1
|
Diamantopoulos MA, Adamopoulos PG, Scorilas A. Small non-coding RNAs as diagnostic, prognostic and predictive biomarkers of gynecological cancers: an update. Expert Rev Mol Diagn 2024; 24:979-995. [PMID: 39390687 DOI: 10.1080/14737159.2024.2408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins. These findings further highlight the hypothesis that ncRNAs constitute therapeutic targets and point out their clinical potential as stratification biomarkers. AREAS COVERED The review outlines the use of small ncRNAs, including miRNAs, tRNA-derived small RNAs, PIWI-interacting RNAs and circular RNAs, for diagnostic, prognostic, and predictive purposes in gynecological cancers. It aims to increase our knowledge of their functions in tumor biology and their translation into clinical practice. EXPERT OPINION By leveraging interdisciplinary collaborations, scientists can decipher the riddle of small ncRNA biomarkers as diagnostic, prognostic and predictive biomarkers of gynecological tumors. Integrating small ncRNA-based assays into clinical practice will allow clinicians to provide cure plans for each patient, reducing the likelihood of adverse responses. Nevertheless, addressing challenges such as standardizing experimental methodologies and refining diagnostic assays is imperative for advancing small ncRNA research in gynecological cancer.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Suri C, Swarnkar S, Bhaskar LVKS, Verma HK. Non-Coding RNA as a Biomarker in Lung Cancer. Noncoding RNA 2024; 10:50. [PMID: 39452836 PMCID: PMC11514784 DOI: 10.3390/ncrna10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Lung cancer remains one of the most prevalent and deadly cancers globally, with high mortality rates largely due to late-stage diagnosis, aggressive progression, and frequent recurrence. Despite advancements in diagnostic techniques and therapeutic interventions, the overall prognosis for lung cancer patients continues to be dismal. METHOD Emerging research has identified non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, as critical regulators of gene expression, significantly influencing cancer biology. These ncRNAs play pivotal roles in various aspects of lung cancer pathogenesis, including tumor initiation, progression, metastasis, and resistance to therapy. RESULTS We provide a comprehensive analysis of the current understanding of ncRNAs in lung cancer, emphasizing their potential as biomarkers for early diagnosis, prognostication, and the prediction of the therapeutic response. We explore the biological functions of ncRNAs, their involvement in key oncogenic pathways, and the molecular mechanisms by which they modulate gene expression and cellular processes in lung cancer. Furthermore, this review highlights recent advances in ncRNA-based diagnostic tools and therapeutic strategies, such as miRNA mimics and inhibitors, lncRNA-targeted therapies, and circRNA-modulating approaches, offering promising avenues for personalized medicine. CONCLUSION Finally, we discuss the challenges and future directions in ncRNA research, including the need for large-scale validation studies and the development of efficient delivery systems for ncRNA-based therapies. This review underscores the potential of ncRNAs to revolutionize lung cancer management by providing novel diagnostic and therapeutic options that could improve patient outcomes.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Shashikant Swarnkar
- Department of Biochemistry, C.C.M. Medical College, Bhilai 490020, Chhattisgarh, India;
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India;
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pnemology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
- Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
3
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
4
|
Waseem M, Wang BD. Combination of miR-99b-5p and Enzalutamide or Abiraterone Synergizes the Suppression of EMT-Mediated Metastasis in Prostate Cancer. Cancers (Basel) 2024; 16:1933. [PMID: 38792011 PMCID: PMC11119738 DOI: 10.3390/cancers16101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and second leading cause of cancer deaths among American men. Androgen deprivation therapy (ADT) has been systemically applied as a first-line therapy for PCa patients. Despite the initial responses, the majority of patients under ADT eventually experienced tumor progression to castration-resistant prostate cancer (CRPC), further leading to tumor metastasis to distant organs. Therefore, identifying the key molecular mechanisms underlying PCa progression remains crucial for the development of novel therapies for metastatic PCa. Previously, we identified that tumor-suppressive miR-99b-5p is frequently downregulated in aggressive African American (AA) PCa and European American (EA) CRPC, leading to upregulation of mTOR, androgen receptor (AR), and HIF-1α signaling. Given the fact that mTOR and HIF-1α signaling are critical upstream pathways that trigger the activation of epithelial-mesenchymal transition (EMT), we hypothesized that miR-99b-5p may play a critical functional role in regulating EMT-mediated PCa metastasis. To test this hypothesis, a series of cell biology, biochemical, and in vitro functional assays (wound healing, transwell migration, cell/ECM adhesion, and capillary-like tube formation assays) were performed to examine the effects of miR-99b-5p mimic on regulating EMT-mediated PCa metastasis processes. Our results have demonstrated that miR-99b-5p simultaneously targets MTOR and AR signaling, leading to upregulation of E-cadherin, downregulation of Snail/N-cadherin/Vimentin, and suppression of EMT-mediated PCa metastasis. MiR-99b-5p alone and in combination with enzalutamide or abiraterone significantly inhibits the EMT-mediated metastasis of AA PCa and EA CRPC.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Mukerjee N, Nag S, Bhattacharya B, Alexiou A, Mirgh D, Mukherjee D, Adhikari MD, Anand K, Muthusamy R, Gorai S, Thorat N. Clinical impact of epithelial–mesenchymal transition for cancer therapy. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe epithelial–mesenchymal transition (EMT) represents a pivotal frontier in oncology, playing a central role in the metastatic cascade of cancer—a leading global health challenge. This comprehensive review delves into the complexities of EMT, a process where cancer cells gain exceptional mobility, facilitating their invasion into distant organs and the establishment of secondary malignancies. We thoroughly examine the myriad of factors influencing EMT, encompassing transcription factors, signalling pathways, metabolic alterations, microRNAs, long non‐coding RNAs, epigenetic changes, exosomal interactions and the intricate dynamics of the tumour microenvironment. Particularly, the review emphasises the advanced stages of EMT, crucial for the development of highly aggressive cancer phenotypes. During this phase, cancer cells penetrate the vascular barrier and exploit the bloodstream to propagate life‐threatening metastases through the mesenchymal–epithelial transition. We also explore EMT's significant role in fostering tumour dormancy, senescence, the emergence of cancer stem cells and the formidable challenge of therapeutic resistance. Our review transcends a mere inventory of EMT‐inducing elements; it critically assesses the current state of EMT‐focused clinical trials, revealing both the hurdles and significant breakthroughs. Highlighting the potential of EMT research, we project its transformative impact on the future of cancer therapy. This exploration is aimed at paving the way towards an era of effectively managing this relentless disease, positioning EMT at the forefront of innovative cancer research strategies.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology West Bengal State University, Barasat Kolkata India
| | - Sagnik Nag
- Department of Bio‐Sciences School of Biosciences & Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology School of Biosciences and Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Athanasios Alexiou
- Department of Science and Engineering Novel Global Community Educational Foundation Hebersham New South Wales Australia
| | - Divya Mirgh
- Vaccine and Immunotherapy Canter Massachusetts General Hospital Boston Massachusetts USA
| | | | - Manab Deb Adhikari
- Department of Biotechnology University of North Bengal Darjeeling West Bengal India
| | - Krishnan Anand
- Department of Chemical Pathology School of Pathology Faculty of Health Sciences University of the Free State Bloemfontein South Africa
| | - Raman Muthusamy
- Center for Global Health Research Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | | | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics Bernal Institute University of Limerick, Castletroy Limerick Ireland
| |
Collapse
|
6
|
Poyyakkara A, Raji GR, Padmaja KP, Ramachandran V, Changmai U, Edatt L, Punathil R, Kumar VBS. Integrin β4 induced epithelial-to-mesenchymal transition involves miR-383 mediated regulation of GATA6 levels. Mol Biol Rep 2023; 50:8623-8637. [PMID: 37656269 DOI: 10.1007/s11033-023-08682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The process of transdifferentiating epithelial cells to mesenchymal-like cells (EMT) involves cells gradually taking on an invasive and migratory phenotype. Many cell adhesion molecules are crucial for the management of EMT, integrin β4 (ITGB4) being one among them. Although signaling downstream of ITGB4 has been reported to cause changes in the expression of several miRNAs, little is known about the role of such miRNAs in the process of EMT. METHODS AND RESULTS The cytoplasmic domain of ITGB4 (ITGB4CD) was ectopically expressed in HeLa cells to induce ITGB4 signaling, and expression analysis of mesenchymal markers indicated the induction of EMT. β-catenin and AKT signaling pathways were found to be activated downstream of ITGB4 signaling, as evidenced by the TOPFlash assay and the levels of phosphorylated AKT, respectively. Based on in silico and qRT-PCR analysis, miR-383 was selected for functional validation studies. miR-383 and Sponge were ectopically expressed in HeLa, thereafter, western blot and qRT-PCR analysis revealed that miR-383 regulates GATA binding protein 6 (GATA6) post-transcriptionally. The ectopic expression of shRNA targeting GATA6 caused the reversal of EMT and β catenin activation downstream of ITGB4 signaling. Cell migration assays revealed significantly high cell migration upon ectopic expression ITGB4CD, which was reversed upon ectopic co-expression of miR-383 or GATA6 shRNA. Besides, ITGB4CD promoted EMT in in ovo xenograft model, which was reversed by ectopic expression of miR-383 or GATA6 shRNA. CONCLUSION The induction of EMT downstream of ITGB4 involves a signaling axis encompassing AKT/miR-383/GATA6/β-catenin.
Collapse
Affiliation(s)
- Aswini Poyyakkara
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Grace R Raji
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - K P Padmaja
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- CRP-10, Cancer Research, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, India
| | - Vishnu Ramachandran
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Udeshna Changmai
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Lincy Edatt
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Rabina Punathil
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- Department of Zoology, School of Basic Sciences, SRM University, Sikkim, 737102, India
| | - V B Sameer Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
7
|
Sharma A, Singh P, Jha R, Almatroodi SA, Alrumaihi F, Rahmani AH, Alharbi HO, Dohare R, Syed MA. Exploring the role of miR-200 family in regulating CX3CR1 and CXCR1 in lung adenocarcinoma tumor microenvironment: implications for therapeutic intervention. Sci Rep 2023; 13:16333. [PMID: 37770496 PMCID: PMC10539366 DOI: 10.1038/s41598-023-43484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common malignant subtype of lung cancer (LC). miR-200 family is one of the prime miR regulators of epithelial-mesenchymal transition (EMT) and worst overall survival (OS) in LC patients. The study aimed to identify and validate the key differentially expressed immune-related genes (DEIRGs) regulated by miR-200 family which may serve for therapeutic aspects in LUAD tumor microenvironment (TME) by affecting cancer progression, invasion, and metastasis. The study identified differentially expressed miRNAs (DEMs) in LUAD, consisting of hsa-miR-200a-3p and hsa-miR-141-5p, respectively. Two highest-degree subnetwork motifs identified from 3-node miRNA FFL were: (i) miR-200a-3p-CX3CR1-SPIB and (ii) miR-141-5p-CXCR1-TBX21. TIMER analysis showed that the expression levels of CX3CR1 and CXCR1 were significantly positively correlated with infiltrating levels of M0-M2 macrophages and natural killer T (NKT) cells. The OS of LUAD patients was significantly affected by lower expression levels of hsa-miR-200a-3p, CX3CR1 and SPIB. These DEIRGs were validated using the human protein atlas (HPA) web server. Further, we validated the regulatory role of hsa-miR-200a-3p in an in-vitro indirect co-culture model using conditioned media from M0, M1 and M2 polarized macrophages (THP-1) and LUAD cell lines (A549 and H1299 cells). The results pointed out the essential role of hsa-miR-200a-3p regulated CX3CL1 and CX3CR1 expression in progression of LC TME. Thus, the study augments a comprehensive understanding and new strategies for LUAD treatment where miR-200 family regulated immune-related genes, especially chemokine receptors, which regulate the metastasis and invasion of LUAD, leading to the worst associated OS.
Collapse
Affiliation(s)
- Archana Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rishabh Jha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
8
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Kim LK, Park SA, Nam EJ, Kim YT, Heo TH, Kim HJ. LncRNA SNHG4 Modulates EMT Signal and Antitumor Effects in Endometrial Cancer through Transcription Factor SP-1. Biomedicines 2023; 11:biomedicines11041018. [PMID: 37189636 DOI: 10.3390/biomedicines11041018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are implicated in the initiation and progression of a variety of tumors, including endometrial cancer. However, the mechanisms of lncRNA in endometrial cancer formation and progression remain largely unknown. In this study, we confirmed that the lncRNA SNHG4 is upregulated in endometrial cancer and correlates with lower survival rates in endometrial cancer patients. Knock-down of SNHG4 significantly reduced cell proliferation, colonization, migration, and invasion in vitro, as well as modulating the cell cycle and reduced tumor growth of endometrial cancer in vivo. In addition, the effect of SNHG4 by the transcription factor SP-1 was confirmed in vitro. We found in this study that SNHG4/SP-1 plays an important role in endometrial cancer progression and may be used as a potential therapeutic and prognostic biomarker for endometrial cancer.
Collapse
|
10
|
Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, Bishayee A, Kumar AP, Sethi G. Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev 2023. [PMID: 36929669 DOI: 10.1002/med.21948] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a complex process with a primordial role in cellular transformation whereby an epithelial cell transforms and acquires a mesenchymal phenotype. This transformation plays a pivotal role in tumor progression and self-renewal, and exacerbates resistance to apoptosis and chemotherapy. EMT can be initiated and promoted by deregulated oncogenic signaling pathways, hypoxia, and cells in the tumor microenvironment, resulting in a loss-of-epithelial cell polarity, cell-cell adhesion, and enhanced invasive/migratory properties. Numerous transcriptional regulators, such as Snail, Slug, Twist, and ZEB1/ZEB2 induce EMT through the downregulation of epithelial markers and gain-of-expression of the mesenchymal markers. Additionally, signaling cascades such as Wnt/β-catenin, Notch, Sonic hedgehog, nuclear factor kappa B, receptor tyrosine kinases, PI3K/AKT/mTOR, Hippo, and transforming growth factor-β pathways regulate EMT whereas they are often deregulated in cancers leading to aberrant EMT. Furthermore, noncoding RNAs, tumor-derived exosomes, and epigenetic alterations are also involved in the modulation of EMT. Therefore, the regulation of EMT is a vital strategy to control the aggressive metastatic characteristics of tumor cells. Despite the vast amount of preclinical data on EMT in cancer progression, there is a lack of clinical translation at the therapeutic level. In this review, we have discussed thoroughly the role of the aforementioned transcription factors, noncoding RNAs (microRNAs, long noncoding RNA, circular RNA), signaling pathways, epigenetic modifications, and tumor-derived exosomes in the regulation of EMT in cancers. We have also emphasized the contribution of EMT to drug resistance and possible therapeutic interventions using plant-derived natural products, their semi-synthetic derivatives, and nano-formulations that are described as promising EMT blockers.
Collapse
Affiliation(s)
- Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hin Chong Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia Centre for Materials Interface, Pontedera, Pisa, Italy
| | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
11
|
Razali RA, Yazid MD, Saim A, Idrus RBH, Lokanathan Y. Approaches in Hydroxytyrosol Supplementation on Epithelial-Mesenchymal Transition in TGFβ1-Induced Human Respiratory Epithelial Cells. Int J Mol Sci 2023; 24:ijms24043974. [PMID: 36835384 PMCID: PMC9967984 DOI: 10.3390/ijms24043974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Hydroxytyrosol (HT) is an olive polyphenol with anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of HT treatment on epithelial-mesenchymal transition (EMT) in primary human respiratory epithelial cells (RECs) isolated from human nasal turbinate. HT dose-response study and growth kinetic study on RECs was performed. Several approaches on HT treatment and TGFβ1 induction with varying durations and methods was studied. RECs morphology and migration ability were evaluated. Vimentin and E-cadherin immunofluorescence staining and Western blotting [E-cadherin, vimentin, SNAIL/SLUG, AKT, phosphorylated (p)AKT, SMAD2/3 and pSMAD2/3] were performed after 72-h treatment. In silico analysis (molecular docking) of HT was performed to evaluate the potential of HT to bind with the TGFβ receptor. The viability of the HT-treated RECs was concentration-dependent, where the median effective concentration (EC50) was 19.04 μg/mL. Testing of the effects of 1 and 10 µg/mL HT revealed that HT suppressed expression of the protein markers vimentin and SNAIL/SLUG while preserving E-cadherin protein expression. Supplementation with HT protected against SMAD and AKT pathway activation in the TGFβ1-induced RECs. Furthermore, HT demonstrated the potential to bind with ALK5 (a TGFβ receptor component) in comparison to oleuropein. TGFβ1-induced EMT in RECs and HT exerted a positive effect in modulating the effects of EMT.
Collapse
Affiliation(s)
- Rabiatul Adawiyah Razali
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Aminuddin Saim
- Graduate School of Medicine, KPJ Healthcare University College, Kota Seriemas, Nilai 71800, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9145-9590; Fax: +60-3-9145-7678
| |
Collapse
|
12
|
The Role of Cytokines in Epithelial-Mesenchymal Transition in Gynaecological Cancers: A Systematic Review. Cells 2023; 12:cells12030416. [PMID: 36766756 PMCID: PMC9913821 DOI: 10.3390/cells12030416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic inflammation has been closely linked to the development and progression of various cancers. The epithelial-mesenchymal transition (EMT) is a process involving the acquisition of mesenchymal features by carcinoma cells and is an important link between inflammation and cancer development. Inflammatory mediators in the tumour micro-environment, such as cytokines and chemokines, can promote EMT changes in cancer cells. The aim of this systematic review is to analyse the effect of cytokines on EMT in gynaecological cancers and discuss their possible therapeutic implications. A search of the databases CINAHL, Cochrane, Embase, Medline, PubMed, TRIP, and Web of Science was performed using the keywords: "cytokines" AND "epithelial mesenchymal transition OR transformation" AND "gynaecological cancer". Seventy-one articles reported that various cytokines, such as TGF-β, TNF-α, IL-6, etc., promoted EMT changes in ovarian, cervical, and endometrial cancers. The EMT changes included from epithelial to mesenchymal morphological change, downregulation of the epithelial markers E-cadherin/β-catenin, upregulation of the mesenchymal markers N-cadherin/vimentin/fibronectin, and upregulation of the EMT-transformation factors (EMT-TF) SNAI1/SNAI2/TWIST/ZEB. Cytokine-induced EMT can lead to gynaecological cancer development and metastasis and hence novel therapies targeting the cytokines or their EMT signalling pathways could possibly prevent cancer progression, reduce cancer recurrence, and prevent drug-resistance.
Collapse
|
13
|
Hofmann L, Waizenegger M, Röth R, Schmitteckert S, Engelhardt D, Schuler PJ, Laban S, Hoffmann TK, Brunner C, Theodoraki MN. Treatment dependent impact of plasma-derived exosomes from head and neck cancer patients on the epithelial-to-mesenchymal transition. Front Oncol 2023; 12:1043199. [PMID: 36686733 PMCID: PMC9845705 DOI: 10.3389/fonc.2022.1043199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 01/06/2023] Open
Abstract
Background Epithelial to mesenchymal transition (EMT) is a key process in carcinogenesis of head and neck squamous cell carcinoma (HNSCC), contributing to tumor invasiveness, distant metastasis, and recurrence. Exosomes are known mediators and regulators of EMT. Here, we analyze the impact of exosomes that were primed by conventional therapy on EMT modulation. Methods Plasmas of n = 22 HNSCC patients were collected before and after standard of care surgery and adjuvant or primary (chemo)radiotherapy. Exosomes were isolated by size exclusion chromatography. Upon co-incubation of exosomes with HNSCC cells, the cellular EMT profile was analyzed by flow cytometry and RT-qPCR. Wound healing assays were performed to evaluate migratory potential of exosome-treated cells. Results Reduction of total exosome protein after therapy and in vitro exosome induced EMT profiles were dependent on the type of treatment. Exosomal TFG-β and miRNA cargo were partly responsible for observed exosome induced EMT changes. Exosomes from recurrent patients induced higher tumor cell migration after therapy than exosomes from disease-free patients. Conclusions HNSCC patients' exosomes from timepoints before and after therapy were able to confer therapy induced EMT modulation in vitro and have the potential to monitor the EMT process. Exosome induced changes in migratory potential emerged as discriminants of therapy outcome.
Collapse
Affiliation(s)
- Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centerr, Ulm, Germany
| | - Marie Waizenegger
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centerr, Ulm, Germany
| | - Ralph Röth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Stefanie Schmitteckert
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Daphne Engelhardt
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centerr, Ulm, Germany
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centerr, Ulm, Germany
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centerr, Ulm, Germany
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centerr, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centerr, Ulm, Germany
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centerr, Ulm, Germany,*Correspondence: Marie-Nicole Theodoraki,
| |
Collapse
|
14
|
Yarahmadi A, Sohan R, McAllister B, Caromile LA. Therapeutic potential of targeting mirnas to prostate cancer tumors: using psma as an active target. Mol Cell Oncol 2022; 9:2136476. [PMID: 36313480 PMCID: PMC9601542 DOI: 10.1080/23723556.2022.2136476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prostate cancer (PC) is a commonly diagnosed malignancy in men and is associated with high mortality rates. Current treatments for PC include surgery, chemotherapy, and radiation therapy. However, recent advances in targeted delivery systems have yielded promising new approaches to PC treatment. As PC epithelial cells express high levels of prostate-specific membrane antigen (PSMA) on the cell surface, new drug conjugates focused on PSMA targeting have been developed. microRNAs (miRNAs) are small noncoding RNAs that regulate posttranscriptional gene expression in cells and show excellent possibilities for use in developing new therapeutics for PC. PSMA-targeted therapies based on a miRNA payload and that selectively target PC cells enhances therapeutic efficacy without eliciting damage to normal surrounding tissue. This review discusses the rationale for utilizing miRNAs to target PSMA, revealing their potential in therapeutic approaches to PC treatment. Different delivery systems for miRNAs and challenges to miRNA therapy are also explored.
Collapse
Affiliation(s)
- Amir Yarahmadi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Romoye Sohan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Brenna McAllister
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Leslie A. Caromile
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA,CONTACT Leslie A. Caromile Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
15
|
Yang Y, Wu Z, Wang M, Wu Z, Sun Z, Liu M, Li G. MicroRNA-429 Regulates Invasion and Migration of Multiple Myeloma Cells via Bmi1/AKT Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: miR-429-mediated progression of multiple myeloma (MM) was studied through mediating B cell-specific Moloney murine leukemia virus integration site 1 (Bmi1)/protein kinase B (AKT) pathway. Methods: miRNA or siRNA was delivered into MM cell lines to alter cellular
proliferation, apoptosis, invasion and migration. Measurements of miR-429 and Bmi1 levels were performed. AKT and p-AKT expression change was measured after regulating miR-429. The interaction between miR-429 and Bmi1 was analyzed. Results: miR-429 elevation disrupted proliferation,
anti-apoptosis, migration and invasion properties of MM cells, and inactivated AKT pathway. Bmi1 was a targeting partner of miR-429, which was highly expressed in MM. Bmi1 knockdown phenotyped the effects of overexpressed miR-429 on MM cells. AKT agonist SC70 reversed miR-429-regulated inhibition
of MM cell growth. Conclusion: miR-429 suppresses the activation of Bmi1/AKT pathway to down-regulate the malignant functions of MM cells.
Collapse
Affiliation(s)
- YongMing Yang
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - ZhiFeng Wu
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - Ming Wang
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - ZuTong Wu
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - ZhenZheng Sun
- Department of Pediatrics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - Man Liu
- Department of Operating Room, The first Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - GuangBao Li
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| |
Collapse
|
16
|
Qi C, Sun SW, Xiong XZ. From COPD to Lung Cancer: Mechanisms Linking, Diagnosis, Treatment, and Prognosis. Int J Chron Obstruct Pulmon Dis 2022; 17:2603-2621. [PMID: 36274992 PMCID: PMC9586171 DOI: 10.2147/copd.s380732] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Many studies have proved that the pathogenesis of the chronic obstructive pulmonary disease (COPD) and lung cancer is related, and may cause and affect each other to a certain extent. In fact, the change of chronic airway obstruction will continue to have an impact on the screening, treatment, and prognosis of lung cancer.In this comprehensive review, we outlined the links and heterogeneity between COPD and lung cancer and finds that factors such as gene expression and genetic susceptibility, epigenetics, smoking, epithelial mesenchymal transformation (EMT), chronic inflammation, and oxidative stress injury may all play a role in the process. Although the relationship between these two diseases have been largely determined, the methods to prevent lung cancer in COPD patients are still limited. Early diagnosis is still the key to a better prognosis. Thus, it is necessary to establish more intuitive screening evaluation criteria and find suitable biomarkers for lung cancer screening in high-risk populations with COPD. Some studies have indicated that COPD may change the efficacy of anti-tumor therapy by affecting the response of lung cancer patients to immune checkpoint inhibitors (ICIs). And for lung cancer patients with COPD, the standardized management of COPD can improve the prognosis. The treatment of lung cancer patients with COPD is an individualized, comprehensive, and precise process. The development of new targets and new strategies of molecular targeted therapy may be the breakthrough for disease treatment in the future.
Collapse
Affiliation(s)
- Chang Qi
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Sheng-Wen Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China,Correspondence: Xian-Zhi Xiong, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People’s Republic of China, Tel/Fax +86 27-85726705, Email
| |
Collapse
|
17
|
Polo-Generelo S, Torres B, Guerrero-Martínez JA, Camafeita E, Vázquez J, Reyes JC, Pintor-Toro JA. TGF-β-Upregulated Lnc-Nr6a1 Acts as a Reservoir of miR-181 and Mediates Assembly of a Glycolytic Complex. Noncoding RNA 2022; 8:ncrna8050062. [PMID: 36136852 PMCID: PMC9498520 DOI: 10.3390/ncrna8050062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key regulators in a wide range of biological processes. Here, we identified a mouse miRNA-host gene lncRNA (lnc-Nr6a1) upregulated early during epithelial-to-mesenchymal transition (EMT). We show that when lncRNA is processed, it gives rise to two abundant polyadenylated isoforms, lnc-Nr6a1-1 and lnc-Nr6a1-2, and a longer non-polyadenylated microprocessor-driven lnc-pri-miRNA containing clustered pre-miR-181a2 and pre-miR-181b2 hairpins. Ectopic expression of the lnc-Nr6a1-1 or lnc-Nr6a1-2 isoform enhanced cell migration and the invasive capacity of the cells, whereas the expression of the isoforms and miR-181a2 and miR-181b2 conferred anoikis resistance. Lnc-Nr6a1 gene deletion resulted in cells with lower adhesion capacity and reduced glycolytic metabolism, which are restored by lnc-Nr6a1-1 isoform expression. We performed identification of direct RNA interacting proteins (iDRIP) to identify proteins interacting directly with the lnc-Nr6a1-1 isoform. We defined a network of interacting proteins, including glycolytic enzymes, desmosome proteins and chaperone proteins; and we demonstrated that the lnc-Nr6a1-1 isoform directly binds and acts as a scaffold molecule for the assembly of ENO1, ALDOA, GAPDH, and PKM glycolytic enzymes, along with LDHA, supporting substrate channeling for efficient glycolysis. Our results unveil a role of Lnc-Nr6a1 as a multifunctional lncRNA acting as a backbone for multiprotein complex formation and primary microRNAs.
Collapse
Affiliation(s)
- Salvador Polo-Generelo
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - Belén Torres
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - José A. Guerrero-Martínez
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - Emilio Camafeita
- Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José C. Reyes
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - José A. Pintor-Toro
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
- Correspondence: ; Tel.: +34-954467995
| |
Collapse
|
18
|
Liu Y, Qiu G, Luo Y, Li S, Xu Y, Zhang Y, Hu J, Li P, Pan H, Wang Y. Circular RNA ROCK1, a novel circRNA, suppresses osteosarcoma proliferation and migration via altering the miR-532-5p/PTEN axis. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1024-1037. [PMID: 35879346 PMCID: PMC9356001 DOI: 10.1038/s12276-022-00806-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/15/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
Abstract
As the most prevalent bone tumor in children and adolescents, the pathogenesis and metastasis of osteosarcoma (OS) remain largely unclear. Here, we investigated the expression and function of a novel circular RNA (circRNA), circROCK1-E3/E4, which is back-spliced from exons 3 and 4 of Rho-associated coiled-coil containing protein kinase 1 (ROCK1) in OS. We found that circROCK1-E3/E4, regulated by the well-known RNA-binding protein quaking (QKI), was downregulated in OS and correlated with unfavorable clinical features of patients with OS. Functional proliferation and cell motility assays indicated that circROCK1-E3/E4 serves as a tumor suppressor in OS cells. Mechanistically, circROCK1-E3/E4 suppressed proliferation and migration by upregulating phosphatase and tensin homolog (PTEN) through microRNA-532-5p (miR-532-5p) sponging. In the constructed nude mouse model, circROCK1-E3/E4 inhibited tumor growth and lung metastasis in vivo. This study demonstrates the functions and molecular mechanisms of circROCK1-E3/E4 in the progression of OS. These findings may identify novel targets for the molecular therapy of OS. Understanding the role of a circular RNA molecule in bone cancer may provide a foundation for potential therapies. The factors underlying the development and progression of osteosarcoma, an aggressive bone cancer most common in young people, remain unclear. Circular RNAs (circRNAs), derived from RNA splicing events, have multiple functions in diseases such as cancer. Yong Wang at Zhejiang University, China, and co-workers had already demonstrated that the ROCK1 gene plays critical roles in osteosarcoma progression. Now, they have identified a novel circRNA called circROCK1-E3/E4 derived from ROCK1, which acts as a tumor suppressor in osteosarcoma. In experiments on human cell lines and mouse models, they found that circROCK1-E3/E4 regulates a key pathway that suppresses the proliferation and migration of cancer cells. Poor prognosis is linked to downregulated levels of this circRNA.
Collapse
Affiliation(s)
- Yize Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China.,Fourth Department of Orthopedics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Guanzhen Qiu
- Fourth Department of Orthopedics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Yinzhou Luo
- Fourth Department of Orthopedics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Shanshan Li
- Department of Respiratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Yeqiu Xu
- Fourth Department of Orthopedics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopedics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Jiayuan Hu
- Department of Electrodiagnosis, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Peifeng Li
- Center for Precise Medicine, Shengyang Medical College, 110034, Shenyang, China
| | - Hai Pan
- Department of Neurosurgery and Dean's Office, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Yong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, 310003, Hangzhou, China. .,Fourth Department of Orthopedics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China. .,Central Laboratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China.
| |
Collapse
|
19
|
Javdani H, Mollaei H, Karimi F, Mahmoudi S, Farahi A, Mirzaei-Parsa MJ, Shahabi A. Review article epithelial to mesenchymal transition‑associated microRNAs in breast cancer. Mol Biol Rep 2022; 49:9963-9973. [PMID: 35716288 DOI: 10.1007/s11033-022-07553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Despite major advances, breast cancer (BC) is the most commonly diagnosed carcinoma and remains a deadly disease among women worldwide. Many researchers point toward an important role of an epithelial to mesenchymal transition (EMT) in BC development and promoting metastasis. Here, will be discussed that how functional changes of transcription factors, signaling pathways, and microRNAs (miRNA) in BC promote EMT. A thorough understanding the EMT biology can be important to determine reversing the process and design treatment approaches. There are frequent debates as to whether EMT is really relevant to BC in vivo, in which due to the intrinsic heterogeneity and tumor microenvironment. Nevertheless, given the importance of EMT in cancer progression and metastasis, the implementation of therapies against cancer-associated EMT will continue to help us develop and test potential treatments.
Collapse
Affiliation(s)
- Hossein Javdani
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzaneh Karimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shiva Mahmoudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Farahi
- Student Research Committee, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohamad Javad Mirzaei-Parsa
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arman Shahabi
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran. .,Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, P. O. Box: 7618747653, Kerman, Iran.
| |
Collapse
|
20
|
Abstract
Significance: Thioredoxin-interacting protein (Txnip) is an α-arrestin protein that acts as a cancer suppressor. Txnip is simultaneously a critical regulator of energy metabolism. Other alpha-arrestin proteins also play key roles in cell biology and cancer. Recent Advances: Txnip expression is regulated by multilayered mechanisms, including transcriptional regulation, microRNA, messenger RNA (mRNA) stabilization, and protein degradation. The Txnip-based connection between cancer and metabolism has been widely recognized. Meanwhile, new aspects are proposed for the mechanism of action of Txnip, including the regulation of RNA expression and autophagy. Arrestin domain containing 3 (ARRDC3), another α-arrestin protein, regulates endocytosis and signaling, whereas ARRDC1 and ARRDC4 regulate extracellular vesicle formation. Critical Issues: The mechanism of action of Txnip is yet to be elucidated. The regulation of intracellular protein trafficking by arrestin family proteins has opened an emerging field of biology and medical research, which needs to be examined further. Future Directions: A fundamental understanding of the mechanism of action of Txnip and other arrestin family members needs to be explored in the future to combat diseases such as cancer and diabetes. Antioxid. Redox Signal. 36, 1001-1022.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Department of Clinical Laboratory Sciences, Tenri Health Care University, Tenri, Japan.,Department of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Abdel Wahab AHA, Hussein MM, Shouman SA, Fouad D, Kobaisi MH, El Habit O. Role of let7-g and miR-221 level as potential predictors for overall survival of hepatocellular carcinoma patients. Arab J Gastroenterol 2022; 23:151-158. [PMID: 35473687 DOI: 10.1016/j.ajg.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND STUDY AIMS Hepatocellular carcinoma (HCC) is one of the most common cancer types worldwide. A hallmark of epithelial-mesenchymal transition is the loss of epithelial E-cadherin, which is considered an epithelial differentiation marker. MicroRNAs serve vital roles in various biological processes in the cell via post-transcriptional gene regulation. Therefore, the present study aimed to investigate the involvement of certain miRNAs in the progression of HCC. PATIENTS AND METHODS A reverse transcription-quantitative PCR assay was conducted to detect the expression levels of 20 EMT-related miRNAs in 36 fresh tissue biopsies from patients with primary HCC compared with healthy controls. Gene expression levels, as well as immunohistochemistry assays, were performed for E-cadherin, ZEB1 and ZEB2 proteins. The correlation between their expression levels and different clinicopathological factors was also assessed. RESULTS A significant decrease of E-Cadherin and an increase in ZEB1 expression levels were identified in HCC groups compared with controls, while no significant changes for ZEB2 were found. The absence of E-cadherin membranous protein was observed in ∼48% of the cases examined. Moreover, ZEB1 protein was absent in 46% of E-cadherin positive cases. Upregulation of miR-182, miR-221 and miR-222 expression levels, and downregulation of let-7g, miR-9, miR-16, miR29c, miR122, miR-145, miR-148a, miR-193b, miR-194 and miR-215 expression levels were identified. A positive correlation between let7-g with E-Cadherin expression was reported. No significant association was identified between each of E-cadherin, ZEB1, ZEB2 or miRNAs examined with different clinicopathological features of the patients. Furthermore, the low expression of let7-g and high expression of miR-221 were associated with poorer survival. CONCLUSION Collectively, the present data suggested that let7-g functions as a tumor suppressor in the development of HCC via regulating E-Cadherin. Furthermore, both let7-g and miR-221 may be potential biomarkers for the outcomes of HCC patients.
Collapse
Affiliation(s)
| | - Manal M Hussein
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Samia A Shouman
- Department of Cancer Biology, National Cancer Institute, Cairo University, Egypt
| | - Dalia Fouad
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed H Kobaisi
- Department of Pathology, National Institute of Urology and Nephrology, Cairo, Egypt
| | - Ola El Habit
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
22
|
Lemster AL, Sievers E, Pasternack H, Lazar-Karsten P, Klümper N, Sailer V, Offermann A, Brägelmann J, Perner S, Kirfel J. Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers (Basel) 2022; 14:cancers14081894. [PMID: 35454801 PMCID: PMC9032772 DOI: 10.3390/cancers14081894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer is the most common cancer in men and is one of the leading causes of cancer-related deaths. During prostate cancer progression and metastasis, the epithelial cells can undergo epithelial–mesenchymal transition (EMT). Here, we show that the histone demethylase KDM5C is highly expressed in metastatic prostate cancer. We establish that stable clones silence KDM5C in prostate cancer cells. Knockdown of KDM5C leads to a reduced migratory and invasion capacity. This is associated with changes by multiple molecular mechanisms. This signaling subsequently modifies the expression of various transcription factors like Snail, Twist, and Zeb1/2, which are also known as master regulators of EMT. Taken together, our results indicate the potential to therapeutically target KDM5C either alone or in combination with Akt/mTOR-inhibitor in prostate cancer patients by targeting the EMT signaling pathways. Abstract Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Helen Pasternack
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Pamela Lazar-Karsten
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Johannes Brägelmann
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Correspondence:
| |
Collapse
|
23
|
Kerche LE, de Sousa EA, Squarize CH, Oliveira KK, Marchi FA, Bettim BB, Kowalski LP, Soares FA, Lourenço SV, Coutinho-Camillo CM. EMT in salivary gland tumors: the expression of microRNAs miR-155 and miR-200c is associated with clinical-pathological parameters. Mol Biol Rep 2022; 49:2157-2167. [PMID: 34981333 DOI: 10.1007/s11033-021-07033-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Epithelial to mesenchymal transition promotes cell adhesion loss, enabling invasion and metastasis. MicroRNAs are a class of small non-codifying RNAs that regulate gene expression. OBJECTIVES The aim of this study was to evaluate the expression of microRNAs that could regulate the expression of EMT factors in salivary gland tumors (SGTs). METHODS AND RESULTS The expression of microRNAs miR-9, miR-34a, miR-101, miR-138, miR-155, and miR-200c-described in the literature to target EMT factors-was evaluated by Real-time RT-PCR (qPCR) in pleomorphic adenoma (PA), mucoepidermoid carcinoma (MEC) and adenoid cystic carcinoma (ACC) samples. Bioinformatics tools were applied to identify miR targets and immunohistochemistry was used to examine the expression of the proteins E-cadherin, Twist, ZEB-1, β-Catenin, and c-Kit. Comparing miR expression among SGT types, we observed increased expression of miR-9, and miR-138 in PAs, and increased miR-155 expression in MECs. Low-grade MECs exhibited increased miR-155 expression (p = 0.032). MECs that generated lymph node metastases had increased miR-200c levels (p = 0.018). MECs tended to have decreased expression of EMT-related proteins when compared to the other SGT types (c-Kit p < 0.001, Twist p = 0.014, and ZEB p = 0.012). Notably, increased c-Kit expression was associated with the presence of perineural infiltration in ACC (p = 0.050). CONCLUSIONS This study provides evidence of alterations in the expression of EMT-factors regulating miRs, especially of miR-9, miR-138, miR-155, and miR-200c. No significant relationships were found between the expression of these miRs and proteins associated with EMT in SGTs.
Collapse
Affiliation(s)
- Leandra Ernst Kerche
- International Research Center, A.C.Camargo Cancer Center, Centro Internacional de Pesquisa, Rua Taguá, 440-Primeiro andar, São Paulo, SP, Brazil
| | - Elen Alves de Sousa
- International Research Center, A.C.Camargo Cancer Center, Centro Internacional de Pesquisa, Rua Taguá, 440-Primeiro andar, São Paulo, SP, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,The Michigan Medicine Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Katia Klug Oliveira
- International Research Center, A.C.Camargo Cancer Center, Centro Internacional de Pesquisa, Rua Taguá, 440-Primeiro andar, São Paulo, SP, Brazil
| | - Fabio Albuquerque Marchi
- International Research Center, A.C.Camargo Cancer Center, Centro Internacional de Pesquisa, Rua Taguá, 440-Primeiro andar, São Paulo, SP, Brazil
| | - Bárbara Beltrame Bettim
- International Research Center, A.C.Camargo Cancer Center, Centro Internacional de Pesquisa, Rua Taguá, 440-Primeiro andar, São Paulo, SP, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Silvia Vanessa Lourenço
- Department of General Pathology, Dental School, University of São Paulo, São Paulo, SP, Brazil
| | - Cláudia Malheiros Coutinho-Camillo
- International Research Center, A.C.Camargo Cancer Center, Centro Internacional de Pesquisa, Rua Taguá, 440-Primeiro andar, São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Zhang L, Cai Y, Tian C, Li Y, Ma K, Gao X, Liu L, Jiang Y, Wen W, Ma Z. LncRNA Opa interacting protein 5-antisense RNA 1 (OIP5-AS1) promotes the migration, invasion and epithelial-mesenchymal transition (EMT) through targeting miR-147a/insulin-like growth factor 1 receptor (IGF1R) pathway in cervical cancer tissues and cell model. J Obstet Gynaecol Res 2022; 48:1222-1232. [PMID: 35233882 DOI: 10.1111/jog.15209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Two factors involved in regulation, long noncoding RNA Opa interacting protein 5-antisense RNA 1 (lncRNA OIP5-AS1) and microRNA-147a, were found in cervical cancer. Therefore, the investigation of the specific regulation of miR-147a by OIP5-AS1 was performed in cervical cancer. METHOD The cervical cancer tissues were collected from patients with cervical cancer (n = 50). The expression of OIP5-AS1, miR-147a, proteins in epithelial-mesenchymal transition (EMT) process and insulin-like growth factor 1 receptor (IGF1R) were measured by quantitative real-time polymerase chain reaction (qRT-PCT) or western blotting. Cell motility and the relationship between OIP5-AS1 and miR-147a were detected or analyzed by wound healing test, Transwell assay, dual-luciferase reporter assay, RNA binding protein immunoprecipitation assay or Pearson correlation in OIP5-AS1, or miR-147a over-expressed and/or suppressed cervical cancer cells. RESULTS OIP5-AS1 showed the high-expression and miR-147a showed the low-expression in tumor tissues collected from patients with cervical cancer and cell lines Hela, CaSki, Siha, and ME-180. The low-expression of OIP5-AS1 suppressed the motility of Caski cells, as well as up-regulated the level of E-cadherin, which a key protein in EMT. There were targeting sites between miR-147a and OIP5-AS1. OIP5-AS1 induced the down-regulation of miR-147a, so miR-147a was inversely correlated with OIP5-AS1. The down-regulation of miR-147a increased IGF1R and E-cadherin, and these increases were alleviated by OIP5-AS1 knockdown. CONCLUSION LncRNA OIP5-AS1 promotes the migration, invasion and EMT of cervical cancer cells via targeting miR-147a/IGF1R pathway.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Yufei Cai
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Chenchen Tian
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Yanru Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Kuili Ma
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Xiaolei Gao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Lili Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Yan Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Wanting Wen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Zhe Ma
- Department of Obstetrics and Gynecology, Affiliated Hospital of Beihua University, Jilin City, China
| |
Collapse
|
25
|
Raue R, Frank AC, Fuhrmann DC, de la Cruz-Ojeda P, Rösser S, Bauer R, Cardamone G, Weigert A, Syed SN, Schmid T, Brüne B. MicroRNA-200c Attenuates the Tumor-Infiltrating Capacity of Macrophages. BIOLOGY 2022; 11:biology11030349. [PMID: 35336722 PMCID: PMC8945044 DOI: 10.3390/biology11030349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary The tumor microenvironment determines the prognosis and outcome for cancer patients. Herein, tumor-associated macrophages are not only highly abundant, but also play a crucial role in shaping a tumor-supporting microenvironment. Both their recruitment to the tumor as well as their functional polarization toward a pro-tumorigenic phenotype are mediated by tumor-derived factors including microRNAs. However, the impact of most microRNAs on the tumor cell-macrophage crosstalk remains to be elucidated. Thus, we reached out to investigate the role of hsa-miR-200c-3p (miR-200c) in tumor cell–macrophage interactions, as it was shown to be differentially expressed during cancer progression and metastasis. miR-200c was highly expressed in MCF7 breast tumor cells compared to macrophages. Furthermore, we identified a CD36-dependent uptake of miR-200c, derived from apoptotic tumor cells, into macrophages. In macrophages, elevated miR-200c levels reduced the expression of numerous migration-associated mRNAs, consequently reducing the capacity of macrophages to infiltrate into tumor spheroids. Finally, a distinct signature of miR-200c-repressed, predicted targets was identified, which strongly correlated with tumor infiltration. Targeting the miR-200c transfer from dying tumor cells to macrophages might therefore provide the opportunity to specifically modulate tumor-associated macrophage recruitment. Abstract Macrophages constitute a major part of the tumor-infiltrating immune cells. Within the tumor microenvironment, they acquire an alternatively activated, tumor-supporting phenotype. Factors released by tumor cells are crucial for the recruitment of tumor-associated macrophages. In the present project, we aimed to understand the role of hsa-miR-200c-3p (miR-200c) in the interplay between tumor cells and macrophages. To this end, we employed a coculture system of MCF7 breast tumor cells and primary human macrophages and observed the transfer of miR-200c from apoptotic tumor cells to macrophages, which required intact CD36 receptor in macrophages. We further comprehensively determined miR-200c targets in macrophages by mRNA-sequencing and identified numerous migration-associated mRNAs to be downregulated by miR-200c. Consequently, miR-200c attenuated macrophage infiltration into 3-dimensional tumor spheroids. miR-200c-mediated reduction in infiltration further correlated with a miR-200c migration signature comprised of the four miR-200c-repressed, predicted targets PPM1F, RAB11FIB2, RDX, and MSN.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Dominik C. Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain;
| | - Silvia Rösser
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Giulia Cardamone
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
- Correspondence:
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| |
Collapse
|
26
|
Buyuk B, Jin S, Ye K. Epithelial-to-Mesenchymal Transition Signaling Pathways Responsible for Breast Cancer Metastasis. Cell Mol Bioeng 2022; 15:1-13. [PMID: 35096183 PMCID: PMC8761190 DOI: 10.1007/s12195-021-00694-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Breast carcinoma is highly metastatic and invasive. Tumor metastasis is a convoluted and multistep process involving tumor cell disseminating from their primary site and migrating to the secondary organ. Epithelial-mesenchymal transition (EMT) is one of the crucial steps that initiate cell progression, invasion, and metastasis. During EMT, epithelial cells alter their molecular features and acquire a mesenchymal phenotype. The regulation of EMT is centered by several signaling pathways, including primary mediators TGF-β, Notch, Wnt, TNF-α, Hedgehog, and RTKs. It is also affected by hypoxia and microRNAs (miRNAs). All these pathways are the convergence on the transcriptional factors such as Snail, Slug, Twist, and ZEB1/2. In addition, a line of evidence suggested that EMT and cancer stem like cells (CSCs) are associated. EMT associated cancer stem cells display mesenchymal phenotypes and resist to chemotherapy or targeted therapy. In this review, we highlighted recent discoveries in these signaling pathways and their regulation in breast cancer metastasis and invasion. While the clinical relevance of EMT and breast cancers remains controversial, we speculated a convergent signaling network pivotal to elucidating the transition of epithelial to mesenchymal phenotypes and onset of metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Busra Buyuk
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| | - Sha Jin
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| |
Collapse
|
27
|
Walker SE, Sabin KZ, Gearhart MD, Yamamoto K, Echeverri K. Regulation of stem cell identity by miR-200a during spinal cord regeneration. Development 2022; 149:274347. [PMID: 35156681 PMCID: PMC8918811 DOI: 10.1242/dev.200033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023]
Abstract
Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo cell tracking allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3′UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced. Summary: Axolotl spinal cord cells have the potential to form cells of the ectoderm and mesoderm depending on the extent of the injury they are responding to.
Collapse
Affiliation(s)
- Sarah E Walker
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Keith Z Sabin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | - Karen Echeverri
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
28
|
Setlai BP, Hull R, Reis RM, Agbor C, Ambele MA, Mulaudzi TV, Dlamini Z. MicroRNA Interrelated Epithelial Mesenchymal Transition (EMT) in Glioblastoma. Genes (Basel) 2022; 13:244. [PMID: 35205289 PMCID: PMC8872331 DOI: 10.3390/genes13020244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that are 20-23 nucleotides in length, functioning as regulators of oncogenes or tumor suppressor genes. They are molecular modulators that regulate gene expression by suppressing gene translation through gene silencing/degradation, or by promoting translation of messenger RNA (mRNA) into proteins. Circulating miRNAs have attracted attention as possible prognostic markers of cancer, which could aid in the early detection of the disease. Epithelial to mesenchymal transition (EMT) has been implicated in tumorigenic processes, primarily by promoting tumor invasiveness and metastatic activity; this is a process that could be manipulated to halt or prevent brain metastasis. Studies show that miRNAs influence the function of EMT in glioblastomas. Thus, miRNA-related EMT can be exploited as a potential therapeutic target in glioblastomas. This review points out the interrelation between miRNA and EMT signatures, and how they can be used as reliable molecular signatures for diagnostic purposes or targeted therapy in glioblastomas.
Collapse
Affiliation(s)
- Botle Precious Setlai
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
| | - Rui Manuel Reis
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Cyril Agbor
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Melvin Anyasi Ambele
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, P.O. Box 1266, Pretoria 0001, South Africa;
- Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
| |
Collapse
|
29
|
Souza MF, Cólus IMS, Fonseca AS, Antunes VC, Kumar D, Cavalli LR. MiR-182-5p Modulates Prostate Cancer Aggressive Phenotypes by Targeting EMT Associated Pathways. Biomolecules 2022; 12:187. [PMID: 35204688 PMCID: PMC8961520 DOI: 10.3390/biom12020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is a clinically heterogeneous disease, where deregulation of epigenetic events, such as miRNA expression alterations, are determinants for its development and progression. MiR-182-5p, a member of the miR-183 family, when overexpressed has been associated with PCa tumor progression and decreased patients' survival rates. In this study, we determined the regulatory role of miR-182-5p in modulating aggressive tumor phenotypes in androgen-refractory PCa cell lines (PC3 and DU-145). The transient transfection of the cell lines with miR-182-5p inhibitor and mimic systems, significantly affected cell proliferation, adhesion, migration, and the viability of the cells to the chemotherapeutic agents, docetaxel, and abiraterone. It also affected the protein expression levels of the tumor progression marker pAKT. These changes, however, were differentially observed in the cell lines studied. A comprehensive biological and functional enrichment analysis and miRNA/mRNA interaction revealed its strong involvement in the epithelial-mesenchymal transition (EMT) process; expression analysis of EMT markers in the PCa transfected cells directly or indirectly modulated the analyzed tumor phenotypes. In conclusion, miR-182-5p differentially impacts tumorigenesis in androgen-refractory PCa cells, in a compatible oncomiR mode of action by targeting EMT-associated pathways.
Collapse
Affiliation(s)
- Marilesia Ferreira Souza
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ilce Mara Syllos Cólus
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Valquíria Casanova Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Luciane Regina Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| |
Collapse
|
30
|
Yun J, Kim YS, Heo MJ, Kim MJ, Moon A, Kim SG. ERα inhibits mesenchymal and amoeboidal movement of liver cancer cell via Gα12. Int J Cancer 2022; 150:1690-1705. [PMID: 35020952 DOI: 10.1002/ijc.33929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second most common cancer worldwide, demonstrating aggressiveness and mortality more frequently in men than in women. Despite reports regarding the inhibitory ability of estrogen receptor alpha (ERα, ESR1) in certain cancer progression, targets and the basis of underlying gender disparity in HCC worsening remain elusive. Here, we report the ability of ERα to transcriptionally inhibit G protein subunit alpha 12 (Gα12) responsible for HCC worsening. First, using human samples and public database, the expression of ERα and Gα12 in HCC was examined. Then, quantitative real-time PCR, chromatin immunoprecipitation-assay, luciferase assay, and immunoblottings of liver cancer cell lines confirmed the inhibitory ability of ERα on Gα12 and HCC progression. Gα12 promoted mesenchymal characteristics and amoeboidal movement, which was antagonized by ERα overexpression. Additionally, we found microRNA-141 and -200a as downstream targets of the Gα12 signaling axis for cancer malignancy regulation under the control of ERα. As for in-depth mechanism, PTP4A1 was found to be directly inhibited by microRNA-141 and -200a. Moreover, we found the inhibitory effect of ERα on amoeboidal movement by analyzing the morphology and blebbing of liver cancer cells and the active form of MLC levels. The identified targets and ESR1 levels are inversely correlated in human specimens, as well as with sex-biased survival rates of HCC patients. Collectively, ERα-dependent repression of Gα12 and consequent changes in the Gα12 signaling may explain the gender disparity in HCC, providing pharmacological clues for the control of metastatic HCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica Yun
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Jeong Heo
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Min Joo Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Kyeonggi-do, Republic of Korea
| |
Collapse
|
31
|
SHEN H, ZHANG D, LIU H. Mesenchymal stem cell conditioned medium azacytidine, panobinostat and GSK126 alleviate TGF-β-induced EMT in lung cancer. FOOD SCIENCE AND TECHNOLOGY 2022; 42. [DOI: 10.1590/fst.53021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Huihui SHEN
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| | - Dongying ZHANG
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| | - Hua LIU
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| |
Collapse
|
32
|
Prinz F, Jonas K, Balihodzic A, Klec C, Reicher A, Barth DA, Riedl J, Gerger A, Kiesslich T, Mayr C, Rinner B, Kargl J, Pichler M. MicroRNA mimics can distort physiological microRNA effects on immune checkpoints by triggering an antiviral interferon response. RNA Biol 2022; 19:1305-1315. [PMID: 36469564 PMCID: PMC9728468 DOI: 10.1080/15476286.2022.2152978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The microRNA-200 family has wide-ranging regulatory functions in cancer development and progression. Above all, it is strongly associated with the epithelial-to-mesenchymal transition (EMT), a process during which cells change their epithelial to a mesenchymal phenotype and acquire invasive characteristics. More recently, miR-200 family members have also been reported to impact the immune evasion of cancer cells by regulating the expression of immunoinhibitory immune checkpoints (ICs) like PD-L1. Therefore, we aimed to comprehensively characterize this miR-200 family as a regulatory interface between EMT and immune evasion mechanisms in biliary tract cancer. Initial correlation analyses and transient overexpression experiments using miRNA mimics suggested miR-200c-3p as a putative regulator of ICs including PD-L1, LGALS9, and IDO1. However, these effects could not be confirmed in stable miR-200c-3p overexpression cell lines, nor in cells transiently transfected with miR-200c-3p mimic from an independent manufacturer. By shifting our efforts towards dissecting the mechanisms leading to these disparate effects, we observed that the initially used miR-200c-3p mimic triggered a double-stranded (ds)RNA-dependent antiviral response. Besides upregulating the ICs, this had substantial cellular consequences including an induction of interferon type I and type III expression, increased levels of intracellular dsRNA sensors, and a significantly altered cellular growth and apoptotic activity.Our study highlights the capability of miRNA mimics to non-specifically induce a dsRNA-mediated antiviral interferon response. Consequently, phenotypic alterations crucially distort physiological miRNA functions and might result in a major misinterpretation of previous and future miRNA studies, especially in the context of IC regulation.
Collapse
Affiliation(s)
- Felix Prinz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz, Austria
| | - Katharina Jonas
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz, Austria
| | - Amar Balihodzic
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz, Austria
| | - Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz, Austria
| | - Andreas Reicher
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz, Austria
| | - Dominik Andreas Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jakob Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tobias Kiesslich
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christian Mayr
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz, Austria
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Down-Regulation of miR-194-5p for Predicting Metastasis in Breast Cancer Cells. Int J Mol Sci 2021; 23:ijms23010325. [PMID: 35008751 PMCID: PMC8745262 DOI: 10.3390/ijms23010325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), as key negative regulators of gene expression, are closely related to tumor occurrence and progression. miR-194-5p (miR-194-1) has been shown to play a regulatory role in various cancers however, its biological function and mechanism of action in breast cancer have not yet been well explored. In this study, we use the UALCAN and LinkedOmics databases to analyze transcription expression in The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA). The epithelial-mesenchymal transition status of breast cancer cells was evaluated by wound-healing assay, trans-well assays, and gelatin zymography, while protein expression was assessed by Western blotting. miR-194-5p expression was found to be up-regulated in breast cancer clinical specimens but down-regulated in the triple-negative breast cancer (TNBC) cell line MDA-MB-231 and breast cancer clinical specimens in The Cancer Genome Atlas (TCGA). miR-194-5p significantly inhibited the expression of the epithelial marker ZO-1 and increased the expression of mesenchymal markers, including ZEB-1 and vimentin, in MDA-MB-231 cells. miR-194-5p significantly reduced the gelatin-degrading activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 in zymography assays. In MDA-MB-231 cells and TCGA patient samples, ZEB-1 expression was significantly inversely correlated with miR-194-5p expression. High levels of miR-194-5p were associated with good overall survival. miR-194-5p regulates epithelial–mesenchymal transition (EMT) in TNBC. Our findings suggest that miR-194-5p functions as a tumor biomarker in breast cancer, providing new insights for the study of breast cancer development and metastasis.
Collapse
|
34
|
Chaves LP, Melo CM, Saggioro FP, dos Reis RB, Squire JA. Epithelial-Mesenchymal Transition Signaling and Prostate Cancer Stem Cells: Emerging Biomarkers and Opportunities for Precision Therapeutics. Genes (Basel) 2021; 12:1900. [PMID: 34946849 PMCID: PMC8701270 DOI: 10.3390/genes12121900] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancers may reactivate a latent embryonic program called the epithelial-mesenchymal transition (EMT) during the development of metastatic disease. Through EMT, tumors can develop a mesenchymal phenotype similar to cancer stem cell traits that contributes to metastasis and variation in therapeutic responses. Some of the recurrent somatic mutations of prostate cancer affect EMT driver genes and effector transcription factors that induce the chromatin- and androgen-dependent epigenetic alterations that characterize castrate-resistant prostate cancer (CRPC). EMT regulators in prostate cancer comprise transcription factors (SNAI1/2, ZEB1, TWIST1, and ETS), tumor suppressor genes (RB1, PTEN, and TP53), and post-transcriptional regulators (miRNAs) that under the selective pressures of antiandrogen therapy can develop an androgen-independent metastatic phenotype. In prostate cancer mouse models of EMT, Slug expression, as well as WNT/β-Catenin and notch signaling pathways, have been shown to increase stemness potential. Recent single-cell transcriptomic studies also suggest that the stemness phenotype of advanced prostate cancer may be related to EMT. Other evidence correlates EMT and stemness with immune evasion, for example, activation of the polycomb repressor complex I, promoting EMT and stemness and cytokine secretion through RB1, TP53, and PRC1. These findings are helping clinical trials in CRPC that seek to understand how drugs and biomarkers related to the acquisition of EMT can improve drug response.
Collapse
Affiliation(s)
- Luiz Paulo Chaves
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
| | - Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
| | - Fabiano Pinto Saggioro
- Pathology Department, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Jeremy Andrew Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
35
|
Cavallari I, Ciccarese F, Sharova E, Urso L, Raimondi V, Silic-Benussi M, D’Agostino DM, Ciminale V. The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers (Basel) 2021; 13:5874. [PMID: 34884985 PMCID: PMC8656820 DOI: 10.3390/cancers13235874] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The miR-200 family of microRNAs (miRNAs) includes miR-200a, miR-200b, miR-200c, miR-141 and miR-429, five evolutionarily conserved miRNAs that are encoded in two clusters of hairpin precursors located on human chromosome 1 (miR-200b, miR-200a and miR-429) and chromosome 12 (miR-200c and miR-141). The mature -3p products of the precursors are abundantly expressed in epithelial cells, where they contribute to maintaining the epithelial phenotype by repressing expression of factors that favor the process of epithelial-to-mesenchymal transition (EMT), a key hallmark of oncogenic transformation. Extensive studies of the expression and interactions of these miRNAs with cell signaling pathways indicate that they can exert both tumor suppressor- and pro-metastatic functions, and may serve as biomarkers of epithelial cancers. This review provides a summary of the role of miR-200 family members in EMT, factors that regulate their expression, and important targets for miR-200-mediated repression that are involved in EMT. The second part of the review discusses the potential utility of circulating miR-200 family members as diagnostic/prognostic biomarkers for breast, colorectal, lung, ovarian, prostate and bladder cancers.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Francesco Ciccarese
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Evgeniya Sharova
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Loredana Urso
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| | - Vittoria Raimondi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Micol Silic-Benussi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Donna M. D’Agostino
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| |
Collapse
|
36
|
Trivedi T, Pagnotti GM, Guise TA, Mohammad KS. The Role of TGF-β in Bone Metastases. Biomolecules 2021; 11:1643. [PMID: 34827641 PMCID: PMC8615596 DOI: 10.3390/biom11111643] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Complications associated with advanced cancer are a major clinical challenge and, if associated with bone metastases, worsen the prognosis and compromise the survival of the patients. Breast and prostate cancer cells exhibit a high propensity to metastasize to bone. The bone microenvironment is unique, providing fertile soil for cancer cell propagation, while mineralized bone matrices store potent growth factors and cytokines. Biologically active transforming growth factor β (TGF-β), one of the most abundant growth factors, is released following tumor-induced osteoclastic bone resorption. TGF-β promotes tumor cell secretion of factors that accelerate bone loss and fuel tumor cells to colonize. Thus, TGF-β is critical for driving the feed-forward vicious cycle of tumor growth in bone. Further, TGF-β promotes epithelial-mesenchymal transition (EMT), increasing cell invasiveness, angiogenesis, and metastatic progression. Emerging evidence shows TGF-β suppresses immune responses, enabling opportunistic cancer cells to escape immune checkpoints and promote bone metastases. Blocking TGF-β signaling pathways could disrupt the vicious cycle, revert EMT, and enhance immune response. However, TGF-β's dual role as both tumor suppressor and enhancer presents a significant challenge in developing therapeutics that target TGF-β signaling. This review presents TGF-β's role in cancer progression and bone metastases, while highlighting current perspectives on the therapeutic potential of targeting TGF-β pathways.
Collapse
Affiliation(s)
- Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Gabriel M. Pagnotti
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Theresa A. Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Khalid S. Mohammad
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
37
|
Garinet S, Didelot A, Denize T, Perrier A, Beinse G, Leclere JB, Oudart JB, Gibault L, Badoual C, Le Pimpec-Barthes F, Laurent-Puig P, Legras A, Blons H. Clinical assessment of the miR-34, miR-200, ZEB1 and SNAIL EMT regulation hub underlines the differential prognostic value of EMT miRs to drive mesenchymal transition and prognosis in resected NSCLC. Br J Cancer 2021; 125:1544-1551. [PMID: 34642464 PMCID: PMC8609001 DOI: 10.1038/s41416-021-01568-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer (NSCLC) receiving curative surgery have a risk of relapse, and adjuvant treatments only translate into a 5% increase in 5-year survival. We assessed the clinical significance of epithelial-mesenchymal transition (EMT) and explored its association with the [SNAIL/miR-34]:[ZEB/miR-200] regulation hub to refine prognostic information. METHODS We validated a 7-gene EMT score using a consecutive series of 176 resected NSCLC. We quantified EMT transcription factors, microRNAs (miRs) of the miR-200, miR-34 families and miR-200 promoter hypermethylation to identify outcome predictors. RESULTS Most tumours presented with an EMT-hybrid state and the EMT score was not predictive of outcome. Individually, all miR-200 were inversely associated with the EMT score, but only chromosome-1 miRs, miR-200a, b, 429, were associated with disease-free survival (p = 0.08, 0.05 and 0.025) and overall survival (p = 0.013, 0.003 and 0.006). We validated these associations on The Cancer Genome Atlas data. Tumour unsupervised clustering based on miR expression identified two good prognostic groups, unrelated to the EMT score, suggesting that miR profiling may have an important clinical value. CONCLUSION miR-200 family members do not have similar predictive value. Core EMT-miR, regulators and not EMT itself, identify NSCLC patients with a low risk of relapse after surgery.
Collapse
Affiliation(s)
- Simon Garinet
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Audrey Didelot
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Thomas Denize
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
| | - Alexandre Perrier
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Guillaume Beinse
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Jean-Baptiste Leclere
- Department of Thoracic Surgery, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Baptiste Oudart
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
| | - Laure Gibault
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Pathology, Paris Cancer Institute CARPEM, Paris, France
| | - Cecile Badoual
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Pathology, Paris Cancer Institute CARPEM, Paris, France
| | - Françoise Le Pimpec-Barthes
- Department of Thoracic Surgery, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pierre Laurent-Puig
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Antoine Legras
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
- Department of Thoracic Surgery, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Helene Blons
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France.
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
38
|
Yu Y, Li H, Wu C, Li J. Circ_0021087 acts as a miR-184 sponge and represses gastric cancer progression by adsorbing miR-184 and elevating FOSB expression. Eur J Clin Invest 2021; 51:e13605. [PMID: 34076278 DOI: 10.1111/eci.13605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Gastric cancer (GC) ranks third among the causes of cancer-related deaths in the world. Circular RNA hsa_circ_0021087 (circ_0021087) plays a repressive role in GC. Nevertheless, the mechanism by which circ_0021087 constrains GC advancement is unclear. MATERIALS AND METHODS Expression patterns of circ_0021087, microRNA (miR)-184 and FBJ murine osteosarcoma viral oncogene homolog B (FOSB) mRNA were assessed by quantitative real-time polymerase chain reaction (RT-qPCR). Gain-of-function experiments were conducted to verify the biological function of circ_0021087 in vitro and in vivo, including cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell and xenograft assays. Protein levels were analysed by Western blotting and immunohistochemistry (IHC). The regulatory mechanism of circ_0021087 was analysed by bioinformatics analysis, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS AND CONCLUSION Circ_0021087 and FOSB were lowly expressed in GC, whereas miR-184 had an opposite result. Circ_0021087 overexpression repressed GC cell proliferation and epithelial-mesenchymal transition (EMT) in xenograft models in vivo and induced GC cell apoptosis, repressed GC cell proliferation, EMT, migration and invasion in vitro. Circ_0021087 could elevate FOSB expression by adsorbing miR-184. MiR-184 mimic reversed the inhibitory influence of circ_0021087 overexpression on GC cell malignancy. Also, FOSB knockdown offset the suppressive impact of miR-184 silencing on GC cell malignancy. In conclusion, circ_0021087 played a repressive influence on GC progression by elevating FOSB expression by adsorbing miR-184, offering a new mechanism for circ_0021087 to inhibit the progression of GC.
Collapse
Affiliation(s)
- Yin Yu
- School of Basic Medicine, Zhengzhou University, Zhengzhou City, China
| | - Hong Li
- Department of Radiology, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian City, China
| | - Chunhua Wu
- Department of Oncology, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian City, China
| | - Jinfeng Li
- Department of Obstetrics and Gynecology, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian City, China
| |
Collapse
|
39
|
AL-Abedi R, Tuncay Cagatay S, Mayah A, Brooks SA, Kadhim M. Ionising Radiation Promotes Invasive Potential of Breast Cancer Cells: The Role of Exosomes in the Process. Int J Mol Sci 2021; 22:ijms222111570. [PMID: 34769002 PMCID: PMC8583851 DOI: 10.3390/ijms222111570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
Along with the cells that are exposed to radiation, non-irradiated cells can unveil radiation effects as a result of intercellular communication, which are collectively defined as radiation induced bystander effects (RIBE). Exosome-mediated signalling is one of the core mechanisms responsible for multidirectional communication of tumor cells and their associated microenvironment, which may result in enhancement of malignant tumor phenotypes. Recent studies show that exosomes and exosome-mediated signalling also play a dynamic role in RIBE in cancer cell lines, many of which focused on altered exosome cargo or their effects on DNA damage. However, there is a lack of knowledge regarding how these changes in exosome cargo are reflected in other functional characteristics of cancer cells from the aspects of invasiveness and metastasis. Therefore, in the current study, we aimed to investigate exosome-mediated bystander effects of 2 Gy X-ray therapeutic dose of ionizing radiation on the invasive potential of MCF-7 breast cancer cells in vitro via assessing Matrigel invasion potential, epithelial mesenchymal transition (EMT) characteristics and the extent of glycosylation, as well as underlying plausible molecular mechanisms. The findings show that exosomes derived from irradiated MCF-7 cells enhance invasiveness of bystander MCF-7 cells, possibly through altered miRNA and protein content carried in exosomes.
Collapse
|
40
|
Hong S, You JY, Paek K, Park J, Kang SJ, Han EH, Choi N, Chung S, Rhee WJ, Kim JA. Inhibition of tumor progression and M2 microglial polarization by extracellular vesicle-mediated microRNA-124 in a 3D microfluidic glioblastoma microenvironment. Am J Cancer Res 2021; 11:9687-9704. [PMID: 34646393 PMCID: PMC8490520 DOI: 10.7150/thno.60851] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Glioblastoma (GBM) is one of the most aggressive types of brain cancer. GBM progression is closely associated with microglia activation; therefore, understanding the regulation of the crosstalk between human GBM and microglia may help develop effective therapeutic strategies. Elucidation of efficient delivery of microRNA (miRNA) via extracellular vesicles (EVs) and their intracellular communications is required for therapeutic applications in GBM treatment. Methods: We used human GBM cells (U373MG) and human microglia. MiRNA-124 was loaded into HEK293T-derived EVs (miR-124 EVs). Various anti-tumor effects (proliferation, metastasis, chemosensitivity, M1/M2 microglial polarization, and cytokine profile) were investigated in U373MG and microglia. Anti-tumor effect of miR-124 EVs was also investigated in five different patient-derived GBM cell lines (SNU-201, SNU-466, SNU-489, SNU-626, and SNU-1105). A three-dimensional (3D) microfluidic device was used to investigate the interactive microenvironment of the tumor and microglia. Results: MiR-124 EVs showed highly efficient anti-tumor effects both in GBM cells and microglia. The mRNA expression levels of tumor progression and M2 microglial polarization markers were decreased in response to miR-124 EVs. The events were closely related to signal transducer and activator of transcription (STAT) 3 signaling in both GBM and microglia. In 3D microfluidic experiments, both U373MG and microglia migrated to a lesser extent and showed less-elongated morphology in the presence of miR-124 EVs compared to the control. Analyses of changes in cytokine levels in the microfluidic GBM-microglia environment showed that the treatment with miR-124 EVs led to tumor suppression and anti-cancer immunity, thereby recruiting natural killer (NK) cells into the tumor. Conclusions: In this study, we demonstrated that EV-mediated miR-124 delivery exerted synergistic anti-tumor effects by suppressing the growth of human GBM cells and inhibiting M2 microglial polarization. These findings provide new insights toward a better understanding of the GBM microenvironment and provide substantial evidence for the development of potential therapeutic strategies using miRNA-loaded EVs.
Collapse
|
41
|
The emerging role of miR-200 family in metastasis: focus on EMT, CSCs, angiogenesis, and anoikis. Mol Biol Rep 2021; 48:6935-6947. [PMID: 34510322 DOI: 10.1007/s11033-021-06666-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cancer is the second major threat to human society and one of the main challenges facing healthcare systems. One of the main problems of cancer care is the metastases of cancer cells that cause 90% of deaths due to cancer. Multiple molecular mechanisms are involved in cancer cell metastasis. Therefore, a better understanding of these molecular mechanisms is necessary for designing restrictive strategies against cancer cell metastasis. Accumulating data suggests that MicroRNAs (miRNAs) are involved in metastasis and invasion of human tumors through regulating multiple genes expression levels that are involved in molecular mechanisms of metastasis. The goal of this review is to present the molecular pathways by which the miR 200 family manifests its effects on EMT, cancer stem cells, angiogenesis, anoikis, and the effects of tumor cell metastases. METHODS A detailed literature search was conducted to find information about the role of the miR-200 family in the processes involved in metastasis in various databases. RESULTS Numerous lines of evidence revealed an association between the mir-200 family and metastasis of human tumors by impressing processes such as cancer stem cells, EMT, angiogenesis, and anoikis. CONCLUSIONS Understanding the molecular mechanisms associated with metastasis in which the miR-200 family is involved can be effective in treating metastatic cancers.
Collapse
|
42
|
Oh-Hohenhorst SJ, Lange T. Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment. Cancers (Basel) 2021; 13:cancers13174492. [PMID: 34503302 PMCID: PMC8431208 DOI: 10.3390/cancers13174492] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In this review article we summarize the current literature on the pro- and anti-metastatic roles of distinct microRNAs in prostate cancer with a particular focus on their impact on invasion, migration and epithelial-to-mesenchymal transition. Moreover, we give a brief overview on how this knowledge developed so far into novel therapeutic approaches to target metastatic prostate cancer. Abstract Prostate cancer (PCa) is one of the most prevalent cancer types in males and the consequences of its distant metastatic deposits are the leading cause of PCa mortality. Therefore, identifying the causes and molecular mechanisms of hematogenous metastasis formation is of considerable clinical importance for the future development of improved therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level by targeting messenger RNAs. Numerous studies have identified miRNAs as promotors or inhibitors of metastasis and revealed, in part, their targeting pathways in PCa. Because miRNAs are remarkably stable and can be detected in both tissue and body fluid, its potential as specific biomarkers for metastasis and therapeutic response is also currently under preclinical evaluation. In the present review, we focus on miRNAs that are supposed to initiate or suppress metastasis by targeting several key mRNAs in PCa. Metastasis-suppressing miRNAs include miR-33a-5p, miR-34, miR-132 and miR-212, miR-145, the miR-200 family (incl. miR-141-3p), miR-204-5p, miR-532-3p, miR-335, miR-543, miR-505-3p, miR 19a 3p, miR-802, miR-940, and miR-3622a. Metastasis-promoting RNAs, such as miR-9, miR-181a, miR-210-3, miR-454, miR-671-5p, have been shown to increase the metastatic potential of PCa cells. Other metastasis-related miRNAs with conflicting reports in the literature are also discussed (miR-21 and miR-186). Finally, we summarize the recent developments of miRNA-based therapeutic approaches, as well as current limitations in PCa. Taken together, the metastasis-controlling miRNAs provide the potential to be integrated in the strategy of diagnosis, prognosis, and treatment of metastatic PCa. Nevertheless, there is still a lack of consistency between certain miRNA signatures and reproducibility, which impedes clinical implementation.
Collapse
Affiliation(s)
- Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Centre, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|
43
|
Meyer T, Sand M, Schmitz L, Stockfleth E. The Role of Circular RNAs in Keratinocyte Carcinomas. Cancers (Basel) 2021; 13:cancers13164240. [PMID: 34439394 PMCID: PMC8392367 DOI: 10.3390/cancers13164240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Keratinocyte carcinomas (KC) include basal cell carcinomas (BCC) and cutaneous squamous cell carcinomas (cSCC) and represents the most common cancer in Europe and North America. Both entities are characterized by a very high mutational burden, mainly UV signature mutations. Predominately mutated genes in BCC belong to the sonic hedgehog pathway, whereas, in cSCC, TP53, CDKN2A, NOTCH1/2 and others are most frequently mutated. In addition, the dysregulation of factors associated with epithelial to mesenchymal transition (EMT) was shown in invasive cSCC. The expression of factors associated with tumorigenesis can be controlled in several ways and include non-coding RNA molecules, such as micro RNAs (miRNA) long noncoding RNAs (lncRNA) and circular RNAs (circRNA). To update findings on circRNA in KC, we reviewed 13 papers published since 2016, identified in a PubMed search. In both BCC and cSCC, numerous circRNAs were identified that were differently expressed compared to healthy skin. Some of them were shown to target miRNAs that are also dysregulated in KC. Moreover, some studies confirmed the biological functions of individual circRNAs involved in cancer development. Thus, circRNAs may be used as biomarkers of disease and disease progression and represent potential targets of new therapeutic approaches for KC.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Dermatology St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
- Correspondence: ; Tel.: +49-234-5096014
| | - Michael Sand
- Department of Plastic and Reconstructive Surgery, St. Josef-Hospital, Heidbergweg 22–24, 45257 Essen, Germany;
| | - Lutz Schmitz
- Institute of Dermatopathology, MVZ Corius DermPath Bonn, GmbH, Trierer Strasse 70–72, 53115 Bonn, Germany;
| | - Eggert Stockfleth
- Department of Dermatology St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| |
Collapse
|
44
|
Wang J, Yao R, Luo Q, Tan L, Jia B, Ouyang N, Li Y, Tong J, Li J. miR‑200b upregulation promotes migration of BEAS‑2B cells following long‑term exposure to cigarette smoke by targeting ETS1. Mol Med Rep 2021; 24:562. [PMID: 34109431 PMCID: PMC8201442 DOI: 10.3892/mmr.2021.12201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Cigarette smoking is the leading cause of all histological types of lung cancer, and the role that microRNAs (miRNAs) serve in its pathogenesis is being increasingly recognized. The aim of the present study was to investigate the role of miR‑200b on migration in cigarette smoke‑induced malignant transformed cells. In the present study, miR‑200b expression was found to be increased in cigarette smoke (CS)‑exposed BEAS‑2B cells, lung cancer cell lines and tumor tissue samples. Using wound healing and Transwell migration assays, the migratory ability was shown to be increased in miR‑200b‑overexpressing cells, whereas miR‑200b knockdown resulted in reduced migration. Additionally, the expression of E‑Cadherin was downregulated, whereas that of N‑Cadherin was upregulated in miR‑200b mimic‑transfected cells, suggesting an increase in epithelial‑mesenchymal transition. Downstream, using four target gene prediction tools, six target genes of miR‑200b were predicted, amongst which, ETS proto‑oncogene 1 transcription factor (ETS1) was shown to be significantly associated with tumor invasion depth and negatively associated with miR‑200b expression. The interaction between miR‑200b and ETS1 was confirmed using a dual‑luciferase reporter assay. Using rescue experiments, the increased migratory ability of the miR‑200b‑overexpressing cells was reversed by ETS1 overexpression. In summary, this study showed that miR‑200b overexpression serves a carcinogenic role and promotes the migration of BEAS‑2B cells following long‑term exposure to CS by targeting ETS1.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ruixin Yao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qiulin Luo
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lirong Tan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Beibei Jia
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Nan Ouyang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yezhou Li
- School of Medicine, University of Manchester, M13 9PL Manchester, UK
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
45
|
Partial EMT in head and neck cancer biology: a spectrum instead of a switch. Oncogene 2021; 40:5049-5065. [PMID: 34239045 PMCID: PMC8934590 DOI: 10.1038/s41388-021-01868-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Our understanding of epithelial-to-mesenchymal transition (EMT) has slowly evolved from a simple two state, binary model to a multi-step, dynamic continuum of epithelial-to-mesenchymal plasticity, with metastable intermediate transition states that may drive cancer metastasis. Head and neck cancer is no exception, and in this review, we use head and neck as a case study for how partial-EMT (p-EMT) cell states may play an important role in cancer progression. In particular, we summarize recent in vitro and in vivo studies that uncover these intermediate transition states, which exhibit both epithelial and mesenchymal properties and appear to have distinct advantages in migration, survival in the bloodstream, and seeding and propagation within secondary metastatic sites. We then summarize the common and distinct regulators of p-EMT as well as methodologies for identifying this unique cellular subpopulation, with a specific emphasis on the role of cutting-edge technologies, such as single cell approaches. Finally, we propose strategies to target p-EMT cells, highlighting potential opportunities for therapeutic intervention to specifically target the process of metastasis. Thus, although significant challenges remain, including numerous gaps in current knowledge, a deeper understanding of EMT plasticity and a genuine identification of EMT as spectrum rather than a switch will be critical for improving patient diagnosis and treatment across oncology.
Collapse
|
46
|
Wu HJ, Chu PY. Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22158113. [PMID: 34360879 PMCID: PMC8348144 DOI: 10.3390/ijms22158113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Globally, breast cancer has remained the most commonly diagnosed cancer and the leading cause of cancer death among women. Breast cancer is a highly heterogeneous and phenotypically diverse group of diseases, which require different selection of treatments. Breast cancer stem cells (BCSCs), a small subset of cancer cells with stem cell-like properties, play essential roles in breast cancer progression, recurrence, metastasis, chemoresistance and treatments. Epigenetics is defined as inheritable changes in gene expression without alteration in DNA sequence. Epigenetic regulation includes DNA methylation and demethylation, as well as histone modifications. Aberrant epigenetic regulation results in carcinogenesis. In this review, the mechanism of epigenetic regulation involved in carcinogenesis, therapeutic resistance and metastasis of BCSCs will be discussed, and finally, the therapies targeting these biomarkers will be presented.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan;
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-975611855; Fax: +886-47227116
| |
Collapse
|
47
|
Song S, Johnson KS, Lujan H, Pradhan SH, Sayes CM, Taube JH. Nanoliposomal Delivery of MicroRNA-203 Suppresses Migration of Triple-Negative Breast Cancer through Distinct Target Suppression. Noncoding RNA 2021; 7:45. [PMID: 34449670 PMCID: PMC8395754 DOI: 10.3390/ncrna7030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancers affect thousands of women in the United States and disproportionately drive mortality from breast cancer. MicroRNAs are small, non-coding RNAs that negatively regulate gene expression post-transcriptionally by inhibiting target mRNA translation or by promoting mRNA degradation. We have identified that miRNA-203, silenced by epithelial-mesenchymal transition (EMT), is a tumor suppressor and can promote differentiation of breast cancer stem cells. In this study, we tested the ability of liposomal delivery of miR-203 to reverse aspects of breast cancer pathogenesis using breast cancer and EMT cell lines. We show that translationally relevant methods for increasing miR-203 abundance within a target tissue affects cellular properties associated with cancer progression. While stable miR-203 expression suppresses LASP1 and survivin, nanoliposomal delivery suppresses BMI1, indicating that suppression of distinct mRNA target profiles can lead to loss of cancer cell migration.
Collapse
Affiliation(s)
- Shuxuan Song
- Department of Biology, Baylor University, Waco, TX 76706, USA; (S.S.); (K.S.J.)
| | - Kelsey S. Johnson
- Department of Biology, Baylor University, Waco, TX 76706, USA; (S.S.); (K.S.J.)
| | - Henry Lujan
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA; (H.L.); (S.H.P.); (C.M.S.)
| | - Sahar H. Pradhan
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA; (H.L.); (S.H.P.); (C.M.S.)
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA; (H.L.); (S.H.P.); (C.M.S.)
| | - Joseph H. Taube
- Department of Biology, Baylor University, Waco, TX 76706, USA; (S.S.); (K.S.J.)
| |
Collapse
|
48
|
Chen C, Ma Z, Jiang H. EMT Participates in the Regulation of Exosomes Secretion and Function in Esophageal Cancer Cells. Technol Cancer Res Treat 2021; 20:15330338211033077. [PMID: 34278849 PMCID: PMC8293843 DOI: 10.1177/15330338211033077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key step in tumor invasion and distant metastasis. Abundant evidence has documented that exosomes can mediate EMT of tumor cells and endow them with the ability of invasion and migration. However, there are few studies focusing on whether EMT can reverse the secretion of exosomes. In this study, 2 esophageal cancer cells (FLO-1 and SK-GT-4) were selected to compare the migration ability and EMT activation, and to further analyze the secretion ability of exosomes of the 2 cell lines. According to the results, inhibited activation of EMT in FLO-1 cells with relatively high migration ability could effectively reduce the secretion of exosomes. Besides, in SK-GT-4 cells, EMT activation induced by TGF-β could promote the secretion of exosomes. FLO-1 cell derived exosomes exhibited a paracrine effect of promoting the migration of SK-GT-4 cells, and the use of EMT inhibitors could weaken this ability. Furthermore, inhibition of EMT could change the relative content of some miRNAs in exosomes, with a particularly significant downregulation in the expression of miR-196-5p, miR-21-5p and miR-194-5p. Significantly, artificial transfection of the 3 miRNAs into exosomes by electroporation resulted in the recovery of migration-promoting effect of exosomes. Subsequent experiments further revealed that the effect of EMT on these miRNAs could be explained by the intracellular transcription level or the specific sorting mechanism of exosomes. To sum up, our study undoubtedly reveals that EMT has a regulatory effect on exosomes in the quantity and contents in esophageal cancer cells. Significantly, findings in our study provide experimental evidence for the interaction of EMT with the secretion and sorting pathway of exosomes, and also give a new direction for the further study of tumor metastasis.
Collapse
Affiliation(s)
- Chuangui Chen
- Department of Minimally Invasive Esophagus Surgery, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China
| | - Zhao Ma
- Department of Minimally Invasive Esophagus Surgery, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China
| | - Hongjing Jiang
- Department of Minimally Invasive Esophagus Surgery, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China
| |
Collapse
|
49
|
Govindaraj V, Kar S. Role of microRNAs in oncogenesis: Insights from computational and systems‐level modeling approaches. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Sandip Kar
- Department of Chemistry IIT Bombay Mumbai India
| |
Collapse
|
50
|
Lambrou GI, Zaravinos A, Braoudaki M. Co-Deregulated miRNA Signatures in Childhood Central Nervous System Tumors: In Search for Common Tumor miRNA-Related Mechanics. Cancers (Basel) 2021; 13:cancers13123028. [PMID: 34204289 PMCID: PMC8235499 DOI: 10.3390/cancers13123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Childhood tumors of the central nervous system (CNS) constitute a grave disease and their diagnosis is difficult to be handled. To gain better knowledge of the tumor’s biology, it is essential to understand the underlying mechanisms of the disease. MicroRNAs (miRNAs) are small noncoding RNAs that are dysregulated in many types of CNS tumors and regulate their occurrence and development through specific signal pathways. However, different types of CNS tumors’ area are characterized by different deregulated miRNAs. Here, we hypothesized that CNS tumors could have commonly deregulated miRNAs, i.e., miRNAs that are simultaneously either upregulated or downregulated in all tumor types compared to the normal brain tissue, irrespectively of the tumor sub-type and/or diagnosis. The only criterion is that they are present in brain tumors. This approach could lead us to the discovery of miRNAs that could be used as pan-CNS tumoral therapeutic targets, if successful. Abstract Despite extensive experimentation on pediatric tumors of the central nervous system (CNS), related to both prognosis, diagnosis and treatment, the understanding of pathogenesis and etiology of the disease remains scarce. MicroRNAs are known to be involved in CNS tumor oncogenesis. We hypothesized that CNS tumors possess commonly deregulated miRNAs across different CNS tumor types. Aim: The current study aims to reveal the co-deregulated miRNAs across different types of pediatric CNS tumors. Materials: A total of 439 CNS tumor samples were collected from both in-house microarray experiments as well as data available in public databases. Diagnoses included medulloblastoma, astrocytoma, ependydoma, cortical dysplasia, glioblastoma, ATRT, germinoma, teratoma, yoc sac tumors, ocular tumors and retinoblastoma. Results: We found miRNAs that were globally up- or down-regulated in the majority of the CNS tumor samples. MiR-376B and miR-372 were co-upregulated, whereas miR-149, miR-214, miR-574, miR-595 and miR-765 among others, were co-downregulated across all CNS tumors. Receiver-operator curve analysis showed that miR-149, miR-214, miR-574, miR-595 and miR765 could distinguish between CNS tumors and normal brain tissue. Conclusions: Our approach could prove significant in the search for global miRNA targets for tumor diagnosis and therapy. To the best of our knowledge, there are no previous reports concerning the present approach.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.); Tel.: +974-4403-7819 (A.Z.); +44-(0)-1707286503 (ext. 3503) (M.B.)
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, Hertfordshire, UK
- Correspondence: (A.Z.); (M.B.); Tel.: +974-4403-7819 (A.Z.); +44-(0)-1707286503 (ext. 3503) (M.B.)
| |
Collapse
|