1
|
Del Campo CMZM, Nicolson GL, Sfera A. Neurolipidomics in schizophrenia: A not so well-oiled machine. Neuropharmacology 2024; 260:110117. [PMID: 39153730 DOI: 10.1016/j.neuropharm.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Most patients with schizophrenia (SCZ) do not exhibit violent behaviors and are more likely to be victims rather than perpetrators of violent acts. However, a subgroup of forensic detainees with SCZ exhibit tendencies to engage in criminal violations. Although numerous models have been proposed, ranging from substance use, serotonin transporter gene, and cognitive dysfunction, the molecular underpinnings of violence in SCZ patients remains elusive. Lithium and clozapine have established anti-aggression properties and recent studies have linked low cholesterol levels and ultraviolet (UV) radiation with human aggression, while vitamin D3 reduces violent behaviors. A recent study found that vitamin D3, omega-3 fatty acids, magnesium, and zinc lower aggression in forensic population. In this review article, we take a closer look at aryl hydrocarbon receptor (AhR) and the dysfunctional lipidome in neuronal membranes, with emphasis on cholesterol and vitamin D3 depletion, as sources of aggressive behavior. We also discuss modalities to increase the fluidity of neuronal double layer via membrane lipid replacement (MLR) and natural or synthetic compounds. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, 92647, USA
| | - Adonis Sfera
- Patton State Hospital, Loma Linda University, Department of Psychiatry, University of California, Riverside, USA.
| |
Collapse
|
2
|
Carvalho AF, Hsu CW, Vieta E, Solmi M, Marx W, Berk M, Liang CS, Tseng PT, Wang LJ. Mortality and Lithium-Protective Effects after First-Episode Mania Diagnosis in Bipolar Disorder: A Nationwide Retrospective Cohort Study in Taiwan. PSYCHOTHERAPY AND PSYCHOSOMATICS 2024; 93:36-45. [PMID: 38194936 PMCID: PMC10880805 DOI: 10.1159/000535777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION This study aimed to estimate all-cause mortality in patients after a first-episode mania (FEM) and examine whether six guideline-recommended medications can reduce mortality. METHODS The cohort included population-based FEM samples and matched controls from Taiwan, spanning 2007 to 2018. The primary outcomes assessed were all-cause/suicide-related mortality, while the secondary outcome focused on mortality associated with pharmacological treatments. We compared mortality in post-FEM patients and age-/sex-matched controls without any diagnosed bipolar disorders and patients with and without psychopharmacological treatment using Cox regression analysis, respectively. Statistics were presented with time-to-event adjusted hazard ratios (AHRs) and 95% confidence intervals (CIs). RESULTS The study included 54,092 post-FEM patients and 270,460 controls, totaling 2,467,417 person-years of follow-up. Post-FEM patients had higher risks of all-cause mortality (AHR 2.38, 95% CI: 2.31-2.45) and suicide death (10.80, 5.88-19.84) than controls. Lithium (0.62, 0.55-0.70), divalproex (0.89, 0.83-0.95), and aripiprazole (0.81, 0.66-1.00) were associated with reduced all-cause mortality compared to non-users. There were no significant all-cause mortality differences for quetiapine (0.95, 0.89-1.01), risperidone (0.92, 0.82-1.02), and paliperidone (1.24, 0.88-1.76) users. When accounting for drug action onset times in sensitivity analyses, only lithium significantly reduced all-cause mortality (AHR range 0.65-0.72). There were 35 and 16 suicide deaths in post-FEM patients and controls, respectively. No drug had a significant effect on suicide deaths (lithium: 6; divalproex: 7; aripiprazole: 0; quetiapine: 10; risperidone: 4; paliperidone: 1). CONCLUSION Post-FEM patients had a higher risk of all-cause/suicide-related mortality, and lithium treatment might reduce all-cause mortality.
Collapse
Affiliation(s)
- Andre F Carvalho
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Institute, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospital Clinic, IDIBAPS, CIBERSAM, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
- Department of Mental Health, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute (OHRI), Clinical Epidemiology Program, University of Ottawa, Ottawa, Ontario, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Wolfgang Marx
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Institute, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Institute, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Shen Y, Kong L, Lai J, Hu S. Shifting levels of peripheral inflammatory profiles as an indicator for comorbid multiple autoimmune diseases and bipolar disorder: a case report. BMC Psychiatry 2023; 23:375. [PMID: 37248479 DOI: 10.1186/s12888-023-04820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Autoimmune diseases (AID) cause inflammatory changes in the peripheral blood, which might be a predisposing factor for the development of comorbid bipolar disorder (BD). The levels of peripheral inflammatory indicators and cytokines may also serve as potential biomarkers for predicting BD susceptibility and the efficacy of antipsychotics in patients with AID. Herein, we present the case of a 43-year-old female who has suffered from AID for over 16 years and was recently diagnosed with "bipolar and related disorder due to another medical condition".
Collapse
Affiliation(s)
- Yuting Shen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Huang T, Yu Z, Yu Q, Chen Y, Jiang Z, Wang Y, Yang G. Electrochemical deposition of lithium coating on titanium implant with enhanced early stage osseointegration. J Biomed Mater Res B Appl Biomater 2022; 110:2399-2410. [PMID: 35604032 DOI: 10.1002/jbm.b.35085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/10/2022]
Abstract
Recently, a large number of studies have reported that lithium (Li) displayed a positive effect on osteogenesis. However, only a few studies have investigated the Li-incorporated surfaces through electrochemical deposition. In this study, electrochemical deposition was conducted on a CHI600E electrochemical workstation. The characterization of electrochemical deposition (ECD) and ECD-Li surfaces were detected by field-emission scanning electron microscopy with energy-dispersive spectrometer. rBMSCs were cultured on two surfaces for subsequent adhesion, proliferation and live/dead assay. To evaluate the effects of Li-incorporated implants by electrochemical deposition on osseointegration in vivo, teeth extraction of two premolars and one first molar in bilateral mandible were performed on six male beagle dogs. After 3 months, ZDI and ZDI-Li implants were inserted into the bilateral mandible of each beagle dog. Micro Computed Tomography (Micro-CT) and hard tissue sectioning analysis were carried out to evaluate the osseointegration at 4- and 8-weeks post-implantation. Results showed that ECD-Li surface promoted adhesion and proliferation of BMSCs in the early stage. More importantly, through micro-CT analysis, the values of bone volume/total volume (BV/TV) (0.374 ± 0.015), bone-implant contact (BIC) (0.831 ± 0.025), and Tb.Th (0.412 ± 0.007) in ZDI-Li group was significantly higher than those of ZDI group (0.302 ± 0.009, 0.700 ± 0.023, 0.353 ± 0.001, p < .01) at 4 weeks. Similarly, ZDI-Li group manifested more bone contact with the implant surfaces at 4 weeks based on hard tissue sectioning analysis, whereas no significant difference was detected between two groups at 8 weeks. Therefore, incorporating Li into implant surface through ECD could enhance early osseointegration in vivo.
Collapse
Affiliation(s)
- Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhou Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiong Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yitong Chen
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Çiçekli MN, Tiryaki ES, Altun A, Günaydın C. GLP-1 agonist liraglutide improves ouabain-induced mania and depressive state via GSK-3β pathway. J Recept Signal Transduct Res 2022; 42:486-494. [PMID: 35133924 DOI: 10.1080/10799893.2022.2032747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bipolar disorder (BD) is a severe mental illness characterized by aberrant mood changes between hypomania and mania or mixed states and depression. Metabolic changes also accompany disease progression and cause significant morbidity. Symptomatic treatment options are available, but asymptomatic patients and poor drug responders are significant problems. Based on the most common pharmacological agent that is used in the treatment, lithium and its main mechanisms of action, oxidative stress, and glycogen synthase kinase-3β (GSK-3β) signaling are extensively investigated. However, knowledge about the effects of compounds that positively affect oxidative stress and GSK-3β signaling, such as glucagon-like peptide-1 (GLP-1) mimetics, liraglutide, is still missing. Therefore, in this study, we aimed to investigate the effects of liraglutide on the ouabain-induced bipolar disease model in rats. After intracerebroventricular single dose ouabain administration, animals were treated with 100, 200, and 400 µg/kg liraglutide (s.c.) and valproic acid (200 mg/kg, i.p.) for 10 d. The locomotion and depressive states of animals were assessed by an open field, forced swimming test, and sucrose preference tests. Serum total antioxidant (TAS) and oxidant states (TOS) and glutathione, malonyl dialdehyde (MDA) levels in the brain tissue were determined. GSK-3β phosphorylation was evaluated by western blotting. Our results demonstrated that liraglutide attenuated ouabain-induced hyperlocomotion and depressive state. Additionally, liraglutide prevented oxidative stress after ouabain administration. Decreased GSK-3β phosphorylation due to the ouabain insult was alleviated by liraglutide treatment. These findings indicate that the manic and depressive-like behaviors are ameliorated by liraglutide, which exerted antioxidant action, possibly improving GSK-3β phosphorylation.
Collapse
Affiliation(s)
| | - Emre Soner Tiryaki
- Department of Physiology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Altun
- Department of Pharmacology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Caner Günaydın
- Department of Pharmacology, School of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
6
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
7
|
Kukula O, Çiçekli MN, Şafak S, Günaydın C. Role of TRPV1 channels on glycogen synthase kinase-3β and oxidative stress in ouabain-induced bipolar disease. J Recept Signal Transduct Res 2021; 42:338-348. [PMID: 34304690 DOI: 10.1080/10799893.2021.1955928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bipolar disorder (BD) is a multifactorial chronic and refractory disease characterized by manic, depressive, and mixed mood episodes. Although epidemiological, and pathophysiological studies demonstrated a strong correlation between bipolar disorder and oxidative stress, precise etiology is still missing. Recent studies suggested the possible role of transient receptor potential channels (TRP) in the BD but, current knowledge is limited. Therefore, the current study investigates the possible role of TRPV1 in the ouabain-induced model of BD. The model was created with intracerebroventricular single dose ouabain (10-3 M) administration. Animals were treated with capsaicin, capsazepine, and lithium for seven days. Mania and depressive-like states were investigated with open-field, sucrose preference, and elevated plus maze tests. Oxidative stress was assessed by measuring total antioxidant and oxidant states, spectrophotometrically. The phosphorylation Glycogen synthase kinase-3β (GSK-3β) evaluated by western blotting. Our results demonstrated that capsaicin dose-dependently inhibited the ouabain-induced hyperlocomotion and depression. Although capsazepine exacerbated behavioral impairment, it did not show a significant effect on the antioxidant and oxidant states, and the effects of capsazepine on behaviors were abolished by combination with capsaicin. Additionally, capsaicin potently prevented the ouabain-induced decrease in GSK-3β phosphorylation. In contrast, capsazepine potentiated ouabain-induced decrease in GSK-3β phosphorylation and combination with capsaicin, suppressed the effect of capsazepine on GSK-3β phosphorylation. The effects of TRPV1 activation on oxidative stress and mania-like behaviors in the ouabain-induced BD model might be regulated by GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Osman Kukula
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Nusret Çiçekli
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Sinan Şafak
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Caner Günaydın
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
8
|
Altaf-Ul-Amin M, Hirose K, Nani JV, Porta LC, Tasic L, Hossain SF, Huang M, Ono N, Hayashi MAF, Kanaya S. A system biology approach based on metabolic biomarkers and protein-protein interactions for identifying pathways underlying schizophrenia and bipolar disorder. Sci Rep 2021; 11:14450. [PMID: 34262063 PMCID: PMC8280132 DOI: 10.1038/s41598-021-93653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Mental disorders (MDs), including schizophrenia (SCZ) and bipolar disorder (BD), have attracted special attention from scientists due to their high prevalence and significantly debilitating clinical features. The diagnosis of MDs is still essentially based on clinical interviews, and intensive efforts to introduce biochemical based diagnostic methods have faced several difficulties for implementation in clinics, due to the complexity and still limited knowledge in MDs. In this context, aiming for improving the knowledge in etiology and pathophysiology, many authors have reported several alterations in metabolites in MDs and other brain diseases. After potentially fishing all metabolite biomarkers reported up to now for SCZ and BD, we investigated here the proteins related to these metabolites in order to construct a protein-protein interaction (PPI) network associated with these diseases. We determined the statistically significant clusters in this PPI network and, based on these clusters, we identified 28 significant pathways for SCZ and BDs that essentially compose three groups representing three major systems, namely stress response, energy and neuron systems. By characterizing new pathways with potential to innovate the diagnosis and treatment of psychiatric diseases, the present data may also contribute to the proposal of new intervention for the treatment of still unmet aspects in MDs.
Collapse
Affiliation(s)
- Md Altaf-Ul-Amin
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Kazuhisa Hirose
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Lucas C Porta
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Ming Huang
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Naoaki Ono
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| | - Shigehiko Kanaya
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
9
|
Xu T, Wang S, Li X, Li X, Qu K, Tong H, Zhang R, Bai S, Fan J. Lithium chloride represses abdominal aortic aneurysm via regulating GSK3β/SIRT1/NF-κB signaling pathway. Free Radic Biol Med 2021; 166:1-10. [PMID: 33588051 DOI: 10.1016/j.freeradbiomed.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Lithium chloride (LiCl), a pharmacological compound, was effective in reducing inflammation, but whether it can protect against abdominal aortic aneurysm (AAA) is largely unknown. This study is designed to investigate therapeutic effects of LiCl on AAA and the potential mechanism. Rat AAA models were induced by periaortic application of CaCl2. AAA rats were treated by daily intraperitoneal injection of LiCl or vehicle alone to study the protection effects of LiCl in vivo. Rat primary vascular smooth muscle cells (VSMCs) stimulated with tumor necrosis factor (TNF)-α served as an in vitro model. LiCl treatment prevented the development of AAA through inhibiting the inflammatory cells infiltration and inflammatory cytokines overproduction, as well as attenuating superoxide production and elastin degradation in aorta of AAA rats. Additionally, the downregulation of p-GSK3β(Ser9) and SIRT1, upregulation of NF-κB(p-65), MMP-2 and MMP-9 in AAA were abolished by LiCl treatment. In vitro by upregulating p-GSK3β(Ser9), LiCl significantly induced SIRT1 expression, along with inhibition of the NF-κB activation and decreased elastin level elicited in VSMCs by TNF-α stimulation. SIRT1 activator SRT1720 achieved similar repressive effects as LiCl on TNF-α-induced NF-κB activation and decreased elastin in VSMCs. Moreover, administration of LiCl also caused regression of established rats AAA. This study provided the first evidence that LiCl prevented the development of AAA through inhibiting inflammation, MMPs, and superoxide production, and facilitating the biosynthesis of elastin. The beneficial effect of LiCl may be mediated by regulation GSK3β/SIRT1/NF-κB cascade.
Collapse
Affiliation(s)
- Tong Xu
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Shoushuai Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Xiang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Xiuquan Li
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Kaiyun Qu
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Hao Tong
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Ruijie Zhang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Shuling Bai
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
10
|
Pereira AC, Oliveira J, Silva S, Madeira N, Pereira CMF, Cruz MT. Inflammation in Bipolar Disorder (BD): Identification of new therapeutic targets. Pharmacol Res 2020; 163:105325. [PMID: 33278569 DOI: 10.1016/j.phrs.2020.105325] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023]
Abstract
Bipolar disorder (BD) is a chronic and cyclic mental disorder, characterized by unusual mood swings between mania/hypomania and depression, raising concern in both scientific and medical communities due to its deleterious social and economic impact. Polypharmacy is the rule due to the partial effectiveness of available drugs. Disease course is often unremitting, resulting in frequent cognitive deficits over time. Despite all research efforts in identifying BD-associated molecular mechanisms, current knowledge remains limited. However, the involvement of inflammation in BD pathophysiology is increasingly consensual, with the immune system and neuroinflammation playing a key role in disease course. Evidence includes altered levels of cytokines and acute-phase proteins, pathological microglial activation, deregulation of Nrf2-Keap1 system and changes in biogenic amines neurotransmitters, whose expression is regulated by TNF-α, a pro-inflammatory cytokine highly involved in BD, pointing out inflammation as a novel and attractive therapeutic target for BD. As result, new therapeutic agents including non-steroidal anti-inflammatory drugs, N-acetylcysteine and GSK3 inhibitors have been incorporated in BD treatment. Taking into consideration the latest pre-clinical and clinical trials, in this review we discuss recent data regarding inflammation in BD, unveiling potential therapeutic approaches through direct or indirect modulation of inflammatory response.
Collapse
Affiliation(s)
- Ana Catarina Pereira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, 3000-548, Coimbra, Portugal.
| | - Joana Oliveira
- University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal.
| | - Sónia Silva
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal.
| | - Nuno Madeira
- University of Coimbra, Faculty of Medicine, 3000-548, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), 3000-548, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Psychiatry, 3004-561, Coimbra, Portugal.
| | - Cláudia M F Pereira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, 3000-548, Coimbra, Portugal.
| | - Maria T Cruz
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal.
| |
Collapse
|
11
|
Mitochondria under the spotlight: On the implications of mitochondrial dysfunction and its connectivity to neuropsychiatric disorders. Comput Struct Biotechnol J 2020; 18:2535-2546. [PMID: 33033576 PMCID: PMC7522539 DOI: 10.1016/j.csbj.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) such as bipolar disorder (BD), schizophrenia (SZ) and mood disorder (MD) are hard to manage due to overlapping symptoms and lack of biomarkers. Risk alleles of BD/SZ/MD are emerging, with evidence suggesting mitochondrial (mt) dysfunction as a critical factor for disease onset and progression. Mood stabilizing treatments for these disorders are scarce, revealing the need for biomarker discovery and artificial intelligence approaches to design synthetically accessible novel therapeutics. Here, we show mt involvement in NPDs by associating 245 mt proteins to BD/SZ/MD, with 7 common players in these disease categories. Analysis of over 650 publications suggests that 245 NPD-linked mt proteins are associated with 800 other mt proteins, with mt impairment likely to rewire these interactions. High dosage of mood stabilizers is known to alleviate manic episodes, but which compounds target mt pathways is another gap in the field that we address through mood stabilizer-gene interaction analysis of 37 prescriptions and over-the-counter psychotropic treatments, which we have refined to 15 mood-stabilizing agents. We show 26 of the 245 NPD-linked mt proteins are uniquely or commonly targeted by one or more of these mood stabilizers. Further, induced pluripotent stem cell-derived patient neurons and three-dimensional human brain organoids as reliable BD/SZ/MD models are outlined, along with multiomics methods and machine learning-based decision making tools for biomarker discovery, which remains a bottleneck for precision psychiatry medicine.
Collapse
|
12
|
Bogolepova A. The role of oxidative stress in the development of vascular cognitive disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:133-139. [DOI: 10.17116/jnevro2020120081133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Luca M, Luca A. Oxidative Stress-Related Endothelial Damage in Vascular Depression and Vascular Cognitive Impairment: Beneficial Effects of Aerobic Physical Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8067045. [PMID: 31929857 PMCID: PMC6939429 DOI: 10.1155/2019/8067045] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023]
Abstract
Oxidative stress- (OS-) related endothelial damage is involved in the occurrence and progression of several disorders, such as vascular depression and dementia. It has been reported that moderate, aerobic, physical exercise could reduce OS and inflammation, thus limiting the cardiovascular risk factors while improving endothelial homeostasis, mood, and cognition. In this review, we will discuss about the role of OS and OS-related endothelial damage in vascular depression and vascular cognitive impairment. Then, we will comment on the effects of physical exercise on both disorders.
Collapse
Affiliation(s)
- Maria Luca
- Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Italy
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Italy
| |
Collapse
|
14
|
Dudev T, Mazmanian K, Weng WH, Grauffel C, Lim C. Free and Bound Therapeutic Lithium in Brain Signaling. Acc Chem Res 2019; 52:2960-2970. [PMID: 31556294 DOI: 10.1021/acs.accounts.9b00389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lithium, a first-line therapy for bipolar disorder, is effective in preventing suicide and new depressive/manic episodes. Yet, how this beguilingly simple monocation with only two electrons could yield such profound therapeutic effects remains unclear. An in-depth understanding of lithium's mechanisms of actions would help one to develop better treatments limiting its adverse side effects and repurpose lithium for treating traumatic brain injury and chronic neurodegenerative diseases. In this Account, we begin with a comparison of the physicochemical properties of Li+ and its key native rivals, Na+ and Mg2+, to provide physical grounds for their competition in protein binding sites. Next, we review the abnormal signaling pathways and proteins found in bipolar patients, who generally have abnormally high intracellular Na+ and Ca2+ concentrations, high G-protein levels, and hyperactive phosphatidylinositol signaling and glycogen synthase kinase-3β (GSK3β) activity. We briefly summarize experimental findings on how lithium, at therapeutic doses, modulates these abnormal signaling pathways and proteins. Following this survey, we address the following aspects of lithium's therapeutic actions: (1) Can Li+ displace Na+ from the allosteric Na+-binding sites in neurotransmitter transporters and G-protein coupled receptors (GPCRs); if so, how would this affect the host protein's function? (2) Why are certain Mg2+-dependent enzymes targeted by Li+? (3) How does Li+ binding to Mg2+-bound ATP/GTP (denoted as NTP) in solution affect the cofactor's conformation and subsequent recognition by the host protein? (4) How do NTP-Mg-Li complexes modulate the properties of the respective cellular receptors and signal-transducing proteins? We show that Li+ may displace Na+ from allosteric Na+-binding sites in certain GPCRs and stabilize inactive conformations, preventing these receptors from relaying signal to the respective G-proteins. It may also displace Mg2+ in enzymes containing highly cationic Mg2+-binding sites such as GSK3β, but not in enzymes containing Mg2+-binding sites with low or zero charge. We further show that Li+ binding to Mg2+-NTP in water does not alter the NTP conformation, which is locked by all three phosphates binding to Mg2+. However, bound lithium in the form of [NTP-Mg-Li]2- dianions can activate or inhibit the host protein depending on the NTP-binding pocket's shape, which determines the metal-binding mode: The ATP-binding pocket's shape in the P2X receptor is complementary to the native ATP-Mg solution conformation and nicely fits [ATP-Mg-Li]2-. However, since the ATP βγ phosphates bind Li+, bimetallic [ATP-Mg-Li]2- may be more resistant to hydrolysis than the native cofactor, enabling ATP to reside longer in the binding site and elicit a prolonged P2X response. In contrast, the elongated GTP-binding pockets in G-proteins allow only two GTP phosphates to bind Mg2+, so the GTP conformation is no longer "triply-locked". Consequently, Li+ binding to GTP-Mg can significantly alter the native cofactor's structure, lowering the activated G-protein level, thus attenuating hyperactive G-protein-mediated signaling in bipolar patients. In summary, we have presented a larger "connected" picture of lithium's diverse effects based on its competition as a free monocation with native cations or as a phosphate-bound polyanionic complex modulating the host protein function.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Hsiang Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
15
|
Luca M, Di Mauro M, Di Mauro M, Luca A. Gut Microbiota in Alzheimer's Disease, Depression, and Type 2 Diabetes Mellitus: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4730539. [PMID: 31178961 PMCID: PMC6501164 DOI: 10.1155/2019/4730539] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Gut microbiota consists of over 100 trillion microorganisms including at least 1000 different species of bacteria and is crucially involved in physiological and pathophysiological processes occurring in the host. An imbalanced gastrointestinal ecosystem (dysbiosis) seems to be a contributor to the development and maintenance of several diseases, such as Alzheimer's disease, depression, and type 2 diabetes mellitus. Interestingly, the three disorders are frequently associated as demonstrated by the high comorbidity rates. In this review, we introduce gut microbiota and its role in both normal and pathological processes; then, we discuss the importance of the gut-brain axis as well as the role of oxidative stress and inflammation as mediators of the pathological processes in which dysbiosis is involved. Specific sections pertain the role of the altered gut microbiota in the pathogenesis of Alzheimer's disease, depression, and type 2 diabetes mellitus. The therapeutic implications of microbiota manipulation are briefly discussed. Finally, a conclusion comments on the possible role of dysbiosis as a common pathogenetic contributor (via oxidative stress and inflammation) shared by the three disorders.
Collapse
Affiliation(s)
- Maria Luca
- Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Italy
| | - Maurizio Di Mauro
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Marco Di Mauro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Italy
| |
Collapse
|
16
|
Malhi GS, Das P, Outhred T, Irwin L, Morris G, Hamilton A, Lynch K, Mannie Z. Understanding suicide: Focusing on its mechanisms through a lithium lens. J Affect Disord 2018; 241:338-347. [PMID: 30142593 DOI: 10.1016/j.jad.2018.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Current intervention strategies have been slow in reducing suicide rates, particularly in mood disorders. Thus, for intervention and prevention, a new approach is necessary. Investigating the effects of a medication known for its anti-suicidal properties on neurobiological and neurocognitive substrates of suicidal thinking may provide a deeper and more meaningful understanding of suicide. METHOD A literature search of recognised databases was conducted to examine the intersection of suicide, mood disorders, and the mechanisms of lithium. RESULTS This review synthesises the extant evidence of putative suicide biomarkers and endophenotypes and melds these with known actions of lithium to provide a comprehensive picture of processes underlying suicide. Specifically, the central importance of glycogen synthase kinase-3β (GSK3β) is discussed in detail because it modulates multiple systems that have been repeatedly implicated in suicide, and which lithium also exerts effects on. LIMITATIONS Suicide also occurs outside of mood disorders but we limited our discussion to mood because of our focus on lithium and extending our existing model of suicidal thinking and behaviour that is contextualised within mood disorders. CONCLUSIONS Focusing on the neurobiological mechanisms underpinning suicidal thinking and behaviours through a lithium lens identifies important targets for assessment and intervention. The use of objective measures is critical and using these within a framework that integrates findings from different perspectives and domains of research is likely to yield replicable and validated markers that can be employed both clinically and for further investigation of this complex phenomenon.
Collapse
Affiliation(s)
- Gin S Malhi
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia.
| | - Pritha Das
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| | - Tim Outhred
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| | - Lauren Irwin
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| | - Grace Morris
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| | - Amber Hamilton
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| | - Katie Lynch
- NSW Health and Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Zola Mannie
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| |
Collapse
|
17
|
Luca A, Calandra C, Luca M. Molecular Bases of Alzheimer's Disease and Neurodegeneration: The Role of Neuroglia. Aging Dis 2018; 9:1134-1152. [PMID: 30574424 PMCID: PMC6284765 DOI: 10.14336/ad.2018.0201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Neuroglia is an umbrella term indicating different cellular types that play a pivotal role in the brain, being involved in its development and functional homeostasis. Glial cells are becoming the focus of recent researches pertaining the pathogenesis of neurodegenerative disorders, Alzheimer's Disease (AD) in particular. In fact, activated microglia is the main determinant of neuroinflammation, contributing to neurodegeneration. In addition, the oxidative insult occurring during pathological brain aging can activate glial cells that, in turn, can favor the production of free radicals. Moreover, the recent Glycogen Synthase Kinase 3 (GSK-3) hypothesis of AD suggests that GSK3, involved in the regulation of glial cells functioning, could exert a role in amyloid deposition and tau hyper-phosphorylation. In this review, we briefly describe the main physiological functions of the glial cells and discuss the link between neuroglia and the most studied molecular bases of AD. In addition, we dedicate a section to the glial changes occurring in AD, with particular attention to their role in terms of neurodegeneration. In the light of the literature data, neuroglia could play a fundamental role in AD pathogenesis and progression. Further studies are needed to shed light on this topic.
Collapse
Affiliation(s)
- Antonina Luca
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University Hospital Policlinico-Vittorio Emanuele, Catania, 95100 Sicily, Italy
| | - Carmela Calandra
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University Hospital Policlinico-Vittorio Emanuele, Catania, 95100 Sicily, Italy
| | - Maria Luca
- Department of General Surgery and Medical-Surgical Specialties, Dermatology Clinic, University Hospital Policlinico-Vittorio Emanuele, Catania, 95100 Sicily, Italy
| |
Collapse
|
18
|
Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4629495. [PMID: 29379583 PMCID: PMC5742885 DOI: 10.1155/2017/4629495] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/07/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
GSK-3 is a ubiquitously expressed serine/threonine kinase existing as GSK-3α and GSK-3β isoforms, both active under basal conditions and inactivated upon phosphorylation by different upstream kinases. Initially discovered as a regulator of glycogen synthesis, GSK-3 is also involved in several signaling pathways controlling many different key functions. Here, we discuss recent advances regarding (i) GSK-3 structure, function, regulation, and involvement in several cancers, including hepatocarcinoma, cholangiocarcinoma, breast cancer, prostate cancer, leukemia, and melanoma (active GSK-3 has been shown to induce apoptosis in some cases or inhibit apoptosis in other cases and to induce cancer progression or inhibit tumor cell proliferation, suggesting that different GSK-3 modulators may address different specific targets); (ii) GSK-3 involvement in autophagy modulation, reviewing signaling pathways involved in neurodegenerative and liver diseases; (iii) GSK-3 role in oxidative stress and autophagic cell death, focusing on liver injury; (iv) GSK-3 as a possible therapeutic target of natural substances and synthetic inhibitors in many diseases; and (v) GSK-3 role as modulator of mammalian aging, related to metabolic alterations characterizing senescent cells and age-related diseases. Studies summarized here underline the GSK-3 multifaceted role and indicate such kinase as a molecular target in different pathologies, including diseases associated with autophagy dysregulation.
Collapse
|
19
|
Xanthine-Catechin Mixture Enhances Lithium-Induced Anti-Inflammatory Response in Activated Macrophages In Vitro. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4151594. [PMID: 29250539 PMCID: PMC5698786 DOI: 10.1155/2017/4151594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023]
Abstract
Lithium (Li) is a chemical element used for treating and preventing bipolar disorder (BD) and exerts positive effects such as anti-inflammatory effects as well as undesirable side effects. These effects of Li can be influenced by interaction with some nutritional elements. Therefore, we investigated the potential effects of xanthine (caffeine and theobromine) and catechin molecules present in some food beverages broadly consumed worldwide, such as coffee and tea, on Li-induced anti-inflammatory effects. In the present study, we concomitantly exposed RAW 264.7 macrophages to Li, isolated xanthine and catechin molecules, and a xanthine-catechin mixture (XC mixture). We evaluated the effects of these treatments on cell proliferation, cell cycle progression, oxidative and antioxidant marker expression, cytokine levels, gene expression, and GSK-3β enzyme expression. Treatment with the XC mixture potentialized Li-induced anti-inflammatory effects by intensification of the following: GSK-3β inhibitory action, lowering effect on proinflammatory cytokines (IL-1β, IL-6, and TNFα), and increase in the levels of IL-10 that is an anti-inflammatory cytokine. Despite the controversial nature of caffeine consumption by BD patients, these results suggested that consumption of caffeine, in low concentrations, mixed with other bioactive molecules along with Li may be safe.
Collapse
|
20
|
Bai S, Pan S, Zhang K, Ding X, Wang J, Zeng Q, Xuan Y, Su Z. Long-term effect of dietary overload lithium on the glucose metabolism in broiler chickens. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:191-198. [PMID: 28778020 DOI: 10.1016/j.etap.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Lithium, like insulin, activates glycogen synthase and stimulates glucose transport in rat adipocytes. To investigate the effect of dietary overload lithium on glucose metabolism in broiler chickens, one-day-old chicks were fed a basal diet supplemented with 0 (control) or 100mg lithium/kg (overload lithium) for 35days. Compared to controls, glucose disappearance rates were lower (p=0.035) 15-120min after glucose gavage, and blood glucose concentrations were lower (p=0.038) 30min after insulin injection in overload lithium broilers. Overload lithium decreased (p<0.05) glycogen and glucose-6-phosphate concentrations in liver, but increased (p<0.05) their concentrations in pectoralis major. Overload lithium increased (p<0.05) mRNA expression of glucose transporter (GLUT) 3 and GLUT9 in liver, and GLUT1, GLUT3, GLUT8, and GLUT9 in pectoralis major, but decreased (p<0.05) cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in liver and mitochondrial PEPCK in pectoralis major. These results suggest that dietary overload lithium decreases glucose tolerance and gluconeogenesis, but increases insulin sensitivity and glucose transport in broiler chickens.
Collapse
Affiliation(s)
- Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Shuqin Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xuemei Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yue Xuan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zuowei Su
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
21
|
Tomasetti C, Iasevoli F, Buonaguro EF, De Berardis D, Fornaro M, Fiengo ALC, Martinotti G, Orsolini L, Valchera A, Di Giannantonio M, de Bartolomeis A. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions. Int J Mol Sci 2017; 18:E135. [PMID: 28085108 PMCID: PMC5297768 DOI: 10.3390/ijms18010135] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/25/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of "synapse-based" psychiatric therapeutic strategies.
Collapse
Affiliation(s)
- Carmine Tomasetti
- NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment, Hospital "Maria SS dello Splendore", 641021 Giulianova, Italy.
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Elisabetta Filomena Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Domenico De Berardis
- Polyedra Research Group, 64100 Teramo, Italy.
- NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", 64100 Teramo, Italy.
- Department of Neuroscience and Imaging, University "G. d'Annunzio", 66100 Chieti, Italy.
| | - Michele Fornaro
- Polyedra Research Group, 64100 Teramo, Italy.
- New York State Psychiatric Institute, Columbia University, New York, NY 10027, USA.
| | | | - Giovanni Martinotti
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience and Imaging, University "G. d'Annunzio", 66100 Chieti, Italy.
| | - Laura Orsolini
- Polyedra Research Group, 64100 Teramo, Italy.
- Casa di Cura Villa San Giuseppe, 63100 Ascoli Piceno, Italy.
| | - Alessandro Valchera
- Polyedra Research Group, 64100 Teramo, Italy.
- Casa di Cura Villa San Giuseppe, 63100 Ascoli Piceno, Italy.
| | | | - Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
| |
Collapse
|