rac-1, and MMP-9 gene expression using Real-Time Quantitative Reverse transcription polymerase chain reaction (qRT-PCR). The apoptosis induction was analyzed through Bax gene expression and Bcl-2 protein expression. Findings/Results We found that CL inhibits the growth of MDAMB-231 cells, induces Bax gene expression, and suppresses Bcl-2 expression in a dose-dependent manner. Moreover, cancer cell migration was suppressed by the presence of CL. qRT-PCR and gelatine zymography assay showed that CL downregulates Rac-1 and MMP-9 gene expression. Conclusion and implications CL could inhibit the growth and migration of highly metastatic breast cancer cells by reducing the Rac-1 gene expression and regulating apoptosis protein expression.
Collapse
Affiliation(s)
- Dedy Hermansyah
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Nur Dina Amalina
- Pharmacy Department, Faculty of Medicine, Universitas Negeri Semarang, Semarang, Indonesia
| |
Collapse
|
5
|
Sánchez-Castillo A, Heylen E, Hounjet J, Savelkouls KG, Lieuwes NG, Biemans R, Dubois LJ, Reynders K, Rouschop KM, Vaes RDW, De Keersmaecker K, Lambrecht M, Hendriks LEL, De Ruysscher DKM, Vooijs M, Kampen KR. Targeting serine/glycine metabolism improves radiotherapy response in non-small cell lung cancer. Br J Cancer 2024; 130:568-584. [PMID: 38160212 PMCID: PMC10876524 DOI: 10.1038/s41416-023-02553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Lung cancer is the most lethal cancer, and 85% of cases are classified as non-small cell lung cancer (NSCLC). Metabolic rewiring is a cancer hallmark that causes treatment resistance, and lacks insights into serine/glycine pathway adaptations upon radiotherapy. METHODS We analyzed radiotherapy responses using mass-spectrometry-based metabolomics in NSCLC patient's plasma and cell lines. Efficacy of serine/glycine conversion inhibitor sertraline with radiotherapy was investigated by proliferation, clonogenic and spheroid assays, and in vivo using a serine/glycine dependent NSCLC mouse model by assessment of tumor growth, metabolite and cytokine levels, and immune signatures. RESULTS Serine/glycine pathway metabolites were significantly consumed in response to radiotherapy in NSCLC patients and cell models. Combining sertraline with radiotherapy impaired NSCLC proliferation, clonogenicity and stem cell self-renewal capacity. In vivo, NSCLC tumor growth was reduced solely in the sertraline plus radiotherapy combination treatment group. Tumor weights linked to systemic serine/glycine pathway metabolite levels, and were inhibited in the combination therapy group. Interestingly, combination therapy reshaped the tumor microenvironment via cytokines associated with natural killer cells, supported by eradication of immune checkpoint galectin-1 and elevated granzyme B levels. CONCLUSION Our findings highlight that targeting serine/glycine metabolism using sertraline restricts cancer cell recovery from radiotherapy and provides tumor control through immunomodulation in NSCLC.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Elien Heylen
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven, and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Judith Hounjet
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim G Savelkouls
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Natasja G Lieuwes
- Department of Precision Medicine, The M-Lab, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Rianne Biemans
- Department of Precision Medicine, The M-Lab, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-Lab, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Kobe Reynders
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Oncology, Experimental Radiation Oncology, KU Leuven, and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Kasper M Rouschop
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rianne D W Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim De Keersmaecker
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven, and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Maarten Lambrecht
- Department of Radiation Oncology, University Hospital Leuven, Leuven, Belgium
| | - Lizza E L Hendriks
- Department of Pulmonology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Dirk K M De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven, and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Jenie RI, Amalina ND, Hermawan A, Suzery M, Putra A, Meiyanto E. Caesalpinia sappan reduces the stemness of breast cancer stem cells involving the elevation of intracellular reactive oxygen species. Res Pharm Sci 2023; 18:708-721. [PMID: 39005569 PMCID: PMC11246113 DOI: 10.4103/1735-5362.389959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/18/2023] [Accepted: 10/09/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Breast cancer stem cells (BCSCs) as a kind of tumor cells are able to regenerate themselves, leading to apoptosis resistance and cancer relapse. It was reported that BCSCs contain lower levels of reactive oxygen species (ROS) associated with stemness capability. Caesalpinia sappan has been proposed for its chemopreventive potency against several cancer cells. This study aimed to evaluate the effects of Caesalpinia sappan extract (CSE) on cytotoxicity, apoptosis induction, ROS generation, and stemness markers of MDA-MB-231 and its BCSCs. Experimental approach Caesalpinia sappan was extracted under maceration with methanol. Magnetic-activated cell sorting was used to isolate BCSCs based on CD44+ and CD24- cell surface expression. The MTT test was used to assess the cytotoxic effects of CSE on MDA-MB-231 and BCSCs. Moreover, flow cytometry was used to examine the cell cycle distribution, apoptosis, ROS level, and CD44/CD24 level. Using qRT-PCR, the gene expression of the stemness markers NANOG, SOX-2, OCT-4, and c-MYC was assessed. Findings/Results We found that MDA-MB-231 contains 80% of the BCSCs population, and CSE showed more potent cytotoxicity toward BCSCs than MDA-MB-231. CSE caused apoptosis in MDA-MB-231 and BCSCs cells by increasing the level of ROS. Furthermore, CSE significantly reduced the MDA-MB-231 stemness marker CD44+/CD24- and the mRNA levels of pluripotent markers of cells in BCSCs. Conclusion and implications CSE potentially reduces BCSCs stemness, which may be mediated by the elevation of the ROS levels and reduction of the expression levels of stemness transcription.
Collapse
Affiliation(s)
- Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Dina Amalina
- Stem Cell and Cancer Research Indonesia, Semarang, Indonesia
- Department of Pharmacy, Faculty of Medicine, Universitas Negeri Semarang, Semarang, Indonesia
| | - Adam Hermawan
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Meiny Suzery
- Chemistry Department, Faculty of Sciences and Mathematics, Universitas Diponegoro, Semarang, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research Indonesia, Semarang, Indonesia
- Faculty of Medicine, Sultan Agung Islamic University, Semarang, Indonesia
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Farahzadi R, Valipour B, Fathi E, Pirmoradi S, Molavi O, Montazersaheb S, Sanaat Z. Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells. Stem Cell Res Ther 2023; 14:342. [PMID: 38017510 PMCID: PMC10685711 DOI: 10.1186/s13287-023-03571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cell remodeling process in which epithelial cells undergo a reversible phenotype switch via the loss of adhesion capacity and acquisition of mesenchymal characteristics. In other words, EMT activation can increase invasiveness and metastatic properties, and prevent the sensitivity of tumor cells to chemotherapeutics, as mesenchymal cells have a higher resistance to chemotherapy and immunotherapy. EMT is orchestrated by a complex and multifactorial network, often linked to episodic, transient, or partial events. A variety of factors have been implicated in EMT development. Based on this concept, multiple metabolic pathways and master transcription factors, such as Snail, Twist, and ZEB, can drive the EMT. Emerging evidence suggests that oxidative stress plays a significant role in EMT induction. One emerging theory is that reducing mitochondrial-derived reactive oxygen species production may contribute to EMT development. This review describes how metabolic pathways and transcription factors are linked to EMT induction and addresses the involvement of signaling pathways.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Samaneh Pirmoradi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Yamashita N, Withers H, Morimoto Y, Bhattacharya A, Haratake N, Daimon T, Fushimi A, Nakashoji A, Thorner AR, Isenhart E, Rosario S, Long MD, Kufe D. MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells. iScience 2023; 26:108168. [PMID: 37915591 PMCID: PMC10616323 DOI: 10.1016/j.isci.2023.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolytic pathway genes with self-renewal and tumorigenicity. MUC1-C further integrates the glycolytic pathway with suppression of mitochondrial DNA (mtDNA) genes encoding components of mitochondrial Complexes I-V. The repression of mtDNA genes is explained by MUC1-C-mediated (i) downregulation of the mitochondrial transcription factor A (TFAM) required for mtDNA transcription and (ii) induction of the mitochondrial transcription termination factor 3 (mTERF3). In support of pathogenesis that suppresses mitochondrial ROS production, targeting MUC1-C increases (i) mtDNA gene transcription, (ii) superoxide levels, and (iii) loss of self-renewal capacity. These findings and scRNA-seq analysis of CSC subpopulations indicate that MUC1-C regulates self-renewal and redox balance by integrating activation of glycolysis with suppression of oxidative phosphorylation.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Henry Withers
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aaron R. Thorner
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Emily Isenhart
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer Rosario
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Durham J, Tessmann JW, Deng P, Hennig B, Zaytseva YY. The role of perfluorooctane sulfonic acid (PFOS) exposure in inflammation of intestinal tissues and intestinal carcinogenesis. FRONTIERS IN TOXICOLOGY 2023; 5:1244457. [PMID: 37662676 PMCID: PMC10469509 DOI: 10.3389/ftox.2023.1244457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
PFAS (per- and polyfluoroalkyl substances) are organofluorine substances that are used commercially in products like non-stick cookware, food packaging, personal care products, fire-fighting foam, etc. These chemicals have several different subtypes made of varying numbers of carbon and fluorine atoms. PFAS substances that have longer carbon chains, such as PFOS (perfluorooctane sulfonic acid), can potentially pose a significant public health risk due to their ability to bioaccumulate and persist for long periods of time in the body and the environment. The National Academies Report suggests there is some evidence of PFOS exposure and gastrointestinal (GI) inflammation contributing to ulcerative colitis. Inflammatory bowel diseases such as ulcerative colitis are precursors to colorectal cancer. However, evidence about the association between PFOS and colorectal cancer is limited and has shown contradictory findings. This review provides an overview of population and preclinical studies on PFOS exposure and GI inflammation, metabolism, immune responses, and carcinogenesis. It also highlights some mitigation approaches to reduce the harmful effects of PFOS on GI tract and discusses the dietary strategies, such as an increase in soluble fiber intake, to reduce PFOS-induced alterations in cellular lipid metabolism. More importantly, this review demonstrates the urgent need to better understand the relationship between PFOS and GI pathology and carcinogenesis, which will enable development of better approaches for interventions in populations exposed to high levels of PFAS, and in particular to PFOS.
Collapse
Affiliation(s)
- Jerika Durham
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bernhard Hennig
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
10
|
Tirendi S, Marengo B, Domenicotti C, Bassi AM, Almonti V, Vernazza S. Colorectal cancer and therapy response: a focus on the main mechanisms involved. Front Oncol 2023; 13:1208140. [PMID: 37538108 PMCID: PMC10396348 DOI: 10.3389/fonc.2023.1208140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction The latest GLOBOCAN 2021 reports that colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Most CRC cases are sporadic and associated with several risk factors, including lifestyle habits, gut dysbiosis, chronic inflammation, and oxidative stress. Aim To summarize the biology of CRC and discuss current therapeutic interventions designed to counteract CRC development and to overcome chemoresistance. Methods Literature searches were conducted using PubMed and focusing the attention on the keywords such as "Current treatment of CRC" or "chemoresistance and CRC" or "oxidative stress and CRC" or "novel drug delivery approaches in cancer" or "immunotherapy in CRC" or "gut microbiota in CRC" or "systematic review and meta-analysis of randomized controlled trials" or "CSCs and CRC". The citations included in the search ranged from September 1988 to December 2022. An additional search was carried out using the clinical trial database. Results Rounds of adjuvant therapies, including radiotherapy, chemotherapy, and immunotherapy are commonly planned to reduce cancer recurrence after surgery (stage II and stage III CRC patients) and to improve overall survival (stage IV). 5-fluorouracil-based chemotherapy in combination with other cytotoxic drugs, is the mainstay to treat CRC. However, the onset of the inherent or acquired resistance and the presence of chemoresistant cancer stem cells drastically reduce the efficacy. On the other hand, the genetic-molecular heterogeneity of CRC often precludes also the efficacy of new therapeutic approaches such as immunotherapies. Therefore, the CRC complexity made of natural or acquired multidrug resistance has made it necessary the search for new druggable targets and new delivery systems. Conclusion Further knowledge of the underlying CRC mechanisms and a comprehensive overview of current therapeutic opportunities can provide the basis for identifying pharmacological and biological barriers that render therapies ineffective and for identifying new potential biomarkers and therapeutic targets for advanced and aggressive CRC.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna M. Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Vanessa Almonti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
11
|
Mizani S, Keshavarz A, Vazifeh Shiran N, Bashash D, Allahbakhshian Farsani M. Expression Changes of SIRT1 and FOXO3a Significantly Correlate with Oxidative Stress Resistance Genes in AML Patients. Indian J Hematol Blood Transfus 2023; 39:392-401. [PMID: 37304466 PMCID: PMC10247606 DOI: 10.1007/s12288-022-01612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
The increased metabolism in acute myeloid leukemia (AML) malignant cells resulted in the production of high levels of free radicals, called oxidative stress conditions. To avoid this situation, malignant cells produce a considerable amount of antioxidant agents, which will lead to the release of a continuous low level of reactive oxygen species (ROS), causing genomic damage and subsequent clonal evolution. SIRT1 has a key role in driving the adaptation to this condition, mainly through the deacetylation of FOXO3a that affects the expression of oxidative stress resistance target genes such as Catalase and Manganese superoxide dismutase (MnSOD). The aim of this study is to simultaneously investigate the expression of SIRT1, FOXO3a, and free radical-neutralizing enzymes such as Catalase and MnSOD in AML patients and measure their simultaneous change in relation to each other. The gene expression was analyzed using Real Time-PCR in 65 AML patients and 10 healthy controls. Our finding revealed that expression of SIRT1, FOXO3a, MnSOD and Catalase was significantly higher in AML patients in comparison to healthy controls. Also, there was a significant correlation between the expression of SIRT1 and FOXO3a, as well as among the expression of FOXO3a, MnSOD and Catalase genes in patients. According to the results, the expression of genes involved in oxidative stress resistance was higher in AML patients, which possibly contributed to the development of malignant clones. Also, the correlation between the expression of SIRT1 and FOXO3a gene reflects the importance of these two genes in increased oxidative stress resistance of cancer cells.
Collapse
Affiliation(s)
- Sharareh Mizani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 15468-15514, Tehran, Iran
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 15468-15514, Tehran, Iran
| | - Nader Vazifeh Shiran
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 15468-15514, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 15468-15514, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 15468-15514, Tehran, Iran
| |
Collapse
|
12
|
Tornín J, Mateu-Sanz M, Rey V, Murillo D, Huergo C, Gallego B, Rodríguez A, Rodríguez R, Canal C. Cold plasma and inhibition of STAT3 selectively target tumorigenicity in osteosarcoma. Redox Biol 2023; 62:102685. [PMID: 36989573 PMCID: PMC10074989 DOI: 10.1016/j.redox.2023.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Osteosarcoma (OS) is a malignant type of bone cancer that arises in periods of increased bone formation. Curative strategies for these types of tumors have remained essentially unchanged for decades and the overall survival for most advanced cases is still dismally low. This is in part due to the existence of drug resistant Cancer Stem Cells (CSC) with progenitor properties that are responsible for tumor relapse and metastasis. In the quest for therapeutic alternatives for OS, Cold Atmospheric Plasmas and Plasma-Treated Liquids (PTL) have come to the limelight as a source of Reactive Oxygen and Nitrogen Species displaying selectivity towards a variety of cancer cell lines. However, their effects on CSC subpopulations and in vivo tumor growth have been barely studied to date. By employing bioengineered 3D tumor models and in vivo assays, here we show that low doses of PTL increase the levels of pro-stemness factors and the self-renewal ability of OS cells, coupled to an enhanced in vivo tumor growth potential. This could have critical implications to the field. By proposing a combined treatment, our results demonstrate that the deleterious pro-stemness signals mediated by PTL can be abrogated when this is combined with the STAT3 inhibitor S3I-201, resulting in a strong suppression of in vivo tumor growth. Overall, our study unveils an undesirable stem cell-promoting function of PTL in cancer and supports the use of combinatorial strategies with STAT3 inhibitors as an efficient treatment for OS avoiding critical side effects. We anticipate our work to be a starting point for wider studies using relevant 3D tumor models to evaluate the effects of plasma-based therapies on tumor subpopulations of different cancer types. Furthermore, combination with STAT3 inhibition or other suitable cancer type-specific targets can be relevant to consolidate the development of the field.
Collapse
|
13
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Xu C, Li S, Chen J, Wang H, Li Z, Deng Q, Li J, Wang X, Xiong Y, Zhang Z, Yang X, Li Z. Doxorubicin and erastin co-loaded hydroxyethyl starch-polycaprolactone nanoparticles for synergistic cancer therapy. J Control Release 2023; 356:256-271. [PMID: 36871643 DOI: 10.1016/j.jconrel.2023.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Cancer stem cells (CSCs), enabled to self-renew, differentiate, and initiate the bulk tumor, are recognized as the culprit of treatment resistance, metastasis, and recurrence. Simultaneously eradicating CSCs and bulk cancer cells is crucial for successful cancer therapy. Herein, we reported that doxorubicin (Dox) and erastin co-loaded hydroxyethyl starch-polycaprolactone nanoparticles (DEPH NPs) eliminated CSCs and cancer cells by regulating redox status. We found that an excellently synergistic effect existed when Dox and erastin were co-delivered by DEPH NPs. Specifically, erastin could deplete intracellular glutathione (GSH), thereby inhibiting the efflux of intracellular Dox and boosting Dox-induced reactive oxygen species (ROS) to amplify redox imbalance and oxidative stress. The high ROS levels restrained CSCs self-renewal via downregulating Hedgehog pathways, promoted CSCs differentiation, and rendered differentiated cancer cells vulnerable to apoptosis. As such, DEPH NPs significantly eliminated not only cancer cells but more importantly CSCs, contributing to suppressed tumor growth, tumor-initiating capacity, and metastasis, in various tumor models of triple negative breast cancer. This study demonstrates that the combination of Dox and erastin is potent in elimination of both cancer cells and CSCs, and that DEPH NPs represent a promising treatment against CSCs-rich solid tumors.
Collapse
Affiliation(s)
- Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huimin Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zheng Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiayuan Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xing Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
15
|
Fan M, Lan X, Wang Q, Shan M, Fang X, Zhang Y, Wu D, Luo H, Gao W, Zhu D. Renal function protection and the mechanism of ginsenosides: Current progress and future perspectives. Front Pharmacol 2023; 14:1070738. [PMID: 36814491 PMCID: PMC9939702 DOI: 10.3389/fphar.2023.1070738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Nephropathy is a general term for kidney diseases, which refers to changes in the structure and function of the kidney caused by various factors, resulting in pathological damage to the kidney, abnormal blood or urine components, and other diseases. The main manifestations of kidney disease include hematuria, albuminuria, edema, hypertension, anemia, lower back pain, oliguria, and other symptoms. Early detection, diagnosis, and active treatment are required to prevent chronic renal failure. The concept of nephropathy encompasses a wide range of conditions, including acute renal injury, chronic kidney disease, nephritis, renal fibrosis, and diabetic nephropathy. Some of these kidney-related diseases are interrelated and may lead to serious complications without effective control. In serious cases, it can also develop into chronic renal dysfunction and eventually end-stage renal disease. As a result, it seriously affects the quality of life of patients and places a great economic burden on society and families. Ginsenoside is one of the main active components of ginseng, with anti-inflammatory, anti-tumor, antioxidant, and other pharmacological activities. A variety of monomers in ginsenosides can play protective roles in multiple organs. According to the difference of core structure, ginsenosides can be divided into protopanaxadiol-type (including Rb1, Rb3, Rg3, Rh2, Rd and CK, etc.), and protopanaxatriol (protopanaxatriol)- type (including Rg1, Rg2 and Rh1, etc.), and other types (including Rg5, Rh4, Rh3, Rk1, and Rk3, etc.). All of these ginsenosides showed significant renal function protection, which can reduce renal damage in renal injury, nephritis, renal fibrosis, and diabetic nephropathy models. This review summarizes reports on renal function protection and the mechanisms of action of these ginsenosides in various renal injury models.
Collapse
Affiliation(s)
- Meiling Fan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Qunling Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Wenyi Gao, ; Difu Zhu,
| | - Difu Zhu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Wenyi Gao, ; Difu Zhu,
| |
Collapse
|
16
|
Ponzetti M, Ucci A, Puri C, Giacchi L, Flati I, Capece D, Zazzeroni F, Cappariello A, Rucci N, Falone S. Effects of osteoblast-derived extracellular vesicles on aggressiveness, redox status and mitochondrial bioenergetics of MNNG/HOS osteosarcoma cells. Front Oncol 2022; 12:983254. [PMID: 36544705 PMCID: PMC9762506 DOI: 10.3389/fonc.2022.983254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy. The crosstalk between osteosarcoma and the surrounding tumour microenvironment (TME) drives key events that lead to metastasization, one of the main obstacles for definitive cure of most malignancies. Extracellular vesicles (EVs), lipid bilayer nanoparticles used by cells for intercellular communication, are emerging as critical biological mediators that permit the interplay between neoplasms and the tumour microenvironment, modulating re-wiring of energy metabolism and redox homeostatic processes. We previously showed that EVs derived from the human osteosarcoma cells influence bone cells, including osteoblasts. We here investigated whether the opposite could also be true, studying how osteoblast-derived EVs (OB-EVs) could alter tumour phenotype, mitochondrial energy metabolism, redox status and oxidative damage in MNNG/HOS osteosarcoma cells.These were treated with EVs obtained from mouse primary osteoblasts, and the following endpoints were investigated: i) cell viability and proliferation; ii) apoptosis; iii) migration and invasive capacity; iv) stemness features; v) mitochondrial function and energy metabolism; vi) redox status, antioxidant capacity and oxidative molecular damage. OB-EVs decreased MNNG/HOS metabolic activity and viability, which however was not accompanied by impaired proliferation nor by increased apoptosis, with respect to control. In addition, OB-EV-treated cells exhibited a significant reduction of motility and in vitro invasion as compared to untreated cells. Although the antioxidant N-acetyl-L-cysteine reverted the cytotoxic effect of OB-EVs, no evidence of oxidative stress was observed in treated cells. However, the redox balance of glutathione was significantly shifted towards a pro-oxidant state, even though the major antioxidant enzymatic protection did not respond to the pro-oxidant challenge. We did not find strong evidence of mitochondrial involvement or major energy metabolic switches induced by OB-EVs, but a trend of reduction in seahorse assay basal respiration was observed, suggesting that OB-EVs could represent a mild metabolic challenge for osteosarcoma cells. In summary, our findings suggest that OB-EVs could serve as important means through which TME and osteosarcoma core cross-communicate. For the first time, we proved that OB-EVs reduced osteosarcoma cells' aggressiveness and viability through redox-dependent signalling pathways, even though mitochondrial dynamics and energy metabolism did not appear as processes critically needed to respond to OB-EVs.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Argia Ucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Chiara Puri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Luca Giacchi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy,*Correspondence: Nadia Rucci,
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
17
|
Lopez T, Wendremaire M, Lagarde J, Duquet O, Alibert L, Paquette B, Garrido C, Lirussi F. Wound Healing versus Metastasis: Role of Oxidative Stress. Biomedicines 2022; 10:2784. [PMID: 36359304 PMCID: PMC9687595 DOI: 10.3390/biomedicines10112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 10/24/2023] Open
Abstract
Many signaling pathways, molecular and cellular actors which are critical for wound healing have been implicated in cancer metastasis. These two conditions are a complex succession of cellular biological events and accurate regulation of these events is essential. Apart from inflammation, macrophages-released ROS arise as major regulators of these processes. But, whatever the pathology concerned, oxidative stress is a complicated phenomenon to control and requires a finely tuned balance over the different stages and responding cells. This review provides an overview of the pivotal role of oxidative stress in both wound healing and metastasis, encompassing the contribution of macrophages. Indeed, macrophages are major ROS producers but also appear as their targets since ROS interfere with their differentiation and function. Elucidating ROS functions in wound healing and metastatic spread may allow the development of innovative therapeutic strategies involving redox modulators.
Collapse
Affiliation(s)
- Tatiana Lopez
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
| | - Maeva Wendremaire
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
| | - Jimmy Lagarde
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
| | - Oriane Duquet
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Line Alibert
- Service de Chirurgie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Brice Paquette
- Service de Chirurgie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Carmen Garrido
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
- Centre Georges François Leclerc, 21000 Dijon, France
| | - Frédéric Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| |
Collapse
|
18
|
Park S, Park JM, Park M, Ko D, Kim S, Seo J, Nam KD, Jung E, Farrand L, Kim YJ, Kim JY, Seo JH. β-Escin overcomes trastuzumab resistance in HER2-positive breast cancer by targeting cancer stem-like features. Cancer Cell Int 2022; 22:289. [PMID: 36127671 PMCID: PMC9490928 DOI: 10.1186/s12935-022-02713-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background The emergence of de novo or intrinsic trastuzumab resistance is exceedingly high in breast cancer that is HER2 positive and correlates with an abundant cancer stem cell (CSC)-like population. We sought to examine the capacity of β-escin, an anti-inflammatory drug, to address trastuzumab resistance in HER2-positive breast cancer cells. Methods The effect of β-escin on trastuzumab-resistant and -sensitive cell lines in vitro was evaluated for apoptosis, expression of HER2 family members, and impact on CSC-like properties. An in vivo model of trastuzumab-resistant JIMT-1 was used to examine the efficacy and toxicity of β-escin. Results β-escin induced mitochondrial-mediated apoptosis accompanied by reactive oxygen species (ROS) production and increased active p18Bax fragmentation, leading to caspase-3/-7 activation. Attenuation of CSC-related features by β-escin challenge was accompanied by marked reductions in CD44high/CD24low stem-like cells and aldehyde dehydrogenase 1 (ALDH1) activity as well as hindrance of mammosphere formation. β-escin administration also significantly retarded tumor growth and angiogenesis in a trastuzumab-resistant JIMT-1 xenograft model via downregulation of CSC-associated markers and intracellular domain HER2. Importantly, β-escin selectively inhibited malignant cells and was less toxic to normal mammary cells, and no toxic effects were found in liver and kidney function in animals. Conclusions Taken together, our findings highlight β-escin as a promising candidate for the treatment of trastuzumab-resistant HER2-positive breast cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02713-9.
Collapse
Affiliation(s)
- Soeun Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Jung Min Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Minsu Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Dongmi Ko
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Seongjae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Juyeon Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Kee Dal Nam
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Eunsun Jung
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Lee Farrand
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
19
|
Chen L, Yang F, Chen S, Tai J. Mechanisms on chemotherapy resistance of colorectal cancer stem cells and research progress of reverse transformation: A mini-review. Front Med (Lausanne) 2022; 9:995882. [PMID: 36172536 PMCID: PMC9510709 DOI: 10.3389/fmed.2022.995882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor recurrence and chemotherapy resistance are mainly responsible for poor prognosis in colorectal cancer (CRC) patients. Cancer stem cell (CSC) has been identified in many solid tumors, including CRC. Additionally, CSC cannot be completely killed during chemotherapy and develops resistance to chemotherapeutic drugs, which is the main reason for tumor recurrence. This study reviews the main mechanisms of CSC chemotherapy resistance in CRC, including activation of DNA damage checkpoints, epithelial-mesenchymal transition (EMT), inhibition of the overexpression of antiapoptotic regulatory factors, overexpression of ATP-binding cassette (ABC) transporters, maintenance of reactive oxygen species (ROS) levels, and the dormant state of CSC. Advances in research to reverse chemotherapy resistance are also discussed. Our study can provide the promising potential for eliminating CSC and preventing tumor progression for CRC treatment.
Collapse
Affiliation(s)
- Lei Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Funing Yang
- Pediatric Outpatient Clinic, First Hospital of Jilin University, Changchun, China
| | - Si Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
- *Correspondence: Jiandong Tai
| |
Collapse
|
20
|
Panieri E, Pinho SA, Afonso GJM, Oliveira PJ, Cunha-Oliveira T, Saso L. NRF2 and Mitochondrial Function in Cancer and Cancer Stem Cells. Cells 2022; 11:cells11152401. [PMID: 35954245 PMCID: PMC9367715 DOI: 10.3390/cells11152401] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/21/2022] Open
Abstract
The NRF2–KEAP1 system is a fundamental component of the cellular response that controls a great variety of transcriptional targets that are mainly involved in the regulation of redox homeostasis and multiple cytoprotective mechanisms that confer adaptation to the stress conditions. The pleiotropic response orchestrated by NRF2 is particularly relevant in the context of oncogenic activation, wherein this transcription factor acts as a key driver of tumor progression and cancer cells’ resistance to treatment. For this reason, NRF2 has emerged as a promising therapeutic target in cancer cells, stimulating extensive research aimed at the identification of natural, as well as chemical, NRF2 inhibitors. Excitingly, the influence of NRF2 on cancer cells’ biology extends far beyond its mere antioxidant function and rather encompasses a functional crosstalk with the mitochondrial network that can influence crucial aspects of mitochondrial homeostasis, including biogenesis, oxidative phosphorylation, metabolic reprogramming, and mitophagy. In the present review, we summarize the current knowledge of the reciprocal interrelation between NRF2 and mitochondria, with a focus on malignant tumors and cancer stem cells.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for Environmental Protection and Research, 00144 Rome, Italy
- Correspondence: (E.P.); (T.C.-O.); Tel.: +39-06-5007-2131 (E.P.); +351-231249195 (T.C.-O.)
| | - Sónia A. Pinho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Gonçalo J. M. Afonso
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Correspondence: (E.P.); (T.C.-O.); Tel.: +39-06-5007-2131 (E.P.); +351-231249195 (T.C.-O.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
21
|
Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:850-872. [PMID: 36627897 PMCID: PMC9771762 DOI: 10.20517/cdr.2022.20] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023]
Abstract
Resistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
22
|
Basak T, Kanwar RK. Iron imbalance in cancer: Intersection of deficiency and overload. Cancer Med 2022; 11:3837-3853. [PMID: 35460205 PMCID: PMC9582687 DOI: 10.1002/cam4.4761] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 12/19/2022] Open
Abstract
Iron, an essential trace element, plays a complex role in tumour biology. While iron causes cancer clearance through toxic free radical generation, iron‐induced free radical flux also acts as a cancer promoter. These fates majorly guided through cellular response towards pro‐oxidant and antioxidant settings in a tumour microenvironment, designate iron‐induced oxidative stress as a common yet paradoxical factor in pro‐tumorigenesis as well as anti‐tumorigenesis, posing a challenge to laying down iron thresholds favouring tumour clearance. Additionally, complexity of iron's association with carcinogenesis has been extended to iron‐induced ROS's involvement in states of both iron deficiency and overload, conditions identified as comparable, inevitable and significant coexisting contributors as well as outcomes in chronic infections and tumorigenesis. Besides, iron overload may also develop as an unwanted outcome in certain cancer patients, as a result of symptomatic anaemia treatment owed to irrational iron‐restoration therapies without a prior knowledge of body's iron status with both conditions synergistically acting towards tumour aggravation. The co‐play of iron deficiency and overload along with iron's pro‐tumour and antitumour roles with intersecting mechanisms, thus presents an unpredictable regulatory response loop in a state of malignancy. The relevance of iron's thresholds beyond which it proves to be beneficial against tumorigenesis hence becomes questionable. These factors pose a challenge, over establishing if iron chelation or iron flooding acts as a better approach towards antitumour therapies. This review presents a critical picture of multiple contrasting features of iron's behaviour in cancer, leading towards two conditions lying at opposite ends of a spectrum: iron deficiency and overload in chronic disease conditions including cancer, hence, validating the critical significance of diagnosis of patients' iron status prior to opting for subsequent therapies.
Collapse
Affiliation(s)
- Tulika Basak
- Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Rupinder Kaur Kanwar
- Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia.,Department of Translational Medicine Centre, All India Institute of Medical Sciences (AIIMS) Bhopal, Bhopal, India
| |
Collapse
|
23
|
Arjmand B, Hamidpour SK, Alavi-Moghadam S, Yavari H, Shahbazbadr A, Tavirani MR, Gilany K, Larijani B. Molecular Docking as a Therapeutic Approach for Targeting Cancer Stem Cell Metabolic Processes. Front Pharmacol 2022; 13:768556. [PMID: 35264950 PMCID: PMC8899123 DOI: 10.3389/fphar.2022.768556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are subpopulation of cells which have been demonstrated in a variety of cancer models and involved in cancer initiation, progression, and development. Indeed, CSCs which seem to form a small percentage of tumor cells, display resembling characteristics to natural stem cells such as self-renewal, survival, differentiation, proliferation, and quiescence. Moreover, they have some characteristics that eventually can demonstrate the heterogeneity of cancer cells and tumor progression. On the other hand, another aspect of CSCs that has been recognized as a central concern facing cancer patients is resistance to mainstays of cancer treatment such as chemotherapy and radiation. Owing to these details and the stated stemness capabilities, these immature progenitors of cancerous cells can constantly persist after different therapies and cause tumor regrowth or metastasis. Further, in both normal development and malignancy, cellular metabolism and stemness are intricately linked and CSCs dominant metabolic phenotype changes across tumor entities, patients, and tumor subclones. Hence, CSCs can be determined as one of the factors that correlate to the failure of common therapeutic approaches in cancer treatment. In this context, researchers are searching out new alternative or complementary therapies such as targeted methods to fight against cancer. Molecular docking is one of the computational modeling methods that has a new promise in cancer cell targeting through drug designing and discovering programs. In a simple definition, molecular docking methods are used to determine the metabolic interaction between two molecules and find the best orientation of a ligand to its molecular target with minimal free energy in the formation of a stable complex. As a comprehensive approach, this computational drug design method can be thought more cost-effective and time-saving compare to other conventional methods in cancer treatment. In addition, increasing productivity and quality in pharmaceutical research can be another advantage of this molecular modeling method. Therefore, in recent years, it can be concluded that molecular docking can be considered as one of the novel strategies at the forefront of the cancer battle via targeting cancer stem cell metabolic processes.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Yavari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ainaz Shahbazbadr
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| |
Collapse
|
24
|
Yu HJ, Xiao GL, Zhao YY, Wang XX, Lan R. Targeting Mitochondrial Metabolism and RNA Polymerase POLRMT to Overcome Multidrug Resistance in Cancer. Front Chem 2022; 9:775226. [PMID: 34976949 PMCID: PMC8716502 DOI: 10.3389/fchem.2021.775226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Clinically, the prognosis of tumor therapy is fundamentally affected by multidrug resistance (MDR), which is primarily a result of enhanced drug efflux mediated by channels in the membrane that reduce drug accumulation in tumor cells. How to restore the sensitivity of tumor cells to chemotherapy is an ongoing and pressing clinical issue. There is a prevailing view that tumor cells turn to glycolysis for energy supply due to hypoxia. However, studies have shown that mitochondria also play crucial roles, such as providing intermediates for biosynthesis through the tricarboxylic acid (TCA) cycle and a plenty of ATP to fuel cells through the complete breakdown of organic matter by oxidative phosphorylation (OXPHOS). High OXPHOS have been found in some tumors, particularly in cancer stem cells (CSCs), which possess increased mitochondria mass and may be depends on OXPHOS for energy supply. Therefore, they are sensitive to inhibitors of mitochondrial metabolism. In view of this, we should consider mitochondrial metabolism when developing drugs to overcome MDR, where mitochondrial RNA polymerase (POLRMT) would be the focus, as it is responsible for mitochondrial gene expression. Inhibition of POLRMT could disrupt mitochondrial metabolism at its source, causing an energy crisis and ultimately eradicating tumor cells. In addition, it may restore the energy supply of MDR cells to glycolysis and re-sensitize them to conventional chemotherapy. Furthermore, we discuss the rationale and strategies for designing new therapeutic molecules for MDR cancers by targeting POLRMT.
Collapse
Affiliation(s)
- Hui-Jing Yu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Guan-Li Xiao
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yu-Ying Zhao
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Xin-Xin Wang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Rongfeng Lan
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
25
|
Sarmiento-Salinas FL, Perez-Gonzalez A, Acosta-Casique A, Ix-Ballote A, Diaz A, Treviño S, Rosas-Murrieta NH, Millán-Perez-Peña L, Maycotte P. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci 2021; 284:119942. [PMID: 34506835 DOI: 10.1016/j.lfs.2021.119942] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Cancer is one of the major causes of death in the world and its global burden is expected to continue increasing. In several types of cancers, reactive oxygen species (ROS) have been extensively linked to carcinogenesis and cancer progression. However, studies have reported conflicting evidence regarding the role of ROS in cancer, mostly dependent on the cancer type or the step of the tumorigenic process. We review recent studies describing diverse aspects of the interplay of ROS with cancer in the different stages of cancer progression, with a special focus on their role in carcinogenesis, their importance for cancer cell signaling and their relationship to the most prevalent cancer risk factors.
Collapse
Affiliation(s)
- Fabiola Lilí Sarmiento-Salinas
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco, Puebla, Mexico; Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Andrea Perez-Gonzalez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco, Puebla, Mexico; Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Adilene Acosta-Casique
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco, Puebla, Mexico; Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Adrián Ix-Ballote
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco, Puebla, Mexico; Posgrado en Ciencias y Tecnologías Biomédicas, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - Alfonso Diaz
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco, Puebla, Mexico.
| |
Collapse
|
26
|
Sorolla MA, Hidalgo I, Sorolla A, Montal R, Pallisé O, Salud A, Parisi E. Microenvironmental Reactive Oxygen Species in Colorectal Cancer: Involved Processes and Therapeutic Opportunities. Cancers (Basel) 2021; 13:5037. [PMID: 34680186 PMCID: PMC8534037 DOI: 10.3390/cancers13205037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth most common cause of cancer deaths worldwide. Although screening programs have reduced mortality rates, there is a need for research focused on finding the main factors that lead primary CRC to progress and metastasize. During tumor progression, malignant cells modify their habitat, corrupting or transforming cells of different origins and creating the tumor microenvironment (TME). Cells forming the TME like macrophages, neutrophils, and fibroblasts generate reactive oxygen species (ROS) that modify the cancer niche. The effects of ROS in cancer are very diverse: they promote cellular proliferation, epithelial-to-mesenchymal transition (EMT), evasion of cell death programs, migration, and angiogenesis. Due to the multifaceted role of ROS in cancer cell survival and function, ROS-modulating agents such as antioxidants or pro-oxidants could have therapeutic potential in cancer prevention and/or as a complement to systemic treatments. In this review, we will examine the main ROS producer cells and their effects on cancer progression and metastasis. Furthermore, we will enumerate the latest clinical trials where pro-oxidants and antioxidants have therapeutic uses in CRC.
Collapse
Affiliation(s)
- Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
| | - Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
| | - Robert Montal
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Ona Pallisé
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain; (M.A.S.); (I.H.); (A.S.); (R.M.); (O.P.); (A.S.)
| |
Collapse
|
27
|
El-Shaqanqery HE, Mohamed RH, Sayed AA. Mitochondrial Effects on Seeds of Cancer Survival in Leukemia. Front Oncol 2021; 11:745924. [PMID: 34692527 PMCID: PMC8529120 DOI: 10.3389/fonc.2021.745924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The cancer metabolic alteration is considered a hallmark and fast becoming a road for therapeutic intervention. Mitochondria have been regarded as essential cell elements that fuel the metabolic needs of most cancer cell types. Leukemia stem cells (LSCs) are a heterogeneous, highly self-renewing, and pluripotent cell population within leukemic cells. The most important source of ATP and metabolites to fulfill the bioenergetics and biosynthetic needs of most cancer stem cells is the mitochondria. In addition, mitochondria have a core role in autophagy and cell death and are the main source of reactive oxygen species (ROS) generation. Overall, growing evidence now shows that mitochondrial activities and pathways have changed to adapt with different types of leukemia, thus mitochondrial metabolism could be targeted for blood malignancy therapy. This review focuses on the function of mitochondria in LSC of the different leukemia types.
Collapse
Affiliation(s)
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed A. Sayed
- Genomics Program, Children’s Cancer Hospital Egypt, Cairo, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
28
|
Wu S, Li T, Liu W, Huang Y. Ferroptosis and Cancer: Complex Relationship and Potential Application of Exosomes. Front Cell Dev Biol 2021; 9:733751. [PMID: 34568341 PMCID: PMC8455874 DOI: 10.3389/fcell.2021.733751] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell death induction has become popular as a novel cancer treatment. Ferroptosis, a newly discovered form of cell death, features regulated, iron-dependent accumulation of lipid hydroperoxides. Since this word “ferroptosis” was coined, numerous studies have examined the complex relationship between ferroptosis and cancer. Here, starting from the intrinsic hallmarks of cancer and cell death, we discuss the theoretical basis of cell death induction as a cancer treatment. We review various aspects of the relationship between ferroptosis and cancer, including the genetic basis, epigenetic modification, cancer stem cells, and the tumor microenvironment, to provide information and support for further research on ferroptosis. We also note that exosomes can be applied in ferroptosis-based therapy. These extracellular vesicles can deliver different molecules to modulate cancer cells and cell death pathways. Using exosomes to control ferroptosis occurring in targeted cells is promising for cancer therapy.
Collapse
Affiliation(s)
- Shuang Wu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
29
|
Khan AQ, Rashid K, AlAmodi AA, Agha MV, Akhtar S, Hakeem I, Raza SS, Uddin S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed Pharmacother 2021; 143:112142. [PMID: 34536761 DOI: 10.1016/j.biopha.2021.112142] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species play crucial role in biological homeostasis and pathogenesis of human diseases including cancer. In this line, now it has become evident that ROS level/concentration is a major factor in the growth, progression and stemness of cancer cells. Moreover, cancer cells maintain a delicate balance between ROS and antioxidants to promote pathogenesis and clinical challenges via targeting a battery of signaling pathways converging to cancer hallmarks. Recent findings also entail the therapeutic importance of ROS for the better clinical outcomes in cancer patients as they induce apoptosis and autophagy. Moreover, poor clinical outcomes associated with cancer therapies are the major challenge and use of natural products have been vital in attenuation of these challenges due to their multitargeting potential with less adverse effects. In fact, most available drugs are derived from natural resources, either directly or indirectly and available evidence show the clinical importance of natural products in the management of various diseases, including cancer. ROS play a critical role in the anticancer actions of natural products, particularly phytochemicals. Benzophenanthridine alkaloids of the benzyl isoquinoline family of alkaloids, such as sanguinarine, possess several pharmacological properties and are thus being studied for the treatment of different human diseases, including cancer. In this article, we review recent findings, on how benzophenanthridine alkaloid-induced ROS play a critical role in the attenuation of pathological changes and stemness features associated with human cancers. In addition, we highlight the role of ROS in benzophenanthridine alkaloid-mediated activation of the signaling pathway associated with cancer cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid Rashid
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Maha Victor Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ishrat Hakeem
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
30
|
Crous A, Abrahamse H. Aluminium (III) phthalocyanine chloride tetrasulphonate is an effective photosensitizer for the eradication of lung cancer stem cells. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210148. [PMID: 34527268 PMCID: PMC8424323 DOI: 10.1098/rsos.210148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Cancer stem cells (CSCs) are considered to contribute to the recurrence of lung cancer due to their stem-like nature and the involvement of genetic markers associated with drug efflux, regeneration and metastases. Photodynamic therapy (PDT) is a cost-effective and non-invasive therapeutic application that can act as an alternative therapy for lung cancer when considering CSC involvement. Stem-like cells derived from the A549 lung cancer cell line, positive for CD133, CD56 and CD44 antigen markers, were characterized, intracellular localization of aluminium (III) phthalocyanine chloride tetrasulphonate (AlPcS4Cl) determined and its anti-cancer PDT effects were evaluated. Results confirmed that isolated cells were stem cell-like and subcellular localization of AlPcS4Cl in integral organelles involved in cell homeostasis supported the destruction of CSC. AlPcS4Cl's effectivity was demonstrated with CSC eradication showing a significant increase in cytotoxicity and cell death via apoptosis, caused by a decrease in mitochondrial membrane potential. PDT could serve as a palliative treatment for lung cancer and improve prognosis by elimination of lung CSCs.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg 2028, South Africa
| |
Collapse
|
31
|
DUOX2, a New Biomarker for Disseminated Gastric Cancer's Response to Low Dose Radiation in Mice. Cancers (Basel) 2021; 13:cancers13164186. [PMID: 34439340 PMCID: PMC8392330 DOI: 10.3390/cancers13164186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Treatment options are rather limited for gastrointestinal cancer patients whose disease has disseminated into the intra-abdominal cavity. Here, we designed pre-clinical studies to evaluate the potential application of chemopotentiation by Low Dose Fractionated Radiation Therapy (LDFRT) for disseminated gastric cancer and evaluate the role of a likely biomarker, Dual Oxidase 2 (DUOX2). Nude mice were injected orthotopically with human gastric cancer cells expressing endogenous or reduced levels of DUOX2 and randomly assigned to four treatment groups: 1; vehicle alone, 2; modified regimen of docetaxel, cisplatin and 5'-fluorouracil (mDCF) for three consecutive days, 3; Low Dose- Whole Abdomen Radiation Therapy (LD-WART) (5 fractions of 0.15 Gy in three days), 4; mDCF and LD-WART. The combined regimen increased the odds of preventing cancer dissemination (mDCF + LD-WART OR = 4.16; 80% CI = 1.0, 17.29) in the DUOX2 positive tumors, while tumors expressing lower DUOX2 levels were more responsive to mDCF alone with no added benefit from LD-WART. The molecular mechanisms underlying DUOX2 effects in response to the combined regimen include NF-κB upregulation. These data are particularly important since our study indicates that about 33% of human stomach adenocarcinoma do not express DUOX2. DUOX2 thus seems a likely biomarker for potential clinical application of chemopotentiation by LD-WART.
Collapse
|
32
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
33
|
Addeo M, Di Paola G, Verma HK, Laurino S, Russi S, Zoppoli P, Falco G, Mazzone P. Gastric Cancer Stem Cells: A Glimpse on Metabolic Reprogramming. Front Oncol 2021; 11:698394. [PMID: 34249759 PMCID: PMC8262334 DOI: 10.3389/fonc.2021.698394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most widespread causes of cancer-related death worldwide. Recently, emerging implied that gastric cancer stem cells (GCSCs) play an important role in the initiation and progression of GC. This subpopulation comprises cells with several features, such as self-renewal capability, high proliferating rate, and ability to modify their metabolic program, which allow them to resist current anticancer therapies. Metabolic pathway intermediates play a pivotal role in regulating cell differentiation both in tumorigenesis and during normal development. Thus, the dysregulation of both anabolic and catabolic pathways constitutes a significant opportunity to target GCSCs in order to eradicate the tumor progression. In this review, we discuss the current knowledge about metabolic phenotype that supports GCSC proliferation and we overview the compounds that selectively target metabolic intermediates of CSCs that can be used as a strategy in cancer therapy.
Collapse
Affiliation(s)
- Martina Addeo
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Di Paola
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy
| | - Henu Kumar Verma
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy.,IEOS-CNR, Institute of Experimental Endocrinology and Oncology "G. Salvatore" - National Research Council, Naples, Italy
| | - Simona Laurino
- Laboratory of Pre-Clinical and Translational Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-centro di riferimento oncologico della basilicata (CROB), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Sabino Russi
- Laboratory of Pre-Clinical and Translational Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-centro di riferimento oncologico della basilicata (CROB), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-centro di riferimento oncologico della basilicata (CROB), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Geppino Falco
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy.,IEOS-CNR, Institute of Experimental Endocrinology and Oncology "G. Salvatore" - National Research Council, Naples, Italy.,Laboratory of Pre-Clinical and Translational Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-centro di riferimento oncologico della basilicata (CROB), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Pellegrino Mazzone
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy
| |
Collapse
|
34
|
Galeaz C, Totis C, Bisio A. Radiation Resistance: A Matter of Transcription Factors. Front Oncol 2021; 11:662840. [PMID: 34141616 PMCID: PMC8204019 DOI: 10.3389/fonc.2021.662840] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, radiation therapy is one of the standard therapies for cancer treatment. Since the first applications, the field of radiotherapy has constantly improved, both in imaging technologies and from a dose-painting point of view. Despite this, the mechanisms of resistance are still a great problem to overcome. Therefore, a more detailed understanding of these molecular mechanisms will allow researchers to develop new therapeutic strategies to eradicate cancer effectively. This review focuses on different transcription factors activated in response to radiotherapy and, unfortunately, involved in cancer cells’ survival. In particular, ionizing radiations trigger the activation of the immune modulators STAT3 and NF-κB, which contribute to the development of radiation resistance through the up-regulation of anti-apoptotic genes, the promotion of proliferation, the alteration of the cell cycle, and the induction of genes responsible for the Epithelial to Mesenchymal Transition (EMT). Moreover, the ROS-dependent damaging effects of radiation therapy are hampered by the induction of antioxidant enzymes by NF-κB, NRF2, and HIF-1. This protective process results in a reduced effectiveness of the treatment, whose mechanism of action relies mainly on the generation of free oxygen radicals. Furthermore, the previously mentioned transcription factors are also involved in the maintenance of stemness in Cancer Stem Cells (CSCs), a subset of tumor cells that are intrinsically resistant to anti-cancer therapies. Therefore, combining standard treatments with new therapeutic strategies targeted against these transcription factors may be a promising opportunity to avoid resistance and thus tumor relapse.
Collapse
Affiliation(s)
- Chiara Galeaz
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Cristina Totis
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
35
|
Novohradsky V, Markova L, Kostrhunova H, Kasparkova J, Ruiz J, Marchán V, Brabec V. A Cyclometalated Ir III Complex Conjugated to a Coumarin Derivative Is a Potent Photodynamic Agent against Prostate Differentiated and Tumorigenic Cancer Stem Cells. Chemistry 2021; 27:8547-8556. [PMID: 33835526 DOI: 10.1002/chem.202100568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 12/14/2022]
Abstract
A cyclometalated IrIII complex conjugated to a far-red-emitting coumarin, IrIII -COUPY (3), was recently shown as a very promising photosensitizer suitable for photodynamic therapy of cancer. Therefore, the primary goal of this work was to deepen knowledge on the mechanism of its photoactivated antitumor action so that this information could be used to propose a new class of compounds as drug candidates for curing very hardly treatable human tumors, such as androgen resistant prostatic tumors of metastatic origin. Conventional anticancer chemotherapies exhibit several disadvantages, such as limited efficiency to target cancer stem cells (CSCs), which are considered the main reason for chemotherapy resistance, relapse, and metastasis. Herein, we show, using DU145 tumor cells, taken as the model of hormone-refractory and aggressive prostate cancer cells resistant to conventional antineoplastic drugs, that the photoactivated conjugate 3 very efficiently eliminates both prostate bulk (differentiated) and prostate hardly treatable CSCs simultaneously and with a similar efficiency. Notably, the very low toxicity of IrIII -COUPY conjugate in the prostate DU145 cells in the dark and its pronounced selectivity for tumor cells compared with noncancerous cells could result in low side effects and reduced damage of healthy cells during the photoactivated therapy by this agent. Moreover, the experiments performed with the 3D spheroids formed from DU145 CSCs showed that conjugate 3 can penetrate the inner layers of tumor spheres, which might markedly increase its therapeutic effect. Also interestingly, this conjugate induces apoptotic cell death in prostate cancer DU145 cells associated with calcium signaling flux in these cells and autophagy. To the best of our knowledge, this is the first study demonstrating that a photoactivatable metal-based compound is an efficient agent capable of killing even hardly treatable CSCs.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30071, Murcia, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| |
Collapse
|
36
|
Genovese I, Carinci M, Modesti L, Aguiari G, Pinton P, Giorgi C. Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. Int J Mol Sci 2021; 22:ijms22094770. [PMID: 33946271 PMCID: PMC8124268 DOI: 10.3390/ijms22094770] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are key regulators of cell survival and are involved in a plethora of mechanisms, such as metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, mitophagy and mitochondrial transfer, fusion, and fission (known as mitochondrial dynamics). The tuning of these processes in pathophysiological conditions is fundamental to the balance between cell death and survival. Indeed, ROS overproduction and mitochondrial Ca2+ overload are linked to the induction of apoptosis, while the impairment of mitochondrial dynamics and metabolism can have a double-faceted role in the decision between cell survival and death. Tumorigenesis involves an intricate series of cellular impairments not yet completely clarified, and a further level of complexity is added by the onset of apoptosis resistance mechanisms in cancer cells. In the majority of cases, cancer relapse or lack of responsiveness is related to the emergence of chemoresistance, which may be due to the cooperation of several cellular protection mechanisms, often mitochondria-related. With this review, we aim to critically report the current evidence on the relationship between mitochondria and cancer chemoresistance with a particular focus on the involvement of mitochondrial dynamics, mitochondrial Ca2+ signaling, oxidative stress, and metabolism to possibly identify new approaches or targets for overcoming cancer resistance.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Lorenzo Modesti
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, Section of Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy;
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
- Correspondence:
| |
Collapse
|
37
|
Tornín J, Villasante A, Solé-Martí X, Ginebra MP, Canal C. Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties. Free Radic Biol Med 2021; 164:107-118. [PMID: 33401009 PMCID: PMC7921834 DOI: 10.1016/j.freeradbiomed.2020.12.437] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
The use of oxidative stress generated by Cold Atmospheric Plasma (CAP) in oncology is being recently studied as a novel potential anti-cancer therapy. However, the beneficial effects of CAP for treating osteosarcoma have mostly been demonstrated in 2-dimensional cultures of cells, which do not mimic the complexity of the 3-dimensional (3D) bone microenvironment. In order to evaluate the effects of CAP in a relevant context of the human disease, we developed a 3D tissue-engineered model of osteosarcoma using a bone-like scaffold made of collagen type I and hydroxyapatite nanoparticles. Human osteosarcoma cells cultured within the scaffold showed a high capacity to infiltrate and proliferate and to exhibit osteomimicry in vitro. As expected, we observed significantly different functional behaviors between monolayer and 3D cultures when treated with Cold Plasma-Activated Ringer's Solution (PAR). Our data reveal that the 3D environment not only protects cells from PAR-induced lethality by scavenging and diminishing the amount of reactive oxygen and nitrogen species generated by CAP, but also favours the stemness phenotype of osteosarcoma cells. This is the first study that demonstrates the negative effect of PAR on cancer stem-like cell subpopulations in a 3D biomimetic model of cancer. These findings will allow to suitably re-focus research on plasma-based therapies in future.
Collapse
Affiliation(s)
- Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Av. de Roma S/n, Oviedo, Spain
| | - Aranzazu Villasante
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), C/Baldiri I Reixach 10-12, 08028, Barcelona, Spain
| | - Xavi Solé-Martí
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), C/Baldiri I Reixach 10-12, 08028, Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain.
| |
Collapse
|
38
|
Chowdhury S, Ghosh S. Cancer Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Vigueras G, Markova L, Novohradsky V, Marco A, Cutillas N, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. A photoactivated Ir(iii) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melanoma cells characteristic of immunogenic cell death. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00856k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The new iridium complex selectively targets cancer stem cells and has potential to induce immunogenic cell death in cancer cells.
Collapse
Affiliation(s)
- Gloria Vigueras
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Alicia Marco
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Natalia Cutillas
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - José Ruiz
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
40
|
Zeng RJ, Zheng CW, Chen WX, Xu LY, Li EM. Rho GTPases in cancer radiotherapy and metastasis. Cancer Metastasis Rev 2020; 39:1245-1262. [PMID: 32772212 DOI: 10.1007/s10555-020-09923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Despite treatment advances, radioresistance and metastasis markedly impair the benefits of radiotherapy to patients with malignancies. Functioning as molecular switches, Rho guanosine triphosphatases (GTPases) have well-recognized roles in regulating various downstream signaling pathways in a wide range of cancers. In recent years, accumulating evidence indicates the involvement of Rho GTPases in cancer radiotherapeutic efficacy and metastasis, as well as radiation-induced metastasis. The functions of Rho GTPases in radiotherapeutic efficacy are divergent and context-dependent; thereby, a comprehensive integration of their roles and correlated mechanisms is urgently needed. This review integrates current evidence supporting the roles of Rho GTPases in mediating radiotherapeutic efficacy and the underlying mechanisms. In addition, their correlations with metastasis and radiation-induced metastasis are discussed. Under the prudent application of Rho GTPase inhibitors based on critical evaluations of biological contexts, targeting Rho GTPases can be a promising strategy in overcoming radioresistance and simultaneously reducing the metastatic potential of tumor cells.
Collapse
Affiliation(s)
- Rui-Jie Zeng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Chun-Wen Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Wan-Xian Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
41
|
Geng Y, Amante JJ, Goel HL, Zhang X, Walker MR, Luther DC, Mercurio AM, Rotello VM. Differentiation of Cancer Stem Cells through Nanoparticle Surface Engineering. ACS NANO 2020; 14:15276-15285. [PMID: 33164505 PMCID: PMC10566532 DOI: 10.1021/acsnano.0c05589] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer stem cells (CSCs) are a crucial therapeutic target because of their role in resistance to chemo- and radiation therapy, metastasis, and tumor recurrence. Differentiation therapy presents a potential strategy for "defanging" CSCs. To date, only a limited number of small-molecule and nanomaterial-based differentiating agents have been identified. We report here the integrated use of nanoparticle engineering and hypothesis-free sensing to identify nanoparticles capable of efficient differentiation of CSCs into non-CSC phenotypes. Using this strategy, we identified a nanoparticle that induces CSC differentiation by increasing intracellular reactive oxygen species levels. Importantly, this unreported phenotype is more susceptible to drug treatment than either CSCs or non-CSCs, demonstrating a potentially powerful strategy for anticancer therapeutics.
Collapse
Affiliation(s)
- Yingying Geng
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - John J. Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Hira L. Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Melanie R. Walker
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - David C. Luther
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Arthur M. Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Vincent M. Rotello
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
42
|
Reactive Oxygen Species Induce Endothelial Differentiation of Liver Cancer Stem-Like Sphere Cells through the Activation of Akt/IKK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1621687. [PMID: 33101583 PMCID: PMC7576363 DOI: 10.1155/2020/1621687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/17/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) from various cancers are able to transdifferentiate into endothelial cells and further form functional blood vessels, indicating another possible resistance mechanism to antiangiogenic agents. However, it remains unclear whether CSCs from hepatocellular carcinoma have the ability to differentiate into endothelial cells, and thus resulting in resistance to antiangiogenic therapy targeting VEGF. Reactive oxygen species (ROS) are involved in the self-renewal and differentiation of CSCs, yet, their role in endothelial differentiation of CSCs has been poorly understood. In this study, we found that cancer stem-like sphere cells enriched from human hepatocellular carcinoma cell line Hep G2 could differentiate into endothelial cells morphologically and functionally, and this process could be blocked by Akt1/2 kinase inhibitor and IKK-β inhibitor BAY 11-7082 but not by Bevacizumab, a VEGFA-binding antibody, and DAPT, a γ-secretase inhibitor. Both hydrogen peroxide and BSO (an inhibitor of GSH biosynthesis) induce the differentiation of cancer stem-like sphere cells into endothelial cells, which can be canceled by the antioxidant N-Acetyl-L-cysteine (NAC). We also found that hydrogen peroxide or BSO induces the phosphorylation of Akt and IKK of endothelial differentiated sphere cells. Accordingly, both Akt1/2 kinase inhibitor and BAY 11-7082 inhibited hydrogen peroxide and BSO-mediated endothelial differentiation of cancer stem-like sphere cells. Collectively, the results of the present study demonstrate that cancer stem-like sphere cells from Hep G2 are able to differentiate into endothelial cells both morphologically and functionally, and this process is independent of VEGF and NOTCH signaling but dependent on the activation of Akt and IKK. ROS promote endothelial differentiation of cancer stem-like sphere cells through activation of Akt/IKK signaling pathway. Therefore, our study reveals a novel mechanism of resistance to conventional antiangiogenic therapy and may provide a potential therapeutic target for liver cancer treatment.
Collapse
|
43
|
Huang J, Li JJ. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:175-202. [PMID: 32588328 DOI: 10.1007/978-3-030-44518-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
44
|
Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). JOURNAL OF TRANSLATIONAL SCIENCE 2020; 6:341. [PMID: 35330670 PMCID: PMC8941648 DOI: 10.15761/jts.1000341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Human cancers emerge from cancer stem cells (CSCs), which are resistant to cancer chemotherapeutic agents, radiation, and cell death. Moreover, autophagy provides the cytoprotective effect which contributes to drug resistance in these cells. Furthermore, much evidence shows that CSCs cause tumor initiation, progression, metastasis, and cancer recurrence. Various signaling pathways including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin as well as the CSC markers maintain CSC properties. Several mechanisms including overexpression of ABC multidrug resistance transporters, a deficiency in mitochondrial-mediated apoptosis, upregulation of c-FLIP, overexpression of anti-apoptotic Bcl-2 family members and inhibitors of apoptosis proteins (IAPs), and PI3K/AKT signaling contribute to enhancing resistance to chemotherapeutic drugs and cell death induction in CSCs in various cancers. Studying such pathways may help provide detailed understanding of CSC mechanisms of resistance to chemotherapeutic agents and apoptosis and may lead to the development of effective therapeutics to eradicate CSCs.
Collapse
Affiliation(s)
- Ahmad R Safa
- Correspondence to: Ahmad R. Safa, Department of Pharmacology and Toxicology, 635 Barnhill, Dr. MS A416, Indiana University School of Medicine, Indianapolis, IN, USA,
| |
Collapse
|
45
|
Sun Q, Zhang Z, Lu Y, Liu Q, Xu X, Xu J, Liu Y, Yu H, Yu D, Sun B. Loss of Xanthine Oxidoreductase Potentiates Propagation of Hepatocellular Carcinoma Stem Cells. Hepatology 2020; 71:2033-2049. [PMID: 31578733 DOI: 10.1002/hep.30978] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/28/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Liver cancer stem cells (CSCs) exist in the tumor environment and are critically involved in the initiation and progression of hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of self-renewal and maintenance of liver CSCs remain poorly understood. APPROACH AND RESULTS We identified that xanthine oxidoreductase (XOR), which was expressed at low levels in human HCC samples and liver CSCs, restrained HCC formation and chemoresistance by attenuating liver CSC propagation. Mechanistically, XOR physically interacts with ubiquitin-specific peptidase 15 (USP15), thereby promoting deubiquitination of Kelch-like ECH associated protein 1 (KEAP1) to stabilize its expression, which leads to degradation of Nrf2 (nuclear factor erythroid 2-related factor 2) through ubiquitination and subsequently reactive oxygen species accumulation in liver CSCs. Finally, our data reveal that XOR promotes USP15-mediated Nrf2-KEAP1 signaling to block liver CSCs and tumor propagation. CONCLUSION We identified that XOR may represent a potential therapeutic target for clinical intervention in HCC driven by liver CSCs.
Collapse
Affiliation(s)
- Qikai Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianbo Xu
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailong Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Decai Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Omar AM, El-Araby ME, Abdelghany TM, Safo MK, Ahmed MH, Boothello R, Patel BB, Abdel-Bakky MS, Malebari AM, Ahmed HEA, Elhaggar RS. Introducing of potent cytotoxic novel 2-(aroylamino)cinnamamide derivatives against colon cancer mediated by dual apoptotic signal activation and oxidative stress. Bioorg Chem 2020; 101:103953. [PMID: 32474179 DOI: 10.1016/j.bioorg.2020.103953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Curcumin and trans-cinnamaldehyde are acrolein-based Michael acceptor compounds that are commonly found in domestic condiments, and known to cause cancer cell death via redox mechanisms. Based on the structural features of these compounds we designed and synthesized several 2-cinnamamido-N-substituted-cinnamamide (bis-cinnamamide) compounds. One of the derivatives, (Z)-2-[(E)-cinnamamido]-3-phenyl-N-propylacrylamide 8 showed a moderate antiproliferative potency (HCT-116 cell line inhibition of 32.0 µM), no inhibition of normal cell lines C-166, and proven cellular activities leading to apoptosis. SAR studies led to more than 10-fold increase in activity. Our most promising compound, [(Z)-3-(1H-indol-3-yl)-N-propyl-2-[(E)-3-(thien-2-yl)propenamido)propenamide] 45 killed colon cancer cells at IC50 = 0.89 µM (Caco-2), 2.85 µM (HCT-116) and 1.65 µM (HT-29), while exhibiting much weaker potency on C-166 and BHK normal cell lines (IC50 = 71 µM and 77.6 µM, respectively). Cellular studies towards identifying the compounds mechanism of cytotoxic activities revealed that apoptotic induction occurs in part as a result of oxidative stress. Importantly, the compounds showed inhibition of cancer stem cells that are critical for maintaining the potential for self-renewal and stemness. The results presented here show discovery of covalently acting Michael addition compounds that potently kill cancer cells by a defined mechanism, with prominent selectivity profile over non-cancerous cell lines.
Collapse
Affiliation(s)
- Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tamer M Abdelghany
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry, and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry, and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rio Boothello
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University, and Massey Cancer Center, Richmond, VA 23298. USA; Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
| | - Bhaumik B Patel
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University, and Massey Cancer Center, Richmond, VA 23298. USA; Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
| | - Mohamed S Abdel-Bakky
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Azizah M Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 47114, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Radwan S Elhaggar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt
| |
Collapse
|
47
|
Agriesti F, Tataranni T, Pacelli C, Scrima R, Laurenzana I, Ruggieri V, Cela O, Mazzoccoli C, Salerno M, Sessa F, Sani G, Pomara C, Capitanio N, Piccoli C. Nandrolone induces a stem cell-like phenotype in human hepatocarcinoma-derived cell line inhibiting mitochondrial respiratory activity. Sci Rep 2020; 10:2287. [PMID: 32041983 PMCID: PMC7010785 DOI: 10.1038/s41598-020-58871-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Nandrolone is a testosterone analogue with anabolic properties commonly abused worldwide, recently utilized also as therapeutic agent in chronic diseases, cancer included. Here we investigated the impact of nandrolone on the metabolic phenotype in HepG2 cell line. The results attained show that pharmacological dosage of nandrolone, slowing cell growth, repressed mitochondrial respiration, inhibited the respiratory chain complexes I and III and enhanced mitochondrial reactive oxygen species (ROS) production. Intriguingly, nandrolone caused a significant increase of stemness-markers in both 2D and 3D cultures, which resulted to be CxIII-ROS dependent. Notably, nandrolone negatively affected differentiation both in healthy hematopoietic and mesenchymal stem cells. Finally, nandrolone administration in mice confirmed the up-regulation of stemness-markers in liver, spleen and kidney. Our observations show, for the first time, that chronic administration of nandrolone, favoring maintenance of stem cells in different tissues would represent a precondition that, in addition to multiple hits, might enhance risk of carcinogenesis raising warnings about its abuse and therapeutic utilization.
Collapse
Affiliation(s)
- Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - Vitalba Ruggieri
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - Monica Salerno
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania - A.O.U. "Policlinico - V. Emanuele", via S. Sofia, 87 - Sector 10, Building B - 95123, Catania, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Roma, Italy.,Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania - A.O.U. "Policlinico - V. Emanuele", via S. Sofia, 87 - Sector 10, Building B - 95123, Catania, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy
| | - Claudia Piccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy. .,Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy.
| |
Collapse
|
48
|
Han S, Shin H, Lee JK, Liu Z, Rabadan R, Lee J, Shin J, Lee C, Yang H, Kim D, Kim SH, Kim J, Oh JW, Kong DS, Lee JI, Seol HJ, Choi JW, Kang HJ, Nam DH. Secretome analysis of patient-derived GBM tumor spheres identifies midkine as a potent therapeutic target. Exp Mol Med 2019; 51:1-11. [PMID: 31811117 PMCID: PMC6897967 DOI: 10.1038/s12276-019-0351-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/29/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor with few treatment options. The survival of glioma-initiating cells (GICs) is one of the major factors contributing to treatment failure. GICs frequently produce and respond to their own growth factors that support cell proliferation and survival. In this study, we aimed to identify critical autocrine factors mediating GIC survival and to evaluate the anti-GBM effect of antagonizing these factors. Proteomic analysis was performed using conditioned media from two different patient-derived GBM tumor spheres under a growth factor-depleted status. Then, the antitumor effects of inhibiting an identified autocrine factor were evaluated by bioinformatic analysis and molecular validation. Proteins secreted by sphere-forming GICs promote cell proliferation/survival and detoxify reactive oxygen species (ROS). Among these proteins, we focused on midkine (MDK) as a clinically significant and pathologically relevant autocrine factor. Antagonizing MDK reduced the survival of GBM tumor spheres through the promotion of cell cycle arrest and the consequent apoptotic cell death caused by oxidative stress-induced DNA damage. We also identified PCBP4, a novel molecular predictor of resistance to anti-MDK treatment. Collectively, our results indicate that MDK inhibition is an important therapeutic option by suppressing GIC survival through the induction of ROS-mediated cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Suji Han
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Sungkyunkwan University, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Hyemi Shin
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Sungkyunkwan University, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Jin-Ku Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Zhaoqi Liu
- Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Jeongwu Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jihye Shin
- Center for Theragnosis, BRI, Korea Institute of Science and Technology, Seoul, Korea
| | - Cheolju Lee
- Center for Theragnosis, BRI, Korea Institute of Science and Technology, Seoul, Korea.,Department of Biomolecular Science, University of Science and Technology, Daejeon, Korea
| | - Heekyoung Yang
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Sungkyunkwan University, Seoul, Korea
| | - Donggeon Kim
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Sungkyunkwan University, Seoul, Korea
| | - Sung Heon Kim
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Sungkyunkwan University, Seoul, Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University, Seoul, Korea
| | - Jooyeon Kim
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Sungkyunkwan University, Seoul, Korea
| | - Jeong-Woo Oh
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Sungkyunkwan University, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Hyun Ju Kang
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Sungkyunkwan University, Seoul, Korea. .,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea.
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Sungkyunkwan University, Seoul, Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea. .,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
49
|
Green R, Howell M, Khalil R, Nair R, Yan J, Foran E, Katiri S, Banerjee J, Singh M, Bharadwaj S, Mohapatra SS, Mohapatra S. Actinomycin D and Telmisartan Combination Targets Lung Cancer Stem Cells Through the Wnt/Beta Catenin Pathway. Sci Rep 2019; 9:18177. [PMID: 31796785 PMCID: PMC6890794 DOI: 10.1038/s41598-019-54266-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
The failure of lung cancer treatments has been attributed mostly to the development of drug resistance, however the underlying cellular and molecular mechanisms are poorly understood. Cancer initiating stem cells (CSCs), present in tumors in a small percentage, play critical roles in the development of drug resistance, metastasis, and cancer relapse. Hence, novel treatments targeting both bulk cancer cells and CSCs are under intense investigation. Herein, we report that lung cancer cells grown on a 3D fibrous scaffold form tumoroids that resemble in vivo tumors, expand CSCs, and provide a platform to identify anti-CSC drugs. The screening of an NCI library of FDA-approved drugs using tumoroid cultures led to identification of Actinomycin D (AD) as a top CSC inhibitor. Since CSCs are mostly resident in the tumor's inner core, AD was combined with an angiotensin receptor antagonist, Telmisartan (TS), which is known to increase drug permeability in tumors and was shown to have anti-CSC activity. Our results showed that AD + TS administered intra-tumorally was significantly more effective than either drug alone in both syngeneic and xenograft mouse models. The results of mechanistic studies revealed that CSC expansion in tumoroids was associated with activation of β catenin signaling and that AD + TS treatment reduced active β catenin levels in tumors. Together, these results establish the utility of the tumoroid culture system to expand CSCs ex vivo for targeted drug screening, to identify promising novel treatments with both anti-CSC and anti-cancer effects, and to individualize treatments for metastatic drug resistant lung cancer patients.
Collapse
Affiliation(s)
- Ryan Green
- Department of Molecular Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Mark Howell
- Department of Molecular Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Roukiah Khalil
- Department of Molecular Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Rajesh Nair
- Transgenex Nanobiotech Inc., Tampa, FL, 33613, USA
| | - Jiyu Yan
- Transgenex Nanobiotech Inc., Tampa, FL, 33613, USA
| | - Elspeth Foran
- Department of Molecular Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Sandhyabanu Katiri
- Department of Molecular Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jit Banerjee
- Department of Molecular Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Mandip Singh
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Srinivas Bharadwaj
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Shyam S Mohapatra
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- James A Haley VA Hospital, Tampa, FL, 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL, 33612, USA.
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- James A Haley VA Hospital, Tampa, FL, 33612, USA.
| |
Collapse
|
50
|
Sánchez-de-Diego C, Valer JA, Pimenta-Lopes C, Rosa JL, Ventura F. Interplay between BMPs and Reactive Oxygen Species in Cell Signaling and Pathology. Biomolecules 2019; 9:E534. [PMID: 31561501 PMCID: PMC6843432 DOI: 10.3390/biom9100534] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The integration of cell extrinsic and intrinsic signals is required to maintain appropriate cell physiology and homeostasis. Bone morphogenetic proteins (BMPs) are cytokines that belong to the transforming growth factor-β (TGF-β) superfamily, which play a key role in embryogenesis, organogenesis and regulation of whole-body homeostasis. BMPs interact with membrane receptors that transduce information to the nucleus through SMAD-dependent and independent pathways, including PI3K-AKT and MAPKs. Reactive oxygen species (ROS) are intracellular molecules derived from the partial reduction of oxygen. ROS are highly reactive and govern cellular processes by their capacity to regulate signaling pathways (e.g., NF-κB, MAPKs, KEAP1-NRF2 and PI3K-AKT). Emerging evidence indicates that BMPs and ROS interplay in a number of ways. BMPs stimulate ROS production by inducing NOX expression, while ROS regulate the expression of several BMPs. Moreover, BMPs and ROS influence common signaling pathways, including PI3K/AKT and MAPK. Additionally, dysregulation of BMPs and ROS occurs in several pathologies, including vascular and musculoskeletal diseases, obesity, diabetes and kidney injury. Here, we review the current knowledge on the integration between BMP and ROS signals and its potential applications in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Carrer Feixa Llarga s/n, 08907 L'Hospitalet Llobregat, Spain.
| | - José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Carrer Feixa Llarga s/n, 08907 L'Hospitalet Llobregat, Spain.
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Carrer Feixa Llarga s/n, 08907 L'Hospitalet Llobregat, Spain.
| | - José Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Carrer Feixa Llarga s/n, 08907 L'Hospitalet Llobregat, Spain.
- IDIBELL, Avinguda Granvia de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain.
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Carrer Feixa Llarga s/n, 08907 L'Hospitalet Llobregat, Spain.
- IDIBELL, Avinguda Granvia de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|