1
|
Gu F, Wang Z, Ding H, Tao X, Zhang J, Dai K, Li X, Shen H, Li H, Chen Z, Wang Z. Microglial mitochondrial DNA release contributes to neuroinflammation after intracerebral hemorrhage through activating AIM2 inflammasome. Exp Neurol 2024; 382:114950. [PMID: 39278588 DOI: 10.1016/j.expneurol.2024.114950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe disease that often leads to disability and death. Neuroinflammatory response is a key causative factor of early secondary brain injury after ICH. AIM2 is a DNA-sensing protein that recognizes cytosolic double-stranded DNA and take a significant part in neuroinflammation. Mitochondrial DNA participates in the translation of proteins such as the respiratory chain in the mitochondria. Whether mtDNA is involved in forming AIM2 inflammasome after ICH remains unclear. We used mice to construct ICH model in vivo and we used BV2 microglial cells treated with oxyhemoglobin to simulate ICH in vitro. Following lentiviral transfection to overexpress AIM2 antagonist P202, a notable decrease was observed in the levels of AIM2 inflammasome-associated proteins, leading to a reduction in dead neurons surrounding the hematoma and an enhancement in long-term and short-term behavior of neurological deficits. We further explored whether mtDNA took part in the AIM2 activation after ICH. The cytosolic mtDNA level was down-regulated by the mitochondrial division protector Mdivi-1 and up-regulated by transfection of mtDNA into cytoplasm. We found the expression level of AIM2 inflammasome-related proteins and inflammatory cytokines release were regulated by the cytosolic mtDNA level. In conclusion, after ICH, the mtDNA content in the cytoplasm of microglia around the hematoma rises, causing AIM2 inflammation leading to neuronal apoptosis, which leads to neurological deficits in mice. On the other hand, P202 was able to block inflammatory vesicle activation and improve neurological function by preventing the interaction between AIM2 protein and mitochondrial DNA.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
2
|
Li Y, Zhou H, Hu T, Shan S, Chen K, Zhao C, He L. Mild three-stage alkali-oxygen treatment preserving the native macromolecular structure of lignin for effective disassembling of tobacco stalk. Int J Biol Macromol 2024; 279:135512. [PMID: 39260633 DOI: 10.1016/j.ijbiomac.2024.135512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Tobacco stalks, as one of the annual economic crops rich in biomacromolecules such as cellulose and hemicellulose, are more difficult to decompose into cellulose fibers due to their high degree of lignification compared to other ordinary straw feedstocks, resulting in their underutilization. In this study, we developed a mild three-stage alkali‑oxygen (AO) process to efficiently deconstruct the tobacco stalk cell walls. The process, involving alkaline dosages of 15 %, 10 %, and 3 % at each stage, effectively dissociated the cell walls and yielded cellulose fibers with high brightness (42.0 % ISO). The organics in the spent liquor, including lignin, hemicellulose, and small-molecular extracts, were isolated through acid/ethanol precipitation and organic solvent extraction. Lignin characterization by 2D HSQC NMR indicated that the majority of native β-aryl ether linkages were preserved after AO treatment, making it suitable for producing chemicals or biofuels via depolymerization. Additionally, the small-molecular extracts contained numerous depolymerized products from lignin and carbohydrates, as well as bioactive compounds derived from the tobacco stalk. Overall, this mild, efficient, and eco-friendly process offers a promising approach for the valorization of tobacco stalks and similar biomass resources.
Collapse
Affiliation(s)
- Yu Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Keli Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chengke Zhao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
3
|
Cui C, Zheng J, Zhang H, Xing Z. Pterostilbene ameliorates oxidative stress and neuronal apoptosis after intracerebral hemorrhage via the sirtuin 1-mediated Nrf2 pathway in vivo and in vitro. J Stroke Cerebrovasc Dis 2024; 33:107950. [PMID: 39173685 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION Oxidative stress and neuroapoptosis are significant pathological processes that occur in response to intracerebral hemorrhage (ICH), however, the optimal therapeutic strategy to treat these responses remains unknown. Pterostilbene (PTE) influences neural cell survival in in the pathology of a number of neurological diseases, but the mechanisms underlying this influence at present are not clear. The objective of the present study was to examine the potential impact of PTE on mitigating oxidative stress and neuronal apoptosis following ICH, while also elucidating the potential underlying pathways. MATERIAL & METHOD For in vivo experimentation, male C57BL/6 mice were used to establish ICH models. Wet-to-dry weight ratios were utilized to assess the degree of cerebral edema in the context of PTE intervention. Behavioral experiments were conducted to evaluate neurological dysfunction and cognitive impairment, and hematoxylin and eosin staining was employed to observe histopathological changes in the brain. Furthermore, oxidative stress levels in hippocampal tissues were measured, and cell apoptosis was examined using TUNEL staining and western blotting techniques. In vitro experiments were conducted to evaluate the extent of oxidative stress and neural apoptosis after sirtuin 1 (SIRT1) siRNA treatment. Immunofluorescence cytochemistry was used to analyze the immunofluorescence colocalization of SIRT1 and NeuN. RESULT Mice that experienced ICH exhibited worsening neurological deterioration, increased oxidative stress and neuronal cell apoptosis. However, the addition of PTE was found to lessen these effects. Furthermore, PTE was found to activate the SIRT1-mediated Nrf2 pathway in mice with ICH. When SIRT1 was inhibited, levels of oxidative stress and neuronal apoptosis increased, even in the presence of PTE. CONCLUSION The present study provided evidence to indicate that PTE can suppress oxidative damage and neuronal apoptosis following ICH by activating the SIRT1/Nrf2 pathway.
Collapse
Affiliation(s)
- Chengxi Cui
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Jie Zheng
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Hongyun Zhang
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Zhenyi Xing
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China.
| |
Collapse
|
4
|
Han J, Zhang J, Yao X, Meng M, Wan Y, Cheng Y. Mechanism of HDAC1 Regulating Iron Overload-Induced Neuronal Oxidative Damage After Cerebral Hemorrhage. Mol Neurobiol 2024; 61:7549-7566. [PMID: 38403721 DOI: 10.1007/s12035-024-04000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Iron overload is associated with brain edema in the context of intracerebral hemorrhage (ICH). Here, we investigated the role of histone deacetylase 1 (HDAC1) in mediating oxidative damage induced by iron overload after ICH. Utilizing ICH mouse models and FeCl2-induced HT-22 cell models, we assessed HDAC1 expression and its impact on iron overload and oxidative damage. We examined the levels of Kruppel like factor 4 (KLF4), RAN binding protein 9 (RANBP9), as well as the acetylation levels of HDAC1 and histones H3 and H4 in the KLF4 promoter, and the KLF4 level in the RANBP9 promoter. Additionally, we investigated the binding relationships between KLF4 and the RANBP9 promoter, HDAC1 and miR-129-5p. Our results demonstrated elevated HDAC1 expression in ICH mice and FeCl2-induced HT-22 cells. HDAC1 silencing improved neurological function in mice, reduced brain edema, and alleviated iron overload and oxidative damage in vitro. HDAC1 downregulated KLF4 expression by reducing acetylation levels in the KLF4 promoter, leading to decreased KLF4 enrichment in the RANBP9 promoter and increased RANBP9 expression. Furthermore, upstream miR-129-5p inhibited HDAC1, and the downregulation of miR-129-5p mitigated the protective effect of HDAC1 silencing. Collectively, our findings highlight the significant role of HDAC1 in exacerbating iron overload-induced oxidative damage following ICH and its regulation by miR-129-5p.
Collapse
Affiliation(s)
- Jing Han
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jinnan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xiaojuan Yao
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300000, China
| | - Yahui Wan
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300000, China
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
5
|
Tsai YC, Chang CH, Chong YB, Wu CH, Tsai HP, Cheng TL, Lin CL. MicroRNA-195-5p Inhibits Intracerebral Hemorrhage-Induced Inflammatory Response and Neuron Cell Apoptosis. Int J Mol Sci 2024; 25:10321. [PMID: 39408651 PMCID: PMC11476780 DOI: 10.3390/ijms251910321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition characterized by bleeding within brain tissue. Primary brain injury in ICH results from a mechanical insult caused by blood accumulation, whereas secondary injury involves inflammation, oxidative stress, and disruption of brain physiology. miR-195-5p may participate in ICH pathology by regulating cell proliferation, oxidative stress, and inflammation. Therefore, we assessed the performance of miR-195-5p in alleviating ICH-induced secondary brain injury. ICH was established in male Sprague-Dawley rats (7 weeks old, 200-250 g) via the stereotaxic intrastriatal injection of type IV bacterial collagenase, after which miR-195-5p was administered intravenously. Neurological function was assessed using corner turn and forelimb grip strength tests. Protein expression was assessed by western blotting and ELISA. The miR-195-5p treatment significantly improved neurological function; modulated macrophage polarization by promoting anti-inflammatory marker (CD206 and Arg1) production and inhibiting pro-inflammatory marker (CD68 and iNOS) production; enhanced Akt signalling, reduced oxidative stress by increasing Sirt1 and Nrf2 levels, and attenuated inflammation by decreasing NF-κB activation; inhibited apoptosis via increased Bcl-2 and decreased cleaved caspase-3 levels; and regulated synaptic plasticity by modulating NMDAR2A, NMDAR2B, BDNF, and TrkB expression and ERK and CREB phosphorylation. In conclusion, miR-195-5p exerts neuroprotective effects in ICH by reducing inflammation and oxidative stress, inhibiting apoptosis, and restoring synaptic plasticity, ultimately restoring behavioral recovery, and represents a promising therapeutic agent that warrants clinical studies.
Collapse
Affiliation(s)
- Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
| | - Chih-Hui Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Yoon Bin Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Li L, Liu X, Han C, Tian L, Wang Y, Han B. Ferroptosis in radiation-induced brain injury: roles and clinical implications. Biomed Eng Online 2024; 23:93. [PMID: 39261942 PMCID: PMC11389269 DOI: 10.1186/s12938-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Radiation-induced brain injury (RBI) presents a significant challenge for patients undergoing radiation therapy for head, neck, and intracranial tumors. This review aims to elucidate the role of ferroptosis in RBI and its therapeutic implications. Specifically, we explore how ferroptosis can enhance the sensitivity of tumor cells to radiation while also examining strategies to mitigate radiation-induced damage to normal brain tissues. By investigating the mechanisms through which radiation increases cellular reactive oxygen species (ROS) and initiates ferroptosis, we aim to develop targeted therapeutic strategies that maximize treatment efficacy and minimize neurotoxicity. The review highlights key regulatory factors in the ferroptosis pathway, including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter system Xc- (System Xc-), nuclear factor erythroid 2-related factor 2 (NRF2), Acyl-CoA synthetase long-chain family member 4 (ACSL4), and others, and their interactions in the context of RBI. Furthermore, we discuss the clinical implications of modulating ferroptosis in radiation therapy, emphasizing the potential for selective induction of ferroptosis in tumor cells and inhibition in healthy cells. The development of advanced diagnostic tools and therapeutic strategies targeting ferroptosis offers a promising avenue for enhancing the safety and efficacy of radiation therapy, underscoring the need for further research in this burgeoning field.
Collapse
Affiliation(s)
- Lifang Li
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Xia Liu
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Chunfeng Han
- Department of Pharmacy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Licheng Tian
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Yongzhi Wang
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Baolin Han
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China.
| |
Collapse
|
7
|
Li XN, Lin L, Li XW, Zhu Q, Xie ZY, Hu YZ, Long QS, Wei XB, Wen YQ, Zhang LY, Zhang QK, Jing YC, Wei XH, Li XS. BSA-stabilized selenium nanoparticles ameliorate intracerebral hemorrhage's-like pathology by inhibiting ferroptosis-mediated neurotoxicology via Nrf2/GPX4 axis activation. Redox Biol 2024; 75:103268. [PMID: 39032396 PMCID: PMC11314897 DOI: 10.1016/j.redox.2024.103268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a prevalent hemorrhagic cerebrovascular emergency. Alleviating neurological damage in the early stages of ICH is critical for enhancing patient prognosis and survival rate. A novel form of cell death called ferroptosis is intimately linked to hemorrhage-induced brain tissue injury. Although studies have demonstrated the significant preventive impact of bovine serum albumin-stabilized selenium nanoparticles (BSA-SeNPs) against disorders connected to the neurological system, the neuroprotective effect on the hemorrhage stroke and the mechanism remain unknown. Therefore, based on the favorable biocompatibility of BSA-SeNPs, h-ICH (hippocampus-intracerebral hemorrhage) model was constructed to perform BSA-SeNPs therapy. As expected, these BSA-SeNPs could effectively improve the cognitive deficits and ameliorate the damage of hippocampal neuron. Furthermore, BSA-SeNPs reverse the morphology of mitochondria and enhanced the mitochondrial function, evidenced by mitochondrial respiration function (OCR) and mitochondrial membrane potential (MMP). Mechanistically, BSA-SeNPs could efficiently activate the Nrf2 to enhance the expression of antioxidant GPX4 at mRNA and protein levels, and further inhibit lipid peroxidation production in erastin-induced ferroptotic damages. Taken together, this study not only sheds light on the clinical application of BSA-SeNPs, but also provides its newly theoretical support for the strategy of the intervention and treatment of neurological impairment following ICH.
Collapse
Affiliation(s)
- Xiao-Na Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China; Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510632, China
| | - Li Lin
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Xiao-Wei Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qian Zhu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Zhen-Yan Xie
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Yong-Zhen Hu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Qing-Shan Long
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Xiao-Bing Wei
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Yi-Qi Wen
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Li-Yang Zhang
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Qi-Keng Zhang
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Ying-Chao Jing
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
| | - Xin-Hua Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510632, China.
| | - Xue-Song Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China.
| |
Collapse
|
8
|
Zhang X, Lei Y, Zhou H, Liu H, Xu P. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol 2024; 61:5002-5026. [PMID: 38157121 DOI: 10.1007/s12035-023-03901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer's disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson's disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2's biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
9
|
Zhang X, Zhou H, Liu H, Xu P. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol 2024; 61:5083-5101. [PMID: 38159196 DOI: 10.1007/s12035-023-03899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.
Collapse
Affiliation(s)
- XiaoPing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - HaiJun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
10
|
He Y, Zhang M, Gong X, Liu X, Zhou F, Yang B. Diselenide-Bridged Mesoporous Silica-Based Nanoplatform with a Triple ROS-Scavenging Effect for Intracerebral Hemorrhage Treatment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39047081 DOI: 10.1021/acsami.4c08726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Oxidative stress (OS) is a major mediator of secondary brain injury following intracerebral hemorrhage (ICH). Thus, antioxidant therapy is emerging as an attractive strategy to combat ICH. To achieve both reactive oxygen species (ROS) scavenging ability and on-demand drug release ability, we constructed a novel polydopamine (PDA)-coated diselenide-bridged mesoporous silica nanoparticle (DSeMSN) drug delivery system (PDA-DSeMSN). Edaravone (Eda) was blocked in the pores of DSeMSN by covering the pores with PDA as a gatekeeper. The drug maintained nearly "zero release" before reaching the lesion site, while in the ROS-enriched circumstances, the PDA shell went through degradation and the doped diselenide bonds broke up, triggering the disintegration of nanoparticles and leading to Eda release. Interestingly, the ROS-degradable property of the PDA shell and diselenide bond endowed the system with enhanced ROS-eliminating capacity. The synergistic effect of ROS-responsive drug delivery and ROS-scavenging PDA-DSeMSN showed efficient antioxidative and mitochondria protective performance without apparent toxicity in vitro. Importantly, PDA-DSeMSN@Eda through intravenous administration specifically accumulated in perihematomal sites and demonstrated robust neuroprotection in an ICH mouse model through antioxidative and antiapoptotic effects with high biological safety. Thus, the PDA-DSeMSN platform holds tremendous potential as an excellent carrier for on-demand delivery of drugs and provides a new and effective strategy for the clinical treatment of ICH.
Collapse
Affiliation(s)
- Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Meiru Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiyu Gong
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| | - Xiaoxuan Liu
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| | - Fangfang Zhou
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| | - Binbin Yang
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| |
Collapse
|
11
|
Xu Q, Fan S, Wang L, Zheng J, Wan Y, Tian R, Xia J, Zhao Z. Circulating/cerebrospinal T lymphocytes as indicators of clinical prognosis in intracerebral hemorrhage: A prospective study. Medicine (Baltimore) 2024; 103:e35827. [PMID: 39029024 PMCID: PMC11398761 DOI: 10.1097/md.0000000000035827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Secondary injury of cerebral hemorrhage is induced by systemic inflammatory cascades, which are related to perihematomal brain edema, cellular apoptosis, and the disruption of the blood-brain barrier. This study was to specifically elaborate the relationship of circulating/cerebrospinal T lymphocytes and Glasgow Coma Scale (GCS) score at 6 months after intracerebral hemorrhage (ICH). The enrolled patients were divided into 2 groups based on GCS score: the favorable prognosis group (GCS > 12) and unfavorable prognosis group (GCS ≤ 12). T lymphocyte subpopulations were analyzed by flow cytometry. A total of 30 samples of peripheral blood and 17 samples of cerebrospinal fluid were collected and analyzed, including 19 cases and 12 cases in the favorable prognosis group (GCS > 12) respectively. Both CD3+ and CD3+CD4+ T lymphocyte counts on Day 1 after ICH were lower in the peripheral blood of patients with unfavorable prognosis (GCS ≤ 12) (P = .025 and .022, respectively). There were correlation trends between the GCS scores and CD3+ T lymphocyte count (P = .0144), and CD3+CD4+ T lymphocyte count (P = .0135). In cerebrospinal fluid, there was a close correlation between the GCS scores and CD3+CD4+ percentage, CD4+/CD8+ ratio, CD3+ and CD3+CD4+ T lymphocyte counts. The area under the curve of CD4+/CD8+ T lymphocyte ratio was the largest among them (P = .000 and area under the curve = 0.917), with a significantly high specificity and sensitivity (0.917 and 1.000). Based on cerebrospinal fluid samples, the CD4+/CD8+ T lymphocyte ratio on Day 1 after ICH may be a more significant indicator to predict the short-term prognosis at 6 months after ICH.
Collapse
Affiliation(s)
- Qian Xu
- Department of Neurosurgery, Zhenhai People's Hospital, Ningbo, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Jiang X, Han X, Kong T, Wu Y, Shan L, Yang Z, Liu Y, Wang F. Association of impulsive behavior and cerebrospinal fluid/plasma oxidation and antioxidation ratio in Chinese men. Brain Res 2024; 1835:148935. [PMID: 38609031 DOI: 10.1016/j.brainres.2024.148935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVES Impulsive behavior is the precursor of many psychiatric and neurological conditions. High levels of impulsive behavior will increase health risk behavior and related injuries. Impulsive behavior is produced and regulated by central and peripheral biological factors, and oxidative stress (OS) can aggravate it. However, previous studies only showed that impulsive behavior was related to the level of the peripheral OS. Therefore, this study aims to clarify the relationship between OS and impulsive behavior in the brain and peripheral blood. METHODS We recruited 64 Chinese men. We measured superoxide dismutase (SOD) (including copper, zinc and manganese) and nitric oxide synthase (NOS) (including total, inducible and constitutive) in cerebrospinal fluid (CSF) and plasma. The Barratt Impulsiveness Scale version 11 (BIS-11) was used to evaluate impulsive behavior. The relationship between OS and impulsive behavior was evaluated by partial correlation analysis and stepwise multiple regression analysis. RESULTS Partial correlation analysis showed that the ratio of total NOS-to-MnSOD and iNOS-to-MnSOD in CSF were negatively correlated with the BIS-11 motor scores (r = -0.431, p = -0.001; r = -0.434, p = -0.001). Stepwise multiple regression analysis showed that the ratio of CSF iNOS-to-MnSOD was the most influential variable on the BIS-11 motor scores(β = -0.434, t = -3.433, 95 %CI(-0.374, -0.098), p = 0.001). CONCLUSIONS AND RELEVANCE The imbalance of central oxidation and antioxidation is related to impulsive behavior, which broadens our understanding of the correlation between impulsive behavior and OS.
Collapse
Affiliation(s)
- Xiaoning Jiang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China; Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot 010110, China
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship Hospital of Urumqi, Urumqi 830049, China
| | - Tiantian Kong
- Xinjiang Key Laboratory of Neurological Disorder Research, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Ligang Shan
- Department of Anesthesiology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Zhuqing Yang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot 010110, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China.
| |
Collapse
|
13
|
Zhang J, Xie D, Jiao D, Zhou S, Liu S, Ju Z, Hu L, Qi L, Yao C, Zhao C. From inflammatory signaling to neuronal damage: Exploring NLR inflammasomes in ageing neurological disorders. Heliyon 2024; 10:e32688. [PMID: 38975145 PMCID: PMC11226848 DOI: 10.1016/j.heliyon.2024.e32688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
The persistence of neuronal degeneration and damage is a major obstacle in ageing medicine. Nucleotide-binding oligomerization domain (NOD)-like receptors detect environmental stressors and trigger the maturation and secretion of pro-inflammatory cytokines that can cause neuronal damage and accelerate cell death. NLR (NOD-like receptors) inflammasomes are protein complexes that contain NOD-like receptors. Studying the role of NLR inflammasomes in ageing-related neurological disorders can provide valuable insights into the mechanisms of neurodegeneration. This includes investigating their activation of inflammasomes, transcription, and capacity to promote or inhibit inflammatory signaling, as well as exploring strategies to regulate NLR inflammasomes levels. This review summarizes the use of NLR inflammasomes in guiding neuronal degeneration and injury during the ageing process, covering several neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and peripheral neuropathies. To improve the quality of life and slow the progression of neurological damage, NLR-based treatment strategies, including inhibitor-related therapies and physical therapy, are presented. Additionally, important connections between age-related neurological disorders and NLR inflammasomes are highlighted to guide future research and facilitate the development of new treatment options.
Collapse
Affiliation(s)
- Jingwen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Xie
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
14
|
Thangameeran SIM, Tsai ST, Liew HK, Pang CY. Examining Transcriptomic Alterations in Rat Models of Intracerebral Hemorrhage and Severe Intracerebral Hemorrhage. Biomolecules 2024; 14:678. [PMID: 38927081 PMCID: PMC11202056 DOI: 10.3390/biom14060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening condition associated with significant morbidity and mortality. This study investigates transcriptomic alterations in rodent models of ICH and severe ICH to shed light on the genetic pathways involved in hemorrhagic brain injury. We performed principal component analysis, revealing distinct principal component segments of normal rats compared to ICH and severe ICH rats. We employed heatmaps and volcano plots to identify differentially expressed genes and utilized bar plots and KEGG pathway analysis to elucidate the molecular pathways involved. We identified a multitude of differentially expressed genes in both the ICH and severe ICH models. Our results revealed 5679 common genes among the normal, ICH, and severe ICH groups in the upregulated genes group, and 1196 common genes in the downregulated genes, respectively. A volcano plot comparing these groups further highlighted common genes, including PDPN, TIMP1, SERPINE1, TUBB6, and CD44. These findings underscore the complex interplay of genes involved in inflammation, oxidative stress, and neuronal damage. Furthermore, pathway enrichment analysis uncovered key signaling pathways, including the TNF signaling pathway, protein processing in the endoplasmic reticulum, MAPK signaling pathway, and Fc gamma R-mediated phagocytosis, implicated in the pathogenesis of ICH.
Collapse
Affiliation(s)
| | - Sheng-Tzung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (S.I.M.T.); (S.-T.T.)
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Hock-Kean Liew
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 97004, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (S.I.M.T.); (S.-T.T.)
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| |
Collapse
|
15
|
Wang S, Tan W, Zhang L, Jiang H. Pachymic Acid Protects Against Bleomycin-Induced Pulmonary Fibrosis by Suppressing Fibrotic, Inflammatory, and Oxidative Stress Pathways in Mice. Appl Biochem Biotechnol 2024; 196:3344-3355. [PMID: 37650950 DOI: 10.1007/s12010-023-04686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Pachymic acid (PA), a natural extract from Poria cocos (Schw.) Wolf, possesses anti-inflammatory and anti-oxidative properties. However, it is still unknown whether PA can protect against bleomycin (BLM)-induced pulmonary fibrosis (PF). In this study, we investigated the effects of PA in mice administered BLM. Our results showed that PA significantly improved lung damage and pathological manifestations. Additionally, PA reduced the levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α, while increasing the level of IL-10. PA also decreased the levels of hydroxyproline and malondialdehyde, and increased the activities of superoxide dismutase and glutathione peroxidase in lung tissue. Furthermore, PA inhibited the increases in pyrin domain-containing protein 3 (NLRP3), ASC, IL-1β, P20, and TXNIP induced by BLM. In conclusion, our study demonstrated the protective effects of PA against BLM-induced PF in mice by suppressing fibrotic, inflammatory, and oxidative stress pathways.
Collapse
Affiliation(s)
- Shanmei Wang
- Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, China
| | - Wei Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, China
| | - Hongbin Jiang
- Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
16
|
Liu X, Hong E, Xie J, Li J, Ding B, Chen Y, Xia Z, Jiang W, Lv H, Yang B, Chen Y. Txnrd2 Attenuates Early Brain Injury by Inhibition of Oxidative Stress and Endoplasmic Reticulum Stress via Trx2/Prx3 Pathway after Intracerebral Hemorrhage in Rats. Neuroscience 2024; 545:158-170. [PMID: 38513765 DOI: 10.1016/j.neuroscience.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Thioredoxin-reductase 2 (Txnrd2) belongs to the thioredoxin-reductase family of selenoproteins and is a key antioxidant enzyme in mammalian cells to regulate redox homeostasis. Here, we reported that Txnrd2 exerted a major influence in brain damage caused by Intracerebral hemorrhage (ICH) by suppressing endoplasmic reticulum (ER) stress oxidative stress and via Trx2/Prx3 pathway. Furthermore, we demonstrated that pharmacological selenium (Se) rescued the brain damage after ICH by enhancing Txnrd2 expression. Primarily, expression and localization of Txnrd2, Trx2 and Prx3 were determined in collagenase IV-induced ICH model. Txnrd2 was then knocked down using siRNA interference in rats which were found to develop more severe encephaledema and neurological deficits. Mechanistically, we observed that loss of Txnrd2 leads to increased lipid peroxidation levels and ER stress protein expression in neurons and astrocytes. Additionally, it was revealed that Se effectively restored the expression of Txnrd2 in brain and inhibited both the activity of ER stress protein activity and the generation of reactive oxygen species (ROS) by promoting Trx2/Prx3 kilter when administrating sodium selenite in lateral ventricle. This study shed light on the effect of Txnrd2 in regulating oxidative stress and ER stress via Trx2/Prx3 pathway upon ICH and its promising potential as an ICH therapeutic target.
Collapse
Affiliation(s)
- Xuanbei Liu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Enhui Hong
- Department of Neurosurgery, Jiu Jiang No.1 People's Hospital, Jiu Jiang, China
| | - Jiayu Xie
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Jiangwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Boyun Ding
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Yongsheng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhennan Xia
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Weiping Jiang
- Department of Neurosurgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Hongzhu Lv
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Bo Yang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Yizhao Chen
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Liao Y, Huang J, Wang Z, Yang Z, Shu Y, Gan S, Wang Z, Lu W. The phosphokinase activity of IRE1ɑ prevents the oxidative stress injury through miR-25/Nox4 pathway after ICH. CNS Neurosci Ther 2024; 30:e14537. [PMID: 37994671 PMCID: PMC11017440 DOI: 10.1111/cns.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress and oxidative stress are the major pathologies encountered after intracerebral hemorrhage (ICH). Inositol-requiring enzyme-1 alpha (IRE1α) is the most evolutionarily conserved ER stress sensor, which plays a role in monitoring and responding to the accumulation of unfolded/misfolded proteins in the ER lumen. Recent studies have shown that ER stress is profoundly related to oxidative stress in physiological or pathological conditions. The purpose of this study was to investigate the role of IRE1α in oxidative stress and the potential mechanism. METHODS A mouse model of ICH was established by autologous blood injection. The IRE1α phosphokinase inhibitor KIRA6 was administrated intranasally at 1 h after ICH, antagomiR-25 and agomiR-25 were injected intraventricularly at 24 h before ICH. Western blot analysis, RT-qPCR, immunofluorescence staining, hematoma volume, neurobehavioral tests, dihydroethidium (DHE) staining, H2O2 content, brain water content, body weight, Hematoxylin and Eosin (HE) staining, Nissl staining, Morris Water Maze (MWM) and Elevated Plus Maze (EPM) were performed. RESULTS Endogenous phosphorylated IRE1α (p-IRE1α), miR-25-3p, and Nox4 were increased in the ICH model. Administration of KIRA6 downregulated miR-25-3p expression, upregulated Nox4 expression, promoted the level of oxidative stress, increased hematoma volume, exacerbated brain edema and neurological deficits, reduced body weight, aggravated spatial learning and memory deficits, and increased anxiety levels. Then antagomiR-25 further upregulated the expression of Nox4, promoted the level of oxidative stress, increased hematoma volume, exacerbated brain edema and neurological deficits, whereas agomiR-25 reversed the effects promoted by KIRA6. CONCLUSION The IRE1α phosphokinase activity is involved in the oxidative stress response through miR-25/Nox4 pathway in the mouse ICH brain.
Collapse
Affiliation(s)
- Yuhui Liao
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Medical CollegeSichuan University of Arts and ScienceDazhouChina
| | - Juan Huang
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Zhenhua Wang
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Zhengyu Yang
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Yue Shu
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Shengwei Gan
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Zhixu Wang
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Weitian Lu
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| |
Collapse
|
18
|
Zhou X, Wang X, Li J, Zhang M, Yang Y, Lei S, He Y, Yang H, Zhou D, Guo C. Integrated Network Pharmacology and in vivo Experimental Validation Approach to Explore the Potential Antioxidant Effects of Annao Pingchong Decoction in Intracerebral Hemorrhage Rats. Drug Des Devel Ther 2024; 18:699-717. [PMID: 38465266 PMCID: PMC10922012 DOI: 10.2147/dddt.s439873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Background Annao Pingchong decoction (ANPCD) is a traditional Chinese decoction which has definite effects on treating intracerebral hemorrhage (ICH) validated through clinical and experimental studies. However, the impact of ANPCD on oxidative stress (OS) after ICH remains unclear and is worth further investigating. Aim To investigate whether the therapeutic effects of ANPCD on ICH are related to alleviating OS damage and seek potential targets for its antioxidant effects. Materials and Methods The therapeutic candidate genes of ANPCD on ICH were identified through a comparison of the target genes of ANPCD, target genes of ICH and differentially expressed genes (DEGs). Protein-protein interaction (PPI) network analysis and functional enrichment analysis were combined with targets-related literature to select suitable antioxidant targets. The affinity between ANPCD and the selected target was verified using macromolecular docking. Subsequently, the effects of ANPCD on OS and the selected target were further investigated through in vivo experiments. Results Forty-eight candidate genes were screened, in which silent information regulator sirtuin 1 (SIRT1) is one of the core genes that has antioxidant effects and ICH significantly affected its expression. The good affinity between 6 compounds of ANPCD and SIRT1 was also demonstrated by macromolecular docking. The results of in vivo experiments demonstrated that ANPCD significantly decreased modified neurological severity scoring (mNSS) scores and serum MDA and 8-OHdG content in ICH rats, while significantly increasing serum SOD and CAT activity, complicated with the up-regulation of ANPCD on SIRT1, FOXO1, PGC-1α and Nrf2. Furthermore, ANPCD significantly decreased the apoptosis rate and the expression of apoptosis-related proteins (P53, cytochrome c and caspase-3). Conclusion ANPCD alleviates OS damage and apoptosis after ICH in rats. As a potential therapeutic target, SIRT1 can be effectively regulated by ANPCD, as are its downstream proteins.
Collapse
Affiliation(s)
- Xuqing Zhou
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Xu Wang
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Jiaqi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, People’s Republic of China
| | - Mengxue Zhang
- Department of Neurology, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yi Yang
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Shihui Lei
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Ying He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, People’s Republic of China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, People’s Republic of China
| | - Desheng Zhou
- Department of Neurology, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Chun Guo
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| |
Collapse
|
19
|
Wu Q, Jiang N, Wang Y, Song G, Li P, Fang Y, Xu L, Wang W, Xie M. Soluble epoxide hydrolase inhibitor (TPPU) alleviates ferroptosis by regulating CCL5 after intracerebral hemorrhage in mice. Biomed Pharmacother 2024; 172:116301. [PMID: 38377737 DOI: 10.1016/j.biopha.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) inhibition has been shown multiple beneficial effects against brain injuries of Intracerebral hemorrhage (ICH). However, the underlying mechanism of its neuroprotective effects after ICH has not been explained fully. Ferroptosis, a new form of iron-dependent programmed cell death, has been shown to be implicated in the secondary injuries after ICH. In this study, We examined whether sEH inhibition can alleviate brain injuries of ICH through inhibiting ferroptosis. Expression of several markers for ferroptosis was observed in the peri-hematomal brain tissues in mice after ICH. lip-1, a ferroptosis inhibitor, alleviated iron accumulation, lipid peroxidation and the secondary damages post-ICH in mice model. Intraperitoneal injection of 1-Trifluoromethoxyphenyl-3- (1-propionylpiperidin-4-yl)urea (TPPU), a highly selective sEH inhibitor, could inhibit ferroptosis and alleviate brain damages in ICH mice. Furthermore, RNA-sequencing was applied to explore the potential regulatory mechanism underlying the effects of TPPU in ferroptosis after ICH. C-C chemokine ligand 5 (CCL5) may be the key factor by which TPPU regulated ferroptosis after ICH since CCL5 antagonist could mimic the effects of TPPU and CCL5 reversed the inhibitive effect of TPPU on ferroptosis and the neuroprotective effects of TPPU on secondary damage after ICH. Taken together, these data indicate that ferroptosis is a key pathological feature of ICH and Soluble epoxide hydrolase inhibitor can exert neuroprotective effect by preventing ferroptosis after ICH.
Collapse
Affiliation(s)
- Qiao Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Na Jiang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ping Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
20
|
Wen X, Dong H, Zou W. The role of gut microorganisms and metabolites in intracerebral hemorrhagic stroke: a comprehensive review. Front Neurosci 2024; 18:1346184. [PMID: 38449739 PMCID: PMC10915040 DOI: 10.3389/fnins.2024.1346184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Intracerebral hemorrhagic stroke, characterized by acute hemorrhage in the brain, has a significant clinical prevalence and poses a substantial threat to individuals' well-being and productivity. Recent research has elucidated the role of gut microorganisms and their metabolites in influencing brain function through the microbiota-gut-brain axis (MGBA). This article provides a comprehensive review of the current literature on the common metabolites, short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), produced by gut microbiota. These metabolites have demonstrated the potential to traverse the blood-brain barrier (BBB) and directly impact brain tissue. Additionally, these compounds have the potential to modulate the parasympathetic nervous system, thereby facilitating the release of pertinent substances, impeding the buildup of inflammatory agents within the brain, and manifesting anti-inflammatory properties. Furthermore, this scholarly analysis delves into the existing dearth of investigations concerning the influence of gut microorganisms and their metabolites on cerebral functions, while also highlighting prospective avenues for future research.
Collapse
Affiliation(s)
- Xin Wen
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Hao Dong
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
21
|
Cao Y, Yao X. Acute albumin administration as therapy for intracerebral hemorrhage: A literature review. Heliyon 2024; 10:e23946. [PMID: 38192834 PMCID: PMC10772721 DOI: 10.1016/j.heliyon.2023.e23946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/05/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality. Secondary brain injury after surviving the initial ictus leads to severe neurological deficits, and has emerged as an attractive therapeutic target. Human serum albumin (HSA), a pluripotent protein synthesized mainly in the liver, has shown remarkable efficacy by targeting secondary brain injury pathways in rodent models of ICH, while results from relevant clinical research on albumin therapy remain unclear. Preclinical studies have shown albumin-mediated neuroprotection may stem from its biological functions, including its major antioxidation activity, anti-inflammatory responses, and anti-apoptosis. HSA treatment provides neuroprotective and recovery enhancement effects via improving short and long-term neurologic function, maintaining blood-brain barrier (BBB) integrity and reducing neuronal oxidative stress and apoptosis. Retrospective clinical studies have shown that admission hypoalbuminemia is a prognostic factor for poor outcomes in patients with ICH. However, clinical trial was terminated due to poor enrollment and its potential adverse effects. This review provides an overview of the physiological properties of albumin, as well as its potential neuroprotective and prognostic value and the resulting clinical implications.
Collapse
Affiliation(s)
- Yirong Cao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
22
|
Turovsky EA, Baryshev AS, Plotnikov EY. Selenium Nanoparticles in Protecting the Brain from Stroke: Possible Signaling and Metabolic Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:160. [PMID: 38251125 PMCID: PMC10818530 DOI: 10.3390/nano14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Strokes rank as the second most common cause of mortality and disability in the human population across the world. Currently, available methods of treating or preventing strokes have significant limitations, primarily the need to use high doses of drugs due to the presence of the blood-brain barrier. In the last decade, increasing attention has been paid to the capabilities of nanotechnology. However, the vast majority of research in this area is focused on the mechanisms of anticancer and antiviral effects of nanoparticles. In our opinion, not enough attention is paid to the neuroprotective mechanisms of nanomaterials. In this review, we attempted to summarize the key molecular mechanisms of brain cell damage during ischemia. We discussed the current literature regarding the use of various nanomaterials for the treatment of strokes. In this review, we examined the features of all known nanomaterials, the possibility of which are currently being studied for the treatment of strokes. In this regard, the positive and negative properties of nanomaterials for the treatment of strokes have been identified. Particular attention in the review was paid to nanoselenium since selenium is a vital microelement and is part of very important and little-studied proteins, e.g., selenoproteins and selenium-containing proteins. An analysis of modern studies of the cytoprotective effects of nanoselenium made it possible to establish the mechanisms of acute and chronic protective effects of selenium nanoparticles. In this review, we aimed to combine all the available information regarding the neuroprotective properties and mechanisms of action of nanoparticles in neurodegenerative processes, especially in cerebral ischemia.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Alexey S. Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
23
|
Chen Z, Ding W, Yang X, Lu T, Liu Y. Isoliquiritigenin, a potential therapeutic agent for treatment of inflammation-associated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117059. [PMID: 37604329 DOI: 10.1016/j.jep.2023.117059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a medicinal herb with a 2000-year history of applications in traditional Chinese medicine. Isoliquiritigenin (ISL) is a bioactive chalcone compound isolated from licorice. It has attracted increasing attention in recent years due to its excellent anti-inflammatory activity. AIM OF THE STUDY This study is to provide a comprehensive summary of the anti-inflammatory activity of ISL and the underlying molecular mechanisms, and discuss new insights for its potential clinical applications as an anti-inflammation agent. MATERIALS AND METHODS We examined literatures published in the past twenty years from PubMed, Research Gate, Web of Science, Google Scholar, and SciFinder, with single or combined key words of "isoliquiritigenin", "inflammation", and "anti-inflammatory". RESULTS ISL elicits its anti-inflammatory activity by mediating various cellular processes. It inhibits the upstream of the nuclear factor kappa B (NF-κB) pathway and activates the nuclear factor erythroid related factor 2 (Nrf2) pathway. In addition, it suppresses the NOD-like receptor protein 3 (NLRP3) pathway and restrains the mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS Current studies indicate a great therapeutical potential of ISL as a drug candidate for treatment of inflammation-associated diseases. However, the pharmacokinetics, biosafety, and bioavailability of ISL remain to be further investigated.
Collapse
Affiliation(s)
- Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tiangong Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
24
|
Tang J, Yan B, Tang Y, Zhou X, Ji Z, Xu F. Baicalein ameliorates oxidative stress and brain injury after intracerebral hemorrhage by activating the Nrf2/ARE pathway via miR-106a-5p/PHLPP2 axis. Int J Neurosci 2023; 133:1380-1393. [PMID: 35612366 DOI: 10.1080/00207454.2022.2080676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating stroke subtype. Baicalein (BAI) has been reported to be effective in ischemic stroke. The aim of the present study was to investigate the mechanism of BAI on brain injury after ICH. Firstly, ICH mouse models were established by injecting collagenase into the right of basal ganglia, followed by detection of neurobehavioral scores, brain edema, oxidative stress (OS) level, neuronal apoptosis and pathological changes. Average neurologic scores, brain water content, and blood-brain barrier permeability and MDA level in ICH mice were reduced after BAI treatment, while serum SOD and GSH-Px levels were increased and neuronal apoptosis and pathological injury of the brain tissues were mitigated. miR-106a-5p downregulation averted the effect of BAI on ICH mice. miR-106a-5p targeted PHLPP2 and PHLPP2 overexpression reversed the effect of BAI on ICH mice. BAI activated the Nrf2/ARE pathway by inhibiting PHLPP2 expression. In conclusion, BAI inhibited OS and protected against brain injury after ICH by activating the Nrf2/ARE pathway through the miR-106a-5p/PHLPP2 axis.
Collapse
Affiliation(s)
- Jilei Tang
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Bingchao Yan
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Yangyang Tang
- Department of Nursing Basic Medicine Teaching and Research Section, Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, Jiangsu, China
| | - Xin Zhou
- Xuzhou College of Industrial Technolog, Xuzhou, Jiangsu, China
| | - Ziteng Ji
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Feng Xu
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| |
Collapse
|
25
|
Wang J, Chen J. Infection with COVID-19 is a risk factor for poor prognosis in patients with intracranial hemorrhage: A prospective observational cohort study. Medicine (Baltimore) 2023; 102:e35716. [PMID: 37960736 PMCID: PMC10637543 DOI: 10.1097/md.0000000000035716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
This research aimed to explore the COVID-19 infection in the prognosis of patients with intracerebral hemorrhage (ICH), as well as analyzed the risk factors of the poor prognosis. This present prospective observational cohort study enrolled 136 patients with ICH who were admitted in our hospital during May 2020 to July 2022. The diagnosis of COVID-19 was confirmed by reverse transcriptase polymerase chain reaction. All patients were collected demographic and clinical data and were followed up for 3 months, and we used the modified Rankin scale (mRS) to assess the prognosis of ICH patients, mRS score ≥ 3 indicated a bad prognosis and mRS score ≤ 2 indicated a good prognosis. All data used SPSS 18.0 for statistical analyses. The mRS score after 3 months of patients in COVID-19 group were also remarkably elevated than that in the patients in control group (P < .05). The levels of fasting plasma glucose (FPG), D-dimer (D-D) were remarkably enhanced in the ICH patients in COVID-19 group compared to the control group (P < .05). The national institutes of health stroke scale scores, hematoma volume, the serum levels of white blood cell, FPG, D-D and the proportion of patients with diabetes were significantly higher while the Glasgow coma scale scores were significantly lower in bad prognosis group (P < .05). In addition, we found a significantly higher rate of COVID-19 infections in ICH patients with poor prognosis (P < .05). Infection of COVID-19, FPG, white blood cell, national institutes of health stroke scale, Glasgow coma scale and hematoma volume were the risk factors for poor prognosis in patients with ICH. This study showed that the proportion of patients with diabetes, the mRS score after 3 months and the levels of FPG, D-D were remarkably elevated in the ICH patients in COVID-19 group compared to the control group. This study may provide the effective preventive and treatment measures for the burden of ICH on families and society.
Collapse
Affiliation(s)
- Jia Wang
- Department of Critical Care Medicine, People’s Hospital of Dongxihu District, Wuhan, Hubei, China
| | - Jin Chen
- Department of Critical Care Medicine, People’s Hospital of Dongxihu District, Wuhan, Hubei, China
| |
Collapse
|
26
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
27
|
Yang Y, Jin Y, Zhu X, Rao Q, Zhao Z, Yang J. Hepatotoxicity evaluation and possible mechanisms of decabrominated diphenyl ethers (BDE-209) in broilers: Oxidative stress, inflammatory, and transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115460. [PMID: 37696076 DOI: 10.1016/j.ecoenv.2023.115460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Decabrominated diphenyl ether (BDE-209), a persistent organic pollutant, is linked to a great number of health problems, the most severe of which impact the liver due to its role in the elimination and degradation of exogenous harmful substances. Though the hepatotoxicity of BDE-209 has been observed, its underlying mechanism is yet unknown. The purpose of this study is to thoroughly investigate the hepatotoxicity of BDE-209 and its molecular processes in broilers by subjecting 120 male broilers to varied concentrations of BDE-209 for 42 days. We observed that the bioaccumulation of BDE-209 in the liver in a dose-dependent manner, and that BDE-209 exposure can raise the concentrations of ALT, AST, and GGT, accompanied by hepatocyte fatty degeneration and inflammatory foci. In the hepatic homogenates, oxidative stress was evidenced by elevated levels of MDA and ROS and decreased activies of SOD and CAT. Additionally, pro-inflammatory cytokines including IL-1, IL-1β, TNF-α, IL-8 levels were increased, whereas anti-inflammatory cytokine IL-4 level was declined. Furthermore, RNA sequencing revealed that genes involved in inflammation were considerably dysregulated, and real-time PCR verified the expressed alterations of numerous genes related to the MAPK and WNT signaling pathways. The protein concentrations of NF-κB, β-catenin, and WNT5A, and the phosphorylation levels of JNK and ERK were all dramatically enhanced. The current study indicates that BDE-209 exposure can cause hepatotoxicity in broilers via bioaccumulation and oxidative stress, which then activates the MAPK and WNT signaling pathways, subsequently generating inflammation and hepatic injury.
Collapse
Affiliation(s)
- Yi Yang
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuhong Jin
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qinxiong Rao
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhihui Zhao
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Junhua Yang
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
28
|
Jia Y, Ye X, Song G, Li X, Ye J, Yang Y, Lu K, Huang S, Zhu S. Direct bilirubin: A predictor of hematoma expansion after intracerebral hemorrhage. Am J Emerg Med 2023; 71:150-156. [PMID: 37393774 DOI: 10.1016/j.ajem.2023.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Previous evidence demonstrated that several biomarkers involved in the pathological process of coagulation/hemostasis dysfunction, impairment of brain vascular integrity and inflammation are associated with hematoma expansion (HE) after intracerebral hemorrhage (ICH). We aimed to explore whether there were unreported laboratory biomarkers associated with HE that were readily and commonly available in clinical practice. METHODS We retrospectively analyzed consecutive acute ICH patients from 2012 to 2020 with admission laboratory tests and baseline and follow-up computed tomography (CT) scans. Univariate and multivariate regression analyses were used to evaluate associations between conventional laboratory indicators and HE. The results were verified in a prospective validation cohort. The relationship of candidate biomarker and 3-month outcomes was also investigated and mediation analysis was undertaken to determine causal associations among candidate biomarker, HE and outcome. RESULTS Of 734 ICH patients, 163 (22.2%) presented HE. Among the included laboratory indicators, higher direct bilirubin (DBil) was associated with HE (adjusted odds ratio [OR] of per 1.0 μmol/L change 1.082; 95% confidence interval [CI] 1.011-1.158). DBil >5.65 μmol/L was a predictor of HE in validation cohort. Higher DBil was also associated with poor 3-month outcomes. The mediation analysis indicated that the association of higher DBil and poor outcomes was partially mediated by HE. CONCLUSIONS DBil is a predictor of HE and poor 3-month outcomes after ICH. DBil's metabolic process and involvement in the pathological mechanism of HE are likely to contribute to the association between DBil and HE. Interventions targeting DBil to improve post-ICH prognosis may be meaningful and worthy of further exploration.
Collapse
Affiliation(s)
- Yuchao Jia
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaodong Ye
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xianxian Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiahe Ye
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yuyan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Kai Lu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shanshan Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
29
|
Wei J, Yin J, Cui Y, Wang K, Hong M, Cui J. FERM domain containing kindlin 1 knockdown attenuates inflammation induced by intracerebral hemorrhage in rats via NLR family pyrin domain containing 3/nuclear factor kappa B pathway. Exp Anim 2023; 72:324-335. [PMID: 36740252 PMCID: PMC10435358 DOI: 10.1538/expanim.22-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is an incurable neurological disease. Microglia activation and its related inflammation contribute to ICH-associated brain damage. FERM domain containing kindlin 1 (FERMT1) is an integrin-binding protein that participates in microglia-associated inflammation, but its role in ICH is unclear. An ICH model was constructed by injecting 50 µl of autologous blood into the bregma of rats. FERMT1 siRNA was injected into the right ventricle of the rat for knockdown of FERMT1. A significant striatal hematoma was observed in ICH rats. FERMT1 knockdown reduced the water content of brain tissue, alleviated brain hematoma and improved behavioral function in ICH rats. FERMT1 knockdown reduced microglia activity, inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activity and decreased the expression of inflammatory factors including IL-1β and IL-18 in the peri-hematoma tissues. BV2 microglial cells were transfected with FERMT1 siRNA and incubated with 60 µM Hemin for 24 h. Activation of NLRP3 inflammasome induced by hemin were reduced in microglia when FERMT1 was knocked down, leading to decreased production of inflammatory factors IL-1β and IL-18. In addition, knockdown of FERMT1 prevented the activation of nuclear factor kappa B (NF-κB) signaling pathway in vivo and in vitro. Our findings suggested that down-regulation of FERMT1 attenuated microglial inflammation and brain damage induced by ICH via NLRP3/NF-κB pathway. FERMT1 is a key regulator of inflammatory damage in rats after ICH.
Collapse
Affiliation(s)
- Jianqiang Wei
- Department of Surgery, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, Hebei, P.R. China
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Jing Yin
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Ying Cui
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Kaijie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Mingyan Hong
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, Hebei, P.R. China
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| |
Collapse
|
30
|
Lv D, Guo Y, Li X, Zhang L. Increased transferase ratio is associated with adverse cardio-cerebral events in patients with unstable angina: A retrospective cohort study. Medicine (Baltimore) 2023; 102:e34563. [PMID: 37543773 PMCID: PMC10402974 DOI: 10.1097/md.0000000000034563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2023] Open
Abstract
To investigate the prognostic role of the elevated aspartate and alanine aminotransferase (AST/ALT) ratio in patients with unstable angina (UA). In this observational study, all patients with UA undergoing percutaneous coronary intervention at our center from January 2019 to December 2020 were examined. Clinical presentations, laboratory parameters, and procedural characteristics were collected. The primary endpoint was a composite of major adverse cardio-cerebral events (MACCE), such as death, nonfatal myocardial infarction, nonfatal stroke, and target vessel revascularization. In total, 1123 eligible UA patients were enrolled in the present study (mean age 62.3 years; 54.5% of male). Patients in the upper tertile of the AST/ALT ratio were older, had more extensive coronary stenosis, and had poor nutritional status (P < .05). Meanwhile, the cumulative incidence of MACCE at 13 months of follow-up increased in a stepwise manner and across the tertile of the AST/ALT ratio, predominantly driven by target vessel revascularization (both log-rank P < .001). Importantly, the AST/ALT ratio was associated with MACCE in a multivariate analysis that was adjusted for potential covariates (hazard ratio 1.72, 95% confidence interval 1.48-1.99, P < .01). The optimal cutoff point of the AST/ALT ratio to predict MACCE was 1.29 (area under the curve 0.77, 95% confidence interval 0.69-0.84, P < .001), with sensitivity and specificity of 77.5% and 65.1%, respectively. The increased AST/ALT ratio, especially when above 1.29, is associated with MACCE in patients with UA undergoing percutaneous coronary intervention.
Collapse
Affiliation(s)
- Dong Lv
- Department of Cardiology, Beijing Renhe Hospital, Beijing, China
| | - Yanfu Guo
- Graduate school of Jiamusi University, Heilongjiang, China
- Department of Cardiology, Hegang People's Hospital, Heilongjiang, China
| | - Xia Li
- Department of Cardiology, Beijing Renhe Hospital, Beijing, China
| | - Li Zhang
- Jiamusi University, Heilongjiang, China
- The Central Hospital of Jiamusi City, Heilongjiang, China
| |
Collapse
|
31
|
Pham TTM, Duong TV, Nguyen LTK, Vu MT, Pham KM, Nguyen MH, Luong TC, Do BN, Le LTH, Dang NH, Nguyen TTP, Le HP, Tran CQ, Nguyen KT, Hu CJ, Chan CC, Hsu HC, Bai CH. Association between Hypertension and Stroke Recurrence as Modified by Pro-oxidant-Antioxidant Balance: A Multi-Center Study. Nutrients 2023; 15:nu15102305. [PMID: 37242188 DOI: 10.3390/nu15102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Hypertension and oxidative stress are involved in the pathophysiological mechanism of stroke. We aimed to investigate the modification impact of the pro-oxidant-anti-oxidant balance (PAB) on the association between hypertension and stroke recurrence (SR). METHODS A cross-sectional design was conducted from December 2019 to December 2020 in 951 stroke patients in six hospitals across Vietnam. Hypertension was defined using antihypertensive medication or systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg. PAB was estimated using weighting methods based on smoking, drinking, and overweight/obesity with pro-oxidant capacity, diet quality, fruit intake, vegetable intake, and physical activity with antioxidant capacity. The higher PAB scores indicated a beneficial balance shifting toward antioxidant dominance. SR was diagnosed by neurologists. Moreover, sociodemographic and health conditions were included as covariates. Multiple logistic regression analyses were used to explore the associations and interactions. RESULTS The hypertension and SR proportions were 72.8% and 17.5%, respectively. hypertension was associated with an increased SR likelihood (odds ratio (OR) = 1.93; p = 0.004), whereas a higher PAB score was associated with a lowered SR likelihood (OR = 0.87; p = 0.003). Moreover, hypertension interacting with every one-point increment of PAB was associated with a lowered SR likelihood (OR = 0.83; p = 0.022). CONCLUSIONS The harmful impact of hypertension on SR could be alleviated by PAB. The interplay of health behaviors should be highlighted in the intervention strategies for stroke prevention.
Collapse
Affiliation(s)
- Thu T M Pham
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110-31, Taiwan
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong 042-12, Vietnam
| | - Tuyen Van Duong
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110-31, Taiwan
| | - Lien T K Nguyen
- Rehabilitation Department, Hanoi Medical University, Hanoi 115-20, Vietnam
- Rehabilitation Center, Bach Mai Hospital, Hanoi 115-19, Vietnam
- Rehabilitation Department, Viet Duc University Hospital, Hanoi 110-17, Vietnam
| | - Manh-Tan Vu
- Department of Internal Medicine, Haiphong University of Medicine and Pharmacy, Hai Phong 042-12, Vietnam
- Cardiovascular Department, Viet Tiep Friendship Hospital, Hai Phong 047-08, Vietnam
| | - Khue M Pham
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong 042-12, Vietnam
- President Office, Hai Phong University of Medicine and Pharmacy, Hai Phong 042-12, Vietnam
| | - Minh H Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi 121-08, Vietnam
| | - Thuc C Luong
- Director Office, Military Hospital 103, Hanoi 121-08, Vietnam
- Department of Cardiology, Cardiovascular Center, Military Hospital 103, Hanoi 121-08, Vietnam
| | - Binh N Do
- Department of Infectious Diseases, Vietnam Military Medical University, Hanoi 121-08, Vietnam
- Division of Military Science, Military Hospital 103, Hanoi 121-08, Vietnam
| | - Lan T H Le
- Training and Direction of Healthcare Activity Center, Thai Nguyen National Hospital, Thai Nguyen City 241-24, Vietnam
- Biochemistry Department, Thai Nguyen National Hospital, Thai Nguyen City 241-24, Vietnam
- Director Office, Thai Nguyen National Hospital, Thai Nguyen City 241-24, Vietnam
| | - Nga H Dang
- Training and Direction of Healthcare Activity Center, Thai Nguyen National Hospital, Thai Nguyen City 241-24, Vietnam
- Department of Quality Control, Thai Nguyen National Hospital, Thai Nguyen City 241-24, Vietnam
| | - Thao T P Nguyen
- Institute for Community Health Research, University of Medicine and Pharmacy, Hue University, Hue 491-20, Vietnam
| | - Hoang P Le
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue 491-20, Vietnam
| | - Cuong Q Tran
- Director Office, Thu Duc City Health Center, Ho Chi Minh City 713-10, Vietnam
- Faculty of Health, Mekong University, Vinh Long 852-16, Vietnam
| | - Kien T Nguyen
- Department of Health Promotion, Faculty of Social and Behavioral Sciences, Hanoi University of Public Health, Hanoi 119-10, Vietnam
| | - Chaur-Jong Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan
- Department of Neurology, Taipei Medical University Shuang Ho Hospital, New Taipei City 235-61, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100-55, Taiwan
- Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Taipei 100-55, Taiwan
- Global Health Program, College of Public Health, National Taiwan University, Taipei 100-55, Taiwan
| | - Hui-Chuan Hsu
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110-31, Taiwan
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110-31, Taiwan
| |
Collapse
|
32
|
Karaaslan F, Demir F, Yılmaz R, Akıl E. Total oxidant/antioxidant status, copper and zinc levels in acute ischemic stroke patients after mechanical thrombectomy. Clin Neurol Neurosurg 2023; 229:107718. [PMID: 37121029 DOI: 10.1016/j.clineuro.2023.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND PURPOSE We aimed to identify the relationship of total antioxidant status, total oxidant status, and copper (Cu) and zinc (Zn) situations with the short-term prognostic and stroke severity in acute ischemic stroke cases who were successfully recanalized by mechanical thrombectomy. METHODS A study of 36 acute ischemic stroke patients and 22 controls were prospectively studied. Tube samples were attained at admission and 24 h after recanalization. In patients who were successfully recanalized (thrombolysis in cerebral infarction ≥ 2b), a 3-month modified Rankin scale (mRS) score of 0-2 was considered a good prognosis, and a score of 3-6 was considered a poor prognosis. RESULTS Admission Cu levels were significantly higher in the poor prognosis group (p = 0.031). In the multivariate logistic regression analysis, Cu was not associated with poor prognosis (p = 0.357). Cu and Zn levels were lower in the patients group compared to controls (p = 0.014 and p = 0.010, respectively). There was no correlation between National Institute of Health Stroke Scale and biomarkers (p > 0.05). The temporal variation of biomarkers did not differ significantly between the good prognosis and poor prognosis groups (p interaction > 0.05). CONCLUSIONS High admission Cu levels were associated with poor prognosis, but this association was limited. In addition, Cu and Zn levels were statistically lower in patients. There was no relationship between total antioxidant/oxidant status and short-term prognosis or stroke severity.
Collapse
Affiliation(s)
- Fırat Karaaslan
- Department of Neurology, Diyarbakır Dağkapı State Hospital, Diyarbakır, Turkey.
| | - Fidel Demir
- Department of Neurology, Silopi State Hospital, Şırnak, Turkey
| | - Reşit Yılmaz
- Department of Neurology, Gazi Yaşargil Training and Research Hospital, Diyarbakir, Turkey
| | - Eşref Akıl
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
33
|
Xiao Y, Zhang Y, Wang C, Ge Y, Gao J, Huang T. The use of multiple datasets to identify autophagy-related molecular mechanisms in intracerebral hemorrhage. Front Genet 2023; 14:1032639. [PMID: 37077541 PMCID: PMC10106621 DOI: 10.3389/fgene.2023.1032639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Intracerebral hemorrhage (ICH) is a stroke syndrome with high mortality and disability rates, but autophagy’s mechanism in ICH is still unclear. We identified key autophagy genes in ICH by bioinformatics methods and explored their mechanisms.Methods: We downloaded ICH patient chip data from the Gene Expression Omnibus (GEO) database. Based on the GENE database, differentially expressed genes (DEGs) for autophagy were identified. We identified key genes through protein–protein interaction (PPI) network analysis and analyzed their associated pathways in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene-motif rankings, miRWalk and ENCORI databases were used to analyze the key gene transcription factor (TF) regulatory network and ceRNA network. Finally, relevant target pathways were obtained by gene set enrichment analysis (GSEA).Results: Eleven autophagy-related DEGs in ICH were obtained, and IL-1B, STAT3, NLRP3 and NOD2 were identified as key genes with clinical predictive value by PPI and receiver operating characteristic (ROC) curve analysis. The candidate gene expression level was significantly correlated with the immune infiltration level, and most of the key genes were positively correlated with the immune cell infiltration level. The key genes are mainly related to cytokine and receptor interactions, immune responses and other pathways. The ceRNA network predicted 8,654 interaction pairs (24 miRNAs and 2,952 lncRNAs).Conclusion: We used multiple bioinformatics datasets to identify IL-1B, STAT3, NLRP3 and NOD2 as key genes that contribute to the development of ICH.
Collapse
Affiliation(s)
- Yinggang Xiao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Cunjin Wang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Yali Ge
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Ju Gao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
- *Correspondence: Ju Gao, ; Tianfeng Huang,
| | - Tianfeng Huang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
- *Correspondence: Ju Gao, ; Tianfeng Huang,
| |
Collapse
|
34
|
Khalil S, Kanapathipillai M. Exosome-Coated tPA/Catalase Nanoformulation for Thrombolytic Therapy. Bioengineering (Basel) 2023; 10:bioengineering10020177. [PMID: 36829671 PMCID: PMC9952084 DOI: 10.3390/bioengineering10020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Current tissue plasminogen-based therapeutic strategies for stroke suffer from systemic side effects and poor efficacy. Hence, novel drug delivery methods are needed to overcome these shortcomings. Exosome-based drug formulations have been shown to have superior therapeutic outcomes compared to conventional systemic drug delivery approaches. In this paper, we report exosome surface-coated tissue plasminogen activator (tPA)/catalase nanoformulations with improved thrombolytic efficacy compared to free tPA, which also reduce side effects. The results showed that the tPA exosome formulations retained tPA activity, improved tPA stability, exhibited significant fibrinolysis, and showed no significant toxicity effects. Further, when combined with antioxidant enzyme catalase, the formulation was able to inhibit hydrogen peroxide-mediated oxidative stress and toxicity. Hence, exosome-based tPA/catalase nanoformulations could have the potential to offer a safer and effective thrombolytic therapy.
Collapse
|
35
|
Sullivan MN, Thakore P, Krishnan V, Alphonsa S, Li W, Feng Earley Y, Earley S. Endothelial cell TRPA1 activity exacerbates cerebral hemorrhage during severe hypertension. Front Mol Biosci 2023; 10:1129435. [PMID: 36793787 PMCID: PMC9922848 DOI: 10.3389/fmolb.2023.1129435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction: Hypoxia-induced dilation of cerebral arteries orchestrated by Ca2+-permeable transient receptor potential ankyrin 1 (TRPA1) cation channels on endothelial cells is neuroprotective during ischemic stroke, but it is unknown if the channel has a similar impact during hemorrhagic stroke. TRPA1 channels are endogenously activated by lipid peroxide metabolites generated by reactive oxygen species (ROS). Uncontrolled hypertension, a primary risk factor for the development of hemorrhagic stroke, is associated with increased ROS production and oxidative stress. Therefore, we hypothesized that TRPA1 channel activity is increased during hemorrhagic stroke. Methods: Severe, chronic hypertension was induced in control (Trpa1 fl/fl) and endothelial cell-specific TRPA1 knockout (Trpa1-ecKO) mice using a combination of chronic angiotensin II administration, a high-salt diet, and the addition of a nitric oxide synthase inhibitor to drinking water. Blood pressure was measured in awake, freely-moving mice using surgically placed radiotelemetry transmitters. TRPA1-dependent cerebral artery dilation was evaluated with pressure myography, and expression of TRPA1 and NADPH oxidase (NOX) isoforms in arteries from both groups was determined using PCR and Western blotting techniques. In addition, ROS generation capacity was evaluated using a lucigenin assay. Histology was performed to examine intracerebral hemorrhage lesion size and location. Results: All animals became hypertensive, and a majority developed intracerebral hemorrhages or died of unknown causes. Baseline blood pressure and responses to the hypertensive stimulus did not differ between groups. Expression of TRPA1 in cerebral arteries from control mice was not altered after 28 days of treatment, but expression of three NOX isoforms and the capacity for ROS generation was increased in hypertensive animals. NOX-dependent activation of TRPA1 channels dilated cerebral arteries from hypertensive animals to a greater extent compared with controls. The number of intracerebral hemorrhage lesions in hypertensive animals did not differ between control and Trpa1-ecKO animals but were significantly smaller in Trpa1-ecKO mice. Morbidity and mortality did not differ between groups. Discussion: We conclude that endothelial cell TRPA1 channel activity increases cerebral blood flow during hypertension resulting in increased extravasation of blood during intracerebral hemorrhage events; however, this effect does not impact overall survival. Our data suggest that blocking TRPA1 channels may not be helpful for treating hypertension-associated hemorrhagic stroke in a clinical setting.
Collapse
Affiliation(s)
- Michelle N. Sullivan
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Vivek Krishnan
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Sushma Alphonsa
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Wencheng Li
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Yumei Feng Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
36
|
Fu K, Xu W, Lenahan C, Mo Y, Wen J, Deng T, Huang Q, Guo F, Mo L, Yan J. Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? Front Cell Neurosci 2023; 16:1036313. [PMID: 36726453 PMCID: PMC9884704 DOI: 10.3389/fncel.2022.1036313] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is the second-largest stroke subtype and has a high mortality and disability rate. Secondary brain injury (SBI) is delayed after ICH. The main contributors to SBI are inflammation, oxidative stress, and excitotoxicity. Harmful substances from blood and hemolysis, such as hemoglobin, thrombin, and iron, induce SBI. When cells suffer stress, a critical protective mechanism called "autophagy" help to maintain the homeostasis of damaged cells, remove harmful substances or damaged organelles, and recycle them. Autophagy plays a critical role in the pathology of ICH, and its function remains controversial. Several lines of evidence demonstrate a pro-survival role for autophagy in ICH by facilitating the removal of damaged proteins and organelles. However, many studies have found that heme and iron can aggravate SBI by enhancing autophagy. Autophagy and inflammation are essential culprits in the progression of brain injury. It is a fascinating hypothesis that autophagy regulates inflammation in ICH-induced SBI. Autophagy could degrade and clear pro-IL-1β and apoptosis-associated speck-like protein containing a CARD (ASC) to antagonize NLRP3-mediated inflammation. In addition, mitophagy can remove endogenous activators of inflammasomes, such as reactive oxygen species (ROS), inflammatory components, and cytokines, in damaged mitochondria. However, many studies support the idea that autophagy activates microglia and aggravates microglial inflammation via the toll-like receptor 4 (TLR4) pathway. In addition, autophagy can promote ICH-induced SBI through inflammasome-dependent NLRP6-mediated inflammation. Moreover, some resident cells in the brain are involved in autophagy in regulating inflammation after ICH. Some compounds or therapeutic targets that regulate inflammation by autophagy may represent promising candidates for the treatment of ICH-induced SBI. In conclusion, the mutual regulation of autophagy and inflammation in ICH is worth exploring. The control of inflammation by autophagy will hopefully prove to be an essential treatment target for ICH.
Collapse
Affiliation(s)
- Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,Ligen Mo,
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,*Correspondence: Jun Yan,
| |
Collapse
|
37
|
Lai JHC, Liu J, Yang T, Huang J, Liu Y, Chen Z, Lee Y, Leung GKK, Chan KWY. Chemical Exchange Saturation Transfer Magnetic Resonance Imaging for Longitudinal Assessment of Intracerebral Hemorrhage and Deferoxamine Treatment at 3T in a Mouse Model. Stroke 2023; 54:255-264. [PMID: 36416125 DOI: 10.1161/strokeaha.122.040830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Noninvasive imaging of molecular alterations after intracerebral hemorrhage (ICH) could provide valuable information to guide and monitor treatments. Chemical exchange saturation transfer (CEST) magnetic resonance imaging has demonstrated promises in identifying proliferation, necrosis, and changes in cellularity in brain tumors. Here, we applied CEST magnetic resonance imaging to monitor molecular changes in hematoma without and with treatment noninvasively over 2 weeks at 3T using endogenous contrast. METHODS CEST contrast related to proteins at 3.5 ppm (amide proton transfer) and proteins/lipids at -3.5 ppm (relayed nuclear overhauser effect [rNOE]) were examined over 14 days in a collagenase-induced ICH mouse model. Imaging findings were validated with immunohistochemistry based on the ICH neuropathology. We also examined iron-containing phantoms that mimicked iron concentrations in hematoma to ensure the iron will not attenuate the CEST contrast during disease progression. Based on the validity of the CEST contrast of hematoma, we further examined related molecular alterations under iron-chelation treatment with deferoxamine. RESULTS We observed the temporal and spatial differences of CEST contrasts between rNOE at -3.5 ppm and amide proton transfer at 3.5 ppm, in which the core and perihematoma could be identified by rNOE on day 3 and day 14, and amide proton transfer on day 1, day 7, and day 14. Moreover, we observed a 25.7% significant reduction (P<0.05) of rNOE contrast after deferoxamine treatment to the ICH mice on day 3, which was not observable in amide proton transfer contrast. Our histology data indicated that rNOE primarily correlated with the myelin pathology, and amide proton transfer could reflect the cellularity increase at hematoma up to day 7. CONCLUSIONS Significant rNOE changes correlated well with histologic findings, especially myelin lipids, and regional characteristics in hematoma indicate the uniqueness of CEST magnetic resonance imaging in monitoring molecular changes during ICH and treatment.
Collapse
Affiliation(s)
- Joseph H C Lai
- Department of Biomedical Engineering (J.H.C.L., J.H., Y. Liu, Z.C., K.W.Y.C.), City University of Hong Kong
| | - Jiaxin Liu
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong (J.L., T.Y., Y. Liu)
| | - Tian Yang
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong (J.L., T.Y., Y. Liu)
| | - Jianpan Huang
- Department of Biomedical Engineering (J.H.C.L., J.H., Y. Liu, Z.C., K.W.Y.C.), City University of Hong Kong
| | - Yang Liu
- Department of Biomedical Engineering (J.H.C.L., J.H., Y. Liu, Z.C., K.W.Y.C.), City University of Hong Kong.,Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong (J.L., T.Y., Y. Liu)
| | - Zilin Chen
- Department of Biomedical Engineering (J.H.C.L., J.H., Y. Liu, Z.C., K.W.Y.C.), City University of Hong Kong
| | - Youngjin Lee
- Department of Neuroscience (Y. Lee), City University of Hong Kong
| | | | - Kannie W Y Chan
- Department of Biomedical Engineering (J.H.C.L., J.H., Y. Liu, Z.C., K.W.Y.C.), City University of Hong Kong.,Tung Biomedical Sciences Centre (K.W.Y.C.), City University of Hong Kong.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD (K.W.Y.C.).,City University of Hong Kong Shenzhen Research Institute, China (K.W.Y.C.).,Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (K.W.Y.C.)
| |
Collapse
|
38
|
Deng X, Yang J, Qing R, Yuan H, Yue P, Tian S. Suppressive role of lovastatin in intracerebral hemorrhage through repression of autophagy. Metab Brain Dis 2023; 38:361-372. [PMID: 36306000 DOI: 10.1007/s11011-022-01101-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/08/2022] [Indexed: 02/03/2023]
Abstract
Statins possess critical function in the brain. Here, we intended to investigate the role of lovastatin in brain damage after intracerebral hemorrhage (ICH). A collagenase-induced ICH rat model was established followed by lovastatin treatment. Then, the effect of lovastatin on ICH-induced brain damage was explored with cognitive function, learning and memory abilities, and neurological damage of rats analyzed. Besides, brain water content, number of degenerate neurons, Nissl's body, and apoptosis of neurons were detected. Oxidative stress levels, inflammation, and autophagy levels in ICH were measured after treatment of lovastatin. Lovastatin improved the cognitive impairment of rats, enhanced their spatial learning and memory abilities, reduced nervous system damage, lesion area, and brain water content after ICH. Lovastatin was capable of reducing the number of degenerated neurons, the apoptosis level, autophagy level, and increasing the number of Nissl's body. Lovastatin inhibited the oxidative stress response and inflammatory factors in the brain tissue after ICH, and increased the expression of anti-inflammatory factor IL-10. Lovastatin inhibited AMPK/mTOR signaling pathway after ICH. Our study highlighted the suppressive role of lovastatin in ICH-induced brain damage.
Collapse
Affiliation(s)
- Xiong Deng
- Department of Neurosurgery, the First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang, Hunan, 422001, People's Republic of China
| | - Jinmei Yang
- Department of Nursing, the First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, 422001, People's Republic of China
| | - Ruqi Qing
- Department of Neurosurgery, the First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang, Hunan, 422001, People's Republic of China
| | - Heying Yuan
- Health Management Center, the First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, 422001, People's Republic of China
| | - Pinhua Yue
- Department of Neurosurgery, the First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang, Hunan, 422001, People's Republic of China
| | - Song Tian
- Department of Neurosurgery, the First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang, Hunan, 422001, People's Republic of China.
| |
Collapse
|
39
|
Xu Y, Li K, Zhao Y, Zhou L, Liu Y, Zhao J. Role of Ferroptosis in Stroke. Cell Mol Neurobiol 2023; 43:205-222. [PMID: 35102454 DOI: 10.1007/s10571-022-01196-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
Stroke is a common and serious nervous system disease caused by the rupture or blockage of the cardiovascular system. It causes millions of deaths and disabilities every year, which is a huge burden on humanity. It may be induced by thrombosis, hypertension, hyperlipidemia, hyperglycemia, smoking, advanced age and so on. According to different causes, stroke can be generally divided into hemorrhagic stroke and ischemic stroke, whose pathogenesis and treatment are quite different. Ferroptosis is a new type of cell death first defined in 2012, which is characterized by non-apoptotic, iron-dependent, and over-accumulated lipid peroxides. Excess lipid reactive oxygen species produced during ferroptosis eventually leads to oxidative cell death. Ferroptosis has been shown to occur and play an important role in tumors, neurological diseases, kidney injury, and ischemia-reperfusion injury. Ferroptosis is also closely related to the pathogenesis of stroke. Moreover, scientists have successfully intervened in the process of stroke in animal models by regulating ferroptosis, indicating that ferroptosis is a new potential target for the treatment of stroke. This paper systematically summarizes the involvement and role of ferroptosis in the pathogenesis of stroke and predicts the potential of ferroptosis in the treatment of stroke. Ferroptosis in stroke. Stroke induces iron overload and lipid metabolism disorders. Elevated iron catalyzes lipid peroxidation and eventually triggers ferroptosis. Conversely, the GSH/GPX4 pathway, as well as CoQ10, Fer-1, and Lip-1, inhibits lipid peroxidation and, thus, alleviates ferroptosis. GSH glutathione; GPX4 glutathione peroxidase 4; CoQ10 coenzyme Q10; Lip-1 liproxstatin-1; Fer-1 ferostatin-1.
Collapse
Affiliation(s)
- Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China. .,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China. .,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China.
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
40
|
Xiao L, Wang M, Shi Y, Xu Y, Gao Y, Zhang W, Wu Y, Deng H, Pan W, Wang W, Sun H. Secondary White Matter Injury Mediated by Neuroinflammation after Intracerebral Hemorrhage and Promising Therapeutic Strategies of Targeting the NLRP3 Inflammasome. Curr Neuropharmacol 2023; 21:669-686. [PMID: 36043798 PMCID: PMC10207923 DOI: 10.2174/1570159x20666220830115018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a neurological disease with high mortality and disability. Recent studies showed that white matter injury (WMI) plays an important role in motor dysfunction after ICH. WMI includes WMI proximal to the lesion and WMI distal to the lesion, such as corticospinal tract injury located at the cervical enlargement of the spinal cord after ICH. Previous studies have tended to focus only on gray matter (GM) injury after ICH, and fewer studies have paid attention to WMI, which may be one of the reasons for the poor outcome of previous drug treatments. Microglia and astrocyte-mediated neuroinflammation are significant mechanisms responsible for secondary WMI following ICH. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation, has been shown to exacerbate neuroinflammation and brain injury after ICH. Moreover, NLRP3 inflammasome is activated in microglia and astrocytes and exerts a vital role in microglia and astrocytes-mediated neuroinflammation. We speculate that NLRP3 inflammasome activation is closely related to the polarization of microglia and astrocytes and that NLRP3 inflammasome activation may exacerbate WMI by polarizing microglia and astrocytes to the pro-inflammatory phenotype after ICH, while NLRP3 inflammasome inhibition may attenuate WMI by polarizing microglia and astrocytes to the anti-inflammatory phenotype following ICH. Therefore, NLRP3 inflammasome may act as leveraged regulatory fulcrums for microglia and astrocytes polarization to modulate WMI and WM repair after ICH. This review summarized the possible mechanisms by which neuroinflammation mediated by NLRP3 inflammasome exacerbates secondary WMI after ICH and discussed the potential therapeutic targets.
Collapse
Affiliation(s)
- Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yifeng Shi
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yangyang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Haitao Sun
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
41
|
CHAC1 exacerbates LPS-induced ferroptosis and apoptosis in HK-2 cells by promoting oxidative stress. Allergol Immunopathol (Madr) 2023; 51:99-110. [PMID: 36916093 DOI: 10.15586/aei.v51i2.760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/16/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (AKI) is a singularly grievous and life-threatening syndrome. Its pathogenesis is closely related to inflammatory response, apoptosis, oxidative stress, and ferroptosis. Cation transport regulator-like protein 1 (CHAC1), as a proapoptic factor, may be involved in apoptosis, oxidative stress, and ferroptosis. This study aimed to explore the role of CHAC1 in the lipopolysaccharide (LPS)-induced the human renal proximal tubular epithelial (HK-2) cells. METHODS HK-2 cells were challenged with LPS to construct a model of sepsis-induced AKI in vitro. The role of CHAC1 in the LPS-induced HK-2 cells was explored using Western blot assay, cell counting kit-8 (CCK-8), flow cytometry, and colorimetric assays. Additionally, N-acetyl cysteine (NAC) was incubated with HK-2 cells to define deeply the relation between oxidative stress and apoptosis or ferroptosis. RESULTS The expression of CHAC1 was enhanced in the kidney tissues of mice with sepsis--induced multiple organ dysfunction syndrome (MODS), through the Gene Expression Omnibus database (GSE60088 microarray dataset), and in the LPS-induced HK-2 cells. The cell viability was significantly reduced by LPS treatment, which was at least partly restored by the transfection of siCHAC1#1 and siCHAC1#2 but not siNC. In addition, down-regulation of CHAC1 counteracted the LPS-induced reactive oxygen species level and malonaldehyde concentrations while restored the LPS-induced glutathione concentrations. Meanwhile, interference of CHAC1 neutralized LPS-induced apoptosis rate, and the relative level of cleaved poly(ADP-ribose) polymerase (PARP)/PARP, and cleaved caspase-3/caspase-3. In addition, silencing of CHAC1 recovered the LPS-induced enhanced protein level of glutathione peroxidase 4 (GPx4) whereas antagonized the LPS-induced relative protein level of ACSL4 and that of iron. Moreover, application of NAC inverted the effect of CHAC1 on apoptosis and ferroptosis in HK-2 cells. CONCLUSION CHAC1 exacerbated ferroptosis and apoptosis by enhancing oxidative stress in LPS-induced HK-2 cells.
Collapse
|
42
|
Ren R, Fang Y, Sherchan P, Lu Q, Lenahan C, Zhang JH, Zhang J, Tang J. Kynurenine/Aryl Hydrocarbon Receptor Modulates Mitochondria-Mediated Oxidative Stress and Neuronal Apoptosis in Experimental Intracerebral Hemorrhage. Antioxid Redox Signal 2022; 37:1111-1129. [PMID: 35481813 PMCID: PMC9784632 DOI: 10.1089/ars.2021.0215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/30/2022]
Abstract
Aims: Oxidative stress and neuronal apoptosis play crucial roles in the pathological processes of secondary injury after intracerebral hemorrhage (ICH). Aryl hydrocarbon receptor (AHR), together with its endogenous ligand kynurenine, is known to mediate free radical accumulation and neuronal excitotoxicity in central nervous systems. Herein, we investigate the pathological roles of kynurenine/AHR after ICH. Results: Endogenous AHR knockout alleviated reactive oxygen species accumulation and neuronal apoptosis in ipsilateral hemisphere at 48 h after ICH in mice. The ICH insult resulted in an increase of total and nucleus AHR protein levels and AHR transcriptional activity. Inhibition of AHR provided both short- and long- term neurological benefits by attenuating mitochondria-mediated oxidative stress and neuronal apoptosis after ICH in mice. RhoA-Bax signaling activated mitochondrial death pathway and participated in deleterious actions of AHR. Finally, we reported that exogenous kynurenine aggravated AHR activation and mediated the brain mentioned earlier. Male animals were used in the experiments. Innovation: We show for the first time that kynurenine/AHR mediates mitochondria death and free radical accumulation, at least partially via the RhoA/Bax signaling pathway. Pharmacological antagonists of AHR and kynurenine may ameliorate neurobehavioral function and improve the prognosis of patients with ICH. Conclusion: Kynurenine/AHR may serve as a potential therapeutic target to attenuate mitochondria-mediated oxidative stress and neuronal cells impairment in patients with ICH. Antioxid. Redox Signal. 37, 1111-1129.
Collapse
Affiliation(s)
- Reng Ren
- Department of Neurointensive Care Unit and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
- Department of Neurosurgery, and Loma Linda University School of Medicine, Loma Linda, California, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jianmin Zhang
- Department of Neurointensive Care Unit and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
43
|
Li Z, Khan S, Liu Y, Wei R, Yong VW, Xue M. Therapeutic strategies for intracerebral hemorrhage. Front Neurol 2022; 13:1032343. [PMID: 36408517 PMCID: PMC9672341 DOI: 10.3389/fneur.2022.1032343] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 09/03/2023] Open
Abstract
Stroke is the second highest cause of death globally, with an increasing incidence in developing countries. Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes. ICH is associated with poor neurological outcomes and high mortality due to the combination of primary and secondary injury. Fortunately, experimental therapies are available that may improve functional outcomes in patients with ICH. These therapies targeting secondary brain injury have attracted substantial attention in their translational potential. Here, we summarize recent advances in therapeutic strategies and directions for ICH and discuss the barriers and issues that need to be overcome to improve ICH prognosis.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V. Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| |
Collapse
|
44
|
Zhou Y, Jiang H, Wei H, Liu L, Zhou C, Ji X. Venous stroke–a stroke subtype that should not be ignored. Front Neurol 2022; 13:1019671. [PMID: 36277910 PMCID: PMC9582250 DOI: 10.3389/fneur.2022.1019671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the etiology, stroke can be classified into ischemic or hemorrhagic subtypes, which ranks second among the leading causes of death. Stroke is caused not only by arterial thrombosis but also by cerebral venous thrombosis. Arterial stroke is currently the main subtype of stroke, and research on this type has gradually improved. Venous thrombosis, the particular type, accounts for 0.5–1% of all strokes. Due to the lack of a full understanding of venous thrombosis, as well as its diverse clinical manifestations and neuroimaging features, there are often delays in admission for it, and it is easy to misdiagnose. The purpose of this study was to review the pathophysiology mechanisms and clinical features of arterial and venous thrombosis and to provide guidance for further research on the pathophysiological mechanism, clinical diagnosis, and treatment of venous thrombosis. This review summarizes the pathophysiological mechanisms, etiology, epidemiology, symptomatology, diagnosis, and treatment heterogeneity of venous thrombosis and compares it with arterial stroke. The aim is to provide a reference for a comprehensive understanding of venous thrombosis and a scientific understanding of various pathophysiological mechanisms and clinical features related to venous thrombosis, which will contribute to understanding the pathogenesis of intravenous stroke and provide insight into diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Yifan Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Huimin Jiang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Huimin Wei
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Lu Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Chen Zhou
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xunming Ji
| |
Collapse
|
45
|
Wang D, Ousaka D, Qiao H, Wang Z, Zhao K, Gao S, Liu K, Teshigawara K, Takada K, Nishibori M. Treatment of Marmoset Intracerebral Hemorrhage with Humanized Anti-HMGB1 mAb. Cells 2022; 11:cells11192970. [PMID: 36230933 PMCID: PMC9563572 DOI: 10.3390/cells11192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is recognized as a severe clinical problem lacking effective treatment. High mobility group box-1 (HMGB1) exhibits inflammatory cytokine-like activity once released into the extracellular space from the nuclei. We previously demonstrated that intravenous injection of rat anti-HMGB1 monoclonal antibody (mAb) remarkably ameliorated brain injury in a rat ICH model. Therefore, we developed a humanized anti-HMGB1 mAb (OKY001) for clinical use. The present study examined whether and how the humanized anti-HMGB1 mAb ameliorates ICH injury in common marmosets. The results show that administration of humanized anti-HMGB1 mAb inhibited HMGB1 release from the brain into plasma, in association with a decrease of 4-hydroxynonenal (4-HNE) accumulation and a decrease in cerebral iron deposition. In addition, humanized anti-HMGB1 mAb treatment resulted in a reduction in brain injury volume at 12 d after ICH induction. Our in vitro experiment showed that recombinant HMGB1 inhibited hemoglobin uptake by macrophages through CD163 in the presence of haptoglobin, suggesting that the release of excess HMGB1 from the brain may induce a delay in hemoglobin scavenging, thereby allowing the toxic effects of hemoglobin, heme, and Fe2+ to persist. Finally, humanized anti-HMGB1 mAb reduced body weight loss and improved behavioral performance after ICH. Taken together, these results suggest that intravenous injection of humanized anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Dengli Wang
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Daiki Ousaka
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Handong Qiao
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Ziyi Wang
- Research Fellow of Japan Society for the Promotion of Science, Tokyo 1020083, Japan
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kun Zhao
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Shangze Gao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Keyue Liu
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kenzo Takada
- Sapporo Laboratory, EVEC, Inc., Sapporo 0606642, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
- Correspondence:
| |
Collapse
|
46
|
Krakovski MA, Arora N, Jain S, Glover J, Dombrowski K, Hernandez B, Yadav H, Sarma AK. Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Front Neurosci 2022; 16:1002266. [PMID: 36188471 PMCID: PMC9523267 DOI: 10.3389/fnins.2022.1002266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, appreciation for the gut microbiome and its relationship to human health has emerged as a facilitator of maintaining healthy physiology and a contributor to numerous human diseases. The contribution of the microbiome in modulating the gut-brain axis has gained significant attention in recent years, extensively studied in chronic brain injuries such as Epilepsy and Alzheimer’s Disease. Furthermore, there is growing evidence that gut microbiome also contributes to acute brain injuries like stroke(s) and traumatic brain injury. Microbiome-gut-brain communications are bidirectional and involve metabolite production and modulation of immune and neuronal functions. The microbiome plays two distinct roles: it beneficially modulates immune system and neuronal functions; however, abnormalities in the host’s microbiome also exacerbates neuronal damage or delays the recovery from acute injuries. After brain injury, several inflammatory changes, such as the necrosis and apoptosis of neuronal tissue, propagates downward inflammatory signals to disrupt the microbiome homeostasis; however, microbiome dysbiosis impacts the upward signaling to the brain and interferes with recovery in neuronal functions and brain health. Diet is a superlative modulator of microbiome and is known to impact the gut-brain axis, including its influence on acute and neuronal injuries. In this review, we discussed the differential microbiome changes in both acute and chronic brain injuries, as well as the therapeutic importance of modulation by diets and probiotics. We emphasize the mechanistic studies based on animal models and their translational or clinical relationship by reviewing human studies.
Collapse
Affiliation(s)
| | - Niraj Arora
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Shalini Jain
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Jennifer Glover
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Keith Dombrowski
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Beverly Hernandez
- Clinical Nutrition Services, Tampa General Hospital, Tampa, FL, United States
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, United States
- *Correspondence: Hariom Yadav,
| | - Anand Karthik Sarma
- Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
- Anand Karthik Sarma,
| |
Collapse
|
47
|
Yang H, Hu Q, Yang P, Gao X, Luo L, Zhang D, Liu Q, Mao S. Benzene, 1,2,4-Trimethoxy-5-(2-Methyl-1-Propen-1-yl), a New Neuroprotective Agent, Treats Intracerebral Hemorrhage by Inhibiting Apoptosis, Inflammation, and Oxidative Stress. Neuroscience 2022; 503:69-82. [PMID: 36115514 DOI: 10.1016/j.neuroscience.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
The highest disability rates and mortality among neurodegenerative diseases were caused by intracerebral hemorrhage (ICH). We previously proved that Benzene, 1,2,4-trimethoxy-5-(2-methyl-1-propen-1-yl) (BTY) has an inhibitory effect on sodium ion channel and an activation effect on GABAA receptor, which were related to the brain injury. Based on this, we aimed to investigate BTY's neuroprotection on intracerebral hemorrhage and its underlying mechanism. In the in vivo study, a stereotactic injection of collagenase VII in Sprague Dawley rats (0.5 U) induced ICH and the BTY was intraperitoneally injected at 2 h after ICH. The neurological deficit scores, blood-brain barrier (BBB) permeability, and other indicators were assessed 24 h after ICH. The results showed that the BTY reduced brain edema and hematoma volume, improved neurological function and BBB permeability, and inhibited inflammatory factors and neuron apoptosis. The cell experiments proved that the BTY suppressed oxidative stress, cell apoptosis, intracellular calcium influx, and stabilized mitochondrial membrane potential by reducing glutamate's excitotoxicity. This study for the first time exhibited desirable neuroprotection of BTY, indicating it may be a promising neuroprotective agent for ICH therapy.
Collapse
Affiliation(s)
- Huiyuan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Qingrui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Peng Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
48
|
Tashiro R, Bautista-Garrido J, Ozaki D, Sun G, Obertas L, Mobley AS, Kim GS, Aronowski J, Jung JE. Transplantation of Astrocytic Mitochondria Modulates Neuronal Antioxidant Defense and Neuroplasticity and Promotes Functional Recovery after Intracerebral Hemorrhage. J Neurosci 2022; 42:7001-7014. [PMID: 35970559 PMCID: PMC9463988 DOI: 10.1523/jneurosci.2222-21.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Astrocytes release functional mitochondria (Mt) that play regulatory and prosurvival functions on entering adjacent cells. We recently demonstrated that these released Mts could enter microglia to promote their reparative/prophagocytic phenotype that assists in hematoma cleanup and neurological recovery after intracerebral hemorrhage (ICH). However, the relevance of astrocytic Mt transfer into neurons in protecting brain after ICH is unclear. Here, we found that ICH causes a robust increase in superoxide generation and elevated oxidative damage that coincides with loss of the mitochondrial enzyme manganese superoxide dismutase (Mn-SOD). The damaging effect of ICH was reversed by intravenous transplantation of astrocytic Mt, which on entering the brain (and neurons), restored Mn-SOD levels and reduced neurological deficits in male mice subjected to ICH. Using an in vitro ICH-like injury model in cultured neurons, we established that astrocytic Mt on entering neurons prevented reactive oxygen species-induced oxidative stress and neuronal death by restoring neuronal Mn-SOD levels while at the same time promoted neurite extension and upregulation of synaptogenesis-related gene expression. Furthermore, we found that Mt genome-encoded small peptide humanin, which is normally abundant in Mt, could simulate Mt-transfer effect on neuronal Mn-SOD expression, oxidative stress, and neuroplasticity under ICH-like injury. This study demonstrates that adoptive astrocytic Mt transfer enhances neuronal Mn-SOD-mediated antioxidative defense and neuroplasticity in the brain, which potentiate functional recovery following ICH.SIGNIFICANCE STATEMENT Mitochondrial dysfunction and antioxidant defense play essential roles in brain damage after ICH. Astrocytes release functional Mt that enters adjacent cells to help brain homeostatic function. Here, we show that systemic transplantation of astrocytic Mt restores ICH-impaired neuronal antioxidative defense, enhances neurite outgrowth, and improves stroke recovery after ICH. Our study suggests that systemic transplantation of astrocytic Mt could be considered as a novel and potentially promising strategy for ICH treatment.
Collapse
Affiliation(s)
- Ryosuke Tashiro
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Jesus Bautista-Garrido
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Dan Ozaki
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Guanghua Sun
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Lidiya Obertas
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Alexis S Mobley
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Gab Seok Kim
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Jaroslaw Aronowski
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Joo Eun Jung
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| |
Collapse
|
49
|
Liu X, Chen Y, Zhang J, He Y, Ya H, Gao K, Yang H, Xie W, Li L. Widely targeted metabolomics reveals stamen petaloid tissue of Paeonia lactiflora Pall. being a potential pharmacological resource. PLoS One 2022; 17:e0274013. [PMID: 36054136 PMCID: PMC9439255 DOI: 10.1371/journal.pone.0274013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Paeonia lactiflflora Pall. has a long edible and medicinal history because of the very high content of biologically active compounds. However, little information is available about the metabolic basis of pharmacological values of P. lactiflora flowers. In this study, we investigated metabolites in the different parts of P. lactiflora flowers, including petal, stamen petaloid tissue and stamen, by widely targeted metabolomics approach. A total of 1102 metabolites were identified, among which 313 and 410 metabolites showed differential accumulation in comparison groups of petal vs. stamen petaloid tissue and stamen vs. stamen petaloid tissue. Differential accumulated metabolites analysis and KEGG pathway analysis showed that the flavonoids were the most critical differential metabolites. Furthermore, difference accumulation of flavonoids, phenolic acids, tannins and alkaloids might lead to the differences in antioxidant activities and tyrosinase inhibition effects. Indeed, stamen petaloid tissue displayed better antioxidant and anti-melanin production activities than petal and stamen through experimental verification. These results not only expand our understanding of metabolites in P. lactiflora flowers, but also reveal that the stamen petaloid tissues of P. lactiflora hold the great potential as promising ingredients for pharmaceuticals, functional foods and skincare products.
Collapse
Affiliation(s)
- Xianghui Liu
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Ye Chen
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Jingxiao Zhang
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Yifan He
- Institute of Regulatory Science, Beijing Technology and Business University, Beijing, China
| | - Huiyuan Ya
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
- * E-mail:
| | - Kai Gao
- Peony Institute, Luoyang Academy of Agriculture and Forestry Sciences, Luoyang, Henan, China
| | - Huizhi Yang
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Wanyue Xie
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Lingmei Li
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
50
|
Marques MS, Marinho MAG, Vian CO, Horn AP. The action of curcumin against damage resulting from cerebral stroke: a systematic review. Pharmacol Res 2022; 183:106369. [PMID: 35914679 DOI: 10.1016/j.phrs.2022.106369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
Abstract
Stroke is the second leading cause of morbidity and mortality globally. Treatments for stroke are limited, and preventive treatments are scarce. Curcumin (CUR) has several biological effects, as described in the literature, which highlight its antioxidant and neuroprotective effects. Therefore, this qualitative systematic review aimed to investigate the effects of CUR on damage caused by stroke in rodent models. A systematic search was performed on three databases PubMed, Scopus, and Web of Science. In addition, the risk-of-bias and quality of the studies were assessed using SYRCLE and Collaborative Approach for Meta-Analysis and Review of Animal Data from Experimental Studies, respectively. The selection, inclusion, and exclusion criteria were established by the authors. At the end of our systematic search of the three databases, we found a total of 728 articles. After excluding duplicates and triplicates and reading the abstracts, keywords, and full texts, 53 articles were finally included in this systematic review. CUR exerts several beneficial effects against the damage caused by both ischemic and hemorrhagic stroke, via different pathways. However, because of its low bioavailability, Free-form CUR only exerted significant effects when it was administered at high concentrations. In contrast, when CUR was administered using nanostructured systems, positive responses were observed even at low concentrations. The mechanisms of action of CUR, free or in nanostructure, are extremely important for the recovery of injured brain tissue after a stroke; CUR has neuroprotective, antioxidant, anti-inflammatory, and anti-apoptotic effects and helps to maintain the integrity of the blood-brain barrier. Finally, we concluded that CUR presents an extremely important and significant response profile against the damage caused by stroke, making it a possible therapeutic candidate for individuals affected by this disease.
Collapse
Affiliation(s)
- M S Marques
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil.
| | - M A G Marinho
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| | - C O Vian
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| | - A P Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| |
Collapse
|