1
|
Tavano F, Napoli A, Gioffreda D, Palmieri O, Latiano T, Tardio M, di Mola FF, Grottola T, Büchler MW, Gentile M, Latiano A, Mazza T, Perri F. Could the Microbial Profiling of Normal Pancreatic Tissue from Healthy Organ Donors Contribute to Understanding the Intratumoral Microbiota Signature in Pancreatic Ductal Adenocarcinoma? Microorganisms 2025; 13:452. [PMID: 40005817 PMCID: PMC11858623 DOI: 10.3390/microorganisms13020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with intratumoral microbiota changes. However, defining the normal pancreatic microbial composition remains a challenge. Herein, we tested the hypothesis that the microbial profiling of normal pancreatic tissue from healthy organ donors (HC) could help in determining the signature of microbiota in PDAC. Matched pairs of tumor and normal tissues from PDAC patients (n = 32) and normal pancreatic tissues from HC (n = 17) were analyzed by 16S rRNA gene sequencing. Dissimilarities in all the beta metrics emerged in both normal samples and tumor samples, compared to HC (Bray-Curtis dissimilarity and Jaccard distance: p = 0.002; weighted UniFrac distances: p = 0.42 and p = 0.012, respectively; unweighted UniFrac distance: p = 0.009); a trend toward a lower Faith's phylogenetic distance was found at the tumor level vs. HC (p = 0.08). Within PDAC, a lower Faith's phylogenetic distance (p = 0.003) and a significant unweighted UniFrac distance (p = 0.024) were observed in tumor samples vs. normal samples. We noted the presence of a decreased abundance of bacteria with potential beneficial effects (Jeotgalicoccus) and anticancer activity (Acinetobacter_guillouiae) in PDAC vs. HC; bacteria involved in immune homeostasis and suppression of tumor progression (Streptococcus_salivarius, Sphingomonas) were reduced, and those implicated in tumor initiation and development (Methylobacterium-Methylorubrum, g_Delftia) were enhanced in tumor samples vs. normal samples. Metagenomic functions involved in fatty acid synthesis were reduced in normal samples compared to HC, while peptidoglycan biosynthesis IV and L-rhamnose degradation were more abundant in tumor samples vs. normal samples. Future prospective studies on larger populations, also including patients in advanced tumor stages and considering all potential existing confounding factors, as well as further functional investigations, are needed to prove the role of microbiota-mediated pathogenicity in PDAC.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Alessandro Napoli
- Bioinformatics Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Matteo Tardio
- Department of Surgery, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Fabio Francesco di Mola
- Unit of Surgical Oncology, Casa di Cura Pierangeli, 65124 Pescara, PE, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, CH, Italy
| | - Tommaso Grottola
- Unit of Surgical Oncology, Casa di Cura Pierangeli, 65124 Pescara, PE, Italy
- Department of Innovative Technologies in Clinical Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, CH, Italy
| | - Markus W. Büchler
- Botton-Champalimaud Pancreatic Cancer Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marco Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tommaso Mazza
- Bioinformatics Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|
2
|
Gordon KS, Marin D. Not Your Typical Pneumonia: A Rare Case of Delftia acidovorans Pneumonia With Concurrent Malignant Squamous Cell Carcinoma. Cureus 2025; 17:e79796. [PMID: 40161040 PMCID: PMC11954973 DOI: 10.7759/cureus.79796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Delftia acidovorans (D. acidovorans) is classified as a Gram-negative, aerobic non-fermenting bacillus that is commonly found in outdoor environmental elements, such as soil and water. In normal circumstances, it is considered a non-pathological environmental organism, rarely implicated in clinical settings with a low incidence of patient infection. D. acidovorans infections, including pneumonia and sepsis, are often associated with increased susceptibility to secondary infections from other Gram-negative bacteria, especially in patients with solid or hematologic malignancies. Henceforth, this case report presents a case of a stroke patient, found to have an obstructive metastatic squamous cell carcinoma of the lung complicated with D. acidovorans pneumonia. The report sheds light in regards to how rare, unassuming pathogens can have significant clinical significance and limited treatment modalities in immunocompromised patients.
Collapse
Affiliation(s)
- Kyle S Gordon
- Internal Medicine, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton Regional Hospital, Boca Raton, USA
| | - Diego Marin
- Pulmonary and Critical Care, Boca Raton Regional Hospital, Boca Raton, USA
| |
Collapse
|
3
|
Retuerto M, Al-Shakhshir H, Herrada J, McCormick TS, Ghannoum MA. Analysis of Gut Bacterial and Fungal Microbiota in Children with Autism Spectrum Disorder and Their Non-Autistic Siblings. Nutrients 2024; 16:3004. [PMID: 39275319 PMCID: PMC11396985 DOI: 10.3390/nu16173004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a multifactorial disorder involving genetic and environmental factors leading to pathophysiologic symptoms and comorbidities including neurodevelopmental disorders, anxiety, immune dysregulation, and gastrointestinal (GI) abnormalities. Abnormal intestinal permeability has been reported among ASD patients and it is well established that disturbances in eating patterns may cause gut microbiome imbalance (i.e., dysbiosis). Therefore, studies focusing on the potential relationship between gut microbiota and ASD are emerging. We compared the intestinal bacteriome and mycobiome of a cohort of ASD subjects with their non-ASD siblings. Differences between ASD and non-ASD subjects include a significant decrease at the phylum level in Cyanobacteria (0.015% vs. 0.074%, p < 0.0003), and a significant decrease at the genus level in Bacteroides (28.3% vs. 36.8%, p < 0.03). Species-level analysis showed a significant decrease in Faecalibacterium prausnitzii, Prevotella copri, Bacteroides fragilis, and Akkermansia municiphila. Mycobiome analysis showed an increase in the fungal Ascomycota phylum (98.3% vs. 94%, p < 0.047) and an increase in Candida albicans (27.1% vs. 13.2%, p < 0.055). Multivariate analysis showed that organisms from the genus Delftia were predictive of an increased odds ratio of ASD, whereas decreases at the phylum level in Cyanobacteria and at the genus level in Azospirillum were associated with an increased odds ratio of ASD. We screened 24 probiotic organisms to identify strains that could alter the growth patterns of organisms identified as elevated within ASD subject samples. In a preliminary in vivo preclinical test, we challenged wild-type Balb/c mice with Delftia acidovorans (increased in ASD subjects) by oral gavage and compared changes in behavioral patterns to sham-treated controls. An in vitro biofilm assay was used to determine the ability of potentially beneficial microorganisms to alter the biofilm-forming patterns of Delftia acidovorans, as well as their ability to break down fiber. Downregulation of cyanobacteria (generally beneficial for inflammation and wound healing) combined with an increase in biofilm-forming species such as D. acidovorans suggests that ASD-related GI symptoms may result from decreases in beneficial organisms with a concomitant increase in potential pathogens, and that beneficial probiotics can be identified that counteract these changes.
Collapse
Affiliation(s)
- Mauricio Retuerto
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hilmi Al-Shakhshir
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Janet Herrada
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Medical Mycology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Díaz Novo N, Adrados Ruiz D, Crespo Estrada B, Auyanet Saavedra I, Ramírez Puga A, Guerra Rodríguez R, Fernández-Tagarro E, García-Cantón C. Acute pyelonephritis in a renal transplant patient secondary to infection by Delftia acidovorans: A case report. Nefrologia 2024; 44:593-594. [PMID: 39168812 DOI: 10.1016/j.nefroe.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 08/23/2024] Open
Affiliation(s)
- Noa Díaz Novo
- Servicio de Nefrología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Daniel Adrados Ruiz
- Servicio de Microbiología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Beatriz Crespo Estrada
- Servicio de Microbiología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ingrid Auyanet Saavedra
- Servicio de Nefrología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana Ramírez Puga
- Servicio de Nefrología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Rita Guerra Rodríguez
- Servicio de Nefrología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ernesto Fernández-Tagarro
- Servicio de Nefrología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - César García-Cantón
- Servicio de Nefrología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
5
|
Yadav A, Yadav R, Khare P. Impact of cultivating different Ocimum species on bioaerosol bacterial communities and functional genome at an agricultural site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124289. [PMID: 38825219 DOI: 10.1016/j.envpol.2024.124289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The effects of the surrounding environment on the bacterial composition of bioaerosol were well documented for polluted and contaminated sites. However, there is limited data on the impact of plant species, especially those that produce aromas, on bioaerosol composition at agricultural sites. Hence, the aim of this study is to evaluate the variability in bacterial communities present in bioaerosol samples collected from agricultural sites with aroma-producing crops. For this, PM2.5, PM10, and bioaerosol samples were collected from agricultural fields growing Ocimum [two varieties of O. sanctum (CIM-Aayu and CIM-Angana)] and O. kilimandscharicum (Kapoor), nearby traffic junctions and suburban areas. PM2.5 and PM10 concentrations at the agricultural site were in between the other two polluted sites. However, bioaerosol concentration was lower at agricultural sites than at other sites. The culturable bacteria Bacillus subtilis, Bacillus tequilensis, and Staphylococcus saprophyticus were more prevalent in agricultural sites than in other areas. However, the composition of non-culturable bacteria varied between sites and differed in three fields where Ocimum was cultivated. The CIM-Aayu cultivated area showed a high bacterial richness, lower Simpson and Shannon indices, and a distinctive metabolic profile. The sites CIM-Angana and CIM-Kapoor had a higher abundance of Aeromonas, while Pantoea and Pseudomonas were present at CIM-Aayu. Acinetobacter, Staphylococcus, and Bacillus were the dominant genera at the other two sites. Metabolic profiling showed that the CIM-Aayu site had a higher prevalence of pathways related to amino acid and carbohydrate metabolism and environmental information processing compared to other sites. The composition of bioaerosol among the three different Ocimum sites could be due to variations in the plant volatile and cross-feeding nature of bacterial isolates, which further needs to be explored.
Collapse
Affiliation(s)
- Anisha Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Lee H, Koo J, Oh J, Cho SI, Lee H, Lee HJ, Sung GH, Kim J. Clinical Evaluation of VITEK MS PRIME with PICKME Pen for Bacteria and Yeasts, and RUO Database for Filamentous Fungi. Microorganisms 2024; 12:964. [PMID: 38792793 PMCID: PMC11124449 DOI: 10.3390/microorganisms12050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The VITEK MS PRIME (bioMérieux, Marcy-l'Étoile, France), a newly developed matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) system, alongside the VITEK PICKME pen (PICKME), offers easy sample preparation for bacteria and yeasts. The VITEK MS PRIME also offers two software platforms for filamentous fungi: the IVD database and the RUO database. Our study evaluated its identification agreement on 320 clinical isolates of bacteria and yeasts, comparing PICKME and traditional wooden toothpick sampling techniques against MicroIDSys Elite (ASTA) results. Additionally, we assessed the IVD (v3.2) and SARAMIS (v4.16) RUO databases on 289 filamentous fungi against molecular sequencing. The concordance rates for species-level identification of bacteria and yeasts were about 89.4% (286/320) between the PICKME and wooden toothpick, and about 83.4-85.3% between the VITEK MS PRIME and ASTA MicroIDSys Elite. Retesting with PICKME improved concordance to 91.9%. For filamentous fungi, species-level identification reached 71.3% with the IVD database and 85.8% with RUO, which significantly enhanced basidiomycetes' identification from 35.3% to 100%. Some strains in the IVD database, like Aspergillus versicolor, Exophiala xenobiotica, and Nannizzia gypsea, failed to be identified. The VITEK MS PRIME with PICKME offers reliable and efficient microorganism identification. For filamentous fungi, combined use of the RUO database can be beneficial, especially for basidiomycetes.
Collapse
Affiliation(s)
- Hyeyoung Lee
- Department of Laboratory Medicine, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (H.L.); (J.K.); (S.-I.C.); (H.L.); (H.J.L.)
| | - Jehyun Koo
- Department of Laboratory Medicine, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (H.L.); (J.K.); (S.-I.C.); (H.L.); (H.J.L.)
| | - Junsang Oh
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Sung-Il Cho
- Department of Laboratory Medicine, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (H.L.); (J.K.); (S.-I.C.); (H.L.); (H.J.L.)
| | - Hyunjoo Lee
- Department of Laboratory Medicine, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (H.L.); (J.K.); (S.-I.C.); (H.L.); (H.J.L.)
| | - Hyun Ji Lee
- Department of Laboratory Medicine, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (H.L.); (J.K.); (S.-I.C.); (H.L.); (H.J.L.)
| | - Gi-Ho Sung
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Jayoung Kim
- Department of Laboratory Medicine, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (H.L.); (J.K.); (S.-I.C.); (H.L.); (H.J.L.)
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| |
Collapse
|
7
|
Lu TL, Huang C. Retrospective Cohort Study on Delftia acidovorans Infections in Patients: A Rare and Significant Infection. Infect Drug Resist 2024; 17:1741-1749. [PMID: 38736436 PMCID: PMC11086641 DOI: 10.2147/idr.s457781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Background In recent years, Delftia acidovorans has gained attention for its rare occurrence in patient infections. The literature consists mostly of case reports, necessitating further research to comprehensively understand risk factors, clinical characteristics, and management strategies. Methods We conducted a retrospective cohort study involving patients diagnosed with Delftia acidovorans infection at a tertiary teaching hospital between January 2014 and December 2022. The data included demographic details, comorbidities, bacterial cultures, antibiotic susceptibility, and treatment outcomes. Results There were 26 patients diagnosed with Delftia acidovorans infection who were predominantly older with multiple comorbidities. Approximately 76.9% of Delftia acidovorans infection patients had polymicrobial infections. Twenty-one patients had received antibiotics within three months before they developed the Delftia acidovorans infection, and these antibiotics were primarily third-generation cephalosporins, glycopeptides and fluoroquinolones. Antibiotic susceptibility testing showed resistance to aminoglycosides and susceptibility to imipenem, meropenem, ceftazidime, and piperacillin/tazobactam. Treatment outcome showed a mortality rate of 11.5%, mainly in patients with malignancy and advanced age. Conclusion Delftia acidovorans infections predominantly affect older patients with multiple comorbidities. In terms of antibiotic therapy, carbapenems, cephalosporins, and piperacillin/tazobactam with antipseudomonal activity could all be considered.
Collapse
Affiliation(s)
- Tsung-Lung Lu
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin Town, Chiayi County, Taiwan
| | - Chienhsiu Huang
- Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin Town, Chiayi County, Taiwan
| |
Collapse
|
8
|
Konovalovas A, Armalytė J, Klimkaitė L, Liveikis T, Jonaitytė B, Danila E, Bironaitė D, Mieliauskaitė D, Bagdonas E, Aldonytė R. Human nasal microbiota shifts in healthy and chronic respiratory disease conditions. BMC Microbiol 2024; 24:150. [PMID: 38678223 PMCID: PMC11055347 DOI: 10.1186/s12866-024-03294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND An increasing number of studies investigate various human microbiotas and their roles in the development of diseases, maintenance of health states, and balanced signaling towards the brain. Current data demonstrate that the nasal microbiota contains a unique and highly variable array of commensal bacteria and opportunistic pathogens. However, we need to understand how to harness current knowledge, enrich nasal microbiota with beneficial microorganisms, and prevent pathogenic developments. RESULTS In this study, we have obtained nasal, nasopharyngeal, and bronchoalveolar lavage fluid samples from healthy volunteers and patients suffering from chronic respiratory tract diseases for full-length 16 S rRNA sequencing analysis using Oxford Nanopore Technologies. Demographic and clinical data were collected simultaneously. The microbiome analysis of 97 people from Lithuania suffering from chronic inflammatory respiratory tract disease and healthy volunteers revealed that the human nasal microbiome represents the microbiome of the upper airways well. CONCLUSIONS The nasal microbiota of patients was enriched with opportunistic pathogens, which could be used as indicators of respiratory tract conditions. In addition, we observed that a healthy human nasal microbiome contained several plant- and bee-associated species, suggesting the possibility of enriching human nasal microbiota via such exposures when needed. These candidate probiotics should be investigated for their modulating effects on airway and lung epithelia, immunogenic properties, neurotransmitter content, and roles in maintaining respiratory health and nose-brain interrelationships.
Collapse
Affiliation(s)
- Aleksandras Konovalovas
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Julija Armalytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania.
| | - Laurita Klimkaitė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Tomas Liveikis
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Brigita Jonaitytė
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Daiva Bironaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Edvardas Bagdonas
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rūta Aldonytė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
9
|
Raptová P, Skočková V, Babica P, Sovadinová I, Sychrová E, Vídeňská P, Šplíchalová P, Vašíček O, Šindlerová L. Cyanobacterial bloom-associated lipopolysaccharides induce pro-inflammatory processes in keratinocytes in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104342. [PMID: 38092246 DOI: 10.1016/j.etap.2023.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Our previous studies have shown that CyanoHAB LPS (lipopolysaccharides) and LPS from cyanobacterial cultures induce pro-inflammatory effects on intestinal epithelial and immune cells in vitro. To expand our understanding, we investigated their impact on human keratinocytes, which are targeted during water recreational activities. LPS samples were isolated from CyanoHAB biomasses dominated by Microcystis, Aphanizomenon, Planktothrix, and Dolichospermum, or from axenic cultures of these genera. We identified two CyanoHAB biomasses containing a high proportion of Gram-negative bacteria, including potentially pathogenic genera. These biomasses showed the highest induction of interleukin (IL) 8, IL-6, C-C motif chemokine ligand (CCL) 2 (also known as MCP-1), and CCL20 production by HaCaT cells. Interestingly, all CyanoHAB-derived LPS and LPS from axenic cultures (except for Microcystis) accelerated cell proliferation and migration. Our findings highlight the role of G- bacteria composition and LPS structural disparities in influencing these effects, with implications for skin health during recreational activities.
Collapse
Affiliation(s)
- P Raptová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno 61200, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - V Skočková
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno 61200, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - P Babica
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the Czech Academy of Sciences, Brno 60200, Czech Republic.
| | - I Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - E Sychrová
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - P Vídeňská
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - P Šplíchalová
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - O Vašíček
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno 61200, Czech Republic.
| | - L Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno 61200, Czech Republic.
| |
Collapse
|
10
|
Khan S, Banerjee G, Setua S, Jones DH, Chauhan BV, Dhasmana A, Banerjee P, Yallapu MM, Behrman S, Chauhan SC. Metagenomic analysis unveils the microbial landscape of pancreatic tumors. Front Microbiol 2023; 14:1275374. [PMID: 38179448 PMCID: PMC10764597 DOI: 10.3389/fmicb.2023.1275374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The composition of resident microbes in the human body is linked to various diseases and their treatment outcomes. Although studies have identified pancreatic ductal adenocarcinoma (PDAC)-associated bacterial communities in the oral and gut samples, herein, we hypothesize that the prevalence of microbiota in pancreatic tumor tissues is different as compared with their matched adjacent, histologically normal appearing tissues, and these microbial molecular signatures can be highly useful for PDAC diagnosis/prognosis. In this study, we performed comparative profiling of bacterial populations in pancreatic tumors and their respective adjacent normal tissues using 16S rRNA-based metagenomics analysis. This study revealed a higher abundance of Proteobacteria and Actinomycetota in tumor tissues compared with adjacent normal tissues. Interestingly, the linear discriminant analysis (LDA) scores unambiguously revealed an enrichment of Delftia in tumor tissues, whereas Sphingomonas, Streptococcus, and Citrobacter exhibited a depletion in tumor tissues. Furthermore, we analyzed the microbial composition between different groups of patients with different tumor differentiation stages. The bacterial genera, Delftia and Staphylococcus, were very high at the G1 stages (well differentiated) compared with G2 (well to moderate/moderately differentiated) and G3/G4 (poorly differentiated) stages. However, the abundance of Actinobacter and Cloacibacterium was found to be very high in G2 and G3, respectively. Additionally, we evaluated the correlation of programmed death-ligand (PDL1) expression with the abundance of bacterial genera in tumor lesions. Our results indicated that three genera such as Streptomyces, Cutibacterium, and Delftia have a positive correlation with PD-L1 expression. Collectively, these findings demonstrate that PDAC lesions harbor relatively different microbiota compared with their normal tumor adjacent tissues, and this information may be helpful for the diagnosis and prognosis of PADC patients.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
| | - Saini Setua
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Blood Oxygen Transport and Hemostasis (CBOTH), Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - Daleniece Higgins Jones
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, United States
- Department of Public Health, University of Tennessee, Knoxville, TN, United States
| | - Bhavin V. Chauhan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, United States
| | - Murali Mohan Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Stephen Behrman
- Department of Surgery, Baptist Memorial Hospital and Medical Education, Memphis, TN, United States
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| |
Collapse
|
11
|
Igo M, Xu L, Krishna A, Stewart S, Xu L, Li Z, Weaver JL, Stone H, Sacks L, Bensman T, Florian J, Rouse R, Han X. A metagenomic analysis for combination therapy of multiple classes of antibiotics on the prevention of the spread of antibiotic-resistant genes. Gut Microbes 2023; 15:2271150. [PMID: 37908118 PMCID: PMC10621307 DOI: 10.1080/19490976.2023.2271150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Antibiotics used systemically to treat infections may have off-target effects on the gut microbiome, potentially resulting in the emergence of drug-resistant bacteria or selection of pathogenic species. These organisms may present a risk to the host and spread to the environment with a risk of transmission in the community. To investigate the risk of emergent antibiotic resistance in the gut microbiome following systemic treatment with antibiotics, this metagenomic analysis project used next-generation sequencing, a custom-built metagenomics pipeline, and differential abundance analysis to study the effect of antibiotics (ampicillin, ciprofloxacin, and fosfomycin) in monotherapy and different combinations at high and low doses, to determine the effect on resistome and taxonomic composition in the gut of Balb/c mice. The results showed that low-dose monotherapy treatments showed little change in microbiome composition but did show an increase in expression of many antibiotic-resistant genes (ARGs) posttreatment. Dual combination treatments allowed the emergence of some conditionally pathogenic bacteria and some increase in the abundance of ARGs despite a general decrease in microbiota diversity. Triple combination treatment was the most successful in inhibiting emergence of relevant opportunistic pathogens and completely suppressed all ARGs after 72 h of treatment. The relative abundances of mobile genetic elements that can enhance transmission of antibiotic resistance either decreased or remained the same for combination therapy while increasing for low-dose monotherapy. Combination therapy prevented the emergence of ARGs and decreased bacterial diversity, while low-dose monotherapy treatment increased ARGs and did not greatly change bacterial diversity.
Collapse
Affiliation(s)
- Matthew Igo
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Xu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ashok Krishna
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sharron Stewart
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lin Xu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Zhihua Li
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - James L. Weaver
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Heather Stone
- Office of Medical Policy, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Leonard Sacks
- Office of Medical Policy, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Timothy Bensman
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jeffry Florian
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Rodney Rouse
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Xiaomei Han
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
12
|
Liu Y, Zhang J, Leng G, Hu J, Wang W, Deng G, Ma Y, Sha S. Mycobacterium tuberculosis Rv1987 protein attenuates inflammatory response and consequently alters microbiota in mouse lung. Front Cell Infect Microbiol 2023; 13:1256866. [PMID: 38029253 PMCID: PMC10646435 DOI: 10.3389/fcimb.2023.1256866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Healthy lung microbiota plays an important role in preventing Mycobacterium tuberculosis (Mtb) infections by activating immune cells and stimulating production of T-helper cell type 1 cytokines. The dynamic stability of lung microbiota relies mostly on lung homeostasis. In our previous studies, we found that Mtb virulence factor, Rv1987 protein, can mediate host immune response and enhance mycobacterial survival in host lung. However, the alteration of lung microbiota and the contribution of lung microbiota dysbiosis to mycobacterial evasion in this process are not clear so far. Methods M. smegmatis which does not contain the ortholog of Rv1987 protein was selected as a model strain to study the effects of Rv1987 on host lung microbiota. The lung microbiota, immune state and metabolites of mice infected by M. smegmatis overexpressing Rv1987 protein (MS1987) were detected and analyzed. Results The results showed that Rv1987 inhibited inflammatory response in mouse lung and anaerobic bacteria and Proteobacteria, Bacteroidota, Actinobacteriota and Acidobacteriota bacteria were enriched in the lung tissues correspondingly. The immune alterations and microbiota dysbiosis affected host metabolic profiles, and some of significantly altered bacteria in MS1987-infected mouse lung, such as Delftia acidovorans, Ralstonia pickettii and Escherichia coli, led to anti-inflammatory responses in mouse lung. The secretory metabolites of these altered bacteria also influenced mycobacterial growth and biofilm formation directly. Conclusion All these results suggested that Rv1987 can attenuate inflammatory response and alter microbiota in the lung, which in turn facilitates mycobacterial survival in the host.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Jiaqi Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Guangxian Leng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Junxing Hu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Wenzhen Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Guoying Deng
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
13
|
Yanagi U, Kaihara N, Simazaki D, Bekki K, Homma Y, Iba C, Asai A, Hayashi M. Bacterial Flora on Mist Outlet Surfaces in 4D Theaters and Suspended Particle Concentration Characteristics during 4D Movie Screenings. Microorganisms 2023; 11:1856. [PMID: 37513027 PMCID: PMC10383669 DOI: 10.3390/microorganisms11071856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, we measured suspended particle concentrations during the screening of 4D movies (3 screens and 15 movies) and 2D movies (9 screens and 9 movies) in 3 movie theaters to obtain a more detailed understanding of the situation of suspended particle concentrations and adherent bacterial flora in 4D movie theaters, which have been introduced in increasing numbers in recent years. The adherent bacterial flora on the floor and mist outlet surfaces in the 4D movie theaters were collected and analyzed. During the movie showings, the concentrations of suspended particles in 4D movie theaters were significantly higher than those in 2D movie theaters (p < 0.001). A significant increase in suspended particle concentrations due to 4D movie effects was also observed. The results of the α-diversity and β-diversity analyses indicate that the bacterial flora on the surfaces of mist outlets in 4D movie theaters are similar. Moreover, there are many closely related species, and the bacterial flora are rich and contain rare bacterial species. Many of the bacterial genera that are dominant in 4D theaters are suited to aqueous environments, and bacteria in the water supply system may have an impact on the indoor environment.
Collapse
Affiliation(s)
- U Yanagi
- School of Architecture, Kogakuin University, Tokyo 163-8677, Japan
| | - Noriko Kaihara
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| | - Dai Simazaki
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| | - Kanae Bekki
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| | - Yoshinori Homma
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| | - Chiemi Iba
- Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Atsuto Asai
- Graduate School of Engineering, Kogakuin University, Tokyo 163-8677, Japan
| | - Motoya Hayashi
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
14
|
Lall S, Bhat V, Biswas S, Joshi A, Janu A. Delftia acidovorans: An Unusual Pathogen from an Adenocarcinoma Lung Patient with Pleural Effusion. J Glob Infect Dis 2023; 15:121-123. [PMID: 37800087 PMCID: PMC10549903 DOI: 10.4103/jgid.jgid_66_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022] Open
Abstract
Delftia acidovorans (D. acidovorans) is an aerobic, nonfermentative Gram-negative bacillus infrequently isolated from clinical specimens. The pathogenicity and clinical significance of the organism has not been ascertained due to uncommon clinical isolation and suspected low virulence. The organism has been reported to be inherently resistant to aminoglycoside group of drugs which remain as a widely used first-line drug of choice for febrile neutropenic patients. Hereby, we report a case of D. acidovorans-associated pleural effusion in a patient of metastatic adenocarcinoma diagnosed and treated timely and successfully with appropriate antibiotics.
Collapse
Affiliation(s)
- Sujata Lall
- Department of Microbiology, Homi Bhabha National Institute, ACTREC-Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Vivek Bhat
- Department of Microbiology, Homi Bhabha National Institute, ACTREC-Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Sanjay Biswas
- Department of Microbiology, Homi Bhabha National Institute, TMH, Mumbai, Maharashtra, India
| | - Amit Joshi
- Medical Oncology, Homi Bhabha National Institute, ACTREC-Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Amit Janu
- Department of Diagnostic and Interventional Radiology, Homi Bhabha National Institute, ACTREC-Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| |
Collapse
|
15
|
Türay S, Cangür Ş, Kahraman G, Kayabaşı E, Çetiner ÖF, Aydın B, Öztürk CE. Can the Gut Microbiota Serve as a Guide to the Diagnosis and Treatment of Childhood Epilepsy? Pediatr Neurol 2023; 145:11-21. [PMID: 37245274 DOI: 10.1016/j.pediatrneurol.2023.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/12/2023] [Accepted: 04/09/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND To investigate the activity of the gut-brain axis in the pathogenesis of childhood epilepsy and to define biomarkers capable of assisting with determining new strategies in that context. METHODS Twenty children with epilepsy of "unknown etiology" and seven healthy controls in the same age group were included in the study. The groups were compared using a questionnaire. Stool samples were stored in tubes containing DNA/RNA Shield (Zymo Research) with a sterile swab. Sequencing was carried out using the MiSeq System (Illumina). The 16S rRNA sequencing of samples using next-generation sequencing involved V4 variable region polymerase chain reaction amplification concluded by 2 × 250-bp paired-end sequencing of amplicons and at least 50,000 reads (>Q30) per sample. DNA sequences were classified at the genus level using the Kraken program. Bioinformatics and statistical analysis were then performed. RESULTS Individuals' gut microbiota relative abundance values differed between the groups at the genus, order, class, family, and phylum levels. Flavihumibacter, Niabella, Anoxybacillus, Brevundimonas, Devosia, and Delftia were seen only in the control group, whereas Megamonas and Coriobacterium were observed only in the epilepsy group. The linear discriminant analysis effect size method identified 33 taxa as important in differentiating the groups. CONCLUSIONS We think that bacterial varieties (such as Megamonas and Coriobacterium) that differ between the two groups can be employed as useful biomarkers in the diagnosis and follow-up of epileptic patients. We also predict that, in addition to epilepsy treatment protocols, the restoration of eubiotic microbiota may increase the success of treatment.
Collapse
Affiliation(s)
- Sevim Türay
- Department of Pediatric Neurology, Duzce University Medical Faculty, Duzce, Turkey; Duzce University Faculty of Medicine, Duzce, Turkey.
| | - Şengül Cangür
- Duzce University Faculty of Medicine, Duzce, Turkey; Department of Biostatistics and Medical Informatics, Duzce University Medical Faculty, Duzce, Turkey
| | - Gözde Kahraman
- Duzce University Faculty of Medicine, Duzce, Turkey; Department of Medical Microbiology, Duzce University Medical Faculty, Duzce, Turkey
| | - Eda Kayabaşı
- Duzce University Faculty of Medicine, Duzce, Turkey; Department of Medical Microbiology, Duzce University Medical Faculty, Duzce, Turkey
| | - Ömer Faruk Çetiner
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Istanbul Tip Capa Campus, Istanbul, Turkey
| | - Burak Aydın
- Traditional and Complementary Medicine Research Department, Istanbul Health Sciences University, Istanbul, Turkey; Istanbul Health Sciences University Haydarpasa Campus, Istanbul, Turkey
| | - Cihadiye Elif Öztürk
- Faculty of Medicine, Department of Medical Microbiology, Istanbul Arel University, Istanbul, Turkey; Istanbul Arel University, Istanbul, Turkey
| |
Collapse
|
16
|
Agarwal N, Jindal A, Bhargava A. Delftia acidovorans : Rarely a Pathogen: A Case Report. Pediatr Infect Dis J 2023; 42:e130-e131. [PMID: 36728681 DOI: 10.1097/inf.0000000000003818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Nikita Agarwal
- All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Atul Jindal
- Department of Paediatrics, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Anudita Bhargava
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
17
|
Reiss Z, Rob F, Kolar M, Schierova D, Kreisinger J, Jackova Z, Roubalova R, Coufal S, Mihula M, Thon T, Bajer L, Novakova M, Vasatko M, Kostovcikova K, Galanova N, Lukas M, Kverka M, Tresnak Hercogova J, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z. Skin microbiota signature distinguishes IBD patients and reflects skin adverse events during anti-TNF therapy. Front Cell Infect Microbiol 2023; 12:1064537. [PMID: 36704107 PMCID: PMC9872723 DOI: 10.3389/fcimb.2022.1064537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are two forms of inflammatory bowel disease (IBD), where the role of gut but not skin dysbiosis is well recognized. Inhibitors of TNF have been successful in IBD treatment, but up to a quarter of patients suffer from unpredictable skin adverse events (SkAE). For this purpose, we analyzed temporal dynamics of skin microbiota and serum markers of inflammation and epithelial barrier integrity during anti-TNF therapy and SkAE manifestation in IBD patients. We observed that the skin microbiota signature of IBD patients differs markedly from healthy subjects. In particular, the skin microbiota of CD patients differs significantly from that of UC patients and healthy subjects, mainly in the retroauricular crease. In addition, we showed that anti-TNF-related SkAE are associated with specific shifts in skin microbiota profile and with a decrease in serum levels of L-FABP and I-FABP in IBD patients. For the first time, we showed that shifts in microbial composition in IBD patients are not limited to the gut and that skin microbiota and serum markers of the epithelium barrier may be suitable markers of SkAE during anti-TNF therapy.
Collapse
Affiliation(s)
- Zuzana Reiss
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Filip Rob
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia
| | - Martin Kolar
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia
| | - Dagmar Schierova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Jackova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radka Roubalova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stepan Coufal
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Mihula
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Thon
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Lukas Bajer
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,Department of Gastroenterology and Hepatology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Michaela Novakova
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia
| | - Martin Vasatko
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia
| | - Klara Kostovcikova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Natalie Galanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Lukas
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia,Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czechia
| | - Miloslav Kverka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Tresnak Hercogova
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia,Prof. Hercogova Dermatology, Prague, Czechia
| | | | - Zuzana Jiraskova Zakostelska
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Zuzana Jiraskova Zakostelska,
| |
Collapse
|
18
|
Whole-Genome Sequencing of a Multidrug-Resistant Strain: Delftia acidovorans B408. Biochem Genet 2022; 61:1086-1096. [DOI: 10.1007/s10528-022-10306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
|
19
|
Yang YCSH, Chou HC, Liu YR, Chen CM. Uteroplacental Insufficiency Causes Microbiota Disruption and Lung Development Impairment in Growth-Restricted Newborn Rats. Nutrients 2022; 14:nu14204388. [PMID: 36297072 PMCID: PMC9608653 DOI: 10.3390/nu14204388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Preclinical studies have demonstrated that intrauterine growth retardation (IUGR) is associated with reduced lung development during the neonatal period and infancy. Uteroplacental insufficiency (UPI), affecting approximately 10% of human pregnancies, is the most common cause of IUGR. This study investigated the effects of UPI on lung development and the intestinal microbiota and correlations in newborn rats with IUGR, using bilateral uterine artery ligation to induce UPI. Maternal fecal samples were collected on postnatal day 0. On postnatal days 0 and 7, lung and intestinal microbiota samples were collected from the left lung and the lower gastrointestinal tract. The right lung was harvested for histological assessment and Western blot analysis. Results showed that UPI through bilateral uterine artery ligation did not alter the maternal gut microbiota. IUGR impaired lung development and angiogenesis in newborn rats. Moreover, on postnatal day 0, the presence of Acinetobacter and Delftia in the lungs and Acinetobacter and Nevskia in the gastrointestinal tract was negatively correlated with lung development. Bacteroides in the lungs and Rodentibacter and Romboutsia in the gastrointestinal tract were negatively correlated with lung development on day 7. UPI may have regulated lung development and angiogenesis through the modulation of the newborn rats’ intestinal and lung microbiota.
Collapse
Affiliation(s)
- Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110301, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Bhat SV, Maughan H, Cameron ADS, Yost CK. Phylogenomic analysis of the genus Delftia reveals distinct major lineages with ecological specializations. Microb Genom 2022; 8:mgen000864. [PMID: 36107145 PMCID: PMC9676026 DOI: 10.1099/mgen.0.000864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/15/2022] [Indexed: 04/01/2024] Open
Abstract
Delftia is a diverse betaproteobacterial genus with many strains having agricultural and industrial relevance, including plant-growth promotion, bioremediation of hydrocarbon-contaminated soils, and heavy metal immobilization. Delftia spp. are broadly distributed in the environment, and have been isolated from plant hosts as well as healthy and diseased animal hosts, yet the genetic basis of this ecological versatility has not been characterized. Here, we present a phylogenomic comparison of published Delftia genomes and show that the genus is divided into two well-supported clades: one 'Delftia acidovorans' clade with isolates from soils and plant rhizospheres, and a second 'Delftia lacustris and Delftia tsuruhatensis' clade with isolates from humans and sludge. The pan-genome inferred from 61 Delftia genomes contained over 28 000 genes, of which only 884 were found in all genomes. Analysis of industrially relevant functions highlighted the ecological versatility of Delftia and supported their role as generalists.
Collapse
Affiliation(s)
- Supriya V. Bhat
- Department of Biology, University of Regina, Regina, SK, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, SK, Canada
| | | | - Andrew D. S. Cameron
- Department of Biology, University of Regina, Regina, SK, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, SK, Canada
| | - Christopher K. Yost
- Department of Biology, University of Regina, Regina, SK, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, SK, Canada
| |
Collapse
|
21
|
Characteristics and Outcomes of Patients with Delftia acidovorans Infections: a Retrospective Cohort Study. Microbiol Spectr 2022; 10:e0032622. [PMID: 35862984 PMCID: PMC9431703 DOI: 10.1128/spectrum.00326-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Delftia acidovorans (D. acidovorans) is a Gram-negative bacteria and an uncommon cause of human infections. This retrospective cohort study investigated clinical and microbiological characteristics and outcomes of patients with D. acidovorans infections. We included patients with culture-confirmed D. acidovorans infections attending Rigshospitalet, during 2002-2020. Fifty-nine patients with a median interquartile ranges (IQR) age of 47 (15-67) years were included. Thirty-five (59%) were males, and 57 (97%) had at least one comorbidity, including 25 (42%) with solid or hematologic malignancies. Eight (14%) were admitted to ICU, and 15 (25%) died within 365 days after infection. Persistent infection was found in 4 (6.8%) patients, and 41 (70%) had polymicrobial cultures, mainly with Pseudomonas spp. and Stenotrophomonas maltophilia. More than 85% of the D. acidovorans isolates were susceptible to meropenem or ceftazidime. Although, 88% and 62% of the isolates were resistant to gentamicin and colistin, respectively. D. acidovorans infections mainly affect patients with preexisting comorbidities, including malignancies. In the first year, all-cause mortality is considerable, polymicrobial cultures are common, and meropenem or cephalosporins with antipseudomonal activity could be the antibiotics of choice. IMPORTANCEDelftia acidovorans (D. acidovorans) is a Gram-negative bacteria that can cause infection in immunocompetent and immunocompromised individuals. The current knowledge comes mainly from case reports and case series. In this retrospective cohort study, we found that D. acidovorans infections mainly affect male patients with preexisting comorbidities, including malignancies. Persistent infections were not common, and most of the patients had polymicrobial cultures, mainly with Pseudomonas spp. and Stenotrophomonas maltophilia. More than 85% of the D. acidovorans isolates were susceptible to meropenem or ceftazidime. In contrast, 88% and 62% of the isolates were resistant to gentamicin and colistin, respectively.
Collapse
|
22
|
Briancesco R, Paduano S, Paradiso R, Coccia AM, La Rosa G, Della Libera S, Semproni M, Bonadonna L. An Italian survey on the microbiological safety of toys containing aqueous media. J Appl Microbiol 2022; 133:1882-1891. [PMID: 35771141 DOI: 10.1111/jam.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022]
Abstract
AIMS The purpose of the present investigation is to fill the current gap in information regarding the microbiological quality of toys containing aqueous media and the related risks for users. METHODS Over eighteen years, a total of 491 sealed toys containing aqueous media were analysed using conventional microbial culture methods. In addition, molecular methods (PCR/nested RT-PCR, followed by Sanger sequencing) were employed to test for enteric viruses (enteroviruses and adenoviruses) in a subset of toys; subsequently, the infectivity of the positive samples was tested on cell cultures. RESULTS Of the examined toys, 23.8% were noncompliant with the limits of the European guideline. The most frequently exceeded limits were those for Aerobic bacteria (84.6%), and Pseudomonas aeruginosa (29.9%). Other opportunistic bacterial species that were frequently detected were Stenotrophomonas maltophilia, Pseudomonas fluorescens, Burkholderia cepacia Sphingomonas paucimobilis and Comamonas acidovorans. In a subset of 28 samples, adenovirus (25%) and enterovirus (11%) genome was also found to be present, although the samples with viral positivity did not show infectivity after inoculation on appropriate cell monolayers. CONCLUSIONS The results indicate a condition of microbial exposure related to the use of toys containing aqueous media. SIGNIFICANCE AND IMPACT OF STUDY The investigation highlights the need for more stringent monitoring during the production, packaging and storage of toys containing aqueous matrices in order to safeguard children's health.
Collapse
Affiliation(s)
- R Briancesco
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - S Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Public Health Section, University of Modena and Reggio Emilia, Modena, Italy
| | - R Paradiso
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A M Coccia
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - S Della Libera
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Semproni
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Genomic Analysis of Carbapenem-Resistant Comamonas in Water Matrices: Implications for Public Health and Wastewater Treatments. Appl Environ Microbiol 2022; 88:e0064622. [PMID: 35708324 DOI: 10.1128/aem.00646-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Comamonas spp. are Gram-negative bacteria that catabolize a wide range of organic and inorganic substrates. Comamonas spp. are abundant in aquatic and soil environments, including wastewater, and can cause opportunistic infections in humans. Because of their potential in wastewater bioaugmentation and bioremediation strategies, the identification of Comamonas species harboring genes encoding carbapenemases and other clinically important antibiotic resistance genes warrant further investigation. Here, we present an analysis of 39 whole-genome sequences comprising three Comamonas species from aquatic environments in South Australia that were recovered on media supplemented with carbapenems. The analysis includes a detailed description of 33 Comamonas denitrificans isolates, some of which carried chromosomally acquired blaGES-5, blaOXA, and aminoglycoside resistance (aadA) genes located on putative genomic islands (GIs). All blaGES-5- and blaOXA-containing GIs appear to be unique to this Australian collection of C. denitrificans. Notably, most open reading frames (ORFs) within the GIs, including all antimicrobial resistance (AMR) genes, had adjacent attC sites, indicating that these ORFs are mobile gene cassettes. One C. denitrificans isolate carried an IncP-1 plasmid with genes involved in xenobiotic degradation and response to oxidative stress. Our assessment of the sequences highlights the very distant nature of C. denitrificans to the other Comamonas species and its apparent disposition to acquire antimicrobial resistance genes on putative genomic islands. IMPORTANCE Antimicrobial resistance (AMR) poses a global public health threat, and the increase in resistance to "last-resort drugs," such as carbapenems, is alarming. Wastewater has been flagged as a hot spot for AMR evolution. Comamonas spp. are among the most common bacteria in wastewater and play a role in its bioaugmentation. While the ability of Comamonas species to catabolize a wide range of organic and inorganic substrates is well documented, some species are also opportunistic pathogens. However, data regarding AMR in Comamonas spp. are limited. Here, through the genomic analyses of 39 carbapenem-resistant Comamonas isolates, we make several key observations, including the identification of a subset of C. denitrificans isolates that harbored genomic islands encoding carbapenemase blaGES-5 or extended-spectrum β-lactamase blaOXA alleles. Given the importance of Comamonas species in potential wastewater bioaugmentation and bioremediation strategies, as well as their status as emerging pathogens, the acquisition of critically important antibiotic resistance genes on genomic islands warrants future monitoring.
Collapse
|
24
|
Farhat N, Kim L, Mineta K, Alarawi M, Gojobori T, Saikaly P, Vrouwenvelder J. Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine. WATER RESEARCH 2022; 210:117975. [PMID: 34952456 DOI: 10.1016/j.watres.2021.117975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Monitoring the changes that occur to water during distribution is vital to ensure water safety. In this study, the biological stability of reverse osmosis (RO) produced drinking water, characterized by low cell concentration and low assimilable organic carbon, in combination with chlorine disinfection was investigated. Water quality at several locations throughout the existing distribution network was monitored to investigate whether microbial water quality changes can be identified. Results revealed that the water leaving the plant had an average bacterial cell concentration of 103 cells/mL. A 0.5-1.5 log increase in bacterial cell concentration was observed at locations in the network. The residual disinfectant was largely dissipated in the network from 0.5 mg/L at the treatment plant to less than 0.1 mg/L in the network locations. The simulative study involving miniature distribution networks, mimicking the dynamics of a distribution network, fed with the RO produced chlorinated and non-chlorinated drinking water revealed that distributing RO produced water without residual disinfection, especially at high water temperatures (25-30 °C), poses a higher chance for water quality change. Within six months of operation of the miniature network fed with unchlorinated RO produced water, the adenosine triphosphate (ATP) and total cell concentration (TCC) in the pipe biofilm were 4 × 102 pg ATP/cm2 and 1 × 107 cells/ cm2. The low bacterial cell concentration and organic carbon concentration in the RO-produced water did not prevent biofilm development inside the network with and without residual chlorine. The bacterial community analysis using 16S ribosomal RNA (rRNA) gene sequencing revealed that mesophilic bacteria with higher temperature tolerance and bacteria associated with oligotrophic, nutrient-poor conditions dominated the biofilm, with no indication of the existence of opportunistic pathogenic species. However, chlorination selected against most bacterial groups and the bacterial community that remained was mainly the bacteria capable of surviving disinfection regimes. Biofilms that developed in the presence of chlorine contained species classified as opportunistic pathogens. These biofilms have an impact on shaping the water quality received at the consumer tap. The presence of these bacteria on its own is not a health risk indicator; viability assessment and qPCRs targeting genes specific to the opportunistic pathogens as well as quantitative microbiological risk assessment (QMRA) should be included to assess the risk. The results from this study highlight the importance of implementing multiple barriers to ensure water safety. Changes in water quality detected even when high-quality disinfected RO-produced water is distributed highlight microbiological challenges that chlorinated systems endure, especially at high water temperatures.
Collapse
Affiliation(s)
- Nadia Farhat
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Lanhee Kim
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Katsuhiko Mineta
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohammed Alarawi
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pascal Saikaly
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Johannes Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, Netherlands
| |
Collapse
|
25
|
MiDSystem: A comprehensive online system for de novo assembly and analysis of microbial genomes. N Biotechnol 2021; 65:42-52. [PMID: 34411700 DOI: 10.1016/j.nbt.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
The substantial reduction in experimental cost of next-generation sequencing techniques makes it feasible to assemble a bacterial genome of unknown species de novo and acquire substantial genetic information from environmental samples. Many bioinformatics tools and algorithms have also been developed for prokaryotes, but complex parameter settings and command line-based user interfaces cause a significant entry barrier for novices. Efficient construction of pipelines that integrate all the available genomic data poses a major challenge to the understanding of unknown pathogens. MiDSystem is a comprehensive online system for analyzing genomic data from microbiomes. With a user-friendly interface, MiDSystem supports both de novo assembly and metagenomic analysis pipelines. It is designed to automatically analyze whole genome shotgun sequencing data of bacteria submitted by users. Multiple analytical steps can be performed directly on the system, and the results generated from the embedded tools are visualized in an online summary report to make it more interpretable. Constructing a genome de novo has gradually become the foundation of bacterial studies. Taking both single species and metagenomic samples into consideration, MiDSystem can greatly reduce the time and effort for analysis of bacterial genomic data. Use of MiDSystem will enable more focus to be placed on understanding the etiology of bacterial infections and microorganism ecologies.
Collapse
|
26
|
Diversity of Multidrug-Resistant Bacteria in an Urbanized River: A Case Study of the Potential Risks from Combined Sewage Overflows. WATER 2021. [DOI: 10.3390/w13152122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wastewater contamination and urbanization contribute to the spread of antibiotic resistance in aquatic environments. This is a particular concern in areas receiving chronic pollution of untreated waste via combined sewer overflow (CSO) events. The goal of this study was to expand knowledge of CSO impacts, with a specific focus on multidrug resistance. We sampled a CSO-impacted segment of the James River (Virginia, USA) during both clear weather and an active overflow event and compared it to an unimpacted upstream site. Bacteria resistant to ampicillin, streptomycin, and tetracycline were isolated from all samples. Ampicillin resistance was particularly abundant, especially during the CSO event, so these isolates were studied further using disk susceptibility tests to assess multidrug resistance. During a CSO overflow event, 82% of these isolates were resistant to five or more antibiotics, and 44% were resistant to seven or more. The latter statistic contrasts starkly with the upstream reference site, where only 4% of isolates displayed resistance to more than seven antibiotics. DNA sequencing (16S rRNA gene) revealed that ~35% of our isolates were opportunistic pathogens, comprised primarily of the genera Stenotrophomonas, Pseudomonas, and Chryseobacterium. Together, these results demonstrate that CSOs can be a significant source of viable clinically-relevant bacteria to the natural environment and that multidrug resistance is an important understudied component of the environmental spread of antibiotic resistance.
Collapse
|
27
|
Delftia acidovorans secretes substances that inhibit the growth of Staphylococcus epidermidis through TCA cycle-triggered ROS production. PLoS One 2021; 16:e0253618. [PMID: 34214099 PMCID: PMC8253425 DOI: 10.1371/journal.pone.0253618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
The proportion of Staphylococcus aureus in the skin microbiome is associated with the severity of inflammation in the skin disease atopic dermatitis. Staphylococcus epidermidis, a commensal skin bacterium, inhibits the growth of S. aureus in the skin. Therefore, the balance between S. epidermidis and S. aureus in the skin microbiome is important for maintaining healthy skin. In the present study, we demonstrated that the heat-treated culture supernatant of Delftia acidovorans, a member of the skin microbiome, inhibits the growth of S. epidermidis, but not that of S. aureus. Comprehensive gene expression analysis by RNA sequencing revealed that culture supernatant of D. acidovorans increased the expression of genes related to glycolysis and the tricarboxylic acid cycle (TCA) cycle in S. epidermidis. Malonate, an inhibitor of succinate dehydrogenase in the TCA cycle, suppressed the inhibitory effect of the heat-treated culture supernatant of D. acidovorans on the growth of S. epidermidis. Reactive oxygen species production in S. epidermidis was induced by the heat-treated culture supernatant of D. acidovorans and suppressed by malonate. Further, the inhibitory effect of the heat-treated culture supernatant of D. acidovorans on the growth of S. epidermidis was suppressed by N-acetyl-L-cysteine, a free radical scavenger. These findings suggest that heat-resistant substances secreted by D. acidovorans inhibit the growth of S. epidermidis by inducing the production of reactive oxygen species via the TCA cycle.
Collapse
|
28
|
Rodríguez-Gómez C, Durán-Riveroll LM, Okolodkov YB, Oliart-Ros RM, García-Casillas AM, Cembella AD. Diversity of Bacterioplankton and Bacteriobenthos from the Veracruz Reef System, Southwestern Gulf of Mexico. Microorganisms 2021; 9:619. [PMID: 33802890 PMCID: PMC8002828 DOI: 10.3390/microorganisms9030619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial diversity was explored among field samples and cultured isolates from coral reefs within the Veracruz Reef System. Bacterioplankton and bacteriobenthos were characterized by pyrosequencing 16S rRNA genes. Identified sequences belonged to the kingdom Bacteria and classified into 33 phyla. Proteobacteria (likely SAR11 clade) dominated in collective field samples, whereas Firmicutes were the most abundant taxa among cultured isolates. Bioinformatic sorting of sequences to family level revealed 223 bacterial families. Pseudomonadaceae, Exiguobacteraceae and Bacillaceae were dominant among cultured isolates. Vibrionaceae, Alteromonadaceae, and Flavobacteriaceae dominated in reef-associated sediments, whereas Rickettsiaceae and Synechoccaceae were more highly represented in the water column. Bacterial communities from sediments were more diverse than from the water column. This study reveals cryptic bacterial diversity among microenvironmental components of marine microbial reef communities subject to differential influence of anthropogenic stressors. Such investigations are critical for constructing scenarios of environmentally induced shifts in bacterial biodiversity and species composition.
Collapse
Affiliation(s)
- Citlali Rodríguez-Gómez
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Veracruz 91897, Mexico; (C.R.-G.); (R.M.O.-R.)
| | - Lorena María Durán-Riveroll
- CONACYT—Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Tijuana-Ensenada 3918, Ensenada 22860, Baja California, Mexico
- Alfred-Wegener-Institut, Helmholtz Zentrum für Polar-und Meeresforschung, 27570 Bremerhaven, Germany
| | - Yuri B. Okolodkov
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Mar Mediterráneo 314, Fracc. Costa Verde, Boca del Río 94294, Veracruz, Mexico;
| | - Rosa María Oliart-Ros
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Veracruz 91897, Mexico; (C.R.-G.); (R.M.O.-R.)
| | | | - Allan D. Cembella
- Alfred-Wegener-Institut, Helmholtz Zentrum für Polar-und Meeresforschung, 27570 Bremerhaven, Germany
| |
Collapse
|
29
|
Ho L, Jalbert I, Watt K, Hui A. Current understanding and therapeutic management of contact lens associated sterile corneal infiltrates and microbial keratitis. Clin Exp Optom 2021; 104:323-333. [PMID: 33689618 DOI: 10.1080/08164622.2021.1877530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Contact lenses are widely prescribed in clinical practice with multiple applications and advantages. However, contact lenses can be associated with various complications which range from innocuous to severe. Clinicians thus not only need to possess the ability to prescribe the most appropriate contact lenses for each individual patient but also be able to recognise and manage any associated complications. This review examines the existing literature on the management of corneal infiltrative events associated with soft contact lenses, including microbial keratitis, particularly in the context of practising in Australia. The definitions and diagnosis of corneal infiltrative events, as well as the current understanding of their aetiologies, will be explored. The various aspects of a successful management will be discussed, including the applications of therapeutic agents such as antimicrobial and anti-inflammatory agents, the role of microbiological investigations, and strategies to improve long-term prognosis. The currently available evidence supporting management options will be presented, highlighting the relative abundance of high-level evidence on management protocols, antimicrobial selection and treatment duration for microbial keratitis; and the relative paucity of studies and trials for sterile corneal infiltrative events, despite this condition being much more commonly encountered in clinical practice.
Collapse
Affiliation(s)
- Lily Ho
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| | - Isabelle Jalbert
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| | - Kathleen Watt
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| | - Alex Hui
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Madoroba E, Magwedere K, Chaora NS, Matle I, Muchadeyi F, Mathole MA, Pierneef R. Microbial Communities of Meat and Meat Products: An Exploratory Analysis of the Product Quality and Safety at Selected Enterprises in South Africa. Microorganisms 2021; 9:507. [PMID: 33673660 PMCID: PMC7997435 DOI: 10.3390/microorganisms9030507] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Consumption of food that is contaminated by microorganisms, chemicals, and toxins may lead to significant morbidity and mortality, which has negative socioeconomic and public health implications. Monitoring and surveillance of microbial diversity along the food value chain is a key component for hazard identification and evaluation of potential pathogen risks from farm to the consumer. The aim of this study was to determine the microbial diversity in meat and meat products from different enterprises and meat types in South Africa. Samples (n = 2017) were analyzed for Yersinia enterocolitica, Salmonella species, Listeria monocytogenes, Campylobacter jejuni, Campylobacter coli, Staphylococcus aureus, Clostridium perfringens, Bacillus cereus, and Clostridium botulinum using culture-based methods. PCR was used for confirmation of selected pathogens. Of the 2017 samples analyzed, microbial ecology was assessed for selected subsamples where next generation sequencing had been conducted, followed by the application of computational methods to reconstruct individual genomes from the respective sample (metagenomics). With the exception of Clostridium botulinum, selective culture-dependent methods revealed that samples were contaminated with at least one of the tested foodborne pathogens. The data from metagenomics analysis revealed the presence of diverse bacteria, viruses, and fungi. The analyses provide evidence of diverse and highly variable microbial communities in products of animal origin, which is important for food safety, food labeling, biosecurity, and shelf life limiting spoilage by microorganisms.
Collapse
Affiliation(s)
- Evelyn Madoroba
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Nyaradzo Stella Chaora
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa;
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (F.M.); (R.P.)
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; (I.M.); (M.A.M.)
| | - Farai Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (F.M.); (R.P.)
| | - Masenyabu Aletta Mathole
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; (I.M.); (M.A.M.)
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (F.M.); (R.P.)
| |
Collapse
|
31
|
Potgieter N, Banda NT, Becker PJ, Traore-Hoffman AN. WASH infrastructure and practices in primary health care clinics in the rural Vhembe District municipality in South Africa. BMC FAMILY PRACTICE 2021; 22:8. [PMID: 33397298 PMCID: PMC7780685 DOI: 10.1186/s12875-020-01346-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND South Africa has unique and diverse social and economic factors that have an impact on the provision of basic water, sanitation, hygiene and waste management infrastructure and practices at health care facilities in ensuring patient safety and prevent the spread of diseases. METHODS The aim of this study was to evaluate water, sanitation and hygiene access and standards at 50 government owned public health care clinics in the rural region of the Vhembe district of South Africa during 2016/2017, using self-observation, an observation checklist, record reviews and interviews with clinic managers. Water quality from all available water sources on the clinic compound was analysed for Total coliform and E. coli counts using the Colilert Quanti-tray/2000 system. The prevalence of pathogenic diarrhea causing E. coli strains was established using multiplex-Polymerase Chain Reaction. RESULTS The health care clinics in the Vhembe District generally complied with the basic WASH services guidelines according to the World Health Organisation. Although 80% of the clinics used borehole water which is classified as an improved water source, microbiological assessment showed that 38% inside taps and 64% outside taps from the clinic compounds had TC counts higher than guideline limits for safe drinking. Similarly, EC counts above the guideline limit for safe drinking water were detected in 17% inside taps and 32% outside taps from the clinic compounds. Pathogenic EAEC, EPEC, ETEC and EHEC strains were isolated in the collected water samples. Although improved sanitation infrastructures were present in most of the clinics, the sanitary conditions of these toilets were not up to standard. Waste systems were not adequately managed. A total of 90% of the clinics had hand washing basins, while only 61% of the clinics had soap present and only 64% of the clinics had adequate signs and posters reminding the staff, care givers and patients to wash their hands. CONCLUSIONS Various WASH aspects within the primary health care system in South Africa needs to be improved and corrected. A more rigorous system that is inclusive of all role players in the WASH sectors, with regular monitoring and training sessions, should be used.
Collapse
Affiliation(s)
- N Potgieter
- Department of Microbiology, University of Venda, Thohoyandou, South Africa.
| | - N T Banda
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - P J Becker
- Research Office, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - A N Traore-Hoffman
- Department of Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
32
|
Rios Miguel AB, Jetten MS, Welte CU. The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. WATER RESEARCH X 2020; 9:100065. [PMID: 32984801 PMCID: PMC7494797 DOI: 10.1016/j.wroa.2020.100065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 05/24/2023]
Abstract
Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment. Microbial degradation plays a pivotal role in OMP conversion. Microorganisms can adapt their metabolism to the use of novel molecules via mutations and rearrangements of existing genes in new clusters. Many catabolic genes have been found adjacent to mobile genetic elements (MGEs), which provide a stable scaffold to host new catabolic pathways and spread these genes in the microbial community. These mobile systems could be engineered to enhance OMP degradation in WWTPs, and this review aims to summarize and better understand the role that MGEs might play in the degradation and wastewater treatment process. Available data about the presence of catabolic MGEs in WWTPs are reviewed, and current methods used to identify and measure MGEs in environmental samples are critically evaluated. Finally, examples of how these MGEs could be used to improve micropollutant degradation in WWTPs are outlined. In the near future, advances in the use of MGEs will hopefully enable us to apply selective augmentation strategies to improve OMP conversion in WWTPs.
Collapse
Affiliation(s)
- Ana B. Rios Miguel
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| |
Collapse
|
33
|
Deb AK, Chavhan P, Chowdhury SS, Sistla S, Sugumaran R, Panicker G. Endophthalmitis due to Delftia acidovorans: An unusual ocular pathogen. Indian J Ophthalmol 2020; 68:2591-2594. [PMID: 33120704 PMCID: PMC7774132 DOI: 10.4103/ijo.ijo_373_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Endophthalmitis is a dreaded postoperative complication of cataract surgery. Delftia acidovorans is usually nonpathogenic and an unusual ocular pathogen. Isolated reports of delftia-associated sepsis, otitis media, endocarditis, keratitis, etc. exist in literature. We report a rare and unique case of delftia-related endophthalmitis in a 67-year-old male diagnosed 2 weeks after uneventful cataract surgery. He was treated successfully with core vitrectomy and intravitreal antibiotics. Microbiological evaluation of vitreous sample identified the causative organism as Delftia acidovorans. Post-vitrectomy fundus evaluation at 1 week revealed the presence of retinal vascular sheathing and sclerosis along with few retinal hemorrhages. Final visual recovery was poor due to the presence of macular edema, epiretinal membrane, and temporal disc pallor.
Collapse
Affiliation(s)
- Amit K Deb
- Department of Ophthalmology, JIPMER Hospital, Puducherry, India
| | - Pratima Chavhan
- Department of Ophthalmology, JIPMER Hospital, Puducherry, India
| | | | - Sujatha Sistla
- Department of Microbiology, JIPMER Hospital, Puducherry, India
| | - Radha Sugumaran
- Department of Microbiology, JIPMER Hospital, Puducherry, India
| | | |
Collapse
|
34
|
Torii Y, Horiba K, Hayano S, Kato T, Suzuki T, Kawada JI, Takahashi Y, Kojima S, Okuno Y, Ogi T, Ito Y. Comprehensive pathogen detection in sera of Kawasaki disease patients by high-throughput sequencing: a retrospective exploratory study. BMC Pediatr 2020; 20:482. [PMID: 33059644 PMCID: PMC7557310 DOI: 10.1186/s12887-020-02380-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Kawasaki disease (KD) is an idiopathic systemic vasculitis that predominantly damages coronary arteries in children. Various pathogens have been investigated as triggers for KD, but no definitive causative pathogen has been determined. As KD is diagnosed by symptoms, several days are needed for diagnosis. Therefore, at the time of diagnosis of KD, the pathogen of the trigger may already be diminished. The aim of this study was to explore comprehensive pathogens in the sera at the acute stage of KD using high-throughput sequencing (HTS). Methods Sera of 12 patients at an extremely early stage of KD and 12 controls were investigated. DNA and RNA sequences were read separately using HTS. Sequence data were imported into the home-brew meta-genomic analysis pipeline, PATHDET, to identify the pathogen sequences. Results No RNA virus reads were detected in any KD case except for that of equine infectious anemia, which is known as a contaminant of commercial reverse transcriptase. Concerning DNA viruses, human herpesvirus 6B (HHV-6B, two cases) and Anelloviridae (eight cases) were detected among KD cases as well as controls. Multiple bacterial reads were obtained from KD and controls. Bacteria of the genera Acinetobacter, Pseudomonas, Delfita, Roseomonas, and Rhodocyclaceae appeared to be more common in KD sera than in the controls. Conclusion No single pathogen was identified in serum samples of patients at the acute phase of KD. With multiple bacteria detected in the serum samples, it is difficult to exclude the possibility of contamination; however, it is possible that these bacteria might stimulate the immune system and induce KD.
Collapse
Affiliation(s)
- Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhiro Horiba
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Genetics, Research Institute of Environmental Medicine Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Hayano
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Taichi Kato
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
35
|
Smits WJ, Feucht HH, Oellig F, Zöllner B. Orbita-Infektion mit Delftia acidovorans nach Katzenkratzer. Dtsch Med Wochenschr 2020; 145:1559-1561. [DOI: 10.1055/a-1173-4598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungAnamnese und klinischer Befund Die 60-jährige Patientin wurde vor 34 Monaten von ihrer Katze am linken Augenlid gekratzt. Danach kam es zu chronischen, langsam progredienten Hautveränderungen mit sich verstärkenden Kopfschmerzen. Therapieversuche mit Kortison, Pimecrolimus, Pregabalin und Metamizol waren erfolglos. Nach 24 Monaten klagte sie über starken Bulbus-Schmerz am linken Auge, zunehmende Schmerzen bei Augenbewegungen und große Lichtempfindlichkeit. Es zeigten sich granulomatöse Papeln im Bereich des Auges.Untersuchungen und Diagnose Die interdisziplinären Untersuchungsbefunde und klinisch-chemischen Parameter waren unauffällig. Eine Biopsie aus dem Lidbereich erbrachte den Nachweis von Delftia acidovorans mittels bakterieller 16S-rRNA-PCR.Therapie und Verlauf Unter der Therapie mit Piperacillin/Tazobactam 3-mal 4,5 g/d i. v. für 10 Tage kam es zu einer raschen klinischen Besserung, sodass die Patientin nach 11 Tagen entlassen werden konnte. Nach weiteren 10 Monaten war sie rezidiv- und beschwerdefrei.Folgerung D. acidovorans ist bislang nicht als zoonotischer Erreger in Erscheinung getreten, sollte aber bei Verletzungen durch Tiere in die differenzialdiagnostischen Erwägungen einbezogen werden.
Collapse
|
36
|
Ta C, Wong G, Cole W, Medvedev G. Scrub sink contamination and transmission to operating room personnel. New Microbes New Infect 2020; 37:100754. [PMID: 32995014 PMCID: PMC7502367 DOI: 10.1016/j.nmni.2020.100754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 01/16/2023] Open
Abstract
Multiple studies have established the contamination of hospital sinks and transmission to hospital personnel. Few studies have assessed the contamination and transmission of microorganisms from the faucets of operating bay scrub sinks to operating room (OR) personnel, a potential route of infection for patients. This study aimed to investigate if there was pathogenic contamination of scrub sinks and possible transmission of those pathogens to the hands of OR personnel after preoperative hand disinfection. Swabs were taken from the hands of 50 OR personnel and from the faucets of 24 scrubs sinks at two different hospital sites, and were cultured. Hands were swabbed after completing a surgical hand scrub. Results were reported in colony-forming units per millilitre. There was significant scrub sink contamination with primarily Gram-negative organisms, such as Delftia acidovorans and Sphingomonas paucimobilis. There was no overlap in bacterial species between the cultures from hands and scrub sinks. Cultures from the sinks and the hands of the OR personnel from one site had significantly higher bacterial growth compared with the other site (p < 0.0001 and p < 0.0118, respectively). The data showed significant contamination on the faucets of operating bay scrub sinks. However, there was no observed transmission of pathogens from the scrub sinks to OR personnel, shown by the lack of overlap in bacterial species. Routine hygienic maintenance of scrub sinks is recommended.
Collapse
Affiliation(s)
- C Ta
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - G Wong
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - W Cole
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - G Medvedev
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
37
|
A New Type of Chronic Wound Infection after Wisdom Tooth Extraction: A Diagnostic Approach with 16S-rRNA Gene Analysis, Next-Generation Sequencing, and Bioinformatics. Pathogens 2020; 9:pathogens9100798. [PMID: 32998201 PMCID: PMC7601215 DOI: 10.3390/pathogens9100798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 11/29/2022] Open
Abstract
Delayed-onset infections are rare postoperative complications of lower third molar extractions. This article presents a case of a chronic combined hard and soft tissue infection after the extraction of a third molar, where the causative organisms could only be elucidated by molecular methods. Experimental 16S-rRNA gene analysis with next-generation sequencing and bioinformatics was used to identify the bacterial spectrum of the infection. 16S-rRNA gene analysis delivered the microbiome of the abscessing inflammation while standard culture and laboratory examinations were all sterile. The microbiome showed a mixed bacterial infection with a dominance of Delftia and Alcanivorax (spp.) besides other bacteria of the normal oral flora. Using 16S-rRNA-gene analysis, next-generation sequencing, and bioinformatics, a new type of chronic wound infection after wisdom tooth extraction was found. The property of Delftia and Alcanivorax (spp.) as water-affine environmental bacteria raises suspicion of infection from contaminated water from a dental unit. Thus, osteotomies of teeth should only be done with sterile cooling water. The 16S-rRNA gene analysis should become a part of the routine diagnostics in medical microbiology.
Collapse
|
38
|
Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020; 33:33/4/e00053-19. [PMID: 32907806 DOI: 10.1128/cmr.00053-19] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.
Collapse
|
39
|
Influence of Intratumor Microbiome on Clinical Outcome and Immune Processes in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12092524. [PMID: 32899474 PMCID: PMC7564876 DOI: 10.3390/cancers12092524] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary While the intratumor microbiome has been largely unexplored in relation to prostate cancer development, our research shows that microbes may play an anti-tumor or pro-tumor role to significantly alter clinical course in prostate cancer patients. We found that the presence and absence of specific microbes are strongly correlated with known biomarkers of prostate cancer, including increased androgen receptor expression, prostate-specific antigen level, immune-associated gene dysregulation, stem-cell related gene overexpression, cancer pathways, and known chromosomal alterations. Our results provide important insight on potential mechanisms by which intratumor microbes may greatly contribute to prostate cancer progression and prognosis. We hope our results can be validated in future studies, and the key microbes that we identified can be used as effective targets for more specialized prebiotic and probiotic treatments for prostate cancer. Abstract Although 1 in 9 American men will receive a diagnosis of prostate cancer (PC), most men with this diagnosis will not die from it, as most PCs are indolent. However, there is a subset of patients in which the once-indolent PC becomes metastatic and eventually, fatal. In this study, we analyzed microbial compositions of intratumor bacteria in PC to determine the influence of the microbiome on metastatic growth. Using large-scale RNA-sequencing data and corresponding clinical data, we correlated the abundance of microbes to immune pathways and PC risk factors, identifying specific microbes that either significantly deter or contribute to cancer aggressiveness. Interestingly, most of the microbes we found appeared to play anti-tumor roles in PC. Since these anti-tumor microbes were overrepresented in tumor samples, we believe that microbes thrive in the tumor microenvironment, outcompete cancer cells, and directly mitigate tumor growth by recruiting immune cells. These include Listeria monocytogenes, Methylobacterium radiotolerans JCM 2831, Xanthomonas albilineans GPE PC73, and Bradyrhizobium japonicum, which are negatively correlated with Gleason score, Tumor-Node-Metastasis (TNM) stage, prostate-specific antigen (PSA) level, and Androgen Receptor (AR) expression, respectively. We also identified microbes that contribute to tumor growth and are positively correlated with genomic alterations, dysregulated immune-associated (IA) genes, and prostate cancer stem cells (PCSC) genes.
Collapse
|
40
|
Antonov IV. Two Cobalt Chelatase Subunits Can Be Generated from a Single chlD Gene via Programed Frameshifting. Mol Biol Evol 2020; 37:2268-2278. [PMID: 32211852 DOI: 10.1093/molbev/msaa081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnesium chelatase chlIDH and cobalt chelatase cobNST enzymes are required for biosynthesis of (bacterio)chlorophyll and cobalamin (vitamin B12), respectively. Each enzyme consists of large, medium, and small subunits. Structural and primary sequence similarities indicate common evolutionary origin of the corresponding subunits. It has been reported earlier that some of vitamin B12 synthesizing organisms utilized unusual cobalt chelatase enzyme consisting of a large cobalt chelatase subunit (cobN) along with a medium (chlD) and a small (chlI) subunits of magnesium chelatase. In attempt to understand the nature of this phenomenon, we analyzed >1,200 diverse genomes of cobalamin and/or chlorophyll producing prokaryotes. We found that, surprisingly, genomes of many cobalamin producers contained cobN and chlD genes only; a small subunit gene was absent. Further on, we have discovered a diverse group of chlD genes with functional programed ribosomal frameshifting signals. Given a high similarity between the small subunit and the N-terminal part of the medium subunit, we proposed that programed translational frameshifting may allow chlD mRNA to produce both subunits. Indeed, in genomes where genes for small subunits were absent, we observed statistically significant enrichment of programed frameshifting signals in chlD genes. Interestingly, the details of the frameshifting mechanisms producing small and medium subunits from a single chlD gene could be prokaryotic taxa specific. All over, this programed frameshifting phenomenon was observed to be highly conserved and present in both bacteria and archaea.
Collapse
Affiliation(s)
- Ivan V Antonov
- Institute of Bioengineering, Federal Research Centre Fundamentals of Biotechnology, Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
41
|
Jaing C, Thissen J, Morrison M, Dillon MB, Waters SM, Graham GT, Be NA, Nicoll P, Verma S, Caro T, Smith DJ. Sierra Nevada sweep: metagenomic measurements of bioaerosols vertically distributed across the troposphere. Sci Rep 2020; 10:12399. [PMID: 32709938 PMCID: PMC7382458 DOI: 10.1038/s41598-020-69188-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
To explore how airborne microbial patterns change with height above the Earth’s surface, we flew NASA’s C-20A aircraft on two consecutive days in June 2018 along identical flight paths over the US Sierra Nevada mountain range at four different altitudes ranging from 10,000 ft to 40,000 ft. Bioaerosols were analyzed by metagenomic DNA sequencing and traditional culturing methods to characterize the composition and diversity of atmospheric samples compared to experimental controls. The relative abundance of taxa changed significantly at each altitude sampled, and the diversity profile shifted across the two sampling days, revealing a regional atmospheric microbiome that is dynamically changing. The most proportionally abundant microbial genera were Mycobacterium and Achromobacter at 10,000 ft; Stenotrophomonas and Achromobacter at 20,000 ft; Delftia and Pseudoperonospora at 30,000 ft; and Alcaligenes and Penicillium at 40,000 ft. Culture-based detections also identified viable Bacillus zhangzhouensis, Bacillus pumilus, and Bacillus spp. in the upper troposphere. To estimate bioaerosol dispersal, we developed a human exposure likelihood model (7-day forecast) using general aerosol characteristics and measured meteorological conditions. By coupling metagenomics to a predictive atmospheric model, we aim to set the stage for field campaigns that monitor global bioaerosol emissions and impacts.
Collapse
Affiliation(s)
- Crystal Jaing
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - James Thissen
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Michael Morrison
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Michael B Dillon
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Samantha M Waters
- Universities Space Research Association, Maryland, USA.,NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, USA
| | | | - Nicholas A Be
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Sonali Verma
- Blue Marble Space Institute of Science, Space Bioscences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Tristan Caro
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
| | - David J Smith
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, USA
| |
Collapse
|
42
|
Wu M, Gao J, Wu Y, Li Y, Chen Y, Zhao F, Li C, Ying C. Characterization of vaginal microbiota in Chinese women with cervical squamous intra-epithelial neoplasia. Int J Gynecol Cancer 2020; 30:1500-1504. [PMID: 32499394 DOI: 10.1136/ijgc-2020-001341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Although persistent human papillomavirus (HPV) infection is a major cause of cervical squamous intra-epithelial neoplasia, the relationship between vaginal microbiota and different grades of squamous intra-epithelial neoplasia is not well established. We explored the possible relationship between the vaginal microbiota and the progression of cervical squamous intra-epithelial neoplasia. METHODS We evaluated 69 women who attended the Obstetrics and Gynecology Hospital of Fudan University. The vaginal bacterial composition of three groups of women was characterized by deep sequencing of bar-coded 16S rRNA gene fragments (V3-4) using Illumina MiSeq. Exclusion criteria were any previous hysterectomy, history of cervical or other lower genital cancer, and/or destructive therapy of the cervix. Women who had autoimmune disorders, who were HIV positive, who received antibiotics within 15 days of sampling, or who had engaged in sexual intercourse or douching within 48 hours prior to sampling were also excluded. P values for age and proportions of organisms were calculated using one-way ANOVA and p values for HPV status and community state types (CSTs) were calculated using a χ2 test. RESULTS The vaginal bacterial composition of three groups of women, those without an intra-epithelial lesion or malignancy (n=31), those with a low-grade squamous intra-epithelial lesion (LSIL) (n=22), and those with a high-grade squamous intra-epithelial lesion (HSIL) (n=16) were analyzed. Lactobacillus was the most dominant genus overall. Prevotella and Streptococcus were increased in the HSIL group. Cervical disease progression was associated with the prevalence of high-risk HPV infection. Squamous intra-epithelial neoplasia converted the vaginal bacterial community structure from CSTs IV to II. Microbiota diversity was more pronounced in CST types II and IV (p<0.001), especially in type II. We found a significant enrichment in the Peptostreptococcaceae family, Pseudomonadales order, and other types of bacteria in the group of women without intra-epithelial lesions or malignancy compared with women with squamous intra-epithelial neoplasia. We found enrichment in Delftia in the LSIL and HSIL groups compared with the group without an intra-epithelial lesion or malignancy. CONCLUSIONS Our results show that the vaginal microbiota is directly or indirectly related to the progression of squamous intra-epithelial neoplasia, and Delftia might be a microbiological hallmark of cervical pre-cancerous lesions.
Collapse
Affiliation(s)
- Mengying Wu
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Gao
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yongqin Wu
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yanyun Li
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yisheng Chen
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fuju Zhao
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Cui Li
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chunmei Ying
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
43
|
Riley NG, Goller CC, Leggett ZH, Lewis DM, Ciccone K, Dunn RR. Catalyzing rapid discovery of gold-precipitating bacterial lineages with university students. PeerJ 2020; 8:e8925. [PMID: 32322441 PMCID: PMC7164421 DOI: 10.7717/peerj.8925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Intriguing and potentially commercially useful microorganisms are found in our surroundings and new tools allow us to learn about their genetic potential and evolutionary history. Engaging students from different disciplines and courses in the search for microbes requires an exciting project with innovative but straightforward procedures and goals. Here we describe an interdisciplinary program to engage students from different courses in the sampling, identification and analysis of the DNA sequences of a unique yet common microbe, Delftia spp. A campus-wide challenge was created to identify the prevalence of this genus, able to precipitate gold, involving introductory level environmental and life science courses, upper-level advanced laboratory modules taken by undergraduate students (juniors and seniors), graduate students and staff from the campus. The number of participants involved allowed for extensive sampling while undergraduate researchers and students in lab-based courses participated in the sample processing and analyses, helping contextualize and solidify their learning of the molecular biology techniques. The results were shared at each step through publicly accessible websites and workshops. This model allows for the rapid discovery of Delftia presence and prevalence and is adaptable to different campuses and experimental questions.
Collapse
Affiliation(s)
- Noah G Riley
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Carlos C Goller
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Biotechnology Program (BIT), North Carolina State University, Raleigh, NC, USA
| | - Zakiya H Leggett
- Department of Forestry and Environmental Resources (FER), North Carolina State University, Raleigh, NC, USA
| | - Danica M Lewis
- North Carolina State University Libraries, North Carolina State University, Raleigh, NC, USA
| | - Karen Ciccone
- North Carolina State University Libraries, North Carolina State University, Raleigh, NC, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA.,University of Copenhagen, Natural History Museum of Denmark, Copenhagen, Denmark.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| |
Collapse
|
44
|
Liu F, Zhang N, Jiang P, Zhai Q, Li C, Yu D, Wu Y, Zhang Y, Lv L, Xu X, Feng N. Characteristics of the urinary microbiome in kidney stone patients with hypertension. J Transl Med 2020; 18:130. [PMID: 32183836 PMCID: PMC7079538 DOI: 10.1186/s12967-020-02282-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Kidney stone disease (KSD) is more common in individuals with hypertension (HTN) than in individuals with normotension (NTN). Urinary dysbiosis is associated with urinary tract disease and systemic diseases. However, the role of the urinary microbiome in KSD complicated with HTN remains unclear. Methods This study investigated the relationship between the pelvis urinary microbiome and blood pressure (BP) in patients with KSD co-occurring with HTN (KSD-HTN) and healthy controls (HC) by conducting 16S rRNA gene sequencing of bacteria in urine samples. The urine samples were collected (after bladder disinfection) from 50 patients with unilateral kidney calcium stones and NTN (n = 12), prehypertension (pHTN; n = 11), or HTN (n = 27), along with 12 HCs. Results Principal coordinates analysis showed that there were significant differences in the urinary microbiomes not only between KSD patients and HCs but also between KSD-pHTN or KSD-HTN patients and KSD-NTN patients. Gardnerella dominated in HCs, Staphylococcus dominated in KSD-NTN patients and Sphingomonas dominated in both KSD-pHTN and KSD-HTN patients. The abundance of several genera including Acidovorax, Gardnerella and Lactobacillus was correlated with BP. Adherens junction and nitrogen and nucleotide metabolism pathways, among others, were associated with changes in BP. Conclusions The findings suggest that patients with KSD complicated with HTN have a unique urinary microbiome profile and that changes in the microbiome may reflect disease progression and may be useful to monitor response to treatments.
Collapse
Affiliation(s)
- Fengping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.,Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Nan Zhang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Peng Jiang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chen Li
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Deshui Yu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yan Wu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuwei Zhang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinyu Xu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
45
|
Dantam J, Subbaraman LN, Jones L. Adhesion of Pseudomonas aeruginosa, Achromobacter xylosoxidans, Delftia acidovorans, Stenotrophomonas maltophilia to contact lenses under the influence of an artificial tear solution. BIOFOULING 2020; 36:32-43. [PMID: 31973583 DOI: 10.1080/08927014.2019.1710832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Corneal infection is a devastating sight-threatening complication that is associated with contact lens (CL) wear, commonly caused by Pseudomonas aeruginosa. Lately, Achromobacter xylosoxidans, Delftia acidovorans, and Stenotrophomonas maltophilia have been associated with corneal infection. This study investigated the adhesion of these emerging pathogens to CLs, under the influence of an artificial tear solution (ATS) containing a variety of components commonly found in human tears. Two different CL materials, etafilcon A and senofilcon A, either soaked in an ATS or phosphate buffered saline, were exposed to the bacteria. Bacterial adhesion was investigated using a radio-labeling technique (total counts) and plate count method (viable counts). The findings from this study revealed that in addition to P. aeruginosa, among the emerging pathogens evaluated, A. xylosoxidans showed an increased propensity for adherence to both CL materials and S. maltophilia showed lower viability. ATS influenced the viable counts more than the total counts on CLs.
Collapse
Affiliation(s)
- Jaya Dantam
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Lakshman N Subbaraman
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Lyndon Jones
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| |
Collapse
|
46
|
Yildiz H, Sünnetçioğlu A, Ekin S, Baran Aİ, Özgökçe M, Aşker S, Üney İ, Turgut E, Akyüz S. Delftia acidovorans pneumonia with lung cavities formation. Colomb Med (Cali) 2019; 50:215-221. [PMID: 32284666 PMCID: PMC7141147 DOI: 10.25100/cm.v50i3.4025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Case Description A 52-year-old female patient was admitted to our clinic with complaints of cough, sputum, fever and fatigue. The patient has been receiving immunosuppressive therapy for thrombocytopenic purpura for 5 years. Clinical Finding Inspiratory crackles were heard on both hemithorax. Oxygen saturation measured with the pulse oximeter was 97%. Chest X-ray showed diffuse reticular opacities that were more prominent in the upper zones of both lungs. WBC counts were 17,600 mm3 and Platelet counts were 29,000 mm3. Thorax CT showed that there were many thin-walled cavities and millimetric nodules accompanied by ground-glass infiltrates in the upper and middle lobes. Gram staining of bronchial fluid, taken by bronchoscopy, revealed Gram-negative bacilli and intense polymorphonuclear leukocytes. The bacteria were defined as Delftia acidovorans by BD Phoenix automated system. Treatment and outcomes The patient was hospitalized with suspicion of opportunistic pulmonary infections and cavitary lung disease. After the empirical treatment of intravenous piperacillin-tazobactam and oral clarithromycin, her clinical and radiological findings significantly regressed, and she was discharged with outpatient follow-up. Clinical Relevance This is the first example of cavitary pneumonia due to Delftia acidovorans in an immunocompromised patient. We would like to emphasize that Delftia pneumonia should be considered in the differential diagnosis of pulmonary cavitary involvement in such patients.
Collapse
Affiliation(s)
- Hanifi Yildiz
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Chest Medicine, Tuşba/Van, Turkey
| | - Aysel Sünnetçioğlu
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Chest Medicine, Tuşba/Van, Turkey
| | - Selami Ekin
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Chest Medicine, Tuşba/Van, Turkey
| | - Ali İrfan Baran
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Infectious Disease, Tuşba/Van, Turkey
| | - Mesut Özgökçe
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Radiology, Tuşba/Van, Turkey
| | - Selvi Aşker
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Chest Medicine, Tuşba/Van, Turkey
| | - İbrahim Üney
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Chest Medicine, Tuşba/Van, Turkey
| | - Engin Turgut
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Internal Medicine, Tuşba/Van, Turkey
| | - Sümeyye Akyüz
- Van Yuzuncu Yil University, Faculty of Medicine, Medical Microbiology Department, Tuşba/Van, Turkey
| |
Collapse
|
47
|
Antoine R, Rivera-Millot A, Roy G, Jacob-Dubuisson F. Relationships Between Copper-Related Proteomes and Lifestyles in β Proteobacteria. Front Microbiol 2019; 10:2217. [PMID: 31608037 PMCID: PMC6769254 DOI: 10.3389/fmicb.2019.02217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential transition metal whose redox properties are used for a variety of enzymatic oxido-reductions and in electron transfer chains. It is also toxic to living beings, and therefore its cellular concentration must be strictly controlled. We have performed in silico analyses of the predicted proteomes of more than one hundred species of β proteobacteria to characterize their copper-related proteomes, including cuproproteins, i.e., proteins with active-site copper ions, copper chaperones, and copper-homeostasis systems. Copper-related proteomes represent between 0 and 1.48% of the total proteomes of β proteobacteria. The numbers of cuproproteins are globally proportional to the proteome sizes in all phylogenetic groups and strongly linked to aerobic respiration. In contrast, environmental bacteria have considerably larger proportions of copper-homeostasis systems than the other groups of bacteria, irrespective of their proteome sizes. Evolution toward commensalism, obligate, host-restricted pathogenesis or symbiosis is globally reflected in the loss of copper-homeostasis systems. In endosymbionts, defense systems and copper chaperones have disappeared, whereas residual cuproenzymes are electron transfer proteins for aerobic respiration. Lifestyle is thus a major determinant of the size and composition of the copper-related proteome, and it is particularly reflected in systems involved in copper homeostasis. Analyses of the copper-related proteomes of a number of species belonging to the Burkholderia, Bordetella, and Neisseria genera indicates that commensals are in the process of shedding their copper-homeostasis systems and chaperones to greater extents yet than pathogens.
Collapse
Affiliation(s)
| | | | | | - Françoise Jacob-Dubuisson
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
48
|
Adhesion of Stenotrophomonas maltophilia, Delftia acidovorans, and Achromobacter xylosoxidans to Contact Lenses. Eye Contact Lens 2018; 44 Suppl 2:S120-S126. [DOI: 10.1097/icl.0000000000000425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Oechslin CP, Lenz N, Liechti N, Ryter S, Agyeman P, Bruggmann R, Leib SL, Beuret CM. Limited Correlation of Shotgun Metagenomics Following Host Depletion and Routine Diagnostics for Viruses and Bacteria in Low Concentrated Surrogate and Clinical Samples. Front Cell Infect Microbiol 2018; 8:375. [PMID: 30406048 PMCID: PMC6206298 DOI: 10.3389/fcimb.2018.00375] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/16/2022] Open
Abstract
The etiologic cause of encephalitis, meningitis or meningo-encephalitis is unknown in up to 70% of cases. Clinical shotgun metagenomics combined with host depletion is a promising technique to identify infectious etiologies of central nervous system (CNS) infections. We developed a straightforward eukaryotic host nucleic acid depletion method that preserves intact viruses and bacteria for subsequent shotgun metagenomics screening of clinical samples, focusing on cerebrospinal fluid (CSF). A surrogate CSF sample for a CNS infection paradigm was used to evaluate the proposed depletion method consisting of selective host cell lysis, followed by enzymatic degradation of the liberated genomic DNA for final depletion with paramagnetic beads. Extractives were subjected to reverse transcription, followed by whole genome amplification and next generation sequencing. The effectiveness of the host depletion method was demonstrated in surrogate CSF samples spiked with three 1:100 dilutions of Influenza A H3N2 virus (qPCR Ct-values 20.7, 28.8, >42/negative). Compared to the native samples, host depletion increased the amount of the virus subtype reads by factor 7127 and 132, respectively, while in the qPCR negative sample zero vs. 31 (1.4E-4 %) virus subtype reads were detected (native vs. depleted). The workflow was applied to thirteen CSF samples of patients with meningo-/encephalitis (two bacterial, eleven viral etiologies), a serum of an Andes virus infection and a nose swab of a common cold patient. Unlike surrogate samples, host depletion of the thirteen human CSF samples and the nose swab did not result in more reads indicating presence of damaged pathogens due to, e.g., host immune response. Nevertheless, previously diagnosed pathogens in the human CSF samples (six viruses, two bacteria), the serum, and the nose swab (Human rhinovirus A31) were detected in the depleted and/or the native samples. Unbiased evaluation of the taxonomic profiles supported the diagnosed pathogen in two native CSF samples and the native and depleted serum and nose swab, while detecting various contaminations that interfered with pathogen identification at low concentration levels. In summary, damaged pathogens and contaminations complicated analysis and interpretation of clinical shotgun metagenomics data. Still, proper consideration of these issues may enable future application of metagenomics for clinical diagnostics.
Collapse
Affiliation(s)
- Corinne P. Oechslin
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nicole Lenz
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Nicole Liechti
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Sarah Ryter
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
| | - Philipp Agyeman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Infectious Diseases Division, Department of Paediatrics, University Hospital Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christian M. Beuret
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
| |
Collapse
|
50
|
Phoon HYP, Hussin H, Hussain BM, Lim SY, Woon JJ, Er YX, Thong KL. Distribution, genetic diversity and antimicrobial resistance of clinically important bacteria from the environment of a tertiary hospital in Malaysia. J Glob Antimicrob Resist 2018. [PMID: 29540306 DOI: 10.1016/j.jgar.2018.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Hospital environments are potential reservoirs of bacteria associated with nosocomial infections. In this study, the distribution of cultivable environmental bacteria of clinical importance from a Malaysian tertiary hospital was determined and their resistotypes and genotypes were investigated. METHODS Swab and fluid samples (n=358) from healthcare workers' hands, frequently touched surfaces, medical equipment, patients' immediate surroundings, ward sinks and toilets, and solutions or fluids of 12 selected wards were collected. Biochemical tests, PCR and 16S rRNA sequencing were used for identification following isolation from CHROMagar™ Orientation medium. Clinically important bacteria such as Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter spp., Pseudomonas aeruginosa and Enterobacter spp. were further characterised by disc diffusion method and rep-PCR. RESULTS The 24 Gram-negative and 19 Gram-positive bacteria species identified were widely distributed in the hospital environment. Staphylococci were predominant, followed by Bacillus spp. and P. aeruginosa. Frequently touched surfaces, medical equipment, and ward sinks and toilets were the top three sources of bacterial species. Nine S. aureus, four Acinetobacter spp., one K. pneumoniae and one Enterobacter spp. were multidrug-resistant (MDR). The ESKAPE organisms were genetically diverse and widely dispersed across the hospital wards. A MDR MRSA clone was detected in a surgical ward isolation room. CONCLUSION The large variety of cultivable, clinically important bacteria, especially the genetically related MDR S. aureus, K. pneumoniae, Acinetobacter spp. and Enterobacter spp., from various sampling sites indicated that the surfaces and fomites in the hospital were potential exogenous sources of nosocomial infection in the hospital.
Collapse
Affiliation(s)
- Hannah Y P Phoon
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Pathology Department, Ampang Hospital, 68000 Ampang, Selangor, Malaysia
| | - Hazilawati Hussin
- Pathology Department, Ampang Hospital, 68000 Ampang, Selangor, Malaysia
| | | | - Shu Yong Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jia Jie Woon
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yi Xian Er
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|