1
|
Hossain MA, Roslan HA. Heterologous expression, characterisation and 3D-structural insights of GH18 chitinases derived from sago palm (Metroxylon sagu). Int J Biol Macromol 2024; 279:135533. [PMID: 39265904 DOI: 10.1016/j.ijbiomac.2024.135533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/28/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Although plants don't have chitins, they produce chitinases to protect themselves from biotic and abiotic stressors. There are two forms of chitinases found in organisms: glycosyl hydrolase 18 (GH18) and 19 (GH19) families. Plant GH19 chitinases are well known for their role in protecting against pathogens, but the roles of GH18 chitinases have not been fully elucidated. This study aimed to produce and characterise two recombinant GH18 chitinases from Metroxylon sagu. Two GH18 chitinase genes, MsChi1 and MsChi2, were identified, with nucleotide sequences of 1009 and 1308 bp, respectively. The proteins encoded by MsChi1 and MsChi2 genes were single polypeptide chains of 310 and 300 amino acids with predicted molecular masses of 31.21 and 30.15 kDa, respectively. Both cDNAs were cloned and expressed in the GS115 strain of Pichia pastoris. Recombinant MsChi1 and MsChi2 exhibited optimal activity at 60 °C with acidic pH 4.0 and 5.0, respectively. Both recombinant enzymes could hydrolyze synthetic and natural substrates (colloidal chitin). rMsChi1 preferred 4-nitrophenol N,N'-diacetyl-β-D chitobioside, while rMsChi2 preferred 4-nitrophenol N,N',N″-triacetyl-β-D chitotriose, suggesting they might function as exochitinase and endochitinase, respectively. They also demonstrated antifungal activities against tested fungi. Homology modeling indicated ASP and GLU as essential residues for proton donation and acceptance.
Collapse
Affiliation(s)
- Md Anowar Hossain
- Genetic Engineering Laboratory, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia; Plant Molecular Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Hairul Azman Roslan
- Genetic Engineering Laboratory, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| |
Collapse
|
2
|
Dresler J, Herzig V, Vilcinskas A, Lüddecke T. Enlightening the toxinological dark matter of spider venom enzymes. NPJ BIODIVERSITY 2024; 3:25. [PMID: 39271930 PMCID: PMC11399385 DOI: 10.1038/s44185-024-00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Spiders produce highly adapted venoms featuring a complex mixture of biomolecules used mainly for hunting and defense. The most prominent components are peptidic neurotoxins, a major focus of research and drug development, whereas venom enzymes have been largely neglected. Nevertheless, investigation of venom enzymes not only reveals insights into their biological functions, but also provides templates for future industrial applications. Here we compared spider venom enzymes validated at protein level contained in the VenomZone database and from all publicly available proteo-transcriptomic spider venom datasets. We assigned reported enzymes to cellular processes and known venom functions, including toxicity, prey pre-digestion, venom preservation, venom component activation, and spreading factors. Our study unveiled extensive discrepancy between public databases and publications with regard to enzyme coverage, which impedes the development of novel spider venom enzyme-based applications. Uncovering the previously unrecognized abundance and diversity of venom enzymes will open new avenues for spider venom biodiscovery.
Collapse
Affiliation(s)
- Josephine Dresler
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Andreas Vilcinskas
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Gießen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| |
Collapse
|
3
|
Cazares-Álvarez JE, Báez-Astorga PA, Arroyo-Becerra A, Maldonado-Mendoza IE. Genome-Wide Identification of a Maize Chitinase Gene Family and the Induction of Its Expression by Fusarium verticillioides (Sacc.) Nirenberg (1976) Infection. Genes (Basel) 2024; 15:1087. [PMID: 39202446 PMCID: PMC11353892 DOI: 10.3390/genes15081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Collapse
Affiliation(s)
- Jesús Eduardo Cazares-Álvarez
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Paúl Alán Báez-Astorga
- CONAHCYT—Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico;
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| |
Collapse
|
4
|
Ismail SA, Fayed B, Abdelhameed RM, Hassan AA. Chitinase-functionalized UiO-66 framework nanoparticles active against multidrug-resistant Candida Auris. BMC Microbiol 2024; 24:269. [PMID: 39030474 PMCID: PMC11264975 DOI: 10.1186/s12866-024-03414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.
Collapse
Affiliation(s)
- Shaymaa A Ismail
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. 12622, 33 El Bohouth Street, Dokki, Giza, Egypt.
| | - Bahgat Fayed
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. 12622, 33 El Bohouth Street, Dokki, Giza, Egypt.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, 33 EL Buhouth St, Dokki, Giza, 12622, Egypt
| | - Amira A Hassan
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. 12622, 33 El Bohouth Street, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Khalifa HO, Oreiby A, Abdelhamid MAA, Ki MR, Pack SP. Biomimetic Antifungal Materials: Countering the Challenge of Multidrug-Resistant Fungi. Biomimetics (Basel) 2024; 9:425. [PMID: 39056866 PMCID: PMC11274442 DOI: 10.3390/biomimetics9070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In light of rising public health threats like antifungal and antimicrobial resistance, alongside the slowdown in new antimicrobial development, biomimetics have shown promise as therapeutic agents. Multidrug-resistant fungi pose significant challenges as they quickly develop resistance, making traditional antifungals less effective. Developing new antifungals is also complicated by the need to target eukaryotic cells without harming the host. This review examines biomimetic antifungal materials that mimic natural biological mechanisms for targeted and efficient action. It covers a range of agents, including antifungal peptides, alginate-based antifungals, chitosan derivatives, nanoparticles, plant-derived polyphenols, and probiotic bacteria. These agents work through mechanisms such as disrupting cell membranes, generating reactive oxygen species, and inhibiting essential fungal processes. Despite their potential, challenges remain in terms of ensuring biocompatibility, optimizing delivery, and overcoming potential resistance. Production scalability and economic viability are also concerns. Future research should enhance the stability and efficacy of these materials, integrate multifunctional approaches, and develop sophisticated delivery systems. Interdisciplinary efforts are needed to understand interactions between these materials, fungal cells, and the host environment. Long-term health and environmental impacts, fungal resistance mechanisms, and standardized testing protocols require further study. In conclusion, while biomimetic antifungal materials represent a revolutionary approach to combating multidrug-resistant fungi, extensive research and development are needed to fully realize their potential.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Atef Oreiby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
6
|
Govindaraj V, Kim SK, Raval R, Raval K. Marine Bacillus haynesii chitinase: Purification, characterization and antifungal potential for sustainable chitin bioconversion. Carbohydr Res 2024; 541:109170. [PMID: 38830279 DOI: 10.1016/j.carres.2024.109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.
Collapse
Affiliation(s)
- Vishnupriya Govindaraj
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Mangalore, 575025, Karnataka, India
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang, University Erica Campus, Ansan, 11558, Republic of Korea.
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Mangalore, 575025, Karnataka, India.
| |
Collapse
|
7
|
Yang H, Wu X, Sun C, Wang L. Unraveling the metabolic potential of biocontrol fungi through omics data: a key to enhancing large-scaleapplication strategies. Acta Biochim Biophys Sin (Shanghai) 2024; 56:825-832. [PMID: 38686460 PMCID: PMC11214957 DOI: 10.3724/abbs.2024056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
Biological control of pests and pathogens has attracted much attention due to its green, safe and effective characteristics. However, it faces the dilemma of insignificant effects in large-scale applications. Therefore, an in-depth exploration of the metabolic potential of biocontrol fungi based on big omics data is crucial for a comprehensive and systematic understanding of the specific modes of action operated by various biocontrol fungi. This article analyzes the preferences for extracellular carbon and nitrogen source degradation, secondary metabolites (nonribosomal peptides, polyketide synthases) and their product characteristics and the conversion relationship between extracellular primary metabolism and intracellular secondary metabolism for eight different filamentous fungi with characteristics appropriate for the biological control of bacterial pathogens and phytopathogenic nematodes. Further clarification is provided that Paecilomyces lilacinus, encoding a large number of hydrolase enzymes capable of degrading pathogen protection barrier, can be directly applied in the field as a predatory biocontrol fungus, whereas Trichoderma, as an antibiosis-active biocontrol control fungus, can form dominant strains on preferred substrates and produce a large number of secondary metabolites to achieve antibacterial effects. By clarifying the levels of biological control achievable by different biocontrol fungi, we provide a theoretical foundation for their application to cropping habitats.
Collapse
Affiliation(s)
- Haolin Yang
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Xiuyun Wu
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Caiyun Sun
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Lushan Wang
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| |
Collapse
|
8
|
Wani AK, Akhtar N, Mir TUG, Rahayu F, Suhara C, Anjli A, Chopra C, Singh R, Prakash A, El Messaoudi N, Fernandes CD, Ferreira LFR, Rather RA, Américo-Pinheiro JHP. Eco-friendly and safe alternatives for the valorization of shrimp farming waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38960-38989. [PMID: 37249769 PMCID: PMC10227411 DOI: 10.1007/s11356-023-27819-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The seafood industry generates waste, including shells, bones, intestines, and wastewater. The discards are nutrient-rich, containing varying concentrations of carotenoids, proteins, chitin, and other minerals. Thus, it is imperative to subject seafood waste, including shrimp waste (SW), to secondary processing and valorization for demineralization and deproteination to retrieve industrially essential compounds. Although several chemical processes are available for SW processing, most of them are inherently ecotoxic. Bioconversion of SW is cost-effective, ecofriendly, and safe. Microbial fermentation and the action of exogenous enzymes are among the significant SW bioconversion processes that transform seafood waste into valuable products. SW is a potential raw material for agrochemicals, microbial culture media, adsorbents, therapeutics, nutraceuticals, and bio-nanomaterials. This review comprehensively elucidates the valorization approaches of SW, addressing the drawbacks of chemically mediated methods for SW treatments. It is a broad overview of the applications associated with nutrient-rich SW, besides highlighting the role of major shrimp-producing countries in exploring SW to achieve safe, ecofriendly, and efficient bio-products.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Cece Suhara
- Research Center for Horticulture and Plantation, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Anjli Anjli
- HealthPlix Technologies Private Limited, Bengaluru, 560103, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Srinagar, Jammu and Kashmir, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
9
|
Unuofin JO, Odeniyi OA, Majengbasan OS, Igwaran A, Moloantoa KM, Khetsha ZP, Iwarere SA, Daramola MO. Chitinases: expanding the boundaries of knowledge beyond routinized chitin degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38045-38060. [PMID: 38789707 PMCID: PMC11195638 DOI: 10.1007/s11356-024-33728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Chitinases, enzymes that degrade chitin, have long been studied for their role in various biological processes. They play crucial roles in the moulting process of invertebrates, the digestion of chitinous food, and defense against chitin-bearing pathogens. Additionally, chitinases are involved in physiological functions in crustaceans, such as chitinous food digestion, moulting, and stress response. Moreover, chitinases are universally distributed in organisms from viruses to mammals and have diverse functions including tissue degradation and remodeling, nutrition uptake, pathogen invasion, and immune response regulation. The discovery of these diverse functions expands our understanding of the biological significance and potential applications of chitinases. However, recent research has shown that chitinases possess several other functions beyond just chitin degradation. Their potential as biopesticides, therapeutic agents, and tools for bioremediation underscores their significance in addressing global challenges. More importantly, we noted that they may be applied as bioweapons if ethical regulations regarding production, engineering and application are overlooked.
Collapse
Affiliation(s)
- John Onolame Unuofin
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | | | | | - Aboi Igwaran
- The Life Science Center Biology, School of Sciences and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Karabelo MacMillan Moloantoa
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Private Bag X540001, Durban, 4000, South Africa
| | - Zenzile Peter Khetsha
- Department of Agriculture, Central University of Technology, Free State, Private Bag X20539, Bloemfontein, 9300, South Africa
| | - Samuel Ayodele Iwarere
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa
| | - Michael Olawale Daramola
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
10
|
Kaur M, Nagpal M, Dhingra GA, Rathee A. Exploring chitin: novel pathways and structures as promising targets for biopesticides. Z NATURFORSCH C 2024; 79:125-136. [PMID: 38760917 DOI: 10.1515/znc-2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Chitin, the most prevalent polymer in nature, a significant structural polysaccharide that comes in second only to cellulose. Chitin is a crucial component of fungal cell walls and also present in many other creatures, such as viruses, plants, animals, insect exoskeletons, and crustacean shells. Chitin presents itself as a promising target for the development of biopesticides. It focuses on unraveling the unique structures and biochemical pathways associated with chitin, aiming to identify vulnerabilities that can be strategically leveraged for effective and environmentally sustainable pest control. It involves a comprehensive analysis of chitinase enzymes, chitin biosynthesis, and chitin-related processes across diverse organisms. By elucidating the molecular intricacies involved in chitin metabolism, this review seeks to unveil potential points of intervention that can disrupt essential biological processes in target pests without harming non-target species. This holistic approach to understanding chitin-related pathways aims to inform the design and optimization of biopesticides with enhanced specificity and reduced ecological impact. The outcomes of this study hold great promise for advancing innovative and eco-friendly pest management strategies. By targeting chitin structures and pathways, biopesticides developed based on these findings may offer a sustainable and selective alternative to conventional chemical pesticides, contributing to the ongoing efforts towards more environmentally conscious and effective pest control solutions.
Collapse
Affiliation(s)
- Malkiet Kaur
- 418665 University Institute of Pharma Sciences, Chandigarh University , Mohali, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, 154025 Chitkara University , Rajpura, Punjab, India
| | | | - Ankit Rathee
- 418665 University Institute of Pharma Sciences, Chandigarh University , Mohali, Punjab, India
| |
Collapse
|
11
|
Subramani AK, Ramachandra R, Thote S, Govindaraj V, Vanzara P, Raval R, Raval K. Engineering a recombinant chitinase from the marine bacterium Bacillus aryabhattai with targeted activity on insoluble crystalline chitin for chitin oligomer production. Int J Biol Macromol 2024; 264:130499. [PMID: 38462115 DOI: 10.1016/j.ijbiomac.2024.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Chitin, an abundant polysaccharide in India, is primary by-product of the seafood industry. Efficiently converting chitin into valuable products is crucial. Chitinase, transforms chitin into chitin oligomers, holds significant industrial potential. However, the crystalline and insoluble nature of chitin makes the conversion process challenging. In this study, a recombinant chitinase from marine bacteria Bacillus aryabhattai was developed. This enzyme exhibits activity against insoluble chitin substrates, chitin powder and flakes. The chitinase gene was cloned into the pET 23a plasmid and transformed into E. coli Rosetta pLysS. IPTG induction was employed to express chitinase, and purification using Ni-NTA affinity chromatography. Optimal chitinase activity against colloidal chitin was observed in Tris buffer at pH 8, temperature 55°C, with the presence of 400 mM sodium chloride. Enzyme kinetics studies revealed a Vmax of 2000 μmole min-1 and a Km of 4.6 mg mL-1. The highest chitinase activity against insoluble chitin powder and flakes reached 875 U mg-1 and 625 U mg-1, respectively. The chitinase demonstrated inhibition of Candida albicans, Fusarium solani, and Penicillium chrysogenum growth. Thin Layer Chromatography (TLC) and LC-MS analysis confirmed the production of chitin oligomers, chitin trimer, tetramer, pentamer, and hexamer, from chitin powder and flakes using recombinant chitinase.
Collapse
Affiliation(s)
- Arun Kumar Subramani
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Reshma Ramachandra
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Sachin Thote
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Vishnupriya Govindaraj
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Piyush Vanzara
- Department of Chemical Engineering, Vyavasayi Vidya Pratishthan Engineering College, Rajkot, Gujarat 360005, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Academy of Higher Education (MAHE), Karnataka 576104, India.
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India.
| |
Collapse
|
12
|
Sharma A, Arya SK, Singh J, Kapoor B, Bhatti JS, Suttee A, Singh G. Prospects of chitinase in sustainable farming and modern biotechnology: an update on recent progress and challenges. Biotechnol Genet Eng Rev 2024; 40:310-340. [PMID: 36856523 DOI: 10.1080/02648725.2023.2183593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Chitinases are multifunctional biocatalysts for the pest control and useful in modern biotechnology and pharmaceutical industries. Chemical-based fungicides and insecticides have caused more severe effects on environment and human health. Many pathogenic fungal species and insects became resistant to the chemical pesticides. The resistant fungi emerged as a multidrug resistant also and less susceptible insects are not possible to control adequately. Chitinases have an immense potential to be exploited as a biopesticide against fungi and insects. The direct use of chitinase in liquid formulation or whole microbial enzyme producing cells, both act as antagonistically against the pests. Chitinase can disintegrate the fungal cell wall and insect integument that holds the chitin as a vital structural component. Moreover, chitinase is applied for the synthesis of pharmaceutically important chitooligosaccharides. Chitinase producing microbes have the huge potential to utilize against the waste management of sea food remains like shells of crustaceans. Chitinase is valuable for the synthesis of protoplasts from industrially important fungi, further it act as the biocontrol agent of malaria and dengue fever causing larvae of mosquitoes. Chitinases also have been successfully used in wine and single cell protein producing industries. Present review is illustrating the updated information on the state of the art of different applications of chitinases in agriculture and biotechnology industry. It also bestows the understanding to the readers about the areas of extensively studied and the field where there is still much left to be done.
Collapse
Affiliation(s)
- Anindita Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | | | - Jatinder Singh
- Department of Horticulture, SAGR, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, Phagwara, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab, India
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University Phagwara, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
13
|
Shrivastava A, Goel M, Khalid MF, Sharma G, Khandelwal A, Sharma D, Gupta RD. Evaluation of the Recombinant Bacterial Chitinases as Anti-proliferative and Anti-migratory Agents for the Human Breast Cancer Cell Line, MCF-7. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04888-5. [PMID: 38393581 DOI: 10.1007/s12010-024-04888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Chitinases, a glycosyl hydrolase family 18 members, have a wide distribution in both prokaryotes and eukaryotes, including humans. Regardless of the absence of endogenous chitin polymer, various chitinases and chitinase-like proteins (CLPs) have been reported in mammals. However, several other carbohydrate polymers, such as hyaluronic acid and heparan sulfate, show structural similarities with chitin, which could be a potential target of chitinase and CLPs. Heparan sulfate is part of the integral membrane proteins and involves in cell adherence and migration. Hence, to demonstrate the effect of chitinase on cancer cell progression, we selected two chitinases from Serratia marcescens, ChiB and ChiC, which function as exo- and endo-chitinase, respectively. The ChiB and ChiC proteins were produced recombinantly by cloning chiB and chiC genes from Serratia marcescens. The cell viability of the Michigan Cancer Foundation-7 (MCF-7) cells was studied using different concentrations of the purified recombinant proteins. Cell viability assay was performed using 3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide and water-soluble tetrazolium salt, and the effect of ChiB and ChiC on cell proliferation was studied by clonogenic assay. The cell migration study was analysed by wound healing, transwell migration, and invasion assays. Cell cycle analysis of propidium iodide-stained cells and cell proliferation markers such as pERK1/2, pAKT, and SMP30 were also done. It was observed that both ChiB and ChiC were able to impede cell viability, cell migration, and invasion significantly. These observations and our in silico molecular docking analysis suggest that ChiC is a potential anticancer agent and is more efficient than ChiB. Since the ChiC is able to inhibit both cancer cell proliferation and migration, it could be a potential candidate for the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Ankita Shrivastava
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Manik Goel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Md Fahim Khalid
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Geetika Sharma
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ayush Khandelwal
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Disha Sharma
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India.
| |
Collapse
|
14
|
Swiontek Brzezinska M, Shinde AH, Kaczmarek-Szczepańska B, Jankiewicz U, Urbaniak J, Boczkowski S, Zasada L, Ciesielska M, Dembińska K, Pałubicka K, Michalska-Sionkowska M. Biodegradability Study of Modified Chitosan Films with Cinnamic Acid and Ellagic Acid in Soil. Polymers (Basel) 2024; 16:574. [PMID: 38475259 DOI: 10.3390/polym16050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, natural polymer materials with bactericidal properties are extremely popular. Unfortunately, although the biopolymer material itself is biodegradable, its enrichment with bactericidal compounds may affect the efficiency of biodegradation by natural soil microflora. Therefore, the primary objective of this study was to evaluate the utility of fungi belonging to the genus Trichoderma in facilitating the degradation of chitosan film modified with cinnamic acid and ellagic acid in the soil environment. Only two strains (T.07 and T.14) used chitosan films as a source of carbon and nitrogen. However, their respiratory activity decreased with the addition of tested phenolic acids, especially cinnamic acid. Addition of Trichoderma isolates to the soil increased oxygen consumption during the biodegradation process compared with native microorganisms, especially after application of the T.07 and T.14 consortium. Isolates T.07 and T.14 showed high lipolytic (55.78 U/h and 62.21 U/h) and chitinase (43.03 U/h and 41.27 U/h) activities. Chitinase activity after incorporation of the materials into the soil was higher for samples enriched with T.07, T.14 and the consortium. The isolates were classified as Trichoderma sp. and Trichoderma koningii. Considering the outcomes derived from our findings, it is our contention that the application of Trichoderma isolates holds promise for expediting the degradation process of chitosan materials containing bactericidal compounds.
Collapse
Affiliation(s)
- Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Ambika H Shinde
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Urbaniak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Sławomir Boczkowski
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Magdalena Ciesielska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Krystyna Pałubicka
- Department of Conservation and Restoration of Paper and Leather, Nicolaus Copernicus University, ul. Sienkiewicza 30/32, 87-100 Toruń, Poland
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
15
|
Wang M, Li H, Li J, Zhang W, Zhang J. Streptomyces Strains and Their Metabolites for Biocontrol of Phytopathogens in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2077-2088. [PMID: 38230633 DOI: 10.1021/acs.jafc.3c08265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Sustainable agriculture is increasingly linked to biological pesticides as alternatives to agro-chemicals. Streptomyces species suppress plant diseases through their unique traits and numerous metabolites. Although many Streptomyces strains have been developed into commercial products, their roles in the biocontrol of phytopathogens and mechanisms of functional metabolite synthesis remain poorly understood. In this review, biocontrol of plant diseases by Streptomyces is summarized on the basis of classification of fungal and bacterial diseases and secondary metabolites produced by Streptomyces that act on phytopathogenic microorganisms are discussed. The associated non-ribosomal peptide synthetases and polyketide synthetases responsible for biosynthesis of these secondary metabolites are also investigated, and advances in fermentation of Streptomyces are described. Finally, the need to develop precise and effective biocontrol methods for plant diseases is highlighted.
Collapse
Affiliation(s)
- Mingxuan Wang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Honglin Li
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jing Li
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Wujin Zhang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jianguo Zhang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
16
|
Son DJ, Kim GG, Choo HY, Chung NJ, Choo YM. Functional Comparison of Three Chitinases from Symbiotic Bacteria of Entomopathogenic Nematodes. Toxins (Basel) 2024; 16:26. [PMID: 38251242 PMCID: PMC10821219 DOI: 10.3390/toxins16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Xenorhabdus and Photorhabdus, bacterial symbionts of entomopathogenic nematodes Steinernema and Heterorhabditis, respectively, have several biological activities including insecticidal and antimicrobial activities. Thus, XnChi, XhChi, and PtChi, chitinases of X. nematophila, X. hominickii, and P. temperata isolated from Korean indigenous EPNs S. carpocapsae GJ1-2, S. monticolum GJ11-1, and H. megidis GJ1-2 were cloned and expressed in Escherichia coli BL21 to compare their biological activities. Chitinase proteins of these bacterial symbionts purified using the Ni-NTA system showed different chitobiosidase and endochitinase activities, but N-acetylglucosamidinase activities were not shown in the measuring of chitinolytic activity through N-acetyl-D-glucosarmine oligomers. In addition, the proteins showed different insecticidal and antifungal activities. XnChi showed the highest insecticidal activity against Galleria mellonella, followed by PtChi and XhChi. In antifungal activity, XhChi showed the highest half-maximal inhibitory concentration (IC50) against Fusarium oxysporum with 0.031 mg/mL, followed by PtChi with 0.046 mg/mL, and XnChi with 0.072 mg/mL. XhChi also showed the highest IC50 against F. graminearum with 0.040 mg/mL, but XnChi was more toxic than PtChi with 0.055 mg/mL and 0.133 mg/mL, respectively. This study provides an innovative approach to the biological control of insect pests and fungal diseases of plants with the biological activity of symbiotic bacterial chitinases of entomopathogenic nematodes.
Collapse
Affiliation(s)
- Da-Jeong Son
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea;
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| | - Geun-Gon Kim
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Ho-Yul Choo
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Nam-Jun Chung
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Young-Moo Choo
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| |
Collapse
|
17
|
Mengkrog Holen M, Tuveng TR, Kent MP, Vaaje‐Kolstad G. The gastric mucosa of Atlantic salmon (Salmo salar) is abundant in highly active chitinases. FEBS Open Bio 2024; 14:23-36. [PMID: 37581908 PMCID: PMC10761930 DOI: 10.1002/2211-5463.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Atlantic salmon (Salmo salar) possesses a genome containing 10 genes encoding chitinases, yet their functional roles remain poorly understood. In other fish species, chitinases have been primarily linked to digestion, but also to other functions, as chitinase-encoding genes are transcribed in a variety of non-digestive organs. In this study, we investigated the properties of two chitinases belonging to the family 18 glycoside hydrolase group, namely Chia.3 and Chia.4, both isolated from the stomach mucosa. Chia.3 and Chia.4, exhibiting 95% sequence identity, proved inseparable using conventional chromatographic methods, necessitating their purification as a chitinase pair. Biochemical analysis revealed sustained chitinolytic activity against β-chitin for up to 24 h, spanning a pH range of 2 to 6. Moreover, subsequent in vitro investigations established that this chitinase pair efficiently degrades diverse chitin-containing substrates into chitobiose, highlighting the potential of Atlantic salmon to utilize novel chitin-containing feed sources. Analysis of the gastric matrix proteome demonstrates that the chitinases are secreted and rank among the most abundant proteins in the gastric matrix. This finding correlates well with the previously observed high transcription of the corresponding chitinase genes in Atlantic salmon stomach tissue. By shedding light on the secreted chitinases in the Atlantic salmon's stomach mucosa and elucidating their functional characteristics, this study enhances our understanding of chitinase biology in this species. Moreover, the observed capacity to effectively degrade chitin-containing materials implies the potential utilization of alternative feed sources rich in chitin, offering promising prospects for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Matilde Mengkrog Holen
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Tina Rise Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Matthew Peter Kent
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Gustav Vaaje‐Kolstad
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
18
|
Teullet S, Tilak MK, Magdeleine A, Schaub R, Weyer NM, Panaino W, Fuller A, Loughry WJ, Avenant NL, de Thoisy B, Borrel G, Delsuc F. Metagenomics uncovers dietary adaptations for chitin digestion in the gut microbiota of convergent myrmecophagous mammals. mSystems 2023; 8:e0038823. [PMID: 37650612 PMCID: PMC10654083 DOI: 10.1128/msystems.00388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Myrmecophagous mammals are specialized in the consumption of ants and/or termites. They do not share a direct common ancestor and evolved convergently in five distinct placental orders raising questions about the underlying adaptive mechanisms involved and the relative contribution of natural selection and phylogenetic constraints. Understanding how these species digest their prey can help answer these questions. More specifically, the role of their gut microbial symbionts in the digestion of the insect chitinous exoskeleton has not been investigated in all myrmecophagous orders. We generated 29 new gut metagenomes from nine myrmecophagous species to reconstruct more than 300 bacterial genomes in which we identified chitin-degrading enzymes. Studying the distribution of these chitinolytic bacteria among hosts revealed both shared and specific bacteria between ant-eating species. Overall, our results highlight the potential role of gut symbionts in the convergent dietary adaptation of myrmecophagous mammals and the evolutionary mechanisms shaping their gut microbiota.
Collapse
Affiliation(s)
- Sophie Teullet
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Marie-Ka Tilak
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Amandine Magdeleine
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Roxane Schaub
- CIC AG/Inserm 1424, Centre Hospitalier de Cayenne Andrée Rosemon, Cayenne, French Guiana, France
- Tropical Biome and immunopathology, Université de Guyane, Labex CEBA, DFR Santé, Cayenne, French Guiana, France
| | - Nora M. Weyer
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Wendy Panaino
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for African Ecology, School of Animals, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - W. J. Loughry
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA
| | - Nico L. Avenant
- National Museum and Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- Kwata NGO, Cayenne, French Guiana, France
| | - Guillaume Borrel
- Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, Paris, France
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
19
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Chitinases as key virulence factors in microbial pathogens: Understanding their role and potential as therapeutic targets. Int J Biol Macromol 2023; 249:126021. [PMID: 37506799 DOI: 10.1016/j.ijbiomac.2023.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chitinases are crucial for the survival of bacterial and fungal pathogens both during host infection and outside the host in the environment. Chitinases facilitate adhesion onto host cells, act as virulence factors during infection, and provide protection from the host immune system, making them crucial factors in the survival of microbial pathogens. Understanding the mechanisms behind chitinase action is beneficial to design novel therapeutics to control microbial infections. This review explores the role of chitinases in the pathogenesis of bacterial, fungal, and viral infections. The mechanisms underlying the action of chitinases of bacterial, fungal, and viral pathogens in host cells are thoroughly reviewed. The evolutionary relationships between chitinases of various bacterial, fungal, and viral pathogens are discussed to determine their involvement in processes, such as adhesion and host immune system modulation. Gaining a better understanding of the distribution and activity of chitinases in these microbial pathogens can help elucidate their role in the invasion and infection of host cells.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
20
|
Orozco-Mosqueda MDC, Kumar A, Babalola OO, Santoyo G. Rhizobiome Transplantation: A Novel Strategy beyond Single-Strain/Consortium Inoculation for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:3226. [PMID: 37765390 PMCID: PMC10535606 DOI: 10.3390/plants12183226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
The growing human population has a greater demand for food; however, the care and preservation of nature as well as its resources must be considered when fulfilling this demand. An alternative employed in recent decades is the use and application of microbial inoculants, either individually or in consortium. The transplantation of rhizospheric microbiomes (rhizobiome) recently emerged as an additional proposal to protect crops from pathogens. In this review, rhizobiome transplantation was analyzed as an ecological alternative for increasing plant protection and crop production. The differences between single-strain/species inoculation and dual or consortium application were compared. Furthermore, the feasibility of the transplantation of other associated micro-communities, including phyllosphere and endosphere microbiomes, were evaluated. The current and future challenges surrounding rhizobiome transplantation were additionally discussed. In conclusion, rhizobiome transplantation emerges as an attractive alternative that goes beyond single/group inoculation of microbial agents; however, there is still a long way ahead before it can be applied in large-scale agriculture.
Collapse
Affiliation(s)
- Ma. del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacan, Mexico
| |
Collapse
|
21
|
Derikvand F, Bazgir E, El Jarroudi M, Darvishnia M, Mirzaei Najafgholi H, Laasli SE, Lahlali R. Unleashing the Potential of Bacterial Isolates from Apple Tree Rhizosphere for Biocontrol of Monilinia laxa: A Promising Approach for Combatting Brown Rot Disease. J Fungi (Basel) 2023; 9:828. [PMID: 37623599 PMCID: PMC10455449 DOI: 10.3390/jof9080828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Monilinia laxa, a notorious fungal pathogen responsible for the devastating brown rot disease afflicting apples, wreaks havoc in both orchards and storage facilities, precipitating substantial economic losses. Currently, chemical methods represent the primary means of controlling this pathogen in warehouses. However, this study sought to explore an alternative approach by harnessing the biocontrol potential of bacterial isolates against brown rot in apple trees. A total of 72 bacterial isolates were successfully obtained from the apple tree rhizosphere and subjected to initial screening via co-cultivation with the pathogen. Notably, eight bacterial isolates demonstrated remarkable efficacy, reducing the mycelial growth of the pathogen from 68.75 to 9.25%. These isolates were subsequently characterized based on phenotypic traits, biochemical properties, and 16S rRNA gene amplification. Furthermore, we investigated these isolates' production capacity with respect to two enzymes, namely, protease and chitinase, and evaluated their efficacy in disease control. Through phenotypic, biochemical, and 16S rRNA gene-sequencing analyses, the bacterial isolates were identified as Serratia marcescens, Bacillus cereus, Bacillus sp., Staphylococcus succinus, and Pseudomonas baetica. In dual culture assays incorporating M. laxa, S. marcescens and S. succinus exhibited the most potent degree of mycelial growth inhibition, achieving 68.75 and 9.25% reductions, respectively. All the bacterial isolates displayed significant chitinase and protease activities. Quantitative assessment of chitinase activity revealed the highest levels in strains AP5 and AP13, with values of 1.47 and 1.36 U/mL, respectively. Similarly, AP13 and AP6 exhibited the highest protease activity, with maximal enzyme production levels reaching 1.3 and 1.2 U/mL, respectively. In apple disease control assays, S. marcescens and S. succinus strains exhibited disease severity values of 12.34% and 61.66% (DS), respectively, highlighting their contrasting efficacy in mitigating disease infecting apple fruits. These findings underscore the immense potential of the selected bacterial strains with regard to serving as biocontrol agents for combatting brown rot disease in apple trees, thus paving the way for sustainable and eco-friendly alternatives to chemical interventions.
Collapse
Affiliation(s)
- Fatemeh Derikvand
- Plant Pathology, Faculty of Agriculture, Lorestan University, Lorestan, Khorramabad 68151-44316, Iran; (F.D.); (M.D.); (H.M.N.)
| | - Eidi Bazgir
- Plant Pathology, Faculty of Agriculture, Lorestan University, Lorestan, Khorramabad 68151-44316, Iran; (F.D.); (M.D.); (H.M.N.)
| | - Moussa El Jarroudi
- Water, Environment and Development Unit, Department of Environmental Sciences and Management, UR SPHERES Research Unit, University of Liège, 6700 Arlon, Belgium;
| | - Mostafa Darvishnia
- Plant Pathology, Faculty of Agriculture, Lorestan University, Lorestan, Khorramabad 68151-44316, Iran; (F.D.); (M.D.); (H.M.N.)
| | - Hossein Mirzaei Najafgholi
- Plant Pathology, Faculty of Agriculture, Lorestan University, Lorestan, Khorramabad 68151-44316, Iran; (F.D.); (M.D.); (H.M.N.)
| | - Salah-Eddine Laasli
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco;
- Plant Pathology Laboratory, AgroBioSciences, College of Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
22
|
Villanueva ME, Salinas SR, Vico RV, Bianco ID. Surface characterization and interfacial activity of chitinase chi18-5 against chitosan in langmuir monolayers. Colloids Surf B Biointerfaces 2023; 227:113337. [PMID: 37167692 DOI: 10.1016/j.colsurfb.2023.113337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
One of the challenges for producing active chitinase formulations relies on the gap between the laboratory tests and the biological scenarios where the enzyme will perform its function. In this work, we have employed different Langmuir monolayer arrays to evaluate the interfacial behavior of a recently purified recombinant chitinase, Chi18-5. We have demonstrated that two conformations exist for the chitinase at pH values close to its pI, showing very distinct structural properties at the air/aqueous interface. Enzyme activity was assessed by implementing different kinetic approaches and using a chitosan-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) mixed film as organized substrate model membrane. Combining these strategies, we demonstrated that better catalytic efficiencies can be obtained for Chi18-5 at pH 5. Moreover, the chitinase activity at the air/aqueous interface can be tuned by introducing in situ pH modifications over the surrounding milieu. We also studied the changes in the topography at the mesoscale level using Brewster Angle Microscopy (BAM). We found that Chi18-5 segregated onto the chitosan domains of the membrane, showing differences in homogeneity depending on the pH imposed. Alternatively, pure Chi18-5 was tested for immobilization onto a hydrophilic activated solid support using the Langmuir-Blodgett technique. Atomic Force Microscopy (AFM) analyses showed successfully stabilization and preservation of molecular features attributed to the pH at which the enzyme deposition was performed.
Collapse
Affiliation(s)
- M E Villanueva
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - S R Salinas
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), CONICET, Córdoba, Argentina
| | - R V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-UNC-CONICET), Departamento de Química Orgánica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - I D Bianco
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), CONICET, Córdoba, Argentina; Universidad Nacional de La Rioja, Departamento de Ciencias Exactas, Físicas y Naturales, La Rioja, Argentina.
| |
Collapse
|
23
|
Dos Santos Fonseca J, Altoé LSC, de Carvalho LM, de Freitas Soares FE, Braga FR, de Araújo JV. Nematophagous fungus Pochonia chlamydosporia to control parasitic diseases in animals. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12525-0. [PMID: 37148335 DOI: 10.1007/s00253-023-12525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
The control of gastrointestinal parasites in animals has become more challenging every year due to parasite resistance to conventional chemical control, which has been observed worldwide. Ovicidal or opportunistic fungi do not form traps to capture larvae. Their mechanism of action is based on a mechanical/enzymatic process, which enables the penetration of their hyphae into helminth eggs, with subsequent internal colonization of these. The biological control with the Pochonia chlamydosporia fungus has been very promising in the treatment of environments and prevention. When used in intermediate hosts of Schistosoma mansoni, the fungus promoted a high percentage decrease in the population density of aquatic snails. Secondary metabolites were also found in P. chlamydosporia. Many of these compounds can be used by the chemical industry in the direction of a commercial product. This review aims to provide a description of P. chlamydosporia and its possible use as a biological parasitic controller. The ovicidal fungus P. chlamydosporia is effective in the control of parasites and goes far beyond the control of verminosis, intermediate hosts, and coccidia. It can also be used not only as biological controllers in natura but also as their metabolites and molecules can have chemical action against these organisms. KEY POINTS: • The use of the fungus P. chlamydosporia is promising in the control of helminths. • Metabolites and molecules of P. chlamydosporia may have chemical action in control.
Collapse
Affiliation(s)
- Júlia Dos Santos Fonseca
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| | | | | | | | - Fabio Ribeiro Braga
- Laboratory of Experimental Parasitology and Biological Control, Vila Velha University, Vila Velha, ES, Brazil
| | | |
Collapse
|
24
|
Vandepas LE, Tassia MG, Halanych KM, Amemiya CT. Unexpected Distribution of Chitin and Chitin Synthase across Soft-Bodied Cnidarians. Biomolecules 2023; 13:biom13050777. [PMID: 37238647 DOI: 10.3390/biom13050777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Cnidarians are commonly recognized as sea jellies, corals, or complex colonies such as the Portuguese man-of-war. While some cnidarians possess rigid internal calcareous skeletons (e.g., corals), many are soft-bodied. Intriguingly, genes coding for the chitin-biosynthetic enzyme, chitin synthase (CHS), were recently identified in the model anemone Nematostella vectensis, a species lacking hard structures. Here we report the prevalence and diversity of CHS across Cnidaria and show that cnidarian chitin synthase genes display diverse protein domain organizations. We found that CHS is expressed in cnidarian species and/or developmental stages with no reported chitinous or rigid morphological structures. Chitin affinity histochemistry indicates that chitin is present in soft tissues of some scyphozoan and hydrozoan medusae. To further elucidate the biology of chitin in cnidarian soft tissues, we focused on CHS expression in N. vectensis. Spatial expression data show that three CHS orthologs are differentially expressed in Nematostella embryos and larvae during development, suggesting that chitin has an integral role in the biology of this species. Understanding how a non-bilaterian lineage such as Cnidaria employs chitin may provide new insight into hitherto unknown functions of polysaccharides in animals, as well as their role in the evolution of biological novelty.
Collapse
Affiliation(s)
- Lauren E Vandepas
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Michael G Tassia
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth M Halanych
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Departments of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Chris T Amemiya
- Department of Molecular and Cell Biology, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|
25
|
Trinca V, Carli S, Uliana JVC, Garbelotti CV, Mendes da Silva M, Kunes V, Meleiro LP, Brancini GTP, Menzel F, Andrioli LPM, Torres TT, Ward RJ, Monesi N. Biocatalytic potential of Pseudolycoriella CAZymes (Sciaroidea, Diptera) in degrading plant and fungal cell wall polysaccharides. iScience 2023; 26:106449. [PMID: 37020966 PMCID: PMC10068558 DOI: 10.1016/j.isci.2023.106449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Soil biota has a crucial impact on soil ecology, global climate changes, and effective crop management and studying the diverse ecological roles of dipteran larvae deepens the understanding of soil food webs. A multi-omics study of Pseudolycoriella hygida comb. nov. (Diptera: Sciaroidea: Sciaridae) aimed to characterize carbohydrate-active enzymes (CAZymes) for litter degradation in this species. Manual curation of 17,881 predicted proteins in the Psl. hygida genome identified 137 secreted CAZymes, of which 33 are present in the saliva proteome, and broadly confirmed by saliva CAZyme catalytic profiling against plant cell wall polysaccharides and pNP-glycosyl substrates. Comparisons with two other sciarid species and the outgroup Lucilia cuprina (Diptera: Calliphoridae) identified 42 CAZyme families defining a sciarid CAZyme profile. The litter-degrading potential of sciarids corroborates their significant role as decomposers, yields insights to the evolution of insect feeding habits, and highlights the importance of insects as a source of biotechnologically relevant enzymes.
Collapse
Affiliation(s)
- Vitor Trinca
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Sibeli Carli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - João Vitor Cardoso Uliana
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Carolina Victal Garbelotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Mariana Mendes da Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Vitor Kunes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Luana Parras Meleiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Guilherme Thomaz Pereira Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Frank Menzel
- Senckenberg Deutsches Entomologisches Institut (SDEI), 15374 Müncheberg, Germany
| | - Luiz Paulo Moura Andrioli
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, São Paulo 03828-000, Brazil
| | - Tatiana Teixeira Torres
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
- Corresponding author
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- Corresponding author
| |
Collapse
|
26
|
Roy S, Vivoli Vega M, Ames JR, Britten N, Kent A, Evans K, Isupov MN, Harmer NJ. The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding. J Biol Chem 2023; 299:103033. [PMID: 36806680 PMCID: PMC10031466 DOI: 10.1016/j.jbc.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.
Collapse
Affiliation(s)
| | | | | | | | - Amy Kent
- Living Systems Institute, Exeter, UK
| | - Kim Evans
- Living Systems Institute, Exeter, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Exeter, UK
| | | |
Collapse
|
27
|
Renaud S, Dussutour A, Daboussi F, Pompon D. Characterization of chitinases from the GH18 gene family in the myxomycete Physarum polycephalum. Biochim Biophys Acta Gen Subj 2023; 1867:130343. [PMID: 36933625 DOI: 10.1016/j.bbagen.2023.130343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Physarum polycephalum is an unusual macroscopic myxomycete expressing a large range of glycosyl hydrolases. Among them, enzymes from the GH18 family can hydrolyze chitin, an important structural component of the cell walls in fungi and in the exoskeleton of insects and crustaceans. METHODS Low stringency sequence signature search in transcriptomes was used to identify GH18 sequences related to chitinases. Identified sequences were expressed in E. coli and corresponding structures modelled. Synthetic substrates and in some cases colloidal chitin were used to characterize activities. RESULTS Catalytically functional hits were sorted and their predicted structures compared. All share the TIM barrel structure of the GH18 chitinase catalytic domain, optionally fused to binding motifs, such as CBM50, CBM18, and CBM14, involved in sugar recognition. Assessment of the enzymatic activities following deletion of the C-terminal CBM14 domain of the most active clone evidenced a significant contribution of this extension to the chitinase activity. A classification based on module organization, functional and structural criteria of characterized enzymes was proposed. CONCLUSIONS Physarum polycephalum sequences encompassing a chitinase like GH18 signature share a modular structure involving a structurally conserved catalytic TIM barrels decorated or not by a chitin insertion domain and optionally surrounded by additional sugar binding domains. One of them plays a clear role in enhancing activities toward natural chitin. GENERAL SIGNIFICANCE Myxomycete enzymes are currently poorly characterized and constitute a potential source for new catalysts. Among them glycosyl hydrolases have a strong potential for valorization of industrial waste as well as in therapeutic field.
Collapse
Affiliation(s)
| | - Audrey Dussutour
- Centre de Recherche en Cognition Animale, UMR 5169 CNRS, Université Toulouse III, Toulouse, France
| | | | - Denis Pompon
- Toulouse Biotechnology Institute, UMR CNRS / INRAE / INSA, Université de Toulouse, Toulouse, France.
| |
Collapse
|
28
|
Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 2023; 313:120851. [PMID: 37182951 DOI: 10.1016/j.carbpol.2023.120851] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
|
29
|
Yu G, Liu G, Liu T, Fink EH, Esker AR. Activities of Family 18 Chitinases on Amorphous Regenerated Chitin Thin Films and Dissolved Chitin Oligosaccharides: Comparison with Family 19 Chitinases. Biomacromolecules 2023; 24:566-575. [PMID: 36715568 DOI: 10.1021/acs.biomac.2c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in mass and viscoelasticity of chitin layers in fungal cell walls during chitinase attack are vital for understanding bacterial invasion of and human defense against fungi. In this work, regenerated chitin (RChitin) thin films mimicked the fungal chitin layers and facilitated studies of degradation by family 18 chitinases from Trichoderma viride (T. viride) and family 19 chitinases from Streptomyces griseus (S. griseus) that possessed chitin-binding domains (CBDs) that were absent in the family 18 chitinases. Degradation was monitored via a quartz crystal microbalance with dissipation monitoring (QCM-D) in real time at various pH and temperatures. Compared to substrates of colloidal chitin or dissolved chitin derivatives and analogues, the degradation of RChitin films was deeply affected by chitinase adsorption. While the family 18 chitinases had greater solution activity on chitin oligosaccharides, the family 19 chitinases exhibited greater surface activity on RChitin films, illustrating the importance of CBDs for insoluble substrates.
Collapse
Affiliation(s)
- Guoqiang Yu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Gehui Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Tianyi Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Ethan H Fink
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Alan R Esker
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia24061, United States
| |
Collapse
|
30
|
Soni T, Zhuang M, Kumar M, Balan V, Ubanwa B, Vivekanand V, Pareek N. Multifaceted production strategies and applications of glucosamine: a comprehensive review. Crit Rev Biotechnol 2023; 43:100-120. [PMID: 34923890 DOI: 10.1080/07388551.2021.2003750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.
Collapse
Affiliation(s)
- Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Mengchuan Zhuang
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
31
|
Archaea as a Model System for Molecular Biology and Biotechnology. Biomolecules 2023; 13:biom13010114. [PMID: 36671499 PMCID: PMC9855744 DOI: 10.3390/biom13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Archaea represents the third domain of life, displaying a closer relationship with eukaryotes than bacteria. These microorganisms are valuable model systems for molecular biology and biotechnology. In fact, nowadays, methanogens, halophiles, thermophilic euryarchaeota, and crenarchaeota are the four groups of archaea for which genetic systems have been well established, making them suitable as model systems and allowing for the increasing study of archaeal genes' functions. Furthermore, thermophiles are used to explore several aspects of archaeal biology, such as stress responses, DNA replication and repair, transcription, translation and its regulation mechanisms, CRISPR systems, and carbon and energy metabolism. Extremophilic archaea also represent a valuable source of new biomolecules for biological and biotechnological applications, and there is growing interest in the development of engineered strains. In this review, we report on some of the most important aspects of the use of archaea as a model system for genetic evolution, the development of genetic tools, and their application for the elucidation of the basal molecular mechanisms in this domain of life. Furthermore, an overview on the discovery of new enzymes of biotechnological interest from archaea thriving in extreme environments is reported.
Collapse
|
32
|
Niu S, Zhu Y, Geng R, Luo M, Zuo H, Yang L, Weng S, He J, Xu X. A novel chitinase Chi6 with immunosuppressive activity promotes white spot syndrome virus (WSSV) infection in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108450. [PMID: 36442705 DOI: 10.1016/j.fsi.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Chitinases, a group of glycosylase hydrolases that can hydrolyze chitin, are involved in immune regulation in animals. White spot syndrome virus (WSSV) causes huge losses to crustacean aquaculture every year. We identified a novel chitinase Chi6 from Pacific white shrimp Penaeus vannamei, which contains a catalytic domain but no chitin-binding domain. The Chi6 expression was regulated by multiple immune signaling pathways and increased after immune stimulations. Silencing of Chi6 by RNAi in vivo did not affect Vibrio parahaemolyticus infection, but significantly increased the survival rate of WSSV-infected shrimp. The expression of multiple WSSV immediate early and structural genes was also decreased upon Chi6 silencing. The recombinant Chi6 protein showed no effect on bacterial growth but could attenuate shrimp hemocyte phagocytosis. The mRNA levels of several key elements and downstream genes of the MAPK and Dorsal pathways in Chi6-silenced shrimp were significantly up-regulated, suggesting an inhibitory effect of Chi6 on humoral immune response. Moreover, Chi6 enhanced the regulatory effect of Dorsal on the expression of WSSV ie1 gene. Therefore, Chi6 promotes WSSV infection through immunosuppression and regulation of WSSV gene expression. Targeting Chi6 could be a potential strategy for controlling WSSV disease in shrimp farming.
Collapse
Affiliation(s)
- Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Yuening Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Mengting Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
33
|
Kumar NP, Nancy A, Viswanathan V, Sivakumar S, Thiruvengadam K, Ahamed SF, Hissar S, Kornfeld H, Babu S. Chitinase and indoleamine 2, 3-dioxygenase are prognostic biomarkers for unfavorable treatment outcomes in pulmonary tuberculosis. Front Immunol 2023; 14:1093640. [PMID: 36814914 PMCID: PMC9939892 DOI: 10.3389/fimmu.2023.1093640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction Chitinase, Indoleamine 2,3-dioxygenesae-1 (IDO-1) and heme oxygenase-1 (HO-1) are candidate diagnostic biomarkers for tuberculosis (TB). Whether these immune markers could also serve as predictive biomarkers of unfavorable treatment outcomes in pulmonary TB (PTB) is not known. Methods A cohort of newly diagnosed, sputum culture-positive adults with drug-sensitive PTB were recruited. Plasma chitinase protein, IDO protein and HO-1 levels measured before treatment initiation were compared between 68 cases with unfavorable outcomes (treatment failure, death, or recurrence) and 108 control individuals who had recurrence-free cure. Results Plasma chitinase and IDO protein levels but not HO-1 levels were lower in cases compared to controls. The low chitinase and IDO protein levels were associated with increased risk of unfavourable outcomes in unadjusted and adjusted analyses. Receiver operating characteristic analysis revealed that chitinase and IDO proteins exhibited high sensitivity and specificity in differentiating cases vs controls as well as in differentiating treatment failure vs controls and recurrence vs controls, respectively. Classification and regression trees (CART) were used to determine threshold values for these two immune markers. Discussion Our study revealed a plasma chitinase and IDO protein signature that may be used as a tool for predicting adverse treatment outcomes in PTB.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- Department of Immunology, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Arul Nancy
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis (NIRT), International Center for Excellence in Research, Chennai, India
| | - Vijay Viswanathan
- Diabetology, Prof. M. Viswanathan Diabetes Research Center, Chennai, India
| | - Shanmugam Sivakumar
- Department of Bacteriology, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Kannan Thiruvengadam
- Epidemiology Statistics, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Shaik Fayaz Ahamed
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis (NIRT), International Center for Excellence in Research, Chennai, India
| | - Syed Hissar
- Clinical Research, National Institute for Research in Tuberculosis, Indian Council of Medical Research (ICMR), Chennai, India
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Subash Babu
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis (NIRT), International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
34
|
Micocci KC, Moreira AC, Sanchez AD, Pettinatti JL, Rocha MC, Dionizio BS, Correa KCS, Malavazi I, Wouters FC, Bueno OC, Souza DHF. Identification, cloning, and characterization of a novel chitinase from leaf-cutting ant Atta sexdens: An enzyme with antifungal and insecticidal activity. Biochim Biophys Acta Gen Subj 2023; 1867:130249. [PMID: 36183893 DOI: 10.1016/j.bbagen.2022.130249] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Chitinases are enzymes that degrade chitin, a polysaccharide found in the exoskeleton of insects, fungi, yeast, and internal structures of other vertebrates. Although chitinases isolated from bacteria, fungi and plants have been reported to have antifungal or insecticide activities, chitinases from insects with these activities have been seldomly reported. In this study, a leaf-cutting ant Atta sexdens DNA fragment containing 1623 base pairs was amplified and cloned into a vector to express the protein (AsChtII-C4B1) in Pichia pastoris. AsChtII-C4B1, which contains one catalytic domain and one carbohydrate-binding module (CBM), was secreted to the extracellular medium and purified by ammonium sulfate precipitation followed by nickel column chromatography. AsChtII-C4B1 showed maximum activity at pH 5.0 and 55 °C when tested against colloidal chitin substrate and maintained >60% of its maximal activity in different temperatures during 48 h. AsChtII-C4B1 decreased the survival of Spodoptera frugiperda larvae fed with an artificial diet that contained AsChtII-C4B1. Our results have indicated that AsChtII-C4B1 has a higher effect on larva-pupa than larva-larva molts. AsChtII-C4B1 activity targets more specifically the growth of filamentous fungus than yeast. This work describes, for the first time, the obtaining a recombinant chitinase from ants and the characterization of its insecticidal and antifungal activities.
Collapse
Affiliation(s)
- Kelli C Micocci
- Center for the Study of Social Insects, São Paulo State University "Julio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Ariele C Moreira
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, Brazil
| | - Amanda D Sanchez
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Jessica L Pettinatti
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Marina C Rocha
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Bruna S Dionizio
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Katia C S Correa
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Iran Malavazi
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Felipe C Wouters
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Odair C Bueno
- Center for the Study of Social Insects, São Paulo State University "Julio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Dulce Helena F Souza
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
35
|
Dahiya D, Pilli A, Chirra PRR, Sreeramula V, Mogili NV, Ayothiraman S. Morphological and structural characterization of chitin as a substrate for the screening, production, and molecular characterization of chitinase by Bacillus velezensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86550-86561. [PMID: 35895172 DOI: 10.1007/s11356-022-22166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The processing of shellfishery industrial wastes is gaining much interest in recent times due to the presence of valuable components. Chitin is one of the valuable components and is insoluble in most common solvents including water. In this study, a novel gram-positive bacterial strain capable of solubilizing chitin was screened from a prawn shell dumping yard. The chitinolytic activity of the isolated strain was observed through the zone of hydrolysis plate assay. The hyper-producing isolate was identified as Bacillus velezensis through the 16S rRNA sequencing technique. The structural and morphological characterization of raw and colloidal chitin preparation was carried out using FTIR, XRD, and SEM analysis. The residual protein and mineral content, degree of polymerization, and degree of acetylation were reported for both raw and colloidal chitin preparations. There was a linear increase in the chitinase activity with an increase in the colloidal chitin concentration. The maximum activity of chitinase was observed as 38.98 U/mL for the initial colloidal chitin concentration of 1.5%. Supplement of additional carbon sources, viz., glucose and maltose, did not improve the production of chitinase and resulted in a diauxic growth pattern. The maximum chitinase activity was observed to be 33.10 and 30.28 U/mL in the colloidal chitin-containing medium with and without glucose as a secondary carbon source, respectively. Interestingly, the addition of complex nitrogen sources has increased the production of chitinase. A 1.95- and 2.14-fold increase in the enzyme activity was observed with peptone and yeast extract, respectively. The chitinase was confirmed using SDS-PAGE, native PAGE, and zymograms. The optimum pH and temperature for chitinase enzyme activity were found to be 7.0 and 44 °C, respectively.
Collapse
Affiliation(s)
- Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Akhil Pilli
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Pratap Raja Reddy Chirra
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Vinay Sreeramula
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Nitish Venkateswarlu Mogili
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101.
| |
Collapse
|
36
|
Bacterial chitinases: genetics, engineering and applications. World J Microbiol Biotechnol 2022; 38:252. [DOI: 10.1007/s11274-022-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
37
|
Debnath D, Samal I, Mohapatra C, Routray S, Kesawat MS, Labanya R. Chitosan: An Autocidal Molecule of Plant Pathogenic Fungus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111908. [PMID: 36431043 PMCID: PMC9694207 DOI: 10.3390/life12111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
The rise in the world's food demand with the increasing population threatens the existence of civilization with two equally valuable concerns: increase in global food production and sustainability in the ecosystem. Furthermore, biotic and abiotic stresses are adversely affecting agricultural production. Among them, losses caused by insect pests and pathogens have been shown to be more destructive to agricultural production. However, for winning the battle against the abundance of insect pests and pathogens and their nature of resistance development, the team of researchers is searching for an alternative way to minimize losses caused by them. Chitosan, a natural biopolymer, coupled with a proper application method and effective dose could be an integral part of sustainable alternatives in the safer agricultural sector. In this review, we have integrated the insight knowledge of chitin-chitosan interaction, successful and efficient use of chitosan, recommended and practical methods of use with well-defined doses, and last but not least the dual but contrast mode of action of the chitosan in hosts and as well as in pathogens.
Collapse
Affiliation(s)
- Debanjana Debnath
- Department of Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Chinmayee Mohapatra
- Department of Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Snehasish Routray
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Rini Labanya
- Department of Soil Science & Agricultural Chemistry, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
- Correspondence:
| |
Collapse
|
38
|
Aktas C, Ruzgar D, Gurkok S, Gormez A. Purification and characterization of Stenotrophomonas maltophilia chitinase with antifungal and insecticidal properties. Prep Biochem Biotechnol 2022:1-10. [PMID: 36369794 DOI: 10.1080/10826068.2022.2142942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study aimed to determine the ability of bacteria to produce the chitinase enzyme, purify, and characterize the enzyme from the isolate with the best activity, and determine the use of this purified enzyme as a biocontrol agent. The chitinolytic bacterium was identified as Stenotrophomonas maltophilia. The chitinase enzyme was purified 1.4 times at a 30% ammonium sulfate concentration with a yield of 40.7%. Following partial purification, the enzyme was purified by ion-exchange chromatography using HiPrep Q XL 16/10 column and HiPrep™ 26/10 desalting column with 25.34% and 18.12% yields, respectively. It was calculated that the purified enzyme had a molecular weight of 52 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum activity of the enzyme was determined at 50 °C and pH 7.0. Enzyme activity was most induced by Fe2+, while it was most inhibited by Zn2+ at 5 mM concentration. Km and Vmax values of the enzyme for colloidal chitin were calculated as 1.6419 mg/mL and 16.129 U/mg, respectively. The purified chitinase was used as a biocontrol agent against the fungus Fusarium oxysporum and potato beetle Leptinotarsa decemlineata. The enzyme was shown to be effective in reducing the growth of fungus and causing disruption of the chitin structure of potato beetle.
Collapse
Affiliation(s)
- Cigdem Aktas
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Damla Ruzgar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Sumeyra Gurkok
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Arzu Gormez
- Department of Biology, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
39
|
Antifungal Chitinase Production by Bacillus paramycoides B26 using Squid Pen Powder as a Carbon Source. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study aimed to optimize the medium compositions and cultural conditions for improved chitinase production by a potential strain of Bacillus isolated from the marine environment and determine the antifungal activity of its chitinase against plant pathogenic fungi. Five potential isolates were cultured for chitinase production by submerged fermentation using colloidal chitin in a liquid medium. In this study, chitinase activity was determined by measuring reducing sugars, which were determined by the 3,5-dinitrosalicylic acid (DNS) assay. The most potential isolate, B26, showed similarity to Bacillus paramycoides based on the 16S rRNA gene sequence. The maximum chitinase production was achieved at 6.52±0.02 U/mL after 72 h of incubation in a medium containing 2% squid pen powder, supplemented with 0.5% sodium nitrate and 2% NaCl, with an initial pH of 7. It was observed that the optimization of cultural conditions resulted in 2.83 times higher chitinase production than an unoptimized medium. The antifungal activity of crude chitinase against phytopathogenic fungi was evaluated by a well-diffusion method. The chitinase of B. paramycoides B26 effectively inhibited the growth of Fusarium solani TISTR 3436 (83.4%) and Penicillium chrysogenum TISTR 3554 (80.12%).
Collapse
|
40
|
Yang L, Chen M, Han X, Liu C, Wang C, Zhang G, Yang D, Zhao S. Discovery of ZQ- 8, a Novel Starting Point To Develop Inhibitors against the Potent Molecular Target Chitinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11314-11323. [PMID: 36054909 DOI: 10.1021/acs.jafc.2c04693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In a previous study, we found that compound ZQ-8 had a strong impact on the growth and development of Helicoverpa armigera. However, the mechanism and target of ZQ-8 are not clear, which makes it difficult to optimize the structure of this compound. In this study, the preliminary mode of action of ZQ-8 was studied through RNA sequencing and molecular docking. We also analyzed the underlying mechanisms from the aspect of ZQ-8 with respect to chitinase. The results showed that ZQ-8 mainly affects chitinase activity in the epidermis of H. armigera. ZQ-8 can competitively combine with chitinase 2 and endochitinase to form a relatively stable complex of ZQ-8, resulting in the failure of chitinase to degrade chitin. These findings indicate that the epidermis of H. armigera was identified as the action site of ZQ-8 and chitinase 2 and endochitinase were potential targets.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, People's Republic of China
| | - Minghui Chen
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, People's Republic of China
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, People's Republic of China
| | - Caiyue Liu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, People's Republic of China
| | - Chunjuan Wang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, People's Republic of China
| | - Guoqiang Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, People's Republic of China
| | - Desong Yang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, People's Republic of China
| | - Sifeng Zhao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, People's Republic of China
| |
Collapse
|
41
|
Chung D, Kwon YM, Lim JY, Bae SS, Choi G, Lee DS. Characterization of Chitinolytic and Antifungal Activities in Marine-Derived Trichoderma bissettii Strains. MYCOBIOLOGY 2022; 50:244-253. [PMID: 36158047 PMCID: PMC9467547 DOI: 10.1080/12298093.2022.2105509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 05/30/2023]
Abstract
Trichoderma fungi have been intensively studied for mycoparasitism, and the latter is closely related to their cell-wall degrading enzymes including chitinase. Here, we studied marine-derived Trichoderma spp., isolated from distinct sources and locations, for chitinolytic and antifungal activity. Based on morphological and phylogenetic analyses, two strains designated GJ-Sp1 and TOP-Co8 (isolated from a marine sponge and a marine alga, respectively) were identified as Trichoderma bissettii. This species has recently been identified as a closely related species to Trichoderma longibrachiatum. The extracellular crude enzymes of GJ-Sp1 and TOP-Co8 showed activities of chitobiosidase and β-N-acetylglucosaminidase (exochitinase) and chitotriosidase (endochitinase). The optimum chitinolytic activity of the crude enzymes was observed at 50 °C, pH 5.0, 0-0.5% NaCl concentrations, and the activities were stable at temperatures ranging from 10 to 40 °C for 2 h. Moreover, the crude enzymes showed inhibitory activity against hyphal growth of two filamentous fungi Aspergillus flavus and Aspergillus niger. To the best of our knowledge, this is the first report of the chitinolytic and antifungal activity of T. bissettii.
Collapse
Affiliation(s)
- Dawoon Chung
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Yong Min Kwon
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Ji Yeon Lim
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Seung Sub Bae
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Grace Choi
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| |
Collapse
|
42
|
Thomas R, Fukamizo T, Suginta W. Bioeconomic production of high-quality chitobiose from chitin food wastes using an in-house chitinase from Vibrio campbellii. BIORESOUR BIOPROCESS 2022; 9:86. [PMID: 38647850 PMCID: PMC10991452 DOI: 10.1186/s40643-022-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Marine Vibrio species are natural degraders of chitin and usually secrete high levels of chitinolytic enzymes to digest recalcitrant chitin to chitooligosaccharides. This study used an endochitinase (VhChiA) from Vibrio campbellii to produce high-quality chitobiose from crustacean chitins. The enzyme was shown to be fully active and stable over 24 h when BSA was used as an additive. When different chitin sources were tested, VhChiA preferentially digested shrimp and squid (α) chitins compared to crab (β) chitin and did not utilize non-chitin substrates. The overall yields of chitobiose obtained from small-scale production using a single-step reaction was 96% from shrimp, and 91% from squid pen and crab-shell chitins. Larger-scale production yielded 200 mg of chitobiose, with > 99% purity after a desalting and purification step using preparative HPLC. In conclusion, we report the employment of an in-house produced chitinase as an effective biocatalyst to rapidly convert chitin food wastes to chitobiose, in a quantity and quality suitable for use in research and commercial purposes. Chitobiose production by this economical and eco-friendly approach can be easily scaled up to obtain multi-gram quantities of chitobiose for chemo-enzymic synthesis of rare chitooligosaccharide derivatives and long chain chitooligosaccharides, as well as preparation of sugar-based functionalized nanomaterials.
Collapse
Affiliation(s)
- Reeba Thomas
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan District, Rayong, 21210, Thailand
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan District, Rayong, 21210, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan District, Rayong, 21210, Thailand.
| |
Collapse
|
43
|
Eason J, Mason L. Characterization of Microbial Communities from the Alimentary Canal of Typhaea stercorea (L.) (Coleoptera: Mycetophagidae). INSECTS 2022; 13:insects13080685. [PMID: 36005310 PMCID: PMC9408915 DOI: 10.3390/insects13080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Hairy fungus beetle, Typhaea stercorea, is a secondary post-harvest pest of stored grains that thrives by feeding on mytoxigenic fungi. Bacterial communities residing in the alimentary canal of most insects contribute to their host’s development. While there are many examples, little is known about the role of bacterial communities in the alimentary canal of T. stercorea. The objectives of this study were to (1) characterize the microbial communities residing in T. stercorea and (2) compare the microbial compositions of field-collected and laboratory-reared populations. In this study, we were able to identify bacterial communities that possess mycolytic properties and track mark changes in the microbiota profiles associated with development. The genus Pseudomonas was enriched in T. stercorea larvae compared to adults. Furthermore, field-collected T. sterocrea adults had a lower species richness than both larva and adult laboratory-reared T. sterocrea. Moreover, the gut microbial compositions of field-collected and laboratory-reared populations were vastly different. Overall, our results suggest that the environment and physiology can shift the microbial composition in the alimentary canal of T. stercorea. Abstract The gut microbiomes of symbiotic insects typically mediate essential functions lacking in their hosts. Here, we describe the composition of microbes residing in the alimentary canal of the hairy fungus beetle, Typhaea stercorea (L.), at various life stages. This beetle is a post-harvest pest of stored grains that feeds on fungi and serves as a vector of mycotoxigenic fungi. It has been reported that the bacterial communities found in most insects’ alimentary canals contribute to nutrition, immune defenses, and protection from pathogens. Hence, bacterial symbionts may play a key role in the digestive system of T. stercorea. Using 16S rRNA amplicon sequencing, we examined the microbiota of T. stercorea. We found no difference in bacterial species richness between larvae and adults, but there were compositional differences across life stages (PERMANOVA:pseudo-F(8,2) = 8.22; p = 0.026). The three most abundant bacteria found in the alimentary canal of the larvae and adults included Pseudomonas (47.67% and 0.21%, respectively), an unspecified genus of the Enterobacteriaceae family (46.60 % and 90.97%, respectively), and Enterobacter (3.89% and 5.75%, respectively). Furthermore, Pseudomonas spp. are the predominant bacteria in the larval stage. Our data indicated that field-collected T. stercorea tended to have lower species richness than laboratory-reared beetles (Shannon: H = 5.72; p = 0.057). Furthermore, the microbial communities of laboratory-reared insects resembled one another, whereas field-collected adults exhibited variability (PERMANOVA:pseudo-F(10,3) = 4.41; p = 0.006). We provide evidence that the environment and physiology can shift the microbial composition in the alimentary canal of T. stercorea.
Collapse
|
44
|
Kinetic, Thermodynamic and Bio-applicable Studies on Aspergillus niger Mk981235 Chitinase. Catal Letters 2022. [DOI: 10.1007/s10562-022-04045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractChitinases have many applications in food, agricultural, medical, and pharmaceutical fields. This study succeeded in investigating Aspergillus niger MK981235 chitinase in the spot of its physiochemical, kinetic, thermodynamic, and application. The optimum temperature, pH and p-nitrophenyl-β-d-N-acetyl glucosaminide (PNP-β-GlcNAc) concentration to obtain the highest chitinase activity of 2334.79 U ml−1 were at 60 °C, 5 and 0.25%, respectively. The kinetic parameters, including Km and Vmax were determined to be 0.78 mg ml−1 and 2222.22 µmol ml−1 min−1, respectively. Furthermore, the thermodynamic parameters T1/2, D-values, ΔH, ΔG and ΔS at 40, 50 and 60 °C were determined to be (864.10, 349.45, 222.34 min), (2870.99, 1161.07, 738.74 min), (126.40, 126.36, 126.32 kJ mol−1), (101.59, 100.62, 100.86 kJ mol−1), (74.50, 76.17, 47.24 J mol−1 K−1), respectively. A. niger chitinase showed, insecticidal activity on Galleria mellonella by feeding and spraying treatments (72 and 52%, respectively), anti-lytic activity against Candida albicans, and effectiveness in improving the dye removal in the presence of crab shell powder as bio-absorbant. A. niger chitinase can be used in the pharmaceutical field for the bio-control of diseases caused by C. albicans and for the pretreatment of wastewater from the textile industry.
Graphical Abstract
Collapse
|
45
|
Sánchez-Alonzo K, Arellano-Arriagada L, Bernasconi H, Parra-Sepúlveda C, Campos VL, Silva-Mieres F, Sáez-Carrillo K, Smith CT, García-Cancino A. An Anaerobic Environment Drives the Harboring of Helicobacter pylori within Candida Yeast Cells. BIOLOGY 2022; 11:biology11050738. [PMID: 35625466 PMCID: PMC9139145 DOI: 10.3390/biology11050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Helicobacter pylori is a pathogen that is associated with a number of gastric pathologies and has adapted to the gastric environment. Outside this organ, stress factors such as oxygen concentration affect the viability of this bacterium. This study aimed to determine if changes in oxygen concentration promoted the entry of H. pylori into the interior of yeast cells of the Candida genus. Co-cultures of H. pylori and Candida strains in Brucella broth plus 5% fetal bovine serum were incubated under microaerobic, anaerobic, or aerobic conditions. Bacteria-like bodies (BLBs) were detected within yeast cells (Y-BLBs) by optical microscopy, identified by molecular techniques, and their viability evaluated by SYTO-9 fluorescence. Co-cultures incubated under the three conditions showed the presence of Y-BLBs, but the highest Y-BLB percentage was present in H. pylori J99 and C. glabrata co-cultures incubated under anaerobiosis. Molecular techniques were used to identify BLBs as H. pylori and SYTO-9 fluorescence confirmed that this bacterium remained viable within yeast cells. In conclusion, although without apparent stress conditions H. pylori harbors within Candida yeast cells, its harboring increases significantly under anaerobic conditions. This endosymbiotic relationship also depends mostly on the H. pylori strain used in the co-culture. Abstract Helicobacter pylori protects itself from stressful environments by forming biofilms, changing its morphology, or invading eukaryotic cells, including yeast cells. There is little knowledge about the environmental factors that influence the endosymbiotic relationship between bacterium and yeasts. Here, we studied if oxygen availability stimulated the growth of H. pylori within Candida and if this was a bacterial- or yeast strain-dependent relationship. Four H. pylori strains and four Candida strains were co-cultured in Brucella broth plus 5% fetal bovine serum, and incubated under microaerobic, anaerobic, or aerobic conditions. Bacteria-like bodies (BLBs) within yeast cells (Y-BLBs) were detected by microscopy. H. pylori was identified by FISH and by PCR amplification of the 16S rRNA gene of H. pylori from total DNA extracted from Y-BLBs from H. pylori and Candida co-cultures. BLBs viability was confirmed by SYTO-9 fluorescence. Higher Y-BLB percentages were obtained under anaerobic conditions and using H. pylori J99 and C. glabrata combinations. Thus, the H. pylori–Candida endosymbiotic relationship is strain dependent. The FISH and PCR results identified BLBs as intracellular H. pylori. Conclusion: Stressful conditions such as an anaerobic environment significantly increased H. pylori growth within yeast cells, where it remained viable, and the bacterium–yeast endosymbiotic relationship was bacterial strain dependent with a preference for C. glabrata.
Collapse
Affiliation(s)
- Kimberly Sánchez-Alonzo
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Luciano Arellano-Arriagada
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | | | - Cristian Parra-Sepúlveda
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Víctor L. Campos
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile;
| | - Fabiola Silva-Mieres
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Katia Sáez-Carrillo
- Department of Statistics, Faculty of Physical and Mathematical Sciences, Universidad de Concepcion, Concepcion 4070386, Chile;
| | - Carlos T. Smith
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
- Correspondence: ; Tel.: +56-41-2204144; Fax: +56-41-2245975
| |
Collapse
|
46
|
Zhao Z, Xu Q, Chen W, Wang S, Yang Q, Dong Y, Zhang J. Rational Design, Synthesis, and Biological Investigations of N-Methylcarbamoylguanidinyl Azamacrolides as a Novel Chitinase Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4889-4898. [PMID: 35416043 DOI: 10.1021/acs.jafc.2c00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chitinase is one of the most important glycoside hydrolyases, widely existing in bacteria, fungi, insects, and plants. It is involved in fungal cell wall remodeling and insect molting. Chitinase inhibitors are an effective means of controlling pathogens and pests. Natural product argifin is a 17-membered pentapeptide that exhibits efficient chitinase inhibitory activity. However, the complexity of the synthetic process results in a lot of restrictions for wide range of applications. In this work, we designed a series of azamacrolide chitinase inhibitors based on the structural features of argifin that have high inhibitory activities against bacterial and insectile chitinase. The most potent chitinase inhibitor compound 19c exhibited IC50 values of 56 nM and 110 nM against OfChi-h and SmChiB, respectively. The molecular docking and molecular dynamics simulations revealed that all inhibitors were bound to the -1 subsite of chitinases via N-methylcarbamoylguanidinyl as well as argifin. Finally, a bioactivity assay against pests was carried out. Compound 18a showed 80% mortality for Mythimna separata at a concentration of 50 mg/L. Besides, insecticides 19b and 19c exhibited high mortality against Plutella xylostella (76 and 73% mortalities at 50 mg/L, respectively).
Collapse
Affiliation(s)
- Zhixiang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qingbo Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Siming Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yanhong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
47
|
Akram F, Jabbar Z, Aqeel A, Haq IU, Tariq S, Malik K. A Contemporary Appraisal on Impending Industrial and Agricultural Applications of Thermophilic-Recombinant Chitinolytic Enzymes from Microbial Sources. Mol Biotechnol 2022; 64:1055-1075. [PMID: 35397055 DOI: 10.1007/s12033-022-00486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/25/2022] [Indexed: 01/09/2023]
Abstract
The ability of chitinases to degrade the second most abundant polymer, chitin, into potentially useful chitooligomers and chitin derivatives has not only rendered them fit for chitinous waste management but has also made them important from industrial point of view. At the same time, they have also been recognized to have an imperative role as promising biocontrol agents for controlling plant diseases. As thermostability is an important property for an industrially important enzyme, various bacterial and fungal sources are being exploited to obtain such stable enzymes. These stable enzymes can also play a role in agriculture by maintaining their stability under adverse environmental conditions for longer time duration when used as biocontrol agent. Biotechnology has also played its role in the development of recombinant chitinases with enhanced activity, thermostability, fungicidal and insecticidal activity via recombinant DNA techniques. Furthermore, a relatively new approach of generating pathogen-resistant transgenic plants has opened new ways for sustainable agriculture by minimizing the yield loss of valuable crops and plants. This review focuses on the potential applications of thermostable and recombinant microbial chitinases in industry and agriculture.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Zuriat Jabbar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.,Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Shahbaz Tariq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Kausar Malik
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
48
|
Endophytic fungi: a potential source of industrial enzyme producers. 3 Biotech 2022; 12:86. [PMID: 35273898 PMCID: PMC8894535 DOI: 10.1007/s13205-022-03145-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 11/01/2022] Open
Abstract
Microbial enzymes have gained interest for their widespread use in various industries and medicine due to their stability, ease of production, and optimization. Endophytic fungi in plant tissues produce a wide range of secondary metabolites and enzymes, which exhibit a variety of biological activities. The present review illustrates promising applications of enzymes produced by endophytic fungi and discusses the characteristic features of the enzymes, application of the endophytic fungal enzymes in therapeutics, agriculture, food, and biofuel industries. Endophytic fungi producing ligninolytic enzymes have possible biotechnological applications in lignocellulosic biorefineries. The global market of industrially important enzymes, challenges, and future prospects are illustrated. However, the commercialization of endophytic fungal enzymes for industrial purposes is yet to be explored. The present review suggests that endophytic fungi can produce various enzymes and may become a novel source for upscaling the production of enzymes of industrial use.
Collapse
|
49
|
Subramani AK, Raval R, Sundareshan S, Sivasengh R, Raval K. A marine chitinase from Bacillus aryabhattai with antifungal activity and broad specificity toward crystalline chitin degradation. Prep Biochem Biotechnol 2022; 52:1160-1172. [PMID: 35167419 DOI: 10.1080/10826068.2022.2033994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chitinases convert chitin into chitin oligomers and are also known antifungal agents. Chitin oligomers have numerous industrial applications. However, chitin's crystalline nature requires pretreatment before breakdown into oligomers. In the study, a novel marine bacterium Bacillus aryabhattai is isolated from the Arabian Sea. Bacterial growth in different crystalline chitin substrates like chitin powder, chitin flakes, and colloidal chitin confirmed the chitinase presence in bacterium could act upon insoluble crystalline chitin with the fractional release of oligomers. The domain architecture analysis of the chitinase confirmed the presence of two N-terminal LysM domains which help enzyme action on crystalline chitin. Statistical optimization of media and Process parameters revealed glycerol, yeast extract, magnesium chloride, and manganese sulfate as significant media components along with colloidal chitin. The optimum process parameters such as pH 7, temperature 40 °C, inoculum size 12.5% (v/v), and inoculum age 20 hours enhanced the specific enzyme activity to ±146.2 U/mL, ±114.9 U/mL and ±175.4 U/mL against chitin powder, chitin flakes and colloidal chitin respectively, which is five to six times higher than basal level activity. The antifungal activity of chitinase against plant pathogenic fungi like Candida albicans and Fusarium oxysporum revealed a zone of inhibition with 14 mm diameter.
Collapse
Affiliation(s)
- Arun Kumar Subramani
- Department of Chemical Engineering, National Institute of Technology, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Academy of Higher Education (MAHE), Karnataka, India
| | | | - Rashmi Sivasengh
- Department of Chemical Engineering, National Institute of Technology, Karnataka, India
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology, Karnataka, India
| |
Collapse
|
50
|
Aiysha D, Latif Z. Assessing hydrolytic enzyme production ability of bacterial strains from bovine manure as potential biowaste conversion candidates. J Basic Microbiol 2021; 62:116-123. [DOI: 10.1002/jobm.202100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/10/2021] [Accepted: 11/20/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Dalaq Aiysha
- Institute of Microbiology and Molecular Genetics, Faculty of Life Sciences, Quaid‐i‐Azam Campus University of the Punjab Lahore Pakistan
| | - Zakia Latif
- Institute of Microbiology and Molecular Genetics, Faculty of Life Sciences, Quaid‐i‐Azam Campus University of the Punjab Lahore Pakistan
| |
Collapse
|