1
|
De Serres-Bérard T, Jauvin D, Pouliot V, Puymirat J, Chahine M. Generation of a lymphoblastoid-derived induced pluripotent stem cell line (CBRCULi015-A) from a patient with congenital myotonic dystrophy. Stem Cell Res 2024; 77:103430. [PMID: 38704930 DOI: 10.1016/j.scr.2024.103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024] Open
Abstract
Congenital myotonic dystrophy (CDM) is a genetic disease caused by an abnormally long CTG repeat expansion in the DMPK gene, which generally increases in size following intergenerational transmission. CDM is the rarest and most severe form of myotonic dystrophy type 1, yet an important number of patient-derived cells are needed to study this heterogeneous disease. Therefore, we have reprogrammed lymphoblastoid cells derived from a 3-year-old male with CDM into induced pluripotent stem cells (iPSCs; CBRCULi015-A) featuring 1800 CTG repeats and characterized their pluripotent state. This cell line constitutes an important resource to study CDM and potential treatments in vitro.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Dominic Jauvin
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Valérie Pouliot
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Aceves M, Granados J, Leandro AC, Peralta J, Glahn DC, Williams-Blangero S, Curran JE, Blangero J, Kumar S. Role of Neurocellular Endoplasmic Reticulum Stress Response in Alzheimer's Disease and Related Dementias Risk. Genes (Basel) 2024; 15:569. [PMID: 38790197 PMCID: PMC11121587 DOI: 10.3390/genes15050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Currently, more than 55 million people around the world suffer from dementia, and Alzheimer's Disease and Related Dementias (ADRD) accounts for nearly 60-70% of all those cases. The spread of Alzheimer's Disease (AD) pathology and progressive neurodegeneration in the hippocampus and cerebral cortex is strongly correlated with cognitive decline in AD patients; however, the molecular underpinning of ADRD's causality is still unclear. Studies of postmortem AD brains and animal models of AD suggest that elevated endoplasmic reticulum (ER) stress may have a role in ADRD pathology through altered neurocellular homeostasis in brain regions associated with learning and memory. To study the ER stress-associated neurocellular response and its effects on neurocellular homeostasis and neurogenesis, we modeled an ER stress challenge using thapsigargin (TG), a specific inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), in the induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) of two individuals from our Mexican American Family Study (MAFS). High-content screening and transcriptomic analysis of the control and ER stress-challenged NSCs showed that the NSCs' ER stress response resulted in a significant decline in NSC self-renewal and an increase in apoptosis and cellular oxidative stress. A total of 2300 genes were significantly (moderated t statistics FDR-corrected p-value ≤ 0.05 and fold change absolute ≥ 2.0) differentially expressed (DE). The pathway enrichment and gene network analysis of DE genes suggests that all three unfolded protein response (UPR) pathways, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF-6), and inositol-requiring enzyme-1 (IRE1), were significantly activated and cooperatively regulated the NSCs' transcriptional response to ER stress. Our results show that IRE1/X-box binding protein 1 (XBP1) mediated transcriptional regulation of the E2F transcription factor 1 (E2F1) gene, and its downstream targets have a dominant role in inducing G1/S-phase cell cycle arrest in ER stress-challenged NSCs. The ER stress-challenged NSCs also showed the activation of C/EBP homologous protein (CHOP)-mediated apoptosis and the dysregulation of synaptic plasticity and neurotransmitter homeostasis-associated genes. Overall, our results suggest that the ER stress-associated attenuation of NSC self-renewal, increased apoptosis, and dysregulated synaptic plasticity and neurotransmitter homeostasis plausibly play a role in the causation of ADRD.
Collapse
Affiliation(s)
- Miriam Aceves
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (M.A.); (J.G.)
| | - Jose Granados
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (M.A.); (J.G.)
| | - Ana C. Leandro
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (A.C.L.); (J.P.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Juan Peralta
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (A.C.L.); (J.P.); (S.W.-B.); (J.E.C.); (J.B.)
| | - David C. Glahn
- Department of Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sarah Williams-Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (A.C.L.); (J.P.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Joanne E. Curran
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (A.C.L.); (J.P.); (S.W.-B.); (J.E.C.); (J.B.)
| | - John Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (A.C.L.); (J.P.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Satish Kumar
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (M.A.); (J.G.)
| |
Collapse
|
3
|
Kumar S, Granados J, Aceves M, Peralta J, Leandro AC, Thomas J, Williams-Blangero S, Curran JE, Blangero J. Pre-Infection Innate Immunity Attenuates SARS-CoV-2 Infection and Viral Load in iPSC-Derived Alveolar Epithelial Type 2 Cells. Cells 2024; 13:369. [PMID: 38474333 PMCID: PMC10931100 DOI: 10.3390/cells13050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
A large portion of the heterogeneity in coronavirus disease 2019 (COVID-19) susceptibility and severity of illness (SOI) remains poorly understood. Recent evidence suggests that SARS-CoV-2 infection-associated damage to alveolar epithelial type 2 cells (AT2s) in the distal lung may directly contribute to disease severity and poor prognosis in COVID-19 patients. Our in vitro modeling of SARS-CoV-2 infection in induced pluripotent stem cell (iPSC)-derived AT2s from 10 different individuals showed interindividual variability in infection susceptibility and the postinfection cellular viral load. To understand the underlying mechanism of the AT2's capacity to regulate SARS-CoV-2 infection and cellular viral load, a genome-wide differential gene expression analysis between the mock and SARS-CoV-2 infection-challenged AT2s was performed. The 1393 genes, which were significantly (one-way ANOVA FDR-corrected p ≤ 0.05; FC abs ≥ 2.0) differentially expressed (DE), suggest significant upregulation of viral infection-related cellular innate immune response pathways (p-value ≤ 0.05; activation z-score ≥ 3.5), and significant downregulation of the cholesterol- and xenobiotic-related metabolic pathways (p-value ≤ 0.05; activation z-score ≤ -3.5). Whilst the effect of post-SARS-CoV-2 infection response on the infection susceptibility and postinfection viral load in AT2s is not clear, interestingly, pre-infection (mock-challenged) expression of 238 DE genes showed a high correlation with the postinfection SARS-CoV-2 viral load (FDR-corrected p-value ≤ 0.05 and r2-absolute ≥ 0.57). The 85 genes whose expression was negatively correlated with the viral load showed significant enrichment in viral recognition and cytokine-mediated innate immune GO biological processes (p-value range: 4.65 × 10-10 to 2.24 × 10-6). The 153 genes whose expression was positively correlated with the viral load showed significant enrichment in cholesterol homeostasis, extracellular matrix, and MAPK/ERK pathway-related GO biological processes (p-value range: 5.06 × 10-5 to 6.53 × 10-4). Overall, our results strongly suggest that AT2s' pre-infection innate immunity and metabolic state affect their susceptibility to SARS-CoV-2 infection and viral load.
Collapse
Affiliation(s)
- Satish Kumar
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Jose Granados
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Miriam Aceves
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Juan Peralta
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Ana C. Leandro
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - John Thomas
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Sarah Williams-Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Joanne E. Curran
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - John Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| |
Collapse
|
4
|
Fu X, Zhuang Q, Babarinde IA, Shi L, Ma G, Hu H, Li Y, Chen J, Xiao Z, Deng B, Sun L, Jauch R, Hutchins AP. Restricting epigenetic activity promotes the reprogramming of transformed cells to pluripotency in a line-specific manner. Cell Death Discov 2023; 9:245. [PMID: 37452056 PMCID: PMC10349098 DOI: 10.1038/s41420-023-01533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Somatic cell reprogramming and oncogenic transformation share surprisingly similar features, yet transformed cells are resistant to reprogramming. Epigenetic barriers must block transformed cells from reprogramming, but the nature of those barriers is unclear. In this study, we generated a systematic panel of transformed mouse embryonic fibroblasts (MEFs) using oncogenic transgenes and discovered transformed cell lines compatible with reprogramming when transfected with Oct4/Sox2/Klf4/Myc. By comparing the reprogramming-capable and incapable transformed lines we identified multiple stages of failure in the reprogramming process. Some transformed lines failed at an early stage, whilst other lines seemed to progress through a conventional reprogramming process. Finally, we show that MEK inhibition overcomes one critical reprogramming barrier by indirectly suppressing a hyperacetylated active epigenetic state. This study reveals that diverse epigenetic barriers underly resistance to reprogramming of transformed cells.
Collapse
Affiliation(s)
- Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zhuang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Kumar S, De Leon EM, Granados J, Whitworth DJ, VandeBerg JL. Monodelphis domestica Induced Pluripotent Stem Cells Reveal Metatherian Pluripotency Architecture. Int J Mol Sci 2022; 23:12623. [PMID: 36293487 PMCID: PMC9604385 DOI: 10.3390/ijms232012623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Marsupials have been a powerful comparative model to understand mammalian biology. However, because of the unique characteristics of their embryology, marsupial pluripotency architecture remains to be fully understood, and nobody has succeeded in developing embryonic stem cells (ESCs) from any marsupial species. We have developed an integration-free iPSC reprogramming method and established validated iPSCs from two inbred strains of a marsupial, Monodelphis domestica. The monoiPSCs showed a significant (6181 DE-genes) and highly uniform (r2 [95% CI] = 0.973 ± 0.007) resetting of the cellular transcriptome and were similar to eutherian ESCs and iPSCs in their overall transcriptomic profiles. However, monoiPSCs showed unique regulatory architecture of the core pluripotency transcription factors and were more like marsupial epiblasts. Our results suggest that POU5F1 and the splice-variant-specific expression of POU5F3 synergistically regulate the opossum pluripotency gene network. It is plausible that POU5F1, POU5F3 splice variant XM_016427856.1, and SOX2 form a self-regulatory network. NANOG expression, however, was specific to monoiPSCs and epiblasts. Furthermore, POU5F1 was highly expressed in trophectoderm cells, whereas all other pluripotency transcription factors were significantly downregulated, suggesting that the regulatory architecture of core pluripotency genes of marsupials may be distinct from that of eutherians.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
| | - Erica M. De Leon
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
| | - Jose Granados
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
| | - Deanne J. Whitworth
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - John L. VandeBerg
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| |
Collapse
|
6
|
Adiliaghdam F, Amatullah H, Digumarthi S, Saunders TL, Rahman RU, Wong LP, Sadreyev R, Droit L, Paquette J, Goyette P, Rioux J, Hodin R, Mihindukulasuriya KA, Handley SA, Jeffrey KL. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci Immunol 2022; 7:eabn6660. [PMID: 35394816 PMCID: PMC9416881 DOI: 10.1126/sciimmunol.abn6660] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Altered enteric microorganisms in concert with host genetics shape inflammatory bowel disease (IBD) phenotypes. However, insight is limited to bacteria and fungi. We found that eukaryotic viruses and bacteriophages (collectively, the virome), enriched from non-IBD, noninflamed human colon resections, actively elicited atypical anti-inflammatory innate immune programs. Conversely, ulcerative colitis or Crohn's disease colon resection viromes provoked inflammation, which was successfully dampened by non-IBD viromes. The IBD colon tissue virome was perturbed, including an increase in the enterovirus B species of eukaryotic picornaviruses, not previously detected in fecal virome studies. Mice humanized with non-IBD colon tissue viromes were protected from intestinal inflammation, whereas IBD virome mice exhibited exacerbated inflammation in a nucleic acid sensing-dependent fashion. Furthermore, there were detrimental consequences for IBD patient-derived intestinal epithelial cells bearing loss-of-function mutations within virus sensor MDA5 when exposed to viromes. Our results demonstrate that innate recognition of IBD or non-IBD human viromes autonomously influences intestinal homeostasis and disease phenotypes. Thus, perturbations in the intestinal virome, or an altered ability to sense the virome due to genetic variation, contribute to the induction of IBD. Harnessing the virome may offer therapeutic and biomarker potential.
Collapse
Affiliation(s)
- Fatemeh Adiliaghdam
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hajera Amatullah
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sreehaas Digumarthi
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tahnee L. Saunders
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raza-Ur Rahman
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jean Paquette
- Montreal Heart Institute, Montreal Quebec Canada H1T 1C8
| | | | - John Rioux
- Montreal Heart Institute, Montreal Quebec Canada H1T 1C8
- Université de Montréal, Montreal Quebec Canada H3C 3J7
| | - Richard Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kate L. Jeffrey
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Kumar S, Curran JE, Williams-Blangero S, Blangero J. Efficient Generation of Functional Hepatocytes from Human Induced Pluripotent Stem Cells for Disease Modeling and Disease Gene Discovery. Methods Mol Biol 2022; 2549:85-101. [PMID: 33772461 PMCID: PMC11131577 DOI: 10.1007/7651_2021_375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
In vitro hepatocyte cell models are being used to study the pathogenesis of liver disease and in the discovery and preclinical stages of drug development. The culture of hepatic cell lines and primary hepatocytes as in vitro cell models has been carried out for several decades. However, hepatic cell lines (hepatic carcinoma generated or immortalized) have limited accuracy when recapitulating complex physiological functions of the liver. Additionally, primary hepatocytes sourced from human cadavers or medical biopsies are difficult to obtain due to sourcing limitations, particularly for large-scale population studies or in applications requiring large number of cells. Hepatocyte cultures differentiated from human embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) overcome in large part the limitations of traditional hepatocyte in vitro models. In this chapter, we described an efficient protocol routinely used in our laboratory to differentiate human iPSCs into functional hepatocyte cultures for in vitro modeling of liver function and disease. The protocol uses a three-stage differentiation strategy to generate functional hepatocytes from human iPSCs. The differentiated cells show characteristic hepatocyte morphology including flat and polygonal shape, distinct round nuclei, and presence of biliary canaliculi and they express hepatic markers alpha-fetoprotein (AFP), albumin (ALB), E-cadherin (CHD1), hepatocyte nuclear factor 4 alpha (HNF4α), and actin.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX, USA.
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Sarah Williams-Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX, USA
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| |
Collapse
|
8
|
Walker SJ, Wagoner AL, Leavitt D, Mack DL. A simplified approach for derivation of induced pluripotent stem cells from Epstein-Barr virus immortalized B-lymphoblastoid cell lines. Heliyon 2021; 7:e06617. [PMID: 33869861 PMCID: PMC8047170 DOI: 10.1016/j.heliyon.2021.e06617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
Given the limited availability of tissue, especially brain tissue, for neurological diseases and disorders research, the development of alternative biological tools for investigations of underlying molecular and genetic mechanisms is imperative. One important resource for this task is the large repositories that bank immortalized blood cells (i.e. lymphoblastoid cell lines; LCLs) from affected individuals and their unaffected family members. These repositories document demographic, phenotypic, and, in some cases, genotypic information about the donors and thus provide a ready-made sample source for hypothesis testing. Importantly, patient-specific LCLs can be used to generate induced pluripotent stem cells (iPSC) that, in turn, can be used to create specific cell types for use in mechanistic studies. To investigate this concept further, LCLs from two males (proband and sibling) were obtained from one such repository, the Autism Genetics Resource Exchange (AGRE), and iPSCs were generated by transfection with Epi5 Episomal iPSC reprogramming plasmids. Characterization of the resultant cell lines by PCR, RT-PCR, immunocytochemistry, karyotyping, and the Taqman® human pluripotent stem cell Scorecard™ Panel, was used to provide evidence of endogenous pluripotency and then to evaluate the trilineage potential of four representative clones. Results indicated that all four iPSC lines were initially pluripotent and displayed the trilineage potential predictive for successful differentiation to mesoderm, endoderm, or ectoderm-derived cell types. Compared to other published protocols, this study details a somewhat simplified approach, used here specifically for the generation and characterization of induced pluripotent stem cells from well-characterized and banked LCLs.
Collapse
Affiliation(s)
- Stephen J. Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston Salem, NC 27156, USA
| | - Ashley L. Wagoner
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston Salem, NC 27156, USA
| | - Dana Leavitt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston Salem, NC 27156, USA
| | - David L. Mack
- Department of Rehabilitation Medicine and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
9
|
Disease Modeling and Disease Gene Discovery in Cardiomyopathies: A Molecular Study of Induced Pluripotent Stem Cell Generated Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22073311. [PMID: 33805011 PMCID: PMC8037452 DOI: 10.3390/ijms22073311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
The in vitro modeling of cardiac development and cardiomyopathies in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) provides opportunities to aid the discovery of genetic, molecular, and developmental changes that are causal to, or influence, cardiomyopathies and related diseases. To better understand the functional and disease modeling potential of iPSC-differentiated CMs and to provide a proof of principle for large, epidemiological-scale disease gene discovery approaches into cardiomyopathies, well-characterized CMs, generated from validated iPSCs of 12 individuals who belong to four sibships, and one of whom reported a major adverse cardiac event (MACE), were analyzed by genome-wide mRNA sequencing. The generated CMs expressed CM-specific genes and were highly concordant in their total expressed transcriptome across the 12 samples (correlation coefficient at 95% CI =0.92 ± 0.02). The functional annotation and enrichment analysis of the 2116 genes that were significantly upregulated in CMs suggest that generated CMs have a transcriptomic and functional profile of immature atrial-like CMs; however, the CMs-upregulated transcriptome also showed high overlap and significant enrichment in primary cardiomyocyte (p-value = 4.36 × 10−9), primary heart tissue (p-value = 1.37 × 10−41) and cardiomyopathy (p-value = 1.13 × 10−21) associated gene sets. Modeling the effect of MACE in the generated CMs-upregulated transcriptome identified gene expression phenotypes consistent with the predisposition of the MACE-affected sibship to arrhythmia, prothrombotic, and atherosclerosis risk.
Collapse
|
10
|
Kumar S, Curran JE, DeLeon E, Leandro AC, Howard TE, Lehman DM, Williams-Blangero S, Glahn DC, Blangero J. Role of miRNA-mRNA Interaction in Neural Stem Cell Differentiation of Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21196980. [PMID: 32977388 PMCID: PMC7582477 DOI: 10.3390/ijms21196980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
miRNA regulates the expression of protein coding genes and plays a regulatory role in human development and disease. The human iPSCs and their differentiated progenies provide a unique opportunity to identify these miRNA-mediated regulatory mechanisms. To identify miRNA-mRNA regulatory interactions in human nervous system development, well characterized NSCs were differentiated from six validated iPSC lines and analyzed for differentially expressed (DE) miRNome and transcriptome by RNA sequencing. Following the criteria, moderated t statistics, FDR-corrected p-value ≤ 0.05 and fold change-absolute (FC-abs) ≥2.0, 51 miRNAs and 4033 mRNAs were found to be significantly DE between iPSCs and NSCs. The miRNA target prediction analysis identified 513 interactions between 30 miRNA families (mapped to 51 DE miRNAs) and 456 DE mRNAs that were paradoxically oppositely expressed. These 513 interactions were highly enriched in nervous system development functions (154 mRNAs; FDR-adjusted p-value range: 8.06 × 10-15-1.44 × 10-4). Furthermore, we have shown that the upregulated miR-10a-5p, miR-30c-5p, miR23-3p, miR130a-3p and miR-17-5p miRNA families were predicted to down-regulate several genes associated with the differentiation of neurons, neurite outgrowth and synapse formation, suggesting their role in promoting the self-renewal of undifferentiated NSCs. This study also provides a comprehensive characterization of iPSC-generated NSCs as dorsal neuroepithelium, important for their potential use in in vitro modeling of human brain development and disease.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (E.D.); (S.W.-B.)
- Correspondence:
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.E.C.); (A.C.L.); (T.E.H.); (J.B.)
| | - Erica DeLeon
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (E.D.); (S.W.-B.)
| | - Ana C. Leandro
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.E.C.); (A.C.L.); (T.E.H.); (J.B.)
| | - Tom E. Howard
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.E.C.); (A.C.L.); (T.E.H.); (J.B.)
| | - Donna M. Lehman
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Sarah Williams-Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (E.D.); (S.W.-B.)
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.E.C.); (A.C.L.); (T.E.H.); (J.B.)
| | - David C. Glahn
- Department of Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT 06102, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.E.C.); (A.C.L.); (T.E.H.); (J.B.)
| |
Collapse
|
11
|
Kumar S, Curran JE, Espinosa EC, Glahn DC, Blangero J. Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines. J Biol Methods 2020; 7:e124. [PMID: 31976351 PMCID: PMC6974695 DOI: 10.14440/jbm.2020.296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023] Open
Abstract
Tissue culture based in-vitro experimental modeling of human inherited disorders provides insight into the cellular and molecular mechanisms involved and the underlying genetic component influencing the disease phenotype. The breakthrough development of induced pluripotent stem cell (iPSC) technology represents a quantum leap in experimental modeling of human diseases, providing investigators with a self-renewing and thus unlimited source of pluripotent cells for targeted differentiation into functionally relevant disease specific tissue/cell types. The existing rich bio-resource of Epstein-Barr virus (EBV) immortalized lymphoblastoid cell line (LCL) repositories generated from a wide array of patients in genetic and epidemiological studies worldwide, many of them with extensive genotypic, genomic and phenotypic data already existing, provides a great opportunity to reprogram iPSCs from any of these LCL donors in the context of their own genetic identity for disease modeling and disease gene identification. However, due to the low reprogramming efficiency and poor success rate of LCL to iPSC reprogramming, these LCL resources remain severely underused for this purpose. Here, we detailed step-by-step instructions to perform our highly efficient LCL-to-iPSC reprogramming protocol using EBNA1/OriP episomal plasmids encoding pluripotency transcription factors (i.e., OCT3/4, SOX2, KLF4, L-MYC, and LIN28), mouse p53DD (p53 carboxy-terminal dominant-negative fragment) and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate (> 200 reprogrammed iPSC lines) using this protocol.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Human Genetics & South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Edinburg and Brownsville, TX 78541, USA
| | - Joanne E Curran
- Department of Human Genetics & South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Edinburg and Brownsville, TX 78541, USA
| | - Erika C Espinosa
- Department of Human Genetics & South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Edinburg and Brownsville, TX 78541, USA
| | - David C Glahn
- Olin Neuropsychiatry Research Center, The Institute of Living, Hartford, CT 06106, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - John Blangero
- Department of Human Genetics & South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Edinburg and Brownsville, TX 78541, USA
| |
Collapse
|
12
|
Wang AYL, Loh CYY. Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. Cell Transplant 2019; 28:112S-131S. [PMID: 31722555 PMCID: PMC7016470 DOI: 10.1177/0963689719886534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The term episomal induced pluripotent stem cells (EiPSCs) refers to somatic cells that are reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrative episomal vector methods. This reprogramming process has a better safety profile compared with integrative methods using viruses. There is a current trend toward using episomal plasmid reprogramming to generate iPSCs because of the improved safety profile. Clinical reports of potential human cell sources that have been successfully reprogrammed into EiPSCs are increasing, but no review or summary has been published. The functional applications of EiPSCs and their potential uses in various conditions have been described, and these may be applicable to clinical scenarios. This review summarizes the current direction of EiPSC research and the properties of these cells with the aim of explaining their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,*Both the authors contributed equally to this article
| | - Charles Yuen Yung Loh
- St Andrew's Center for Burns and Plastic Surgery, Chelmsford, United Kingdom.,*Both the authors contributed equally to this article
| |
Collapse
|
13
|
Nadella RK, Chellappa A, Subramaniam AG, More RP, Shetty S, Prakash S, Ratna N, Vandana VP, Purushottam M, Saini J, Viswanath B, Bindu PS, Nagappa M, Mehta B, Jain S, Kannan R. Identification and functional characterization of two novel mutations in KCNJ10 and PI4KB in SeSAME syndrome without electrolyte imbalance. Hum Genomics 2019; 13:53. [PMID: 31640787 PMCID: PMC6805350 DOI: 10.1186/s40246-019-0236-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
Background Dysfunction in inwardly rectifying potassium channel Kir4.1 has been implicated in SeSAME syndrome, an autosomal-recessive (AR), rare, multi-systemic disorder. However, not all neurological, intellectual disability, and comorbid phenotypes in SeSAME syndrome can be mechanistically linked solely to Kir4.1 dysfunction. Methods We therefore performed whole-exome sequencing and identified additional genetic risk-elements that might exert causative effects either alone or in concert with Kir4.1 in a family diagnosed with SeSAME syndrome. Results Two variant prioritization pipelines based on AR inheritance and runs of homozygosity (ROH), identified two novel homozygous variants in KCNJ10 and PI4KB and five rare homozygous variants in PVRL4, RORC, FLG2, FCRL1, NIT1 and one common homozygous variant in HSPA6 segregating in all four patients. The novel mutation in KCNJ10 resides in the cytoplasmic domain of Kir4.1, a seat of phosphatidylinositol bisphosphate (PIP2) binding. The mutation altered the subcellular localization and stability of Kir4.1 in patient-specific lymphoblastoid cells (LCLs) compared to parental controls. Barium-sensitive endogenous K+ currents in patient-specific LCLs using whole-cell patch-clamp electrophysiology revealed membrane depolarization and defects in inward K+ ion conductance across the membrane, thereby suggesting a loss-of-function effect of KCNJ10 variant. Conclusion Altogether, our findings implicate the role of new genes in SeSAME syndrome without electrolyte imbalance and thereby speculate the regulation of Kir4.1 channel activity by PIP2 and integrin-mediated adhesion signaling mechanisms. Electronic supplementary material The online version of this article (10.1186/s40246-019-0236-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ravi K Nadella
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Anirudh Chellappa
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Anand G Subramaniam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Ravi Prabhakar More
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Srividya Shetty
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Suriya Prakash
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Nikhil Ratna
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - V P Vandana
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - P S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.,National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Ramakrishnan Kannan
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| |
Collapse
|
14
|
Kumar S, Espinosa EC, Leandro AC, Curran JE, Blangero J. microRNA and mRNA interactions in induced pluripotent stem cell reprogramming of lymphoblastoid cell lines. AMERICAN JOURNAL OF STEM CELLS 2019; 8:28-37. [PMID: 31523484 PMCID: PMC6737382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
A large number of Epstein Barr virus (EBV) immortalized lymphoblastoid cell lines (LCLs) have been generated and maintained in genetic/epidemiological studies as a perpetual source of DNA and as a surrogate in vitro cell model. Recent successes in reprograming LCLs into induced pluripotent stem cells (iPSCs) has paved the way to generate more relevant in vitro disease models using this existing bioresource. However, the latent EBV infection in the LCLs make them a unique cell type by altering expression of many cellular genes and miRNAs. These EBV induced changes in the LCL miRNome and transcriptome are reversed upon reprogramming into iPSCs, which allows a unique opportunity to better understand the miRNA and mRNA interactions that are EBV induced in LCLs and the changes that takes place during iPSC reprogramming. To identify the potential miRNA-mRNA interactions and better understand their role in regulating the cellular transitions in LCLs and their reprogrammed iPSCs, we performed a parallel genome-wide miRNA and mRNA expression analysis in six LCLs and their reprogrammed iPSCs. A total of 85 miRNAs and 5,228 mRNAs were significantly differentially expressed (DE). The target prediction of the DE miRNAs using TargetScan-Human, TarBase and miRecords databases identified 1,842 mRNA targets that were DE between LCLs and their reprogrammed iPSCs. The functional annotation, upstream regulator and gene expression analysis of the predicted DE mRNA targets suggest the role of DE miRNAs in regulating EBV induced changes in LCLs and self-renewal, pluripotency and differentiation in iPSCs.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Edinburg and Brownsville, TX, USA
| | - Erika C Espinosa
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Edinburg and Brownsville, TX, USA
| | - Ana C Leandro
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Edinburg and Brownsville, TX, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Edinburg and Brownsville, TX, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Edinburg and Brownsville, TX, USA
| |
Collapse
|
15
|
Poulin H, Martineau L, Racine V, Puymirat J, Chahine M. Differentiation of lymphoblastoid-derived iPSCs into functional cardiomyocytes, neurons and myoblasts. Biochem Biophys Res Commun 2019; 516:222-228. [DOI: 10.1016/j.bbrc.2019.05.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
|
16
|
Kumar S, Blangero J, Curran JE. Induced Pluripotent Stem Cells in Disease Modeling and Gene Identification. Methods Mol Biol 2018; 1706:17-38. [PMID: 29423791 DOI: 10.1007/978-1-4939-7471-9_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Experimental modeling of human inherited disorders provides insight into the cellular and molecular mechanisms involved, and the underlying genetic component influencing, the disease phenotype. The breakthrough development of induced pluripotent stem cell (iPSC) technology represents a quantum leap in experimental modeling of human diseases, providing investigators with a self-renewing and, thus, unlimited source of pluripotent cells for targeted differentiation. In principle, the entire range of cell types found in the human body can be interrogated using an iPSC approach. Therefore, iPSC technology, and the increasingly refined abilities to differentiate iPSCs into disease-relevant target cells, has far-reaching implications for understanding disease pathophysiology, identifying disease-causing genes, and developing more precise therapeutics, including advances in regenerative medicine. In this chapter, we discuss the technological perspectives and recent developments in the application of patient-derived iPSC lines for human disease modeling and disease gene identification.
Collapse
Affiliation(s)
- Satish Kumar
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, School of Medicine, 1214 W Schunior St, Edinburg, TX, 78541, USA.
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, School of Medicine, 1214 W Schunior St, Edinburg, TX, 78541, USA
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, School of Medicine, 1214 W Schunior St, Edinburg, TX, 78541, USA
| |
Collapse
|