1
|
Visintin PV, Zampieri BL, Griesi-Oliveira K. Chemical transdifferentiation of somatic cells to neural cells: a systematic review. EINSTEIN-SAO PAULO 2024; 22:eRW0423. [PMID: 39661857 PMCID: PMC11634374 DOI: 10.31744/einstein_journal/2024rw0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/21/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Transdifferentiation is the conversion of a specific somatic cell into another cell type, bypassing a transient pluripotent state. This implies a faster method to generate cells of interest with the additional benefit of reduced tumorigenic risk for clinical use. OBJECTIVE We describe protocols that use small molecules as direct conversion inducers, without the need for exogenous factors, to evaluate the potential of cell transdifferentiation for pharmacological and clinical applications. METHODS In this systematic review, using PRISMA guidelines, we conducted a personalized search strategy in four databases (PubMed, Scopus, Embase, and Web Of Science), looking for experimental works that used exclusively small molecules for transdifferentiation of non-neural cell types into neural lineage cells. RESULTS We explored the main biological mechanisms involved in direct cell conversion induced by different small molecules used in 33 experimental in vitro and in vitro transdifferentiation protocols. We also summarize the main characteristics of these protocols, such as the chemical cocktails used, time for transdifferentiation, and conversion efficiency. CONCLUSION Small molecules-based protocols for neuronal transdifferentiation are reasonably safe, economical, accessible, and are a promising alternative for future use in regenerative medicine and pharmacology.
Collapse
Affiliation(s)
- Paulo Victor Visintin
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Bruna Lancia Zampieri
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
4
|
He R, Weng Z, Liu Y, Li B, Wang W, Meng W, Li B, Li L. Application of Induced Pluripotent Stem Cells in Malignant Solid Tumors. Stem Cell Rev Rep 2023; 19:2557-2575. [PMID: 37755647 PMCID: PMC10661832 DOI: 10.1007/s12015-023-10633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In the past decade, induced pluripotent stem cells (iPSCs) technology has significantly progressed in studying malignant solid tumors. This technically feasible reprogramming techniques can reawaken sequestered dormant regions that regulate the fate of differentiated cells. Despite the evolving therapeutic modalities for malignant solid tumors, treatment outcomes have not been satisfactory. Recently, scientists attempted to apply induced pluripotent stem cell technology to cancer research, from modeling to treatment. Induced pluripotent stem cells derived from somatic cells, cancer cell lines, primary tumors, and individuals with an inherited propensity to develop cancer have shown great potential in cancer modeling, cell therapy, immunotherapy, and understanding tumor progression. This review summarizes the evolution of induced pluripotent stem cells technology and its applications in malignant solid tumor. Additionally, we discuss potential obstacles to induced pluripotent stem cell technology.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Mendoza G, González-Pastor R, Sánchez JM, Arce-Cerezo A, Quintanilla M, Moreno-Bueno G, Pujol A, Belmar-López C, de Martino A, Riu E, Rodriguez TA, Martin-Duque P. The E1a Adenoviral Gene Upregulates the Yamanaka Factors to Induce Partial Cellular Reprogramming. Cells 2023; 12:1338. [PMID: 37174738 PMCID: PMC10177049 DOI: 10.3390/cells12091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The induction of pluripotency by enforced expression of different sets of genes in somatic cells has been achieved with reprogramming technologies first described by Yamanaka's group. Methodologies for generating induced pluripotent stem cells are as varied as the combinations of genes used. It has previously been reported that the adenoviral E1a gene can induce the expression of two of the Yamanaka factors (c-Myc and Oct-4) and epigenetic changes. Here, we demonstrate that the E1a-12S over-expression is sufficient to induce pluripotent-like characteristics closely to epiblast stem cells in mouse embryonic fibroblasts through the activation of the pluripotency gene regulatory network. These findings provide not only empirical evidence that the expression of one single factor is sufficient for partial reprogramming but also a potential mechanistic explanation for how viral infection could lead to neoplasia if they are surrounded by the appropriate environment or the right medium, as happens with the tumorogenic niche.
Collapse
Affiliation(s)
- Gracia Mendoza
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Rebeca González-Pastor
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Juan Miguel Sánchez
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | - Altamira Arce-Cerezo
- Centro de Biotecnología Animal y de Terapia Génica (CBATEG), Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Miguel Quintanilla
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Universidad Autónoma de Madrid (UAM), (UAM-CSIC), 28029 Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Universidad Autónoma de Madrid (UAM), (UAM-CSIC), 28029 Madrid, Spain
- Fundación MD Anderson Internacional, 28033 Madrid, Spain
- Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Red de Cáncer (CIBERONC) and Red de Nanomedicina y Nanomateriales (CIBER-BBN), 28029 Madrid, Spain
| | - Anna Pujol
- Centro de Biotecnología Animal y de Terapia Génica (CBATEG), Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Carolina Belmar-López
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- OncoGenomics Lab, Universidad Privada San Juan Bautista, Lima 15038, Peru
| | - Alba de Martino
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Efrén Riu
- Centro de Biotecnología Animal y de Terapia Génica (CBATEG), Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Pilar Martin-Duque
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Red de Cáncer (CIBERONC) and Red de Nanomedicina y Nanomateriales (CIBER-BBN), 28029 Madrid, Spain
- Fundación Araid, 50018 Zaragoza, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Lepri A, Longo C, Messore A, Kazmi H, Madia VN, Di Santo R, Costi R, Vittorioso P. Plants and Small Molecules: An Up-and-Coming Synergy. PLANTS (BASEL, SWITZERLAND) 2023; 12:1729. [PMID: 37111951 PMCID: PMC10145415 DOI: 10.3390/plants12081729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The emergence of Arabidopsis thaliana as a model system has led to a rapid and wide improvement in molecular genetics techniques for studying gene function and regulation. However, there are still several drawbacks that cannot be easily solved with molecular genetic approaches, such as the study of unfriendly species, which are of increasing agronomic interest but are not easily transformed, thus are not prone to many molecular techniques. Chemical genetics represents a methodology able to fill this gap. Chemical genetics lies between chemistry and biology and relies on small molecules to phenocopy genetic mutations addressing specific targets. Advances in recent decades have greatly improved both target specificity and activity, expanding the application of this approach to any biological process. As for classical genetics, chemical genetics also proceeds with a forward or reverse approach depending on the nature of the study. In this review, we addressed this topic in the study of plant photomorphogenesis, stress responses and epigenetic processes. We have dealt with some cases of repurposing compounds whose activity has been previously proven in human cells and, conversely, studies where plants have been a tool for the characterization of small molecules. In addition, we delved into the chemical synthesis and improvement of some of the compounds described.
Collapse
Affiliation(s)
- A. Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - C. Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - A. Messore
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - H. Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - V. N. Madia
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Di Santo
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Costi
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - P. Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| |
Collapse
|
7
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
8
|
Mahdavi MR, Kehtari M, Mellati A, Mansour RN, Mahdavi M, Mahdavi M, Enderami SE. Improved biological behaviours and osteoinductive capacity of the gelatin nanofibers while composites with GO/MgO. Cell Biochem Funct 2022; 40:189-198. [PMID: 35118692 DOI: 10.1002/cbf.3688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/06/2022]
Abstract
Among the many polymers introduced for bone tissue engineering, natural polymers have more advantages due to their high biocompatibility and biodegradability, despite their low mechanical properties. Herein, gelatin nanofibers with and without magnesium oxide (MgO) and graphene oxide (GO) nanoparticles were fabricated by electrospinning. The fabricated gelatin and gelatin/GO/MgO nanofibers were examined using scanning electron microscopy, protein adsorption, cell attachment and viability assays. The results revealed that biological behaviours of the gelatin nanofibers significantly improved while incorporated with MgO and GO nanoparticles. In the following, osteosupportive capacity of the fabricated scaffolds was investigated by Alizarin-red staining, alkaline phosphatase activity, and calcium content, and bone-related gene and protein assays. The results revealed that the highest osteogenic differentiation potential of human-induced pluripotent stem cells (hiPSCs) was detected while these cells were cultured on the gelatin/GO/MgO nanofibers. However, these makers in the hiPSCs cultured on the gelatin nanofibers were also significantly increased in comparison with the cells cultured on the tissue culture plates as a control. In conclusion, the results revealed that predictable disadvantages in gelatin nanofibers can be greatly improved by the addition of MgO and GO nanoparticles, and the resulting composite scaffold could be a potential candidate for use in bone tissue engineering.
Collapse
Affiliation(s)
| | - Mousa Kehtari
- School of Biology, Faculty of Science, University of Tehran, Tehran, Iran
| | - Amir Mellati
- Department of Tissue Engineering and regenerative medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mehrad Mahdavi
- Department of Cellular and Molecular, Sinaye Mehr Research Center, Sari, Iran
| | - Mahan Mahdavi
- Department of Cellular and Molecular, Sinaye Mehr Research Center, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Comparative Transcriptome Analysis Revealed Genes Involved in Sexual and Polyploid Growth Dimorphisms in Loach ( Misgurnus anguillicaudatus). BIOLOGY 2021; 10:biology10090935. [PMID: 34571812 PMCID: PMC8468957 DOI: 10.3390/biology10090935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Misgurnus anguillicaudatus not only exhibits sexual size dimorphism, but also shows polyploid size dimorphism. Here, we performed comparative transcriptome integration analysis of multiple tissues of diploid and tetraploid M. anguillicaudatus of both sexes. We found that differences in energy metabolism and steroid hormone synthesis levels may be the main causes of sexual and polyploidy growth dimorphisms of M. anguillicaudatus. Fast-growing M. anguillicaudatus (tetraploids, females) have higher levels of energy metabolism and lower steroid hormone synthesis and fatty acid degradation abilities than slow-growing M. anguillicaudatus (diploids, males). Abstract Sexual and polyploidy size dimorphisms are widespread phenomena in fish, but the molecular mechanisms remain unclear. Loach (Misgurnus anguillicaudatus) displays both sexual and polyploid growth dimorphism phenomena, and are therefore ideal models to study these two phenomena. In this study, RNA-seq was used for the first time to explore the differentially expressed genes (DEGs) between both sexes of diploid and tetraploid loaches in four tissues (brain, gonad, liver, and muscle). Results showed that 21,003, 17, and 1 DEGs were identified in gonad, liver, and muscle tissues, respectively, between females and males in both diploids and tetraploids. Regarding the ploidy levels, 4956, 1496, 2187, and 1726 DEGs were identified in the brain, gonad, liver, and muscle tissues, respectively, between tetraploids and diploids of the same sex. When both sexual and polyploid size dimorphisms were considered simultaneously in the four tissues, only 424 DEGs were found in the gonads, indicating that these gonadal DEGs may play an important regulatory role in regulating sexual and polyploid size dimorphisms. Regardless of the sex or ploidy comparison, the significant DEGs involved in glycolysis/gluconeogenesis and oxidative phosphorylation pathways were upregulated in faster-growing individuals, while steroid hormone biosynthesis-related genes and fatty acid degradation and elongation-related genes were downregulated. This suggests that fast-growing loaches (tetraploids, females) have higher energy metabolism levels and lower steroid hormone synthesis and fatty acid degradation abilities than slow-growing loaches (diploids, males). Our findings provide an archive for future systematic research on fish sexual and polyploid dimorphisms.
Collapse
|
10
|
Pasqua M, Di Gesù R, Chinnici CM, Conaldi PG, Francipane MG. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. Int J Mol Sci 2021; 22:8227. [PMID: 34360991 PMCID: PMC8348238 DOI: 10.3390/ijms22158227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.
Collapse
Affiliation(s)
- Mattia Pasqua
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- Dipartimento della Ricerca, IRCCS ISMETT, 90127 Palermo, Italy;
| | | | - Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
11
|
Combination of Melatonin and Small Molecules Improved Reprogramming Neural Cell Fates via Autophagy Activation. Neurochem Res 2021; 47:2580-2590. [PMID: 34165669 DOI: 10.1007/s11064-021-03382-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Reprogramming cell fates towards mature cell types are a promising cell supply for treating degenerative diseases. Recently, transcription factors and some small molecules have turned into impressive modulating elements for reprogramming cell fates. Melatonin, a pineal hormone, has neuroprotective functions including neural stem cell (NSC) proliferative and differentiative modulation in both embryonic and adult brain. We developed a protocol that could be implemented in the direct reprogramming of human skin fibroblast towards neural cells by using histone deacetylase (HDAC) inhibitor, glycogen synthase kinase-3 (GSK3) inhibitor (CHIR99021), c-Jun N-terminal kinase (JNK) inhibitor, rho-associated protein kinase inhibitor (Y-27632), cAMP activator, and melatonin treatment. We found that melatonin enhanced neural-transcription factor genes expressions, including brain-specific homeobox/POU domain protein 2 (BRN2), Achaete-Scute Family BHLH transcription Factor 1 (ASCL1), and Myelin Transcription Factor 1 Like (MYT1L). Melatonin also increased the expression of different neural-specific proteins such as doublecortin (DCX), Sex determining region Y-box 2 (Sox2), and neuronal nuclei (NeuN) compared with other five small molecules (valproic acid (VPA), CHIR99021, Forskolin, 1,9 pyrazoloanthrone (SP600125), and Y-27632) combination in the presence and absence of melatonin. A noticeable upregulation of autophagy proteins (microtubule-associated protein 1A/1B-light chain 3 (LC3) and Beclin-1) were seen in the melatonin treatment during the induction period while these were reverted in the presence of L-leucine, an autophagy inhibitor. In addition, the expression of NeuN was also significantly reduced by L-leucine. Collectively, our findings revealed an activation of autophagy during neural induction; melatonin enhanced reprogramming efficiency for neuron induction through the modulation of autophagy activation.
Collapse
|
12
|
Chen G, Guo Y, Li C, Li S, Wan X. Small Molecules that Promote Self-Renewal of Stem Cells and Somatic Cell Reprogramming. Stem Cell Rev Rep 2021; 16:511-523. [PMID: 32185667 DOI: 10.1007/s12015-020-09965-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ground state of embryonic stem cells (ESCs) is closely related to the development of regenerative medicine. Particularly, long-term culture of ESCs in vitro, maintenance of their undifferentiated state, self-renewal and multi-directional differentiation ability is the premise of ESCs mechanism and application research. Induced pluripotent stem cells (iPSC) reprogrammed from mouse embryonic fibroblasts (MEF) cells into cells with most of the ESC characteristics show promise towards solving ethical problems currently facing stem cell research. However, integration into chromosomal DNA through viral-mediated genes may activate proto oncogenes and lead to risk of cancer of iPSC. At the same time, iPS induction efficiency needs to be further improved to reduce the use of transcription factors. In this review, we discuss small molecules that promote self-renewal and reprogramming, including growth factor receptor inhibitors, GSK-3β and histone deacetylase inhibitors, metabolic regulators, pathway modulators as well as EMT/MET regulation inhibitors to enhance maintenance of ESCs and enable reprogramming. Additionally, we summarize the mechanism of action of small molecules on ESC self-renewal and iPSC reprogramming. Finally, we will report on the progress in identification of novel and potentially effective agents as well as selected strategies that show promise in regenerative medicine. On this basis, development of more small molecule combinations and efficient induction of chemically induced pluripotent stem cell (CiPSC) is vital for stem cell therapy. This will significantly improve research in pathogenesis, individualized drug screening, stem cell transplantation, tissue engineering and many other aspects.
Collapse
Affiliation(s)
- Guofang Chen
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Yu'e Guo
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chao Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shuangdi Li
- Departments of Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
In Vivo Expression of Reprogramming Factor OCT4 Ameliorates Myelination Deficits and Induces Striatal Neuroprotection in Huntington's Disease. Genes (Basel) 2021; 12:genes12050712. [PMID: 34068799 PMCID: PMC8150572 DOI: 10.3390/genes12050712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/26/2022] Open
Abstract
White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4.
Collapse
|
14
|
Soman SS, Vijayavenkataraman S. Applications of 3D Bioprinted-Induced Pluripotent Stem Cells in Healthcare. Int J Bioprint 2020; 6:280. [PMID: 33088994 PMCID: PMC7557348 DOI: 10.18063/ijb.v6i4.280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology and advancements in three-dimensional (3D) bioprinting technology enable scientists to reprogram somatic cells to iPSCs and 3D print iPSC-derived organ constructs with native tissue architecture and function. iPSCs and iPSC-derived cells suspended in hydrogels (bioinks) allow to print tissues and organs for downstream medical applications. The bioprinted human tissues and organs are extremely valuable in regenerative medicine as bioprinting of autologous iPSC-derived organs eliminates the risk of immune rejection with organ transplants. Disease modeling and drug screening in bioprinted human tissues will give more precise information on disease mechanisms, drug efficacy, and drug toxicity than experimenting on animal models. Bioprinted iPSC-derived cancer tissues will aid in the study of early cancer development and precision oncology to discover patient-specific drugs. In this review, we present a brief summary of the combined use of two powerful technologies, iPSC technology, and 3D bioprinting in health-care applications.
Collapse
Affiliation(s)
- Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.,Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, NY, USA
| |
Collapse
|
15
|
Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12:527-544. [PMID: 32843912 PMCID: PMC7415244 DOI: 10.4252/wjsc.v12.i7.527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells present a seminal discovery in cell biology and promise to support innovative treatments of so far incurable diseases. To translate iPS technology into clinical trials, the safety and stability of these reprogrammed cells needs to be shown. In recent years, different non-viral transposon systems have been developed for the induction of cellular pluripotency, and for the directed differentiation into desired cell types. In this review, we summarize the current state of the art of different transposon systems in iPS-based cell therapies.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Taruna Anand
- NCVTC, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Mariensee 31535, Germany
| |
Collapse
|
16
|
SOX2 and p53 Expression Control Converges in PI3K/AKT Signaling with Versatile Implications for Stemness and Cancer. Int J Mol Sci 2020; 21:ijms21144902. [PMID: 32664542 PMCID: PMC7402325 DOI: 10.3390/ijms21144902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and reprogramming involve transcriptional master regulators that suppress cell differentiation while promoting self-renewal. A distinguished example thereof is SOX2, a high mobility group (HMG)-box transcription factor (TF), whose subcellular localization and turnover regulation in embryonic, induced-pluripotent, and cancer stem cells (ESCs, iPSCs, and CSCs, respectively) is mediated by the PI3K/AKT/SOX2 axis, a stem cell-specific branch of the PI3K/AKT signaling pathway. Further effector functions associated with PI3K/AKT induction include cell cycle progression, cellular (mass) growth, and the suppression of apoptosis. Apoptosis, however, is a central element of DNA damage response (DDR), where it provides a default mechanism for cell clearance when DNA integrity cannot be maintained. A key player in DDR is tumor suppressor p53, which accumulates upon DNA-damage and is counter-balanced by PI3K/AKT enforced turnover. Accordingly, stemness sustaining SOX2 expression and p53-dependent DDR mechanisms show molecular–functional overlap in PI3K/AKT signaling. This constellation proves challenging for stem cells whose genomic integrity is a functional imperative for normative ontogenesis. Unresolved mutations in stem and early progenitor cells may in fact provoke transformation and cancer development. Such mechanisms are also particularly relevant for iPSCs, where genetic changes imposed through somatic cell reprogramming may promote DNA damage. The current review aims to summarize the latest advances in the understanding of PI3K/AKT/SOX2-driven stemness and its intertwined relations to p53-signaling in DDR under conditions of pluripotency, reprogramming, and transformation.
Collapse
|
17
|
Zeng J, Li Y, Ma Z, Hu M. Advances in Small Molecules in Cellular Reprogramming: Effects, Structures, and Mechanisms. Curr Stem Cell Res Ther 2020; 16:115-132. [PMID: 32564763 DOI: 10.2174/1574888x15666200621172042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/22/2022]
Abstract
The method of cellular reprogramming using small molecules involves the manipulation of somatic cells to generate desired cell types under chemically limited conditions, thus avoiding the ethical controversy of embryonic stem cells and the potential hazards of gene manipulation. The combinations of small molecules and their effects on mouse and human somatic cells are similar. Several small molecules, including CHIR99021, 616452, A83-01, SB431542, forskolin, tranylcypromine and valproic acid [VPA], have been frequently used in reprogramming of mouse and human somatic cells. This indicated that the reprogramming approaches related to these compounds were essential. These approaches were mainly divided into four classes: epigenetic modification, signal modulation, metabolic modulation and senescent suppression. The structures and functions of small molecules involved in these reprogramming approaches have been studied extensively. Molecular docking gave insights into the mechanisms and structural specificities of various small molecules in the epigenetic modification. The binding modes of RG108, Bix01294, tranylcypromine and VPA with their corresponding proteins clearly illustrated the interactions between these compounds and the active sites of the proteins. Glycogen synthase kinase 3β [CHIR99021], transforming growth factor β [616452, A83-01 and SB431542] and protein kinase A [forskolin] signaling pathway play important roles in signal modulation during reprogramming, however, the mechanisms and structural specificities of these inhibitors are still unknown. Further, the numbers of small molecules in the approaches of metabolic modulation and senescent suppression were too few to compare. This review aims to serve as a reference for reprogramming through small molecules in order to benefit future regenerative medicine and clinical drug discovery.
Collapse
Affiliation(s)
- Jun Zeng
- Yunnan Key laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China
| | - Yanjiao Li
- Yunnan Key laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China
| | - Zhaoxia Ma
- Yunnan Key laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China
| | - Min Hu
- Yunnan Key laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China
| |
Collapse
|
18
|
Liu D, Rychkov G, Al-Hawwas M, Manaph NPA, Zhou F, Bobrovskaya L, Liao H, Zhou XF. Conversion of human urine-derived cells into neuron-like cells by small molecules. Mol Biol Rep 2020; 47:2713-2722. [PMID: 32185687 DOI: 10.1007/s11033-020-05370-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023]
Abstract
Neural cell transplantation is an effective way for treatment of neurological diseases. However, the absence of transplantable human neurons remains a barrier for clinical therapies. Human urine-derived cells, namely renal cells and urine stem cells, have become a good source of cells for reprogramming or trans-differentiation research. Here, we show that human urine-derived cells can be partially converted into neuron-like cells by applying a cocktail of small molecules. Gene expression analysis has shown that these induced cells expressed some neuron-specific genes, and a proportion of the cells are GABAergic neurons. Moreover, whole-cell patch clamping recording has shown that some induced cells have neuron-specific voltage gated Na+ and K+ currents but have failed to generate Ca2+ currents and action potentials. Taken together, these results suggest that induced neuronal cells from human urine-derived cells may be useful for neurological disease modelling, drug screening and cell therapies.
Collapse
Affiliation(s)
- Donghui Liu
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Grigori Rychkov
- Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Fiona Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Hong Liao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
19
|
Pavathuparambil Abdul Manaph N, Sivanathan KN, Nitschke J, Zhou XF, Coates PT, Drogemuller CJ. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther 2019; 10:293. [PMID: 31547868 PMCID: PMC6757413 DOI: 10.1186/s13287-019-1396-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The field of regenerative medicine provides enormous opportunities for generating beta cells from different stem cell sources for cellular therapy. Even though insulin-secreting cells can be generated from a variety of stem cell types like pluripotent stem cells and embryonic stem cells, the ideal functional cells should be generated from patients' own cells and expanded to considerable levels by non-integrative culture techniques. In terms of the ease of isolation, plasticity, and clinical translation to generate autologous cells, mesenchymal stem cell stands superior. Furthermore, small molecules offer a great advantage in terms of generating functional beta cells from stem cells. Research suggests that most of the mesenchymal stem cell-based protocols to generate pancreatic beta cells have small molecules in their cocktail. However, most of the protocols generate cells that mimic the characteristics of human beta cells, thereby generating "beta cell-like cells" as opposed to mature beta cells. Diabetic therapy becomes feasible only when there are robust, functional, and safe cells for replacing the damaged or lost beta cells. In this review, we discuss the current protocols used to generate beta cells from mesenchymal cells, with emphasis on small molecule-mediated conversion into insulin-producing beta cell-like cells. Our data and the data presented from the references within this review would suggest that although mesenchymal stem cells are an attractive cell type for cell therapy they are not readily converted into functional mature beta cells.
Collapse
Affiliation(s)
- Nimshitha Pavathuparambil Abdul Manaph
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia. .,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia. .,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Kisha N Sivanathan
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jodie Nitschke
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Patrick T Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher John Drogemuller
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
20
|
Gong L, Yan Q, Zhang Y, Fang X, Liu B, Guan X. Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer Commun (Lond) 2019; 39:48. [PMID: 31464654 PMCID: PMC6716904 DOI: 10.1186/s40880-019-0393-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
In the past decade, remarkable progress has been made in reprogramming terminally differentiated somatic cells and cancer cells into induced pluripotent cells and cancer cells with benign phenotypes. Recent studies have explored various approaches to induce reprogramming from one cell type to another, including lineage-specific transcription factors-, combinatorial small molecules-, microRNAs- and embryonic microenvironment-derived exosome-mediated reprogramming. These reprogramming approaches have been proven to be technically feasible and versatile to enable re-activation of sequestered epigenetic regions, thus driving fate decisions of differentiated cells. One of the significant utilities of cancer cell reprogramming is the therapeutic potential of retrieving normal cell functions from various malignancies. However, there are several major obstacles to overcome in cancer cell reprogramming before clinical translation, including characterization of reprogramming mechanisms, improvement of reprogramming efficiency and safety, and development of delivery methods. Recently, several insights in reprogramming mechanism have been proposed, and determining progress has been achieved to promote reprogramming efficiency and feasibility, allowing it to emerge as a promising therapy against cancer in the near future. This review aims to discuss recent applications in cancer cell reprogramming, with a focus on the clinical significance and limitations of different reprogramming approaches, while summarizing vital roles played by transcription factors, small molecules, microRNAs and exosomes during the reprogramming process.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Qian Yan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Yu Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Xiaona Fang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Xinyuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China.
| |
Collapse
|
21
|
Headley KM, Kedziora KM, Alejo A, Lai EZX, Purvis JE, Hathaway NA. Chemical screen for epigenetic barriers to single allele activation of Oct4. Stem Cell Res 2019; 38:101470. [PMID: 31170660 PMCID: PMC6886240 DOI: 10.1016/j.scr.2019.101470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Here we utilized the chromatin in vivo assay (CiA) mouse platform to directly examine the epigenetic barriers impeding the activation of the CiA:Oct4 allele in mouse embryonic fibroblasts (MEF)s when stimulated with a transcription factor. The CiA:Oct4 allele contains an engineered EGFP reporter replacing one copy of the Oct4 gene, with an upstream Gal4 array in the promoter that allows recruitment of chromatin modifying machinery. We stimulated gene activation of the CiA:Oct4 allele by binding a transcriptional activator to the Gal4 array. As with cellular reprograming, this process is inefficient with only a small percentage of the cells re-activating CiA:Oct4 after weeks. Epigenetic barriers to gene activation potentially come from heavy DNA methylation, histone deacetylation, chromatin compaction, and other posttranslational marks (PTM) at the differentiated CiA:Oct4 allele in MEFs. Using this platform, we performed a high-throughput chemical screen for compounds that increased the efficiency of activation. We found that Azacytidine and newer generation histone deacetylase (HDAC) inhibitors were the most efficient at facilitating directed transcriptional activation of this allele. We found one hit form our screen, Mocetinostat, improved iPSC generation under transcription factor reprogramming conditions. These results separate individual allele activation from whole cell reprograming and give new insights that will advance tissue engineering.
Collapse
Affiliation(s)
- Kathryn M Headley
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America; Curriculum for Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Katarzyna M Kedziora
- Department of Genetics, Curriculum for Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Aidin Alejo
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America
| | - Elianna Zhi-Xiang Lai
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America
| | - Jeremy E Purvis
- Curriculum for Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America; Department of Genetics, Curriculum for Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, United States of America
| | - Nathaniel A Hathaway
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States of America; Curriculum for Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
22
|
Skolasinski SD, Panoskaltsis-Mortari A. Lung tissue bioengineering for chronic obstructive pulmonary disease: overcoming the need for lung transplantation from human donors. Expert Rev Respir Med 2019; 13:665-678. [PMID: 31164014 DOI: 10.1080/17476348.2019.1624163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Chronic obstructive pulmonary disease (COPD) affects more than 380 million people, causing more than 3 million deaths annually worldwide. Despite this enormous burden, currently available therapies are largely limited to symptom control. Lung transplant is considered for end-stage disease but is severely limited by the availability of human organs. Furthermore, the pre-transplant course is a complex orchestration of locating and harvesting suitable lungs, and the post-transplant course is complicated by rejection and infection. Lung tissue bioengineering has the potential to relieve the organ shortage and improve the post-transplant course by generating patient-specific lungs for transplant. Additionally, emerging progenitor cell therapies may facilitate in vivo regeneration of pulmonary tissue, obviating the need for transplant. Areas Covered: We review several lung tissue bioengineering approaches including the recellularization of decellularized scaffolds, 3D bioprinting, genetically-engineered xenotransplantation, blastocyst complementation, and direct therapy with progenitor cells. Articles were identified by searching relevant terms (see Key Words) in the PubMed database and selected for inclusion based on novelty and uniqueness of their approach. Expert Opinion: Lung tissue bioengineering research is in the early stages. Of the methods reviewed, only direct cell therapy has been investigated in humans. We anticipate a minimum of 5-10 years before human therapy will be feasible.
Collapse
Affiliation(s)
- Steven D Skolasinski
- a Division of Pulmonary, Allergy, Critical Care and Sleep Medicine , University of Minnesota , Minneapolis , MN , USA
| | | |
Collapse
|
23
|
Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss. SCIENCE CHINA-LIFE SCIENCES 2019; 63:552-562. [DOI: 10.1007/s11427-018-9389-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022]
|
24
|
Wang YM, Li K, Dou XG, Bai H, Zhao XP, Ma X, Li LJ, Chen ZS, Huang YC. Treatment of AECHB and Severe Hepatitis (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498915 DOI: 10.1007/978-94-024-1603-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the general treatment and immune principles and internal management for AECHB and HBV ACLF, including ICU monitoring, general supportive medications/nutrition/nursing, immune therapy, artificial liver supportive systems, hepatocyte/stem cell, and liver transplant, management for special populations, frequently clinical complications and the utilization of Chinese traditional medicines.Early clinical indicators of severe hepatitis B include acratia, gastrointestinal symptoms, a daily increase in serum bilirubin >1 mg/dL, toxic intestinal paralysis, bleeding tendency and mild mind anomaly or character change, and the presence of other diseases inducing severe hepatitis. Laboratory indicators include T-Bil, PTA, cholinesterase, pre-albumin and albumin. The roles of immune indicators (such as IL-6, TNF-α, and fgl2), gene polymorphisms, HBV genotypes, and gene mutations as early clinical indicators. Intensive Care Unit monitor patients with severe hepatitis include intracranial pressure, infection, blood dynamics, respiratory function, renal function, blood coagulation function, nutritional status and blood purification process. Nursing care should not only include routine care, but psychological and special care (complications). Nutrition support and nursing care should be maintained throughout treatment for severe hepatitis. Common methods of evaluating nutritional status include direct human body measurement, creatinine height index (CHI) and subject global assessment of nutrition (SGA). Malnourished patients should receive enteral or parenteral nutrition support. Immune therapies for severe hepatitis include promoting hepatocyte regeneration (e.g. with glucagon, hepatocyte growth factor and prostaglandin E1), glucocorticoid suppressive therapy, and targeting molecular blocking. Corticosteroid treatment should be early and sufficient, and adverse drug reactions monitored. Treatments currently being investigated are those targeting Toll-like receptors, NK cell/NK cell receptors, macrophage/immune coagulation system, CTLA-4/PD-1 and stem cell transplantation. In addition to conventional drugs and radioiodine, corticosteroids and artificial liver treatment can also be considered for severe hepatitis patients with hyperthyreosis. Patients with gestational severe hepatitis require preventive therapy for fetal growth restriction, and it is necessary to choose the timing and method of fetal delivery. For patients with both diabetes and severe hepatitis, insulin is preferred to oral antidiabetic agents to control blood glucose concentration. Liver toxicity of corticosteroids and immune suppressors should be monitored during treatment for severe hepatitis in patients with connective tissue diseases including SLE, RA and sicca syndrome. Patient with connective tissue diseases should preferably be started after the antiviral treatment with nucleos(t)ide analogues. An artificial liver can improve patients’ liver function; remove endotoxins, blood ammonia and other toxins; correct amino acid metabolism and coagulation disorders; and reverse internal environment imbalances. Non-bioartificial livers are suitable for patients with early and middle stage severe hepatitis; for late-stage patients waiting for liver transplantation; and for transplanted patients with rejection reaction or transplant failure. The type of artificial liver should be determined by each patient’s condition and previous treatment purpose, and patients should be closely monitored for adverse reactions and complications. Bio- and hybrid artificial livers are still under development. MELD score is the international standard for choosing liver transplantation. Surgical methods mainly include the in situ classic type and the piggyback type; transplantation includes no liver prophase, no liver phase or new liver phase. Preoperative preparation, management of intraoperative and postoperative complications and postoperative long-term treatment are keys to success. Severe hepatitis belongs to the categories of “acute jaundice”, “scourge jaundice”, and “hot liver” in traditional Chinese medicine. Treatment methods include Chinese traditional medicines, acupuncture and acupoint injection, external application of drugs, umbilical compress therapy, drip, blow nose therapy, earpins, and clysis. Dietary care is also an important part of traditional Chinese medicine treatment.
Collapse
|
25
|
Robinson M, Fraser I, McKee E, Scheck K, Chang L, Willerth SM. Transdifferentiating Astrocytes Into Neurons Using ASCL1 Functionalized With a Novel Intracellular Protein Delivery Technology. Front Bioeng Biotechnol 2018; 6:173. [PMID: 30525033 PMCID: PMC6258721 DOI: 10.3389/fbioe.2018.00173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/31/2018] [Indexed: 01/26/2023] Open
Abstract
Cellular transdifferentiation changes mature cells from one phenotype into another by altering their gene expression patterns. Manipulating expression of transcription factors, proteins that bind to DNA promoter regions, regulates the levels of key developmental genes. Viral delivery of transcription factors can efficiently reprogram somatic cells, but this method possesses undesirable side effects, including mutations leading to oncogenesis. Using protein transduction domains (PTDs) fused to transcription factors to deliver exogenous transcription factors serves as an alternative strategy that avoids the issues associated with DNA integration into the host genome. However, lysosomal degradation and inefficient nuclear localization pose significant barriers when performing PTD-mediated reprogramming. Here, we investigate a novel PTD by placing a secretion signal sequence next to a cleavage inhibition sequence at the end of the target transcription factor–achaete scute homolog 1 (ASCL1), a powerful regulator of neurogenesis, resulting in superior stability and nuclear localization. A fusion protein consisting of the amino acid sequence of ASCL1 transcription factor with this novel PTD added can transdifferentiate cerebral cortex astrocytes into neurons. Additionally, we show that the synergistic action of certain small molecules improves the efficiency of the transdifferentiation process. This study serves as the first step toward developing a clinically relevant in vivo transdifferentiation strategy for converting astrocytes into neurons.
Collapse
Affiliation(s)
- Meghan Robinson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Ian Fraser
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Biomedical Engineering Program, University of Victoria, Victoria, BC, Canada
| | - Emily McKee
- Biomedical Engineering Program, University of Victoria, Victoria, BC, Canada
| | - Kali Scheck
- Biology Program, University of Victoria, Victoria, BC, Canada
| | - Lillian Chang
- Biochemistry Program, Bates College, Lewiston, ME, United States
| | - Stephanie M Willerth
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Biomedical Engineering Program, University of Victoria, Victoria, BC, Canada.,Mechanical Engineering, Faculty of Engineering, University of Victoria, Victoria, BC, Canada.,Center for Biomedical Research, Faculty of Engineering, University of Victoria, Victoria, BC, Canada.,International Collaboration for Repair Discovery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Nilforoushzadeh MA, Zare M, Zarrintaj P, Alizadeh E, Taghiabadi E, Heidari-Kharaji M, Amirkhani MA, Saeb MR, Mozafari M. Engineering the niche for hair regeneration - A critical review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:70-85. [PMID: 30201489 DOI: 10.1016/j.nano.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
Recent progress in hair follicle regeneration and alopecia treatment necessitates revisiting the concepts and approaches. In this sense, there is a need for shedding light on the clinical and surgical therapies benefitting from nanobiomedicine. From this perspective, this review attempts to recognize requirements upon which new hair therapies are grounded; to underline shortcomings and opportunities associated with recent advanced strategies for hair regeneration; and most critically to look over hair regeneration from nanomaterials and pluripotent stem cell standpoint. It is noteworthy that nanotechnology is able to illuminate a novel path for reprogramming cells and controlled differentiation to achieve the desired performance. Undoubtedly, this strategy needs further advancement and a lot of critical questions have yet to be answered. Herein, we introduce the salient features, the hurdles that must be overcome, the hopes, and practical constraints to engineer stem cell niches for hair follicle regeneration.
Collapse
Affiliation(s)
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
28
|
Kang K, Kim Y, Jeon H, Lee SB, Kim JS, Park SA, Kim WD, Yang HM, Kim SJ, Jeong J, Choi D. Three-Dimensional Bioprinting of Hepatic Structures with Directly Converted Hepatocyte-Like Cells. Tissue Eng Part A 2018; 24:576-583. [PMID: 28726547 DOI: 10.1089/ten.tea.2017.0161] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) bioprinting technology is a promising new technology in the field of bioartificial organ generation with regard to overcoming the limitations of organ supply. The cell source for bioprinting is very important. Here, we generated 3D hepatic scaffold with mouse-induced hepatocyte-like cells (miHeps), and investigated whether their function was improved after transplantation in vivo. To generate miHeps, mouse embryonic fibroblasts (MEFs) were transformed with pMX retroviruses individually expressing hepatic transcription factors Hnf4a and Foxa3. After 8-10 days, MEFs formed rapidly growing hepatocyte-like colonies. For 3D bioprinting, miHeps were mixed with a 3% alginate hydrogel and extruded by nozzle pressure. After 7 days, they were transplanted into the omentum of Jo2-treated NOD Scid gamma (NSG) mice as a liver damage model. Real-time polymerase chain reaction and immunofluorescence analyses were conducted to evaluate hepatic function. The 3D bioprinted hepatic scaffold (25 × 25 mm) expressed Albumin, and ASGR1 and HNF4a expression gradually increased for 28 days in vitro. When transplanted in vivo, the cells in the hepatic scaffold grew more and exhibited higher Albumin expression than in vitro scaffold. Therefore, combining 3D bioprinting with direct conversion technology appears to be an effective option for liver therapy.
Collapse
Affiliation(s)
- Kyojin Kang
- 1 Department of Translational Medicine, Graduate School of Biomedical Science and Engineering , Seongdong-gu, Korea.,2 Department of Surgery, Hanyang University College of Medicine , Seoul, Korea.,3 HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University , Seoul, Korea
| | - Yohan Kim
- 1 Department of Translational Medicine, Graduate School of Biomedical Science and Engineering , Seongdong-gu, Korea.,2 Department of Surgery, Hanyang University College of Medicine , Seoul, Korea.,3 HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University , Seoul, Korea
| | - Hyeryeon Jeon
- 2 Department of Surgery, Hanyang University College of Medicine , Seoul, Korea.,3 HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University , Seoul, Korea
| | - Seung Bum Lee
- 4 Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science (KIRAMS) , Seoul, Korea
| | - Ji Sook Kim
- 5 Department of Pathology, Hanyang University College of Medicine , Seoul, Korea
| | - Su A Park
- 6 Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials , Daejeon, Korea
| | - Wan Doo Kim
- 6 Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials , Daejeon, Korea
| | - Heung Mo Yang
- 7 Department of Surgery, Sungkunkwan University College of Medicine , Seoul, Korea
| | - Sung Joo Kim
- 7 Department of Surgery, Sungkunkwan University College of Medicine , Seoul, Korea
| | - Jaemin Jeong
- 2 Department of Surgery, Hanyang University College of Medicine , Seoul, Korea.,3 HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University , Seoul, Korea
| | - Dongho Choi
- 1 Department of Translational Medicine, Graduate School of Biomedical Science and Engineering , Seongdong-gu, Korea.,2 Department of Surgery, Hanyang University College of Medicine , Seoul, Korea.,3 HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University , Seoul, Korea
| |
Collapse
|
29
|
Rodriguez-Madoz JR, San Jose-Eneriz E, Rabal O, Zapata-Linares N, Miranda E, Rodriguez S, Porciuncula A, Vilas-Zornoza A, Garate L, Segura V, Guruceaga E, Agirre X, Oyarzabal J, Prosper F. Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome. PLoS One 2017; 12:e0190275. [PMID: 29281720 PMCID: PMC5744984 DOI: 10.1371/journal.pone.0190275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/11/2017] [Indexed: 12/29/2022] Open
Abstract
The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications. In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272) improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC. Furthermore, we demonstrated that mechanistically, treatment with CM272 induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to OSKM refractory binding regions that are required for iPSC establishment, and enhances mesenchymal to epithelial transition during the early phase of cell reprogramming. Thus, the use of this new G9a/DNMT reversible dual inhibitor compound may represent an interesting alternative for improving cell reprogramming and human iPSC derivation for many different applications while providing interesting insights into reprogramming mechanisms.
Collapse
Affiliation(s)
- Juan Roberto Rodriguez-Madoz
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- * E-mail: (FP); (JRRM)
| | - Edurne San Jose-Eneriz
- Oncohematology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Natalia Zapata-Linares
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Estibaliz Miranda
- Oncohematology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Saray Rodriguez
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Angelo Porciuncula
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Amaia Vilas-Zornoza
- Oncohematology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Leire Garate
- Oncohematology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Victor Segura
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Elizabeth Guruceaga
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Xabier Agirre
- Oncohematology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Oncohematology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Hematology and Area of Cell Therapy, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- * E-mail: (FP); (JRRM)
| |
Collapse
|
30
|
Kuadkitkan A, Wikan N, Smith DR. Induced pluripotent stem cells: A new addition to the virologists armamentarium. J Virol Methods 2017; 235:191-195. [PMID: 27544025 DOI: 10.1016/j.jviromet.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 12/01/2022]
Abstract
A significant amount of our understanding of the molecular events occurring during viral replication has originated from studies utilizing cell lines. These cell lines are normally obtained by the culture of samples from spontaneously occurring tumors or are derived by genetic manipulation of primary cells. The genetic events inducing immortalization and/or transformation to allow continual passage in culture can have profound effects resulting in a marked loss of cell type fidelity. The development of induced pluripotent stem cells (iPSCs) has revolutionized the field of developmental biology and is ushering in an era of personalized medicine for a wide range of inherited genetic diseases. Previously, development of iPSCs required dedicated facilities as well as highly detailed technical knowledge. The pace of development in this field however has been so rapid, that iPSCs are moving into an era of "off the shelf" use, whereby the use and manipulation of these cells is well within the ability of the majority of laboratories with standard tissue culture facilities. The introduction of iPSCs to studies in the field of virology is still in its infancy, and so far has been largely confined to viruses that are difficult to propagate in other experimental systems, but it is likely that this technology will become a standard methodology in the virologists armamentarium.
Collapse
Affiliation(s)
- Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
31
|
Baranek M, Belter A, Naskręt-Barciszewska MZ, Stobiecki M, Markiewicz WT, Barciszewski J. Effect of small molecules on cell reprogramming. MOLECULAR BIOSYSTEMS 2017; 13:277-313. [PMID: 27918060 DOI: 10.1039/c6mb00595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The essential idea of regenerative medicine is to fix or replace tissues or organs with alive and patient-specific implants. Pluripotent stem cells are able to indefinitely self-renew and differentiate into all cell types of the body which makes them a potent substantial player in regenerative medicine. The easily accessible source of induced pluripotent stem cells may allow obtaining and cultivating tissues in vitro. Reprogramming refers to regression of mature cells to its initial pluripotent state. One of the approaches affecting pluripotency is the usage of low molecular mass compounds that can modulate enzymes and receptors leading to the formation of pluripotent stem cells (iPSCs). It would be great to assess the general character of such compounds and reveal their new derivatives or modifications to increase the cell reprogramming efficiency. Many improvements in the methods of pluripotency induction have been made by various groups in order to limit the immunogenicity and tumorigenesis, increase the efficiency and accelerate the kinetics. Understanding the epigenetic changes during the cellular reprogramming process will extend the comprehension of stem cell biology and lead to potential therapeutic approaches. There are compounds which have been already proven to be or for now only putative inducers of the pluripotent state that may substitute for the classic reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc) in order to improve the time and efficiency of pluripotency induction. The effect of small molecules on gene expression is dosage-dependent and their application concentration needs to be strictly determined. In this review we analysed the role of small molecules in modulations leading to pluripotency induction, thereby contributing to our understanding of stem cell biology and uncovering the major mechanisms involved in that process.
Collapse
Affiliation(s)
- M Baranek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - A Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Z Naskręt-Barciszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - W T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - J Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
32
|
Expression of markers for germ cells and oocytes in cow dermal fibroblast treated with 5-azacytidine and cultured in differentiation medium containing BMP2, BMP4 or follicular fluid. ZYGOTE 2017; 25:341-357. [DOI: 10.1017/s0967199417000211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SummaryThis study aims to investigate the effect 5-azacytidine (5-Aza) during induction of pluripotency in bovine fibroblasts and to evaluate the effects of BMP2, BMP4 or follicular fluid in the differentiation of reprogrammed fibroblasts in primordial germ cells and oocytes. It also analysis the mRNA levels for OCT4, NANOG, REX, SOX2, VASA, DAZL, cKIT, SCP3, ZPA and GDF9 after culturing 5-Aza treated fibroblasts in the different tested medium. Dermal fibroblasts were cultured and exposed to 0.5, 1.0 or 2.0 μM of 5-Aza for 18 h, 36 h or 72 h. Then, the cells were cultured in DMEM/F12 supplemented with 10 ng/ml BMP2, 10 ng/ml BMP4 or 5% follicular fluid. After culture, morphological characteristics, viability and gene expression were evaluated by qPCR. Treatment of skin fibroblasts with 2.0 μM 5-Aza for 72 h significantly increased expression of mRNAs for SOX2, OCT4, NANOG and REX. The culture in medium supplemented with BMP2, BMP4 or follicular fluid for 7 or 14 days induced formation of oocyte-like cells, as well as the expression of markers for germ cells and oocyte. In conclusion, treatment of bovine skin-derived fibroblasts with 2.0 μM 5-Aza for 72 h induces the expression of pluripotency factors. Culturing these cells in differentiation medium supplemented with BMP2, BMP4 or follicular fluid induces morphological changes and promotes expression of markers for germ cells, meiosis and oocyte.
Collapse
|
33
|
Aberdam E, Petit I, Sangari L, Aberdam D. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing. PLoS One 2017. [PMID: 28640863 PMCID: PMC5481014 DOI: 10.1371/journal.pone.0179913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.
Collapse
Affiliation(s)
- Edith Aberdam
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Isabelle Petit
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Linda Sangari
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Daniel Aberdam
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
- * E-mail:
| |
Collapse
|
34
|
Sifuentes CJ, Kim JW, Swaroop A, Raymond PA. Rapid, Dynamic Activation of Müller Glial Stem Cell Responses in Zebrafish. Invest Ophthalmol Vis Sci 2017; 57:5148-5160. [PMID: 27699411 PMCID: PMC5054728 DOI: 10.1167/iovs.16-19973] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose Zebrafish neurons regenerate from Müller glia following retinal lesions. Genes and signaling pathways important for retinal regeneration in zebrafish have been described, but our understanding of how Müller glial stem cell properties are regulated is incomplete. Mammalian Müller glia possess a latent neurogenic capacity that might be enhanced in regenerative therapies to treat degenerative retinal diseases. Methods To identify transcriptional changes associated with stem cell properties in zebrafish Müller glia, we performed a comparative transcriptome analysis from isolated cells at 8 and 16 hours following an acute photic lesion, prior to the asymmetric division that produces retinal progenitors. Results We report a rapid, dynamic response of zebrafish Müller glia, characterized by activation of pathways related to stress, nuclear factor–κB (NF-κB) signaling, cytokine signaling, immunity, prostaglandin metabolism, circadian rhythm, and pluripotency, and an initial repression of Wnt signaling. When we compared publicly available transcriptomes of isolated mouse Müller glia from two retinal degeneration models, we found that mouse Müller glia showed evidence of oxidative stress, variable responses associated with immune regulation, and repression of pathways associated with pluripotency, development, and proliferation. Conclusions Categories of biological processes/pathways activated following photoreceptor loss in regeneration-competent zebrafish Müller glia, which distinguished them from mouse Müller glia in retinal degeneration models, included cytokine signaling (notably NF-κB), prostaglandin E2 synthesis, expression of core clock genes, and pathways/metabolic states associated with pluripotency. These regulatory mechanisms are relatively unexplored as potential mediators of stem cell properties likely to be important in Müller glial cells for successful retinal regeneration.
Collapse
Affiliation(s)
- Christopher J Sifuentes
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea 3Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Pamela A Raymond
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
35
|
Xu X, Shi D, Liu Y, Yao Y, Dai J, Xu Z, Chen D, Teng H, Jiang Q. In vivo repair of full-thickness cartilage defect with human iPSC-derived mesenchymal progenitor cells in a rabbit model. Exp Ther Med 2017; 14:239-245. [PMID: 28672920 PMCID: PMC5488398 DOI: 10.3892/etm.2017.4474] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/20/2017] [Indexed: 12/27/2022] Open
Abstract
Cell-based tissue engineering has the potential to restore cartilage defects. Induced pluripotent stem cells (iPSCs) are regarded as an alternative cell source in regenerative medicine. The purpose of the present study was to evaluate the use of mesenchymal stem cells (MSCs) derived from human iPSCs (hiPSCs) for the regeneration of cartilage defects in a rabbit model. Cartilage defects were made in the patellar grooves of New Zealand white rabbits. The rabbits were then divided into three groups according to implantation: Control group, scaffold implantation group and scaffold/hiPSCs-MSCs (experimental) group. MSCs were generated from hiPSCs via a step of embryoid body formation. Following flow cytological analysis, the hiPSCs-MSCs were plated onto poly(lactic-co-glycolide) and then transplanted into the cartilage defects in the experimental group. Six rabbits from each group were sacrificed at each time point. The outcome was assessed macroscopically and histologically at 3 and 6 weeks post-surgery. At 3 and 6 weeks, the experimental group showed more cartilage defect filling compared with the control and scaffold implantation groups. At 3 weeks, the experimental group showed much more repair tissue in the cartilage defect, although no cartilage-like tissue was observed. At 6 weeks, cartilage-like tissue was observed in the experimental group but not in the control or scaffold implantation groups. No teratoma formation was observed in any of the groups. The results indicate that iPSCs have the potential to repair cartilage defects in vivo. Therefore, iPSCs could be a new cell source for cartilage defect repair.
Collapse
Affiliation(s)
- Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Yubao Liu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Yao Yao
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jin Dai
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Zhihong Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Dongyang Chen
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huajian Teng
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
36
|
Wegscheid ML, Anastasaki C, Gutmann DH. Human stem cell modeling in neurofibromatosis type 1 (NF1). Exp Neurol 2017; 299:270-280. [PMID: 28392281 DOI: 10.1016/j.expneurol.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Abstract
The future of precision medicine is heavily reliant on the use of human tissues to identify the key determinants that account for differences between individuals with the same disorder. This need is exemplified by the neurofibromatosis type 1 (NF1) neurogenetic condition. As such, individuals with NF1 are born with a germline mutation in the NF1 gene, but may develop numerous distinct neurological problems, ranging from autism and attention deficit to brain and peripheral nerve sheath tumors. Coupled with accurate preclinical mouse models, the availability of NF1 patient-derived induced pluripotent stem cells (iPSCs) provides new opportunities to define the critical factors that underlie NF1-associated nervous system disease pathogenesis and progression. In this review, we discuss the generation and potential applications of iPSC technology to the study of NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
37
|
Lai PL, Lin H, Chen SF, Yang SC, Hung KH, Chang CF, Chang HY, Lu FL, Lee YH, Liu YC, Huang HC, Lu J. Efficient Generation of Chemically Induced Mesenchymal Stem Cells from Human Dermal Fibroblasts. Sci Rep 2017; 7:44534. [PMID: 28303927 PMCID: PMC5356011 DOI: 10.1038/srep44534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stromal/stem cells (MSCs) are multipotent and currently undergoing hundreds of clinical trials for disease treatments. To date, no studies have generated induced MSCs from skin fibroblasts with chemicals or growth factors. Here, we established the first chemical method to convert primary human dermal fibroblasts into multipotent, induced MSC-like cells (iMSCs). The conversion method uses a defined cocktail of small molecules and growth factors, and it can achieve efficient conversion with an average rate of 38% in 6 days. The iMSCs have much higher clonogenicity than fibroblasts, and they can be maintained and expanded in regular MSC medium for at least 8 passages and further differentiated into osteoblasts, adipocytes, and chondrocytes. Moreover, the iMSCs can suppress LPS-mediated acute lung injury as effectively as bone marrow-derived mesenchymal stem cells. This finding may greatly benefit stem cell biology, cell therapy, and regenerative medicine.
Collapse
Affiliation(s)
- Pei-Lun Lai
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan Lin
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Shang-Fu Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Molecular and Cellular Biology and Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | - Kuo-Hsuan Hung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hsiang-Yi Chang
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Frank Leigh Lu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chuan Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Chun Huang
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.,Institute of Molecular and Cellular Biology and Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Electronics Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
| | - Jean Lu
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan.,National RNAi Platform/National Core Facility Program for Biotechnology, Taipei, Taiwan.,Department of Life Science, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
38
|
Zhao L, Fu HY, Raju R, Vishwanathan N, Hu WS. Unveiling gene trait relationship by cross-platform meta-analysis on Chinese hamster ovary cell transcriptome. Biotechnol Bioeng 2017; 114:1583-1592. [PMID: 28218403 DOI: 10.1002/bit.26272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/17/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
In the past few years, transcriptome analysis has been increasingly employed to better understand the physiology of Chinese hamster ovary (CHO) cells at a global level. As more transcriptome data accumulated, meta-analysis on data sets collected from various sources can potentially provide better insights on common properties of those cells. Here, we performed meta-analysis on transcriptome data of different CHO cell lines obtained using NimbleGen or Affymetrix microarray platforms. Hierarchical clustering, non-negative matrix factorization (NMF) analysis, and principal component analysis (PCA) accordantly showed the samples were clustered into two groups: one consists of adherent cells in serum-containing medium, and the other suspension cells in serum-free medium. Genes that were differentially expressed between the two clusters were enriched in a few functional classes by Database for Annotation, Visualization, and Integrated Discovery (DAVID) of which many were common with the enriched gene sets identified by Gene Set Enrichment Analysis (GSEA), including extracellular matrix (ECM) receptor interaction, cell adhesion molecules (CAMs), and lipid related metabolism pathways. Despite the heterogeneous sources of the cell samples, the adherent and suspension growth characteristics and serum-supplementation appear to be a dominant feature in the transcriptome. The results demonstrated that meta-analysis of transcriptome could uncover features in combined data sets that individual data set might not reveal. As transcriptome data sets accumulate over time, meta-analysis will become even more revealing. Biotechnol. Bioeng. 2017;114: 1583-1592. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hsu-Yuan Fu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Ravali Raju
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Nandita Vishwanathan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
39
|
Luginbühl J, Sivaraman DM, Shin JW. The essentiality of non-coding RNAs in cell reprogramming. Noncoding RNA Res 2017; 2:74-82. [PMID: 30159423 PMCID: PMC6096403 DOI: 10.1016/j.ncrna.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
In mammals, short (mi-) and long non-coding (lnc) RNAs are immensely abundant and they are proving to be more functional than ever before. Particularly in cell reprogramming, non-coding RNAs are essential to establish the pluripotent network and are indispensable to reprogram somatic cells to pluripotency. Through systematic screening and mechanistic studies, diverse functional features of both miRNA and lncRNAs have emerged as either scaffolds, inhibitors, or co-activators, necessary to orchestrate the intricacy of gene regulation. Furthermore, the collective characterizations of both miRNA and lncRNA reveal their interdependency (e.g. sequestering the function of the other) to modulate cell reprogramming. This review broadly explores the regulatory processes of cell reprogramming - with key functional examples in neuronal and cardiac differentiations - in the context of both short and long non-coding RNAs.
Collapse
Affiliation(s)
| | | | - Jay W. Shin
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
40
|
Abstract
The role of p53 as “a guardian of the genome” has been well established in somatic cells. However, its role in pluripotent stem cells remains much more elusive. Here, we discuss research progress in understanding the role of p53 in pluripotent stem cells and in pluripotent stem cell-like cancer stem cells. The p53 protein, which plays a key role in embryonic stem cells, was first discovered in 2005. Landmark studies of p53-related reprogramming elucidated this protein’s importance in induced pluripotent stem cells in 2009. The p53-related safety concerns in pluripotent stem cells have been raised in stem cell-based therapy although the use of iPSCs in therapeutic application is promising. Because cancer stem cells have profiles similar to those of pluripotent stem cells, we also describe potential strategies for studies in cancer stem cells and cancer treatments. The new discoveries of p53 family proteins in pluripotent stem cells have made possible stable progress in stem cell transplantation efficiency and safety, as well as treatment strategies targeting cancer stem cells based on pluripotent stem cell technology.
Collapse
Affiliation(s)
- Tongxiang Lin
- Stem Cell Research Center, College of Bee Science, Fujian Agriculture and Forestry University, 15 ShangXiaDian Rd, Fuzhou, Fujian, 350002, China. .,Center for Regenerative and Translational Medicine, The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, 111 Dade Rd, Guangzhou, Guangdong, 510120, China.
| | - Yi Lin
- Stem Cell Research Center, College of Bee Science, Fujian Agriculture and Forestry University, 15 ShangXiaDian Rd, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
41
|
Berenguer E, Bárány I, Solís MT, Pérez-Pérez Y, Risueño MC, Testillano PS. Inhibition of Histone H3K9 Methylation by BIX-01294 Promotes Stress-Induced Microspore Totipotency and Enhances Embryogenesis Initiation. FRONTIERS IN PLANT SCIENCE 2017; 8:1161. [PMID: 28706533 PMCID: PMC5489599 DOI: 10.3389/fpls.2017.01161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/16/2017] [Indexed: 05/18/2023]
Abstract
Microspore embryogenesis is a process of cell reprogramming, totipotency acquisition and embryogenesis initiation, induced in vitro by stress treatments and widely used in plant breeding for rapid production of doubled-haploids, but its regulating mechanisms are still largely unknown. Increasing evidence has revealed epigenetic reprogramming during microspore embryogenesis, through DNA methylation, but less is known about the involvement of histone modifications. In this study, we have analyzed the dynamics and possible role of histone H3K9 methylation, a major repressive modification, as well as the effects on microspore embryogenesis initiation of BIX-01294, an inhibitor of histone methylation, tested for the first time in plants, in Brassica napus and Hordeum vulgare. Results revealed that microspore reprogramming and initiation of embryogenesis involved a low level of H3K9 methylation. With the progression of embryogenesis, methylation of H3K9 increased, correlating with gene expression profiles of BnHKMT SUVR4-like and BnLSD1-like (writer and eraser enzymes of H3K9me2). At early stages, BIX-01294 promoted cell reprogramming, totipotency and embryogenesis induction, while diminishing bulk H3K9 methylation. DNA methylation was also reduced by short-term BIX-01294 treatment. By contrast, long BIX-01294 treatments hindered embryogenesis progression, indicating that H3K9 methylation is required for embryo differentiation. These findings open up new possibilities to enhance microspore embryogenesis efficiency in recalcitrant species through pharmacological modulation of histone methylation by using BIX-01294.
Collapse
|
42
|
Muñoz-López A, Romero-Moya D, Prieto C, Ramos-Mejía V, Agraz-Doblas A, Varela I, Buschbeck M, Palau A, Carvajal-Vergara X, Giorgetti A, Ford A, Lako M, Granada I, Ruiz-Xivillé N, Rodríguez-Perales S, Torres-Ruíz R, Stam RW, Fuster JL, Fraga MF, Nakanishi M, Cazzaniga G, Bardini M, Cobo I, Bayon GF, Fernandez AF, Bueno C, Menendez P. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency. Stem Cell Reports 2016; 7:602-618. [PMID: 27666791 PMCID: PMC5063541 DOI: 10.1016/j.stemcr.2016.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/09/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL) has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L)-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming “boosters” also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency. Neither primary B-ALL blasts nor leukemic B cell lines can be reprogrammed to iPSCs Global transcriptome and DNA methylome suggest a developmental refractoriness
Collapse
Affiliation(s)
- Alvaro Muñoz-López
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Damià Romero-Moya
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Cristina Prieto
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Verónica Ramos-Mejía
- Genomic Oncology Department, Centre for Genomics and Oncology GENyO, 18016 Granada, Spain
| | - Antonio Agraz-Doblas
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain; IBBTEC, CSIC-University of Cantabria, 39011 Santander, Spain
| | - Ignacio Varela
- IBBTEC, CSIC-University of Cantabria, 39011 Santander, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Anna Palau
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Xonia Carvajal-Vergara
- Cell Therapy Department, Centro de Investigación Médica Aplicada (CIMA), 31008 Pamplona, Spain
| | - Alessandra Giorgetti
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Anthony Ford
- Centre for Evolution and Cancer, Institute of Cancer Research, London SW7 3RP, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Isabel Granada
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Hematology Department, Hospital Germans Trias i Pujol, Institut Català d'Oncología, 08916 Badalona, Spain
| | - Neus Ruiz-Xivillé
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Hematology Department, Hospital Germans Trias i Pujol, Institut Català d'Oncología, 08916 Badalona, Spain
| | | | - Raul Torres-Ruíz
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Cytogenetics Group, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Ronald W Stam
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Erasmus University, 3015 CN Rotterdam, the Netherlands
| | - Jose Luis Fuster
- Department of Pediatric Oncohematology, Clinical University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33003 Oviedo, Spain
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraka 305-0046, Japan
| | - Gianni Cazzaniga
- University di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20052 Monza MB, Italy
| | - Michela Bardini
- University di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20052 Monza MB, Italy
| | - Isabel Cobo
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33003 Oviedo, Spain
| | - Gustavo F Bayon
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33003 Oviedo, Spain
| | - Agustin F Fernandez
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33003 Oviedo, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain.
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain; Instituciò Catalana de Recerca i Estudis Avançats (ICREA), 08036 Barcelona, Spain.
| |
Collapse
|
43
|
Izgi K, Canatan H, Iskender B. Current status in cancer cell reprogramming and its clinical implications. J Cancer Res Clin Oncol 2016; 143:371-383. [DOI: 10.1007/s00432-016-2258-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022]
|
44
|
Kareem A, Radhakrishnan D, Sondhi Y, Aiyaz M, Roy MV, Sugimoto K, Prasad K. De novo assembly of plant body plan: a step ahead of Deadpool. REGENERATION (OXFORD, ENGLAND) 2016; 3:182-197. [PMID: 27800169 PMCID: PMC5084358 DOI: 10.1002/reg2.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/12/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
While in the movie Deadpool it is possible for a human to recreate an arm from scratch, in reality plants can even surpass that. Not only can they regenerate lost parts, but also the whole plant body can be reborn from a few existing cells. Despite the decades old realization that plant cells possess the ability to regenerate a complete shoot and root system, it is only now that the underlying mechanisms are being unraveled. De novo plant regeneration involves the initiation of regenerative mass, acquisition of the pluripotent state, reconstitution of stem cells and assembly of regulatory interactions. Recent studies have furthered our understanding on the making of a complete plant system in the absence of embryonic positional cues. We review the recent studies probing the molecular mechanisms of de novo plant regeneration in response to external inductive cues and our current knowledge of direct reprogramming of root to shoot and vice versa. We further discuss how de novo regeneration can be exploited to meet the demands of green culture industries and to serve as a general model to address the fundamental questions of regeneration across the plant kingdom.
Collapse
Affiliation(s)
- Abdul Kareem
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Dhanya Radhakrishnan
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Yash Sondhi
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Mohammed Aiyaz
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Merin V. Roy
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Kaoru Sugimoto
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of Science2641 YamazakiNodaChiba278‐8510Japan
| | - Kalika Prasad
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| |
Collapse
|
45
|
Xu A, Cheng L. Chemical transdifferentiation: closer to regenerative medicine. Front Med 2016; 10:152-65. [PMID: 27142989 DOI: 10.1007/s11684-016-0445-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Abstract
Cell transdifferentiation, which directly switches one type of differentiated cells into another cell type, is more advantageous than cell reprogramming to generate pluripotent cells and differentiate them into functional cells. This process is crucial in regenerative medicine. However, the cell-converting strategies, which mainly depend on the virus-mediated expression of exogenous genes, have clinical safety concerns. Small molecules with compelling advantages are a potential alternative in manipulating cell fate conversion. In this review, we briefly retrospect the nature of cell transdifferentiation and summarize the current developments in the research of small molecules in promoting cell conversion. Particularly, we focus on the complete chemical compound-induced cell transdifferentiation, which is closer to the clinical translation in cell therapy. Despite these achievements, the mechanisms underpinning chemical transdifferentiation remain largely unknown. More importantly, identifying drugs that induce resident cell conversion in vivo to repair damaged tissue remains to be the end-goal in current regenerative medicine.
Collapse
Affiliation(s)
- Aining Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
46
|
Piccoli M, Cirillo F, Tettamanti G, Anastasia L. A chemical approach to myocardial protection and regeneration. Eur Heart J Suppl 2016; 18:E1-E7. [PMID: 28533708 DOI: 10.1093/eurheartj/suw018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The possibility of generating induced pluripotent stem cells from mouse embryonic fibroblasts and human adult fibroblasts has introduced new perspectives for possible therapeutic strategies to repair damaged hearts. However, obtaining large numbers of adult stem cells is still an ongoing challenge, and the safety of genetic reprogramming with lenti- or retro-viruses has several drawbacks not easy to be addressed. Furthermore, the majority of adult stem cell-based clinical trials for heart regeneration have had generally poor and controversial results. Nonetheless, it is now clear that the injected cells activate the growth and differentiation of progenitor cells that are already present in the heart. This is achieved by the release of signalling factors and/or exosomes carrying them. Along this line, chemistry may play a major role in developing new strategies for activating resident stem cells to regenerate the heart. In particular, this review focuses on small molecule approaches for cell reprogramming, cell differentiation, and activation of cell protection.
Collapse
Affiliation(s)
- Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Milan, Italy
| | - Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Milan, Italy
| | - Guido Tettamanti
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
47
|
Ben-Reuven L, Reiner O. Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD. Dev Growth Differ 2016; 58:481-91. [PMID: 27111774 DOI: 10.1111/dgd.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
The opportunity to model autism spectrum disorders (ASD) through generation of patient-derived induced pluripotent stem cells (iPSCs) is currently an emerging topic. Wide-scale research of altered brain circuits in syndromic ASD, including Rett Syndrome, Fragile X Syndrome, Angelman's Syndrome and sporadic Schizophrenia, was made possible through animal models. However, possibly due to species differences, and to the possible contribution of epigenetics in the pathophysiology of these diseases, animal models fail to recapitulate many aspects of ASD. With the advent of iPSCs technology, 3D cultures of patient-derived cells are being used to study complex neuronal phenotypes, including both syndromic and nonsyndromic ASD. Here, we review recent advances in using iPSCs to study various aspects of the ASD neuropathology, with emphasis on the efforts to create in vitro model systems for syndromic and nonsyndromic ASD. We summarize the main cellular activity phenotypes and aberrant genetic interaction networks that were found in iPSC-derived neurons of syndromic and nonsyndromic autistic patients.
Collapse
Affiliation(s)
- Lihi Ben-Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
48
|
Modulating the Substrate Stiffness to Manipulate Differentiation of Resident Liver Stem Cells and to Improve the Differentiation State of Hepatocytes. Stem Cells Int 2016; 2016:5481493. [PMID: 27057172 PMCID: PMC4737459 DOI: 10.1155/2016/5481493] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
In many cell types, several cellular processes, such as differentiation of stem/precursor cells, maintenance of differentiated phenotype, motility, adhesion, growth, and survival, strictly depend on the stiffness of extracellular matrix that, in vivo, characterizes their correspondent organ and tissue. In the liver, the stromal rigidity is essential to obtain the correct organ physiology whereas any alteration causes liver cell dysfunctions. The rigidity of the substrate is an element no longer negligible for the cultivation of several cell types, so that many data so far obtained, where cells have been cultured on plastic, could be revised. Regarding liver cells, standard culture conditions lead to the dedifferentiation of primary hepatocytes, transdifferentiation of stellate cells into myofibroblasts, and loss of fenestration of sinusoidal endothelium. Furthermore, standard cultivation of liver stem/precursor cells impedes an efficient execution of the epithelial/hepatocyte differentiation program, leading to the expansion of a cell population expressing only partially liver functions and products. Overcoming these limitations is mandatory for any approach of liver tissue engineering. Here we propose cell lines as in vitro models of liver stem cells and hepatocytes and an innovative culture method that takes into account the substrate stiffness to obtain, respectively, a rapid and efficient differentiation process and the maintenance of the fully differentiated phenotype.
Collapse
|
49
|
Świerczek B, Ciemerych MA, Archacka K. From pluripotency to myogenesis: a multistep process in the dish. J Muscle Res Cell Motil 2015; 36:363-75. [PMID: 26715014 PMCID: PMC4762919 DOI: 10.1007/s10974-015-9436-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells (PSCs), such as embryonic stem cells or induced pluripotent stem cells are a promising source of cells for regenerative medicine as they can differentiate into all cell types building a mammalian body. However, protocols leading to efficient and safe in vitro generation of desired cell types must be perfected before PSCs can be used in cell therapies or tissue engineering. In vivo, i.e. in developing mouse embryo or teratoma, PSCs can differentiate into skeletal muscle, but in vitro their spontaneous differentiation into myogenic cells is inefficient. Numerous attempts have been undertaken to enhance this process. Many of them involved mimicking the interactions occurring during embryonic myogenesis. The key regulators of embryonic myogenesis, such as Wnts proteins, fibroblast growth factor 2, and retinoic acid, have been tested to improve the frequency of in vitro myogenic differentiation of PSCs. This review summarizes the current state of the art, comparing spontaneous and directed myogenic differentiation of PSCs as well as the protocols developed this far to facilitate this process.
Collapse
Affiliation(s)
- Barbara Świerczek
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
50
|
Direct Reprogramming of Mouse Fibroblasts to Neural Stem Cells by Small Molecules. Stem Cells Int 2015; 2016:4304916. [PMID: 26788068 PMCID: PMC4695670 DOI: 10.1155/2016/4304916] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
Although it is possible to generate neural stem cells (NSC) from somatic cells by reprogramming technologies with transcription factors, clinical utilization of patient-specific NSC for the treatment of human diseases remains elusive. The risk hurdles are associated with viral transduction vectors induced mutagenesis, tumor formation from undifferentiated stem cells, and transcription factors-induced genomic instability. Here we describe a viral vector-free and more efficient method to induce mouse fibroblasts into NSC using small molecules. The small molecule-induced neural stem (SMINS) cells closely resemble NSC in morphology, gene expression patterns, self-renewal, excitability, and multipotency. Furthermore, the SMINS cells are able to differentiate into astrocytes, functional neurons, and oligodendrocytes in vitro and in vivo. Thus, we have established a novel way to efficiently induce neural stem cells (iNSC) from fibroblasts using only small molecules without altering the genome. Such chemical induction removes the risks associated with current techniques such as the use of viral vectors or the induction of oncogenic factors. This technique may, therefore, enable NSC to be utilized in various applications within clinical medicine.
Collapse
|