1
|
Moawad MHED, Serag I, Alkhawaldeh IM, Abbas A, Sharaf A, Alsalah S, Sadeq MA, Shalaby MMM, Hefnawy MT, Abouzid M, Meshref M. Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review. Mol Neurobiol 2024:10.1007/s12035-024-04468-y. [PMID: 39254911 DOI: 10.1007/s12035-024-04468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) presents a significant challenge to global health. It is characterized by progressive cognitive deterioration and increased rates of morbidity and mortality among older adults. Among the various pathophysiologies of AD, mitochondrial dysfunction, encompassing conditions such as increased reactive oxygen production, dysregulated calcium homeostasis, and impaired mitochondrial dynamics, plays a pivotal role. This review comprehensively investigates the mechanisms of mitochondrial dysfunction in AD, focusing on aspects such as glucose metabolism impairment, mitochondrial bioenergetics, calcium signaling, protein tau and amyloid-beta-associated synapse dysfunction, mitophagy, aging, inflammation, mitochondrial DNA, mitochondria-localized microRNAs, genetics, hormones, and the electron transport chain and Krebs cycle. While lecanemab is the only FDA-approved medication to treat AD, we explore various therapeutic modalities for mitigating mitochondrial dysfunction in AD, including antioxidant drugs, antidiabetic agents, acetylcholinesterase inhibitors (FDA-approved to manage symptoms), nutritional supplements, natural products, phenylpropanoids, vaccines, exercise, and other potential treatments.
Collapse
Affiliation(s)
- Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospital, Manama, Bahrain
| | - Sumaya Alsalah
- Ministry of Health, Primary Care, Governmental Health Centers, Manama, Bahrain
| | | | | | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Liao Z, Zhang Q, Ren N, Zhao H, Zheng X. Progress in mitochondrial and omics studies in Alzheimer's disease research: from molecular mechanisms to therapeutic interventions. Front Immunol 2024; 15:1418939. [PMID: 39040111 PMCID: PMC11260616 DOI: 10.3389/fimmu.2024.1418939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Alzheimer's disease (Alzheimer's disease, AD) is a progressive neurological disorder characterized by memory loss and cognitive impairment. It is characterized by the formation of tau protein neurofibrillary tangles and β-amyloid plaques. Recent studies have found that mitochondria in neuronal cells of AD patients exhibit various dysfunctions, including reduced numbers, ultrastructural changes, reduced enzyme activity, and abnormal kinetics. These abnormal mitochondria not only lead to the loss of normal neuronal cell function, but are also a major driver of AD progression. In this review, we will focus on the advances of mitochondria and their multi-omics in AD research, with particular emphasis on how mitochondrial dysfunction in AD drives disease progression. At the same time, we will focus on summarizing how mitochondrial genomics technologies have revealed specific details of these dysfunctions and how therapeutic strategies targeting mitochondria may provide new directions for future AD treatments. By delving into the key mechanisms of mitochondria in AD related to energy metabolism, altered kinetics, regulation of cell death, and dysregulation of calcium-ion homeostasis, and how mitochondrial multi-omics technologies can be utilized to provide us with a better understanding of these processes. In the future, mitochondria-centered therapeutic strategies will be a key idea in the treatment of AD.
Collapse
Affiliation(s)
- Zuning Liao
- Department of Neurology, Fourth People’s Hospital of Jinan, Jinan, China
| | - Qiying Zhang
- Department of Internal Medicine, Jinan Municipal Government Hospital, Jinan, China
| | - Na Ren
- Pharmacy Department, Jinan Municipal People’s Government Organs Outpatient Department, Jinan, China
| | - Haiyan Zhao
- Department of Pharmacy, Qihe County People’s Hospital, Dezhou, China
| | - Xueyan Zheng
- Department of Pharmacy, Jinan Second People’s Hospital, Jinan, China
| |
Collapse
|
3
|
Chao WW, Chan WC, Ma HT, Chou ST. Phenolic acids and flavonoids-rich Glechoma hederacea L. (Lamiaceae) water extract against H 2 O 2 -induced apoptosis in PC12 cells. J Food Biochem 2021; 46:e14032. [PMID: 34914114 DOI: 10.1111/jfbc.14032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS)-induced oxidative stress is reportedly associated with progressive neuronal cell damage. Glechoma hederacea L. (Lamiaceae), belonging to the Labiatae family, has demonstrated several biologic activities including depigmentation, antimelanogenic, antitumor, antioxidative, hepatoprotective, and anti-inflammatory activities. Previously, we reported that rosmarinic acid, chlorogenic acid, caffeic acid, rutin, genistin, and ferulic acids were the most abundant phytochemicals detected in hot water extracts of G. hederacea L. (HWG). This study aimed to study the neuroprotective effects of phenolic acids and flavonoid-rich HWG against hydrogen peroxide (H2 O2 )-induced oxidative damage in PC12 cells and its inhibitory effect on acetylcholinesterase (AChE). The experiment analyzed cytotoxicity, ROS production, mitochondrial transmembrane potential (MMP) level, and caspase-3 activity and used comet assay and antioxidant enzyme activity to determine the redox status of PC12 cells. Results showed that the inhibitory effect of HWG on AChE was in a competitive pattern (IC50 , 23.23 mg/ml). HWG antagonized H2 O2 -mediated cytotoxicity and DNA damage, reduced ROS production, stabilized MMP, and inhibited caspase-3 activity and apoptosis. Furthermore, HWG inhibited the release of cytochrome C and apoptosis-inducing factors (AIF) and decreased the malondialdehyde levels in PC12 cells. Collectively, HWG rich in antioxidant phenolic acids and flavonoids may have neuroprotective effects. PRACTICAL APPLICATIONS: Polyphenolic compounds are one of the most important natural products, known to possess a range of health-promoting effects. In this study, it was found that HWG, which is rich in antioxidant phenolic acids and flavonoids, can protect PC12 cells from oxidative stress induced by H2 O2 and may have neuroprotective effects.
Collapse
Affiliation(s)
- Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Wan-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hao-Ting Ma
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Su-Tze Chou
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| |
Collapse
|
4
|
Csaban D, Pentelenyi K, Toth-Bencsik R, Illes A, Grosz Z, Gezsi A, Molnar MJ. The Role of the Rare Variants in the Genes Encoding the Alpha-Ketoglutarate Dehydrogenase in Alzheimer's Disease. Life (Basel) 2021; 11:321. [PMID: 33917565 PMCID: PMC8067443 DOI: 10.3390/life11040321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022] Open
Abstract
There is increasing evidence that several mitochondrial abnormalities are present in the brains of patients with Alzheimer's disease (AD). Decreased alpha-ketoglutarate dehydrogenase complex (αKGDHc) activity was identified in some patients with AD. The αKGDHc is a key enzyme in the Krebs cycle. This enzyme is very sensitive to the harmful effect of reactive oxygen species, which gives them a critical role in the Alzheimer and mitochondrial disease research area. Previously, several genetic risk factors were described in association with AD. Our aim was to analyze the associations of rare damaging variants in the genes encoding αKGDHc subunits and AD. The three genes (OGDH, DLST, DLD) encoding αKGDHc subunits were sequenced from different brain regions of 11 patients with histologically confirmed AD and the blood of further 35 AD patients. As a control group, we screened 134 persons with whole-exome sequencing. In all subunits, a one-one rare variant was identified with unknown significance based on American College of Medical Genetics and Genomics (ACMG) classification. Based on the literature research and our experience, R263H mutation in the DLD gene seems likely to be pathogenic. In the different cerebral areas, the αKGDHc mutational profile was the same, indicating the presence of germline variants. We hypothesize that the heterozygous missense R263H in the DLD gene may have a role in AD as a mild genetic risk factor.
Collapse
Affiliation(s)
- Dora Csaban
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, H-1082 Budapest, Hungary; (D.C.); (Z.G.)
| | - Klara Pentelenyi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, H-1082 Budapest, Hungary; (D.C.); (Z.G.)
| | - Renata Toth-Bencsik
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, H-1082 Budapest, Hungary; (D.C.); (Z.G.)
| | - Anett Illes
- PentaCore Laboratory Budapest, H-1094 Budapest, Hungary
| | - Zoltan Grosz
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, H-1082 Budapest, Hungary; (D.C.); (Z.G.)
| | - Andras Gezsi
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, H-1117 Budapest, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, H-1082 Budapest, Hungary; (D.C.); (Z.G.)
| |
Collapse
|
5
|
Tang Y, Fang W, Xiao Z, Song M, Zhuang D, Han B, Wu J, Sun X. Nicotinamide ameliorates energy deficiency and improves retinal function in Cav-1 -/- mice. J Neurochem 2020; 157:550-560. [PMID: 33305362 DOI: 10.1111/jnc.15266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023]
Abstract
Caveolin-1(Cav-1) is involved in lipid metabolism and energy homeostasis, which is important for the energetically demanding retina. Although retinal function deficits were noted in Cav-1 knockout (Cav-1-/- ) mice, the underlying causes remain largely unknown. Here, we investigate if the disruption in energy homeostasis presents a potential mechanism for retinal function deficits in Cav-1-/- retina and if it can be ameliorated by nicotinamide (NAM). In this study, NAM was administrated orally for 2 weeks in Cav-1-/- mice before experiments. Oxidative lipidomics was conducted to detect the oxylipin changes, the retinal energy flux was measured by seahorse assay, and the retinal function was assessed by electroretinogram (ERG). Cav-1 deficiency induced the dysregulation of oxidative lipidomics and reduction in energy consumption/production in the retina by decreasing Na+ /K+ -ATPase, oxidative phosphorylation CII, cytochrome c, and oxygen consumption rate (OCR). A decrease in Sirt1 was also detected. Therapeutic administration of NAM significantly increased Sirt1 expression and improved energy deficiency by increasing Na+ /K+ -ATPase, cytochrome c, and OCR. The dysregulation of oxidative lipidomics was partially recovered, and the retinal function was improved as assessed by ERG compared to Cav-1-/- mice. Our study demonstrated the dysregulation of oxidative lipidomics in Cav-1-/- retina and established a link between energy deficiency and retinal function deficits in Cav-1-/- mice. Administration of NAM ameliorated energy deficiency, increased the expression of Sirt1, and improved retinal function, which presents a potential therapeutic strategy for Cav-1 deficiency-induced retinal function deficits.
Collapse
Affiliation(s)
- Yizhen Tang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Wangyi Fang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zebin Xiao
- Department of Radiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Maomao Song
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Dongli Zhuang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Binze Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
6
|
Lv X, Zhou D, Ge B, Chen H, Du Y, Liu S, Ji Y, Sun C, Wang G, Gao Y, Li W, Huang G. Association of Folate Metabolites and Mitochondrial Function in Peripheral Blood Cells in Alzheimer's Disease: A Matched Case-Control Study. J Alzheimers Dis 2020; 70:1133-1142. [PMID: 31306134 DOI: 10.3233/jad-190477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The nutrition state plays an important role in the progress of aging. Folate may play a role in protecting mitochondrial (mt) DNA by reducing oxidative stress. OBJECTIVE The primary aim of this study was to examine the association of mitochondrial oxidative damage with risk of Alzheimer's disease (AD), and to explore the possible role of folate metabolites in this association in a matched case-control study. METHODS Serum folate metabolites and mitochondrial function in peripheral blood cells were determined in 82 AD cases and 82 healthy controls, individually matched by age, gender, and education. RESULTS AD patients had lower serum levels of folate and higher homocysteine (Hcy) concentration. AD patients had a reduced mtDNA copy number, higher mtDNA deletions, and increased 8-OHdG content in mtDNA indicative of reduced mitochondrial function. The highest level of mtDNA copy number would decrease the risk of AD (OR = 0.157, 95% CI: 0.058-0.422) compared to the lowest level, independently of serum folate, and Hcy levels. Serum folate levels correlated with low 8-OHdG content in mtDNA both in AD patients and controls, independently of serum Hcy level. Moreover, serum Hcy levels correlated with low copy number in mtDNA both in AD patients and controls, independently of serum folate levels. CONCLUSION In conclusion, mitochondrial function in peripheral blood cells could be associated with risk of AD independent of multiple covariates. AD patients with a folate deficiency or hyperhomocysteinemia had low mitochondrial function in peripheral blood cells. However, further randomized controlled trials are need to determine a causal effect.
Collapse
Affiliation(s)
- Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Dongtao Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Baojin Ge
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Hui Chen
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Yue Du
- Department of Social Medicine and Health Management, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shuai Liu
- Department of Neurology, and Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yong Ji
- Department of Neurology, and Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Changqing Sun
- Neurosurgical Department of Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Guangshun Wang
- Department of Tumor, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Yuxia Gao
- Department of Cardiology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
7
|
Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr Res 2020; 80:1-17. [DOI: 10.1016/j.nutres.2020.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/11/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
|
8
|
Xiyang YB, Liu R, Wang XY, Li S, Zhao Y, Lu BT, Xiao ZC, Zhang LF, Wang TH, Zhang J. COX5A Plays a Vital Role in Memory Impairment Associated With Brain Aging via the BDNF/ERK1/2 Signaling Pathway. Front Aging Neurosci 2020; 12:215. [PMID: 32754029 PMCID: PMC7365906 DOI: 10.3389/fnagi.2020.00215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Cytochrome c oxidase subunit Va (COX5A) is involved in maintaining normal mitochondrial function. However, little is known on the role of COX5A in the development and progress of Alzheimer’s disease (Martinez-Losa et al., 2018). In this study, we established and characterized the genomic profiles of genes expressed in the hippocampus of Senescence-Accelerated Mouse-prone 8 (SAMP8) mice, and revealed differential expression of COX5A among 12-month-aged SAMP8 mice and 2-month-aged SAMP8 mice. Newly established transgenic mice with systemic COX5A overexpression (51% increase) resulted in the improvement of spatial recognition memory and hippocampal synaptic plasticity, recovery of hippocampal CA1 dendrites, and activation of the BDNF/ERK1/2 signaling pathway in vivo. Moreover, mice with both COX5A overexpression and BDNF knockdown showed a poor recovery in spatial recognition memory as well as a decrease in spine density and branching of dendrites in CA1, when compared to mice that only overexpressed COX5A. In vitro studies supported that COX5A affected neuronal growth via BDNF. In summary, this study was the first to show that COX5A in the hippocampus plays a vital role in aging-related cognitive deterioration via BDNF/ERK1/2 regulation, and suggested that COX5A may be a potential target for anti-senescence drugs.
Collapse
Affiliation(s)
- Yan-Bin Xiyang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Ruan Liu
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China
| | - Shan Li
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Ya Zhao
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Bing-Tuan Lu
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Zhi-Cheng Xiao
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, VIC, Australia
| | - Lian-Feng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Jie Zhang
- Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucinska-Wieckowska A, Oliveira PJ. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem 2019; 26:3376-3406. [PMID: 28554320 DOI: 10.2174/0929867324666170529101810] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols - resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin - in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols' beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal.,CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| |
Collapse
|
10
|
Fleck D, Phu L, Verschueren E, Hinkle T, Reichelt M, Bhangale T, Haley B, Wang Y, Graham R, Kirkpatrick DS, Sheng M, Bingol B. PTCD1 Is Required for Mitochondrial Oxidative-Phosphorylation: Possible Genetic Association with Alzheimer's Disease. J Neurosci 2019; 39:4636-4656. [PMID: 30948477 PMCID: PMC6561697 DOI: 10.1523/jneurosci.0116-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022] Open
Abstract
In addition to amyloid-β plaques and tau tangles, mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD). Neurons heavily rely on mitochondrial function, and deficits in brain energy metabolism are detected early in AD; however, direct human genetic evidence for mitochondrial involvement in AD pathogenesis is limited. We analyzed whole-exome sequencing data of 4549 AD cases and 3332 age-matched controls and discovered that rare protein altering variants in the gene pentatricopeptide repeat-containing protein 1 (PTCD1) show a trend for enrichment in cases compared with controls. We show here that PTCD1 is required for normal mitochondrial rRNA levels, proper assembly of the mitochondrial ribosome and hence for mitochondrial translation and assembly of the electron transport chain. Loss of PTCD1 function impairs oxidative phosphorylation and forces cells to rely on glycolysis for energy production. Cells expressing the AD-linked variant of PTCD1 fail to sustain energy production under increased metabolic stress. In neurons, reduced PTCD1 expression leads to lower ATP levels and impacts spontaneous synaptic activity. Thus, our study uncovers a possible link between a protein required for mitochondrial function and energy metabolism and AD risk.SIGNIFICANCE STATEMENT Mitochondria are the main source of cellular energy and mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD) and other neurodegenerative disorders. Here, we identify a variant in the gene PTCD1 that is enriched in AD patients and demonstrate that PTCD1 is required for ATP generation through oxidative phosphorylation. PTCD1 regulates the level of 16S rRNA, the backbone of the mitoribosome, and is essential for mitochondrial translation and assembly of the electron transport chain. Cells expressing the AD-associated variant fail to maintain adequate ATP production during metabolic stress, and reduced PTCD1 activity disrupts neuronal energy homeostasis and dampens spontaneous transmission. Our work provides a mechanistic link between a protein required for mitochondrial function and genetic AD risk.
Collapse
Affiliation(s)
| | - Lilian Phu
- Microchemistry, Proteomics, and Lipidomics
| | | | | | | | | | - Benjamin Haley
- Molecular Biology, Genentech Inc., South San Francisco, California 94080
| | | | | | | | | | | |
Collapse
|
11
|
Bar-Yosef T, Damri O, Agam G. Dual Role of Autophagy in Diseases of the Central Nervous System. Front Cell Neurosci 2019; 13:196. [PMID: 31191249 PMCID: PMC6548059 DOI: 10.3389/fncel.2019.00196] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a vital lysosomal degradation and recycling pathway in the eukaryotic cell, responsible for maintaining an intricate balance between cell survival and cell death, necessary for neuronal survival and function. This dual role played by autophagy raises the question whether this process is a protective or a destructive pathway, the contributor of neuronal cell death or a failed attempt to repair aberrant processes? Deregulated autophagy at different steps of the pathway, whether excessive or downregulated, has been proposed to be associated with neurodegenerative disorders such as Alzheimer's-, Huntington's-, and Parkinson's-disease, known for their intracellular accumulation of protein aggregates. Recent observations of impaired autophagy also appeared in psychiatric disorders such as schizophrenia and bipolar disorder suggesting an additional contribution to the pathophysiology of mental illness. Here we review the current understanding of autophagy's role in various neuropsychiatric disorders and, hitherto, the prevailing new potential autophagy-related therapeutic strategies for their treatment.
Collapse
Affiliation(s)
- Tamara Bar-Yosef
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| |
Collapse
|
12
|
Garabadu D, Verma J. Exendin-4 attenuates brain mitochondrial toxicity through PI3K/Akt-dependent pathway in amyloid beta (1-42)-induced cognitive deficit rats. Neurochem Int 2019; 128:39-49. [PMID: 31004737 DOI: 10.1016/j.neuint.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss, disorientation and gradual deterioration of intellectual ability. In the pharmacotherapy of AD, the mitochondrial protective activity of Exendin-4 in experimental studies is yet to be established though its effectiveness is demonstrated in these patients. Therefore, the mitochondria protective activity of Exendin-4 (5 μg/kg, i.p.) was investigated in hippocampus and pre-frontal cortex (PFC) of AD-like animals. The amyloid beta (Aβ) was injected through bilateral intracerebroventricular route into lateral ventricles to induce AD-like manifestations in the male rats. Exendin-4 significantly attenuated Aβ-induced memory-deficits in the Morris water maze and Y-maze test protocols. Exendin-4 significantly decreased Aβ-induced increase in the level of Aβ in both brain regions. Exendin-4 significantly increased Aβ-induced decrease in acetylcholine level and activity of cholineacetyl transferase in all brain regions. Moreover, Exendin-4 significantly decreased Aβ-induced increase in the activity of acetylcholinestrase in both the brain regions. E4 significantly increased Aβ-induced decrease in mitochondrial function, integrity, respiratory control rate and ADP/O in all brain regions. Further, Exendin-4 significantly decreased Aβ-induced increase in the mitochondrial complex enzyme-I, IV and V activities in all brain regions. Furthermore, Exendin-4 significantly increased Aβ-induced decrease in the level of phosphorylated Akt and the ratio of phosphorylated Akt to Akt in both brain regions. However, LY294002 diminished the therapeutic effects of Exendin-4 on behavioral, biochemical and molecular observations in AD-like animals. Pearson's analysis showed that the attributes of mitochondrial dysfunction (MMP and RCR) exhibited significant correlation to the loss in memory formation, level of Aβ and cholinergic dysfunction in these animals. Thus, it can be speculated that Exendin-4 may mitigate AD-like manifestations including mitochondrial toxicity perhaps through PI3K/Akt-mediated pathway in the experimental animals. Hence, Exendin-4 could be a potential therapeutic alternative candidate in the management of AD.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India.
| | - Jaya Verma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India
| |
Collapse
|
13
|
Neuroprotective action of Eicosapentaenoic (EPA) and Docosahexaenoic (DHA) acids on Paraquat intoxication in Drosophila melanogaster. Neurotoxicology 2019; 70:154-160. [DOI: 10.1016/j.neuro.2018.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022]
|
14
|
Kasza Á, Hunya Á, Frank Z, Fülöp F, Török Z, Balogh G, Sántha M, Bálind Á, Bernáth S, Blundell KLIM, Prodromou C, Horváth I, Zeiler HJ, Hooper PL, Vigh L, Penke B. Dihydropyridine Derivatives Modulate Heat Shock Responses and have a Neuroprotective Effect in a Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 53:557-71. [PMID: 27163800 PMCID: PMC4969717 DOI: 10.3233/jad-150860] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heat shock proteins (Hsps) have chaperone activity and play a pivotal role in the homeostasis of proteins by preventing misfolding, by clearing aggregated and damaged proteins from cells, and by maintaining proteins in an active state. Alzheimer’s disease (AD) is thought to be caused by amyloid-β peptide that triggers tau hyperphosphorylation, which is neurotoxic. Although proteostasis capacity declines with age and facilitates the manifestation of neurodegenerative diseases such as AD, the upregulation of chaperones improves prognosis. Our research goal is to identify potent Hsp co-inducers that enhance protein homeostasis for the treatment of AD, especially 1,4-dihydropyridine derivatives optimized for their ability to modulate cellular stress responses. Based on favorable toxicological data and Hsp co-inducing activity, LA1011 was selected for the in vivo analysis of its neuroprotective effect in the APPxPS1 mouse model of AD. Here, we report that 6 months of LA1011 administration effectively improved the spatial learning and memory functions in wild type mice and eliminated neurodegeneration in double mutant mice. Furthermore, Hsp co-inducer therapy preserves the number of neurons, increases dendritic spine density, and reduces tau pathology and amyloid plaque formation in transgenic AD mice. In conclusion, the Hsp co-inducer LA1011 is neuroprotective and therefore is a potential pharmaceutical candidate for the therapy of neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Ágnes Kasza
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ákos Hunya
- LipidArt Research and Development Ltd., Szeged, Hungary
| | - Zsuzsa Frank
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ferenc Fülöp
- Department of Pharmaceutical Chemistry, University of Szeged, Hungary
| | - Zsolt Török
- LipidArt Research and Development Ltd., Szeged, Hungary.,Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Gábor Balogh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Miklós Sántha
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Árpád Bálind
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | | | | | - Ibolya Horváth
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | - Philip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO, USA
| | - László Vigh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Hungary
| |
Collapse
|
15
|
Onyango IG. Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease. Neural Regen Res 2018; 13:19-25. [PMID: 29451200 PMCID: PMC5840984 DOI: 10.4103/1673-5374.224362] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.
Collapse
|
16
|
Ademowo OS, Dias HKI, Burton DGA, Griffiths HR. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process? Biogerontology 2017; 18:859-879. [PMID: 28540446 PMCID: PMC5684309 DOI: 10.1007/s10522-017-9710-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
Lipids are essential for physiological processes such as maintaining membrane integrity, providing a source of energy and acting as signalling molecules to control processes including cell proliferation, metabolism, inflammation and apoptosis. Disruption of lipid homeostasis can promote pathological changes that contribute towards biological ageing and age-related diseases. Several age-related diseases have been associated with altered lipid metabolism and an elevation in highly damaging lipid peroxidation products; the latter has been ascribed, at least in part, to mitochondrial dysfunction and elevated ROS formation. In addition, senescent cells, which are known to contribute significantly to age-related pathologies, are also associated with impaired mitochondrial function and changes in lipid metabolism. Therapeutic targeting of dysfunctional mitochondrial and pathological lipid metabolism is an emerging strategy for alleviating their negative impact during ageing and the progression to age-related diseases. Such therapies could include the use of drugs that prevent mitochondrial uncoupling, inhibit inflammatory lipid synthesis, modulate lipid transport or storage, reduce mitochondrial oxidative stress and eliminate senescent cells from tissues. In this review, we provide an overview of lipid structure and function, with emphasis on mitochondrial lipids and their potential for therapeutic targeting during ageing and age-related disease.
Collapse
Affiliation(s)
- O S Ademowo
- Life & Health Sciences, Aston University, Birmingham, UK
| | - H K I Dias
- Life & Health Sciences, Aston University, Birmingham, UK
| | - D G A Burton
- Life & Health Sciences, Aston University, Birmingham, UK
| | - H R Griffiths
- Life & Health Sciences, Aston University, Birmingham, UK.
- Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
17
|
Sutcliffe TC, Winter AN, Punessen NC, Linseman DA. Procyanidin B2 Protects Neurons from Oxidative, Nitrosative, and Excitotoxic Stress. Antioxidants (Basel) 2017; 6:E77. [PMID: 29027929 PMCID: PMC5745487 DOI: 10.3390/antiox6040077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/23/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023] Open
Abstract
The aberrant generation of oxygen and nitrogen free radicals can cause severe damage to key cellular components, resulting in cell apoptosis. Similarly, excitotoxicity leads to protease activation and mitochondrial dysfunction, which subsequently causes cell death. Each of these factors play critical roles in the neuronal cell death underlying various neurodegenerative diseases. Procyanidin B2 (PB2) is a naturally occurring polyphenolic compound found in high concentrations in cocoa, apples, and grapes. Here, we examine the neuroprotective effects of PB2 in primary cultures of rat cerebellar granule neurons (CGNs) exposed to various stressors. CGNs were pre-incubated with PB2 and then neuronal stress was induced as described below. Mitochondrial oxidative stress was triggered with HA14-1, an inhibitor of the pro-survival Bcl-2 protein which induces glutathione-sensitive apoptosis. Glutamate and glycine were used to induce excitotoxicity. Sodium nitroprusside, a nitric oxide generating compound, was used to induce nitrosative stress. We observed significant dose-dependent protection of CGNs with PB2 for all of the above insults, with the greatest neuroprotective effect being observed under conditions of nitrosative stress. Intriguingly, the neuroprotective effect of PB2 against nitric oxide was superoxide-dependent, as we have recently shown for other catechol antioxidants. Finally, we induced neuronal stress through the removal of depolarizing extracellular potassium and serum (5K conditions), which is a classical model of intrinsic apoptosis in CGNs. PB2 did not display any significant protection against 5K-induced apoptosis at any concentration tested. We conclude that PB2 offers neuronal protection principally as an antioxidant by scavenging reactive oxygen and nitrogen species instead of through modulation of pro-survival cell signaling pathways. These findings suggest that PB2 may be an effective neuroprotective agent for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Taylor C Sutcliffe
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| | - Aimee N Winter
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| | - Noelle C Punessen
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| | - Daniel A Linseman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
18
|
Ademowo OS, Dias HKI, Milic I, Devitt A, Moran R, Mulcahy R, Howard AN, Nolan JM, Griffiths HR. Phospholipid oxidation and carotenoid supplementation in Alzheimer's disease patients. Free Radic Biol Med 2017; 108:77-85. [PMID: 28315450 PMCID: PMC5488966 DOI: 10.1016/j.freeradbiomed.2017.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease, characterised by decline of memory, cognitive function and changes in behaviour. Generic markers of lipid peroxidation are increased in AD and reactive oxygen species have been suggested to be involved in the aetiology of cognitive decline. Carotenoids are depleted in AD serum, therefore we have compared serum lipid oxidation between AD and age-matched control subjects before and after carotenoid supplementation. The novel oxidised phospholipid biomarker 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) was analysed using electrospray ionisation tandem mass spectrometry (MS) with multiple reaction monitoring (MRM), 8-isoprostane (IsoP) was measured by ELISA and ferric reducing antioxidant potential (FRAP) was measured by a colorimetric assay. AD patients (n=21) and healthy age-matched control subjects (n=16) were supplemented with either Macushield™ (10mg meso-zeaxanthin, 10mg lutein, 2mg zeaxanthin) or placebo (sunflower oil) for six months. The MRM-MS method determined serum POVPC sensitively (from 10µl serum) and reproducibly (CV=7.9%). At baseline, AD subjects had higher serum POVPC compared to age-matched controls, (p=0.017) and cognitive function was correlated inversely with POVPC (r=-0.37; p=0.04). After six months of carotenoid intervention, serum POVPC was not different in AD patients compared to healthy controls. However, POVPC was significantly higher in control subjects after six months of carotenoid intervention compared to their baseline (p=0.03). Serum IsoP concentration was unrelated to disease or supplementation. Serum FRAP was significantly lower in AD than healthy controls but was unchanged by carotenoid intervention (p=0.003). In conclusion, serum POVPC is higher in AD patients compared to control subjects, is not reduced by carotenoid supplementation and correlates with cognitive function.
Collapse
Affiliation(s)
- O S Ademowo
- Life & Health Sciences, Aston University, Birmingham, UK
| | - H K I Dias
- Life & Health Sciences, Aston University, Birmingham, UK
| | - I Milic
- Life & Health Sciences, Aston University, Birmingham, UK
| | - A Devitt
- Life & Health Sciences, Aston University, Birmingham, UK
| | - R Moran
- Nutrition Research Centre Ireland, Health Science, Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | - R Mulcahy
- Waterford University Hospital, Age-related Care Unit, Waterford, Ireland
| | - A N Howard
- Howard Foundation, Cambridge, UK; Downing College, University of Cambridge, Cambridge, UK
| | - J M Nolan
- Nutrition Research Centre Ireland, Health Science, Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | - H R Griffiths
- Life & Health Sciences, Aston University, Birmingham, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
19
|
Murakami T, Shinoto Y, Yonemitsu S, Muro S, Oki S, Koga Y, Goto YI, Kaneda D. Early Onset of Diabetes Mellitus Accelerates Cognitive Decline in Japanese Patients with Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-Like Episodes. TOHOKU J EXP MED 2017; 238:311-6. [PMID: 27063563 DOI: 10.1620/tjem.238.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Approximately 80% of patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) carry the A3243G mutation in the mitochondrial tRNALeu (UUR) gene. Conversely, this mutation has also been identified as one of the most prevalent genetic abnormalities in patients with diabetes mellitus. Mitochondrial diabetes mellitus complicated with MELAS is relatively common, and 12.5% of patients with the A3243G mutation develop MELAS after being diagnosed with diabetes mellitus. However, the clinical impact of diabetes mellitus in MELAS patients remains unclear. Therefore, we retrospectively studied 14 Japanese MELAS patients with the A3243G mutation: three men and eleven women, with the mean age of 48.0 (± 15.4) years. Eight patients had been diagnosed with diabetes mellitus prior to the diagnosis of mitochondrial disease, and all of them were treated with insulin. The other six included four patients with concurrent diagnosis of diabetes and mitochondrial disease, one patient diagnosed with diabetes after the diagnosis of mitochondrial disease, and one patient without developing diabetes currently. We thus compared the patients' characteristics between those with and without early onset of diabetes mellitus. Cognitive decline (75.0% vs. 0%; p = 0.03) and poor glycemic control with severe hypoglycemic events (75.0% vs. 16.7%; p = 0.05) were more common in MELAS patients with a prior diagnosis of diabetes than in those without the prior diagnosis of diabetes. Our data suggest that the latent progress of cognitive decline is accelerated because of early onset of diabetes mellitus in MELAS patients.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes and Endocrinology, Osaka Red Cross Hospital
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J Neurosci Res 2017; 95:2217-2235. [PMID: 28463438 DOI: 10.1002/jnr.24064] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
Abstract
Hypometabolism, characterized by decreased brain glucose consumption, is a common feature of many neurodegenerative diseases. Initial hypometabolic brain state, created by characteristic risk factors, may predispose the brain to acquired epilepsy and sporadic Alzheimer's and Parkinson's diseases, which are the focus of this review. Analysis of available data suggests that deficient glucose metabolism is likely a primary initiating factor for these diseases, and that resulting neuronal dysfunction further promotes the metabolic imbalance, establishing an effective positive feedback loop and a downward spiral of disease progression. Therefore, metabolic correction leading to the normalization of abnormalities in glucose metabolism may be an efficient tool to treat the neurological disorders by counteracting their primary pathological mechanisms. Published and preliminary experimental results on this approach for treating Alzheimer's disease and epilepsy models support the efficacy of metabolic correction, confirming the highly promising nature of the strategy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California, 94158, USA
| |
Collapse
|
21
|
Wong-Guerra M, Jiménez-Martin J, Pardo-Andreu GL, Fonseca-Fonseca LA, Souza DO, de Assis AM, Ramirez-Sanchez J, Del Valle RMS, Nuñez-Figueredo Y. Mitochondrial involvement in memory impairment induced by scopolamine in rats. Neurol Res 2017; 39:649-659. [PMID: 28398193 DOI: 10.1080/01616412.2017.1312775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | | | - Gilberto L Pardo-Andreu
- c Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos , Universidad de La Habana , La Habana , Cuba
| | - Luis A Fonseca-Fonseca
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Diogo O Souza
- d Departamento de Bioquímica, PPG em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Adriano M de Assis
- d Departamento de Bioquímica, PPG em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Jeney Ramirez-Sanchez
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | | | - Yanier Nuñez-Figueredo
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| |
Collapse
|
22
|
Kelbauskas L, Glenn H, Anderson C, Messner J, Lee KB, Song G, Houkal J, Su F, Zhang L, Tian Y, Wang H, Bussey K, Johnson RH, Meldrum DR. A platform for high-throughput bioenergy production phenotype characterization in single cells. Sci Rep 2017; 7:45399. [PMID: 28349963 PMCID: PMC5368665 DOI: 10.1038/srep45399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers.
Collapse
Affiliation(s)
- Laimonas Kelbauskas
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Honor Glenn
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Clifford Anderson
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Jacob Messner
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Kristen B. Lee
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Ganquan Song
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Jeff Houkal
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Fengyu Su
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Liqiang Zhang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Yanqing Tian
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Hong Wang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Kimberly Bussey
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Roger H. Johnson
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Deirdre R. Meldrum
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| |
Collapse
|
23
|
Shang Z, Lv H, Zhang M, Duan L, Wang S, Li J, Liu G, Ruijie Z, Jiang Y. Genome-wide haplotype association study identify TNFRSF1A, CASP7, LRP1B, CDH1 and TG genes associated with Alzheimer's disease in Caribbean Hispanic individuals. Oncotarget 2016; 6:42504-14. [PMID: 26621834 PMCID: PMC4767448 DOI: 10.18632/oncotarget.6391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is an acquired disorder of cognitive and behavioral impairment. It is considered to be caused by variety of factors, such as age, environment and genetic factors. In order to identify the genetic affect factors of AD, we carried out a bioinformatic approach which combined genome-wide haplotype-based association study with gene prioritization. The raw SNP genotypes data was downloaded from GEO database (GSE33528). It contains 615 AD patients and 560 controls of Caribbean Hispanic individuals. Firstly, we identified the linkage disequilibrium (LD) haplotype blocks and performed genome-wide haplotype association study to screen significant haplotypes that were associated with AD. Then we mapped these significant haplotypes to genes and obtained candidate genes set for AD. At last, we prioritized AD candidate genes based on their similarity with 36 known AD genes, so as to identify AD related genes. The results showed that 141 haplotypes on 134 LD blocks were significantly associated with AD (P<1E-4), and these significant haplotypes were mapped to 132 AD candidate genes. After prioritizing these candidate genes, we found seven AD related genes: APOE, APOC1, TNFRSF1A, LRP1B, CDH1, TG and CASP7. Among these genes, APOE and APOC1 are known AD risk genes. For the other five genes TNFRSF1A, CDH1, CASP7, LRP1B and TG, this is the first genetic association study which showed the significant association between these five genes and AD susceptibility in Caribbean Hispanic individuals. We believe that our findings can provide a new perspective to understand the genetic affect factors of AD.
Collapse
Affiliation(s)
- Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lian Duan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Situo Wang
- Genetic Data Analysis Group, The Genome Science Consortium, Harbin, China
| | - Jin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guiyou Liu
- Genome Analysis Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhang Ruijie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Stucki DM, Ruegsegger C, Steiner S, Radecke J, Murphy MP, Zuber B, Saxena S. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radic Biol Med 2016; 97:427-440. [PMID: 27394174 DOI: 10.1016/j.freeradbiomed.2016.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 12/29/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1), due to an unstable polyglutamine expansion within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), decreasing motor coordination and causing death within 10-15 years of diagnosis. Currently, there are no therapies available to slow down disease progression. As secondary cellular impairments contributing to SCA1 progression are poorly understood, here, we focused on identifying those processes by performing a PC specific proteome profiling of Sca1(154Q/2Q) mice at a symptomatic stage. Mass spectrometry analysis revealed prominent alterations in mitochondrial proteins. Immunohistochemical and serial block-face scanning electron microscopy analyses confirmed that PCs underwent age-dependent alterations in mitochondrial morphology. Moreover, colorimetric assays demonstrated impairment of the electron transport chain complexes (ETC) and decrease in ATPase activity. Subsequently, we examined whether the mitochondria-targeted antioxidant MitoQ could restore mitochondrial dysfunction and prevent SCA1-associated pathology in Sca1(154Q/2Q) mice. MitoQ treatment both presymptomatically and when symptoms were evident ameliorated mitochondrial morphology and restored the activities of the ETC complexes. Notably, MitoQ slowed down the appearance of SCA1-linked neuropathology such as lack of motor coordination as well as prevented oxidative stress-induced DNA damage and PC loss. Our work identifies a central role for mitochondria in PC degeneration in SCA1 and provides evidence for the supportive use of mitochondria-targeted therapeutics in slowing down disease progression.
Collapse
Affiliation(s)
- David M Stucki
- Institute of Cell Biology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Céline Ruegsegger
- Institute of Cell Biology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Silvio Steiner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Julika Radecke
- Institute of Anatomy, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael P Murphy
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
25
|
Neuroprotection comparison of chlorogenic acid and its metabolites against mechanistically distinct cell death-inducing agents in cultured cerebellar granule neurons. Brain Res 2016; 1648:69-80. [PMID: 27444557 DOI: 10.1016/j.brainres.2016.07.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/23/2023]
Abstract
While the number of patients diagnosed with neurodegenerative disorders like Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease is increasing, there are currently no effective treatments that significantly limit the neuronal cell death underlying these diseases. Chlorogenic acid (CGA), a polyphenolic compound found in high concentration in coffee, is known to possess antioxidant and free radical scavenging activity. In this study, we investigated the neuroprotective effects of CGA and its major metabolites in primary cultures of rat cerebellar granule neurons. We show that CGA and caffeic acid displayed a dramatic protective effect against the nitric oxide donor, sodium nitroprusside. In marked contrast, ferulic acid and quinic acid had no protective effect against this nitrosative stress. While CGA and quinic acid had no protective effect against glutamate-induced cell death, caffeic acid and ferulic acid significantly protected neurons from excitotoxicity. Finally, caffeic acid was the only compound to display significant protective activity against hydrogen peroxide, proteasome inhibition, caspase-dependent intrinsic apoptosis, and endoplasmic reticulum stress. These results indicate that caffeic acid displays a much broader profile of neuroprotection against a diverse range of stressors than its parent polyphenol, CGA, or the other major metabolites, ferulic acid and quinic acid. We conclude that caffeic acid is a promising candidate for testing in pre-clinical models of neurodegeneration.
Collapse
|
26
|
Scheff SW, Ansari MA, Mufson EJ. Oxidative stress and hippocampal synaptic protein levels in elderly cognitively intact individuals with Alzheimer's disease pathology. Neurobiol Aging 2016; 42:1-12. [PMID: 27143416 DOI: 10.1016/j.neurobiolaging.2016.02.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 12/11/2022]
Abstract
Neuritic amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD) and are major components used for the clinical diagnosis of this disorder. However, many individuals with no cognitive impairment (NCI) also present at autopsy with high levels of these AD pathologic hallmarks. In this study, we evaluated 15 autopsy cases from NCI individuals with high levels of AD-like pathology (high pathology no cognitive impairment) and compared them to age- and postmortem-matched cohorts of individuals with amnestic mild cognitive impairment and NCI cases with low AD-like pathology (low pathology no cognitive impairment [LPNCI]). Individuals classified as high pathology no cognitive impairment or amnestic mild cognitive impairment had a significant loss of both presynaptic and postsynaptic proteins in the hippocampus compared with those in the LPNCI cohort. In addition, these 2 groups had a significant increase in 3 different markers of oxidative stress compared with that in the LPNCI group. The changes in levels of synaptic proteins are strongly associated with levels of oxidative stress. These data suggest that cognitively older subjects without dementia but with increased levels of AD-like pathology may represent a very early preclinical stage of AD.
Collapse
Affiliation(s)
- Stephen W Scheff
- Department of Anatomy and Neurobiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - Mubeen A Ansari
- Department of Anatomy and Neurobiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
27
|
Abstract
Oxygen is used by eukaryotic cells for metabolic transformations and energy production in mitochondria. Under physiological conditions, there is a constant endogenous production of intermediates of reactive oxygen (ROI) and nitrogen species (RNI) that interact as signaling molecules in physiological mechanisms. When these species are not eliminated by antioxidants or are produced in excess, oxidative stress arises. Oxidative stress can damage proteins, lipids, DNA, and organelles. It is a process directly linked to inflammation; in fact, inflammatory cells secrete a large number of cytokines and chemokines responsible for the production of ROI and RNI in phagocytic and nonphagocytic cells through the activation of protein kinases signaling. Currently, there is a wide variety of diseases capable of producing inflammatory manifestations. While, in the short term, most of these diseases are not fatal they have a major impact on life quality. Since there is a direct relationship between chronic inflammation and many emerging disorders like cancer, oral diseases, kidney diseases, fibromyalgia, gastrointestinal chronic diseases or rheumatics diseases, the aim of this review is to describe the use and role of melatonin, a hormone secreted by the pineal gland, that works directly and indirectly as a free radical scavenger, like a potent antioxidant.
Collapse
Affiliation(s)
- Aroha Sánchez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Barcelona, Joan XXIII Avenue, Barcelona 08028, Spain.
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Barcelona, Joan XXIII Avenue, Barcelona 08028, Spain.
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja Street, Granada 18071, Spain.
| |
Collapse
|