1
|
Guzman L, Parcerisas A, Cano A, Sánchez-López E, Verdaguer E, Auladell C, Cajal Y, Barenys M, Camins A, Rabanal F, Ettcheto M. Colistin treatment causes neuronal loss and cognitive impairment via ros accumulation and neuronal plasticity alterations. Biomed Pharmacother 2025; 183:117839. [PMID: 39823721 DOI: 10.1016/j.biopha.2025.117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The rise of antimicrobial resistance has made necessary the increase of the antibacterial arsenal against multidrug-resistant bacteria. In this context, colistin has re-emerged as a first-line antibiotic in critical situations despite its nephro- and neuro- toxicity at peripheral level. However, the mechanism underlying its toxicity remains unknown, particularly in relation to the central nervous system (CNS). Therefore, this study aimed to characterize the molecular mechanisms underlying colistin-induced neurotoxicity in the CNS through a combination of in vitro and in vivo molecular studies along with several in vivo behavioral tests. Following colistin treatment, mice exhibited a significant reduction in body weight together with renal impairment, and locomotor dysfunction. Moreover, our results demonstrated that colistin disrupted the blood-brain barrier, inducing astrogliosis, and triggering apoptosis-related processes probably through the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. Further analysis on mice and primary neuronal cultures revealed that colistin administration altered neuronal plasticity by reducing the number of immature neurons in adult neurogenesis and altering the synaptic function through a reduction of the post-synaptic protein PSD95. All these alterations together finally lead to cognitive impairment and depression-like symptoms in mice. These findings provide novel insights into the mechanisms of colistin-induced neurotoxicity in the CNS, highlighting the need for careful monitoring of cognitive function in patients undergoing colistin treatment.
Collapse
Affiliation(s)
- Laura Guzman
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC) Ctra. de Roda, 70, Vic 08500, Spain; Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Sagrada Família, 7, Vic 08500, Spain; Facultat de Ciències, Tecnologia i Enginyeria, Sagrada Família, 7, Vic 08500, Spain; Departament de Biociències, Sagrada Família, 7, Vic 08500, Spain
| | - Amanda Cano
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Ace Alzheimer Center Barcelona, C/Marquès de Sentmenat, 57, Barcelona 08029, Spain
| | - Elena Sánchez-López
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Departament de Farmàcia, Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), Av. Diagonal, 64, Barcelona 08028, Spain
| | - Ester Verdaguer
- Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Carme Auladell
- Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Yolanda Cajal
- Departament de Farmàcia, Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), Av. Diagonal, 64, Barcelona 08028, Spain
| | - Marta Barenys
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Av. Prat de la Riba, 171, Barcelona 08921, Spain; German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Germany
| | - Antoni Camins
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Av. Josep Laporte, 2, Reus 43204, Spain
| | - Francesc Rabanal
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona (UB), C/Martí i Franquès, 1-11, Barcelona 08028, Spain
| | - Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Av. Josep Laporte, 2, Reus 43204, Spain.
| |
Collapse
|
2
|
Ozdinler PH. Sleep Apnea and Amyotrophic Lateral Sclerosis: Cause, Correlation, Any Relation? Brain Sci 2024; 14:978. [PMID: 39451992 PMCID: PMC11505663 DOI: 10.3390/brainsci14100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with progressive neurodegeneration, affecting both the cortical and the spinal component of the motor neuron circuitry in patients. The cellular and molecular basis of selective neuronal vulnerability is beginning to emerge. Yet, there are no effective cures for ALS, which affects more than 200,000 people worldwide each year. Recent studies highlight the importance of the glymphatic system and its proper function for the clearance of the cerebral spinal fluid, which is achieved mostly during the sleep period. Therefore, a potential link between problems with sleep and neurodegenerative diseases has been postulated. This paper discusses the present understanding of this potential correlation.
Collapse
Affiliation(s)
- P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Nishita M, Kamizaki K, Hoshi K, Aruga K, Nishikaku I, Shibuya H, Matsumoto K, Minami Y. Rho family small GTPase Rif regulates Wnt5a-Ror1-Dvl2 signaling and promotes lung adenocarcinoma progression. J Biol Chem 2023; 299:105248. [PMID: 37703992 PMCID: PMC10570955 DOI: 10.1016/j.jbc.2023.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Rho in filopodia (Rif), a member of the Rho family of small GTPases, induces filopodia formation primarily on the dorsal surface of cells; however, its function remains largely unclear. Here, we show that Rif interacts with Ror1, a receptor for Wnt5a that can also induce dorsal filopodia. Our immunohistochemical analysis revealed a high frequency of coexpression of Ror1 and Rif in lung adenocarcinoma. Lung adenocarcinoma cells cultured on Matrigel established front-rear polarity with massive filopodia on their front surfaces, where Ror1 and Rif were accumulated. Suppression of Ror1 or Rif expression inhibited cell proliferation, survival, and invasion, accompanied by the loss of filopodia and cell polarity in vitro, and prevented tumor growth in vivo. Furthermore, we found that Rif was required to activate Wnt5a-Ror1 signaling at the cell surface leading to phosphorylation of the Wnt signaling pathway hub protein Dvl2, which was further promoted by culturing the cells on Matrigel. Our findings reveal a novel function of Rif in mediating Wnt5a-Ror1-Dvl2 signaling, which is associated with the formation of polarized filopodia on 3D matrices in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Kyoka Hoshi
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kana Aruga
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Ikumi Nishikaku
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Shibuya
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa, Japan; WPI-Nano Life Science Institute, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
4
|
Zhang C, Wang J, Wang W. Wnt signaling in synaptogenesis of Alzheimer's disease. IBRAIN 2023; 9:316-325. [PMID: 37786762 PMCID: PMC10527795 DOI: 10.1002/ibra.12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease (AD), recognized as the leading cause of dementia, occupies a prominent position on the list of significant neurodegenerative disorders, representing a significant global health concern with far-reaching implications at both individual and societal levels. The primary symptom of Alzheimer's disease is a decrease in synaptic potency along with synaptic connection loss. Synapses, which act as important linkages between neuronal units within the cerebral region, are critical in signal transduction processes essential to orchestrating cognitive tasks. Synaptic connections act as critical interconnections between neuronal cells inside the cerebral environment, facilitating critical signal transduction processes required for cognitive functions. The confluence of axonal and dendritic filopodial extensions culminates in the creation of intercellular connections, coordinated by various signals and molecular mechanisms. The progression of synaptic maturation and plasticity is a critical determinant in maintaining mental well-being, and abnormalities in these processes have been linked to the development of neurodegenerative diseases. Wnt signaling pathways are important to the orchestration of synapse development. This review examines the complicated interplay between Wnt signaling and dendritic filopodia, including an examination of the regulatory complexities and molecular machinations involved in synaptogenesis progression. Then, these findings are contextualized within the context of AD pathology, allowing for the consideration of prospective therapeutic approaches based on the findings and development of novel avenues for future scientific research.
Collapse
Affiliation(s)
| | - Joy Wang
- Winchester High SchoolWinchesterMassachusettsUSA
| | - Wen‐Yuan Wang
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of ScienceShanghaiChina
- Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Deng Q, Zhang SQ, Yang PF, Dong WT, Wang F, Long LH, Chen JG. α-MSH-catabolic enzyme prolylcarboxypeptidase in nucleus accumbens shell ameliorates stress susceptibility in mice through regulating synaptic plasticity. Acta Pharmacol Sin 2023; 44:1576-1588. [PMID: 37012493 PMCID: PMC10374542 DOI: 10.1038/s41401-023-01074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
Emerging evidence demonstrates the vital role of synaptic transmission and structural remodeling in major depressive disorder. Activation of melanocortin receptors facilitates stress-induced emotional behavior. Prolylcarboxypeptidase (PRCP) is a serine protease, which splits the C-terminal amino acid of α-MSH and inactivates it. In this study, we asked whether PRCP, the endogenous enzyme of melanocortin system, might play a role in stress susceptibility via regulating synaptic adaptations. Mice were subjected to chronic social defeat stress (CSDS) or subthreshold social defeat stress (SSDS). Depressive-like behavior was assessed in SIT, SPT, TST and FST. Based on to behavioral assessments, mice were divided into the susceptible (SUS) and resilient (RES) groups. After social defeat stress, drug infusion or viral expression and behavioral tests, morphological and electrophysiological analysis were conducted in PFX-fixed and fresh brain slices containing the nucleus accumbens shell (NAcsh). We showed that PRCP was downregulated in NAcsh of susceptible mice. Administration of fluoxetine (20 mg·kg-1·d-1, i.p., for 2 weeks) ameliorated the depressive-like behavior, and restored the expression levels of PRCP in NAcsh of susceptible mice. Pharmacological or genetic inhibition of PRCP in NAcsh by microinjection of N-benzyloxycarbonyl-L-prolyl-L-prolinal (ZPP) or LV-shPRCP enhanced the excitatory synaptic transmission in NAcsh, facilitating stress susceptibility via central melanocortin receptors. On the contrary, overexpression of PRCP in NAcsh by microinjection of AAV-PRCP alleviated the depressive-like behavior and reversed the enhanced excitatory synaptic transmission, abnormal dendritogenesis and spinogenesis in NAcsh induced by chronic stress. Furthermore, chronic stress increased the level of CaMKIIα, a kinase closely related to synaptic plasticity, in NAcsh. The elevated level of CaMKIIα was reversed by overexpression of PRCP in NAcsh. Pharmacological inhibition of CaMKIIα in NAcsh alleviated stress susceptibility induced by PRCP knockdown. This study has revealed the essential role of PRCP in relieving stress susceptibility through melanocortin signaling-mediated synaptic plasticity in NAcsh.
Collapse
Affiliation(s)
- Qiao Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping-Fen Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wan-Ting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Salvador-Carulla L. Santiago Ramon y Cajal, mental functions and neuropsychiatry. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2023; 16:2-4. [PMID: 37916571 DOI: 10.1016/j.sjpmh.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Luis Salvador-Carulla
- Professor of Mental Health, Deputy Director of the Health Research Institute, University of Canberra, Bruce, ACT, Australia.
| |
Collapse
|
7
|
Bell MK, Holst MV, Lee CT, Rangamani P. Dendritic spine morphology regulates calcium-dependent synaptic weight change. J Gen Physiol 2022; 154:e202112980. [PMID: 35819365 PMCID: PMC9280073 DOI: 10.1085/jgp.202112980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 01/14/2023] Open
Abstract
Dendritic spines act as biochemical computational units and must adapt their responses according to their activation history. Calcium influx acts as the first signaling step during postsynaptic activation and is a determinant of synaptic weight change. Dendritic spines also come in a variety of sizes and shapes. To probe the relationship between calcium dynamics and spine morphology, we used a stochastic reaction-diffusion model of calcium dynamics in idealized and realistic geometries. We show that despite the stochastic nature of the various calcium channels, receptors, and pumps, spine size and shape can modulate calcium dynamics and subsequently synaptic weight updates in a deterministic manner. Through a series of exhaustive simulations and analyses, we found that the calcium dynamics and synaptic weight change depend on the volume-to-surface area of the spine. The relationships between calcium dynamics and spine morphology identified in idealized geometries also hold in realistic geometries, suggesting that there are geometrically determined deterministic relationships that may modulate synaptic weight change.
Collapse
Affiliation(s)
- Miriam K. Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Maven V. Holst
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Christopher T. Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
8
|
Chaudry S, Vasudevan N. mTOR-Dependent Spine Dynamics in Autism. Front Mol Neurosci 2022; 15:877609. [PMID: 35782388 PMCID: PMC9241970 DOI: 10.3389/fnmol.2022.877609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Conditions (ASC) are a group of neurodevelopmental disorders characterized by deficits in social communication and interaction as well as repetitive behaviors and restricted range of interests. ASC are complex genetic disorders with moderate to high heritability, and associated with atypical patterns of neural connectivity. Many of the genes implicated in ASC are involved in dendritic spine pruning and spine development, both of which can be mediated by the mammalian target of rapamycin (mTOR) signaling pathway. Consistent with this idea, human postmortem studies have shown increased spine density in ASC compared to controls suggesting that the balance between autophagy and spinogenesis is altered in ASC. However, murine models of ASC have shown inconsistent results for spine morphology, which may underlie functional connectivity. This review seeks to establish the relevance of changes in dendritic spines in ASC using data gathered from rodent models. Using a literature survey, we identify 20 genes that are linked to dendritic spine pruning or development in rodents that are also strongly implicated in ASC in humans. Furthermore, we show that all 20 genes are linked to the mTOR pathway and propose that the mTOR pathway regulating spine dynamics is a potential mechanism underlying the ASC signaling pathway in ASC. We show here that the direction of change in spine density was mostly correlated to the upstream positive or negative regulation of the mTOR pathway and most rodent models of mutant mTOR regulators show increases in immature spines, based on morphological analyses. We further explore the idea that these mutations in these genes result in aberrant social behavior in rodent models that is due to these altered spine dynamics. This review should therefore pave the way for further research on the specific genes outlined, their effect on spine morphology or density with an emphasis on understanding the functional role of these changes in ASC.
Collapse
|
9
|
Durand J, Filipchuk A. Electrical and Morphological Properties of Developing Motoneurons in Postnatal Mice and Early Abnormalities in SOD1 Transgenic Mice. ADVANCES IN NEUROBIOLOGY 2022; 28:353-373. [PMID: 36066832 DOI: 10.1007/978-3-031-07167-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, we review electrical and morphological properties of lumbar motoneurons during postnatal development in wild-type (WT) and transgenic superoxide dismutase 1 (SOD1) mice, models of amyotrophic lateral sclerosis. First we showed that sensorimotor reflexes do not develop normally in transgenic SOD1G85R pups. Fictive locomotor activity recorded in in vitro whole brainstem/spinal cord preparations was not induced in these transgenic SOD1G85R mice using NMDA and 5HT in contrast to WT mice. Further, abnormal electrical properties were detected as early as the second postnatal week in lumbar motoneurons of SOD1 mice while they develop clinical symptoms several months after birth. We compared two different strains of mice (G85R and G93A) at the same postnatal period using intracellular recordings and patch clamp recordings of WT and SOD1 motoneurons. We defined three types of motoneurons according to their discharge firing pattern (transient, sustained and delayed onset firing) when motor units are not yet mature. The delayed-onset firing motoneurons had the higher rheobase compared to the transient and sustained firing groups in the WT mice. We demonstrated hypoexcitability in the delayed onset-firing motoneurons of SOD1 mice. Intracellular staining of motoneurons revealed dendritic overbranching in SOD1 lumbar motoneurons that was more pronounced in the sustained firing motoneurons. We suggested that motoneuronal hypoexcitability is an early pathological sign affecting a subset of lumbar motoneurons in the spinal cord of SOD1 mice.
Collapse
Affiliation(s)
- Jacques Durand
- Institut de Neurosciences de la Timone (INT) P3M team, Aix Marseille Université, Marseille, cedex 05, France.
| | - Anton Filipchuk
- Department for Integrative and Computational Neuroscience (ICN), Paris-Saclay Institute of Neuroscience (NeuroPSI), Gif-sur-Yvette, France
| |
Collapse
|
10
|
Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021; 3:277-289. [PMID: 34766008 PMCID: PMC8569634 DOI: 10.1016/j.crstbi.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/04/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
Collapse
Affiliation(s)
- Priyanka Dutta
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Pratibha Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Janesh Kumar
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Sankar Maiti
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
11
|
Alimohamadi H, Bell MK, Halpain S, Rangamani P. Mechanical Principles Governing the Shapes of Dendritic Spines. Front Physiol 2021; 12:657074. [PMID: 34220531 PMCID: PMC8242199 DOI: 10.3389/fphys.2021.657074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along the dendrites of neurons and are sites of excitatory postsynaptic activity. The morphology of spines has been implicated in their function in synaptic plasticity and their shapes have been well-characterized, but the potential mechanics underlying their shape development and maintenance have not yet been fully understood. In this work, we explore the mechanical principles that could underlie specific shapes using a minimal biophysical model of membrane-actin interactions. Using this model, we first identify the possible force regimes that give rise to the classic spine shapes-stubby, filopodia, thin, and mushroom-shaped spines. We also use this model to investigate how the spine neck might be stabilized using periodic rings of actin or associated proteins. Finally, we use this model to predict that the cooperation between force generation and ring structures can regulate the energy landscape of spine shapes across a wide range of tensions. Thus, our study provides insights into how mechanical aspects of actin-mediated force generation and tension can play critical roles in spine shape maintenance.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Miriam K. Bell
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Shelley Halpain
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Alexander CJ, Barzik M, Fujiwara I, Remmert K, Wang YX, Petralia RS, Friedman TB, Hammer JA. Myosin 18Aα targets the guanine nucleotide exchange factor β-Pix to the dendritic spines of cerebellar Purkinje neurons and promotes spine maturation. FASEB J 2021; 35:e21092. [PMID: 33378124 PMCID: PMC8357457 DOI: 10.1096/fj.202001449r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Myosin 18Aα is a myosin 2-like protein containing unique N- and C-terminal protein interaction domains that co-assembles with myosin 2. One protein known to bind to myosin 18Aα is β-Pix, a guanine nucleotide exchange factor (GEF) for Rac1 and Cdc42 that has been shown to promote dendritic spine maturation by activating the assembly of actin and myosin filaments in spines. Here, we show that myosin 18A⍺ concentrates in the spines of cerebellar Purkinje neurons via co-assembly with myosin 2 and through an actin binding site in its N-terminal extension. miRNA-mediated knockdown of myosin 18A⍺ results in a significant defect in spine maturation that is rescued by an RNAi-immune version of myosin 18A⍺. Importantly, β-Pix co-localizes with myosin 18A⍺ in spines, and its spine localization is lost upon myosin 18A⍺ knockdown or when its myosin 18A⍺ binding site is deleted. Finally, we show that the spines of myosin 18A⍺ knockdown Purkinje neurons contain significantly less F-actin and myosin 2. Together, these data argue that mixed filaments of myosin 2 and myosin 18A⍺ form a complex with β-Pix in Purkinje neuron spines that promotes spine maturation by enhancing the assembly of actin and myosin filaments downstream of β-Pix's GEF activity.
Collapse
Affiliation(s)
- Christopher J Alexander
- Molecular Cell Biology Laboratory, Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, NIDCD, NIH, Bethesda, MD, USA
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD, NIH, Betheda, MD, USA
| | | | | | - John A Hammer
- Molecular Cell Biology Laboratory, Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
13
|
Nitric oxide controls excitatory/inhibitory balance in the hypoglossal nucleus during early postnatal development. Brain Struct Funct 2020; 225:2871-2884. [PMID: 33130922 PMCID: PMC7674331 DOI: 10.1007/s00429-020-02165-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/17/2020] [Indexed: 01/18/2023]
Abstract
Synaptic remodeling during early postnatal development lies behind neuronal networks refinement and nervous system maturation. In particular, the respiratory system is immature at birth and is subjected to significant postnatal development. In this context, the excitatory/inhibitory balance dramatically changes in the respiratory-related hypoglossal nucleus (HN) during the 3 perinatal weeks. Since, development abnormalities of hypoglossal motor neurons (HMNs) are associated with sudden infant death syndrome and obstructive sleep apnea, deciphering molecular partners behind synaptic remodeling in the HN is of basic and clinical relevance. Interestingly, a transient expression of the neuronal isoform of nitric oxide (NO) synthase (NOS) occurs in HMNs at neonatal stage that disappears before postnatal day 21 (P21). NO, in turn, is a determining factor for synaptic refinement in several physiopathological conditions. Here, intracerebroventricular chronic administration (P7–P21) of the broad spectrum NOS inhibitor l-NAME (N(ω)-nitro-l-arginine methyl ester) differentially affected excitatory and inhibitory rearrangement during this neonatal interval in the rat. Whilst l-NAME led to a reduction in the number of excitatory structures, inhibitory synaptic puncta were increased at P21 in comparison to administration of the inactive stereoisomer d-NAME. Finally, l-NAME decreased levels of the phosphorylated form of myosin light chain in the nucleus, which is known to regulate the actomyosin contraction apparatus. These outcomes indicate that physiologically synthesized NO modulates excitatory/inhibitory balance during early postnatal development by acting as an anti-synaptotrophic and/or synaptotoxic factor for inhibitory synapses, and as a synaptotrophin for excitatory ones. The mechanism of action could rely on the modulation of the actomyosin contraction apparatus.
Collapse
|
14
|
Qi Z, Yang X, Sang Y, Liu Y, Li J, Xu B, Liu W, He M, Xu Z, Deng Y, Zhu J. Fluoxetine and Riluzole Mitigates Manganese-Induced Disruption of Glutamate Transporters and Excitotoxicity via Ephrin-A3/GLAST-GLT-1/Glu Signaling Pathway in Striatum of Mice. Neurotox Res 2020; 38:508-523. [PMID: 32472497 DOI: 10.1007/s12640-020-00209-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/05/2023]
Abstract
Manganese (Mn) is an essential element required for many biological processes and systems in the human body. Mn intoxication increases brain glutamate (Glu) levels causing neuronal damage. Recent studies have reported that ephrin-A3 regulates this glutamate transporter. However, none has explored the role of this crucial molecule in Mn-induced excitotoxicity. The present study investigated whether ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity using astrocytes and Kunming mice. The mechanisms were explored using fluoxetine (ephrin-A3 inhibitor) and riluzole (a Glu release inhibitor). Firstly, we demonstrated that Mn exposure (500 μM or 50 mg/kg MnCl2) significantly increased Mn, ephrin-A3, and Glu levels, and inhibited Na+-K+ ATPase activity, as well as mRNA and protein levels of GLAST and GLT-1. Secondly, we found that astrocytes and mice pretreated with fluoxetine (100 μM or 15 mg/kg) and riluzole (100 μM or 32 μmol/kg) prior to Mn exposure had lower ephrin-A3 and Glu levels, but higher Na+-K+ ATPase activity, expression levels of GLAST and GLT-1 than those exposed to 500 μM or 50 mg/kg MnCl2. Moreover, the morphology of cells and the histomorphology of mice striatum were injured. Results showed that pretreatment with fluoxetine and riluzole attenuated the Mn-induced motor dysfunctions. Together, these results suggest that the ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity, and fluoxetine and riluzole can mitigate the Mn-induced excitotoxicity in mice brain.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yanqi Sang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yanan Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Miao He
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| | - Jinghai Zhu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
15
|
Cuentas-Condori A, Mulcahy B, He S, Palumbos S, Zhen M, Miller DM. C. elegans neurons have functional dendritic spines. eLife 2019; 8:e47918. [PMID: 31584430 PMCID: PMC6802951 DOI: 10.7554/elife.47918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in C. elegans (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that C. elegans motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca++ stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of C. elegans genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.
Collapse
Affiliation(s)
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research InstituteUniversity of TorontoTorontoCanada
| | - Siwei He
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| | - Sierra Palumbos
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research InstituteUniversity of TorontoTorontoCanada
| | - David M Miller
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleUnited States
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| |
Collapse
|
16
|
General anesthetic exposure in adolescent rats causes persistent maladaptations in cognitive and affective behaviors and neuroplasticity. Neuropharmacology 2019; 150:153-163. [PMID: 30926450 DOI: 10.1016/j.neuropharm.2019.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 01/25/2023]
Abstract
Accumulating evidence indicates that exposure to general anesthetics during infancy and childhood can cause persistent cognitive impairment, alterations in synaptic plasticity, and, to a lesser extent, increased incidence of behavioral disorders. Unfortunately, the developmental parameters of susceptibility to general anesthetics are not well understood. Adolescence is a critical developmental period wherein multiple late developing brain regions may also be vulnerable to enduring general anesthetic effects. Given the breadth of the adolescent age span, this group potentially represents millions more individuals than those exposed during early childhood. In this study, isoflurane exposure within a well-characterized adolescent period in Sprague-Dawley rats elicited immediate and persistent anxiety- and impulsive-like responding, as well as delayed cognitive impairment into adulthood. These behavioral abnormalities were paralleled by atypical dendritic spine morphology in the prefrontal cortex (PFC) and hippocampus (HPC), suggesting delayed anatomical maturation, and shifts in inhibitory function that suggest hypermaturation of extrasynaptic GABAA receptor inhibition. Preventing this hypermaturation of extrasynaptic GABAA receptor-mediated function in the PFC selectively reversed enhanced impulsivity resulting from adolescent isoflurane exposure. Taken together, these data demonstrate that the developmental window for susceptibility to enduring untoward effects of general anesthetics may be much longer than previously appreciated, and those effects may include affective behaviors in addition to cognition.
Collapse
|
17
|
Koebis M, Urata S, Shinoda Y, Okabe S, Yamasoba T, Nakao K, Aiba A, Furuichi T. LAMP5 in presynaptic inhibitory terminals in the hindbrain and spinal cord: a role in startle response and auditory processing. Mol Brain 2019; 12:20. [PMID: 30867010 PMCID: PMC6416879 DOI: 10.1186/s13041-019-0437-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022] Open
Abstract
Lysosome-associated membrane protein 5 (LAMP5) is a mammalian ortholog of the Caenorhabditis elegans protein, UNC-46, which functions as a sorting factor to localize the vesicular GABA transporter UNC-47 to synaptic vesicles. In the mouse forebrain, LAMP5 is expressed in a subpopulation of GABAergic neurons in the olfactory bulb and the striato-nigral system, where it is required for fine-tuning of GABAergic synaptic transmission. Here we focus on the prominent expression of LAMP5 in the brainstem and spinal cord and suggest a role for LAMP5 in these brain regions. LAMP5 was highly expressed in several brainstem nuclei involved with auditory processing including the cochlear nuclei, the superior olivary complex, nuclei of the lateral lemniscus and grey matter in the spinal cord. It was localized exclusively in inhibitory synaptic terminals, as has been reported in the forebrain. In the absence of LAMP5, localization of the vesicular inhibitory amino acid transporter (VIAAT) was unaltered in the lateral superior olive and the ventral cochlear nuclei, arguing against a conserved role for LAMP5 in trafficking VIAAT. Lamp5 knockout mice showed no overt behavioral abnormality but an increased startle response to auditory and tactile stimuli. In addition, LAMP5 deficiency led to a larger intensity-dependent increase of wave I, II and V peak amplitude of auditory brainstem response. Our results indicate that LAMP5 plays a pivotal role in sensorimotor processing in the brainstem and spinal cord.
Collapse
Affiliation(s)
- Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Shinji Urata
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392 Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Teiichi Furuichi
- Department of Applied Biological Sciences, Tokyo University of Science, Chiba, 278-8510 Japan
| |
Collapse
|
18
|
Williams PA, Bellinger DL, Wilson CG. Changes in the Morphology of Hypoglossal Motor Neurons in the Brainstem of Developing Rats. Anat Rec (Hoboken) 2018; 302:869-892. [DOI: 10.1002/ar.23971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Paul Allen Williams
- Division of Physiology, Basic Science DepartmentLoma Linda University School of Medicine California Loma Linda
- Lawrence D. Longo MD Center for Perinatal BiologyLoma Linda University School of Medicine Loma Linda California
| | - Denise L. Bellinger
- Division of Physiology, Basic Science DepartmentLoma Linda University School of Medicine California Loma Linda
- Department of Pathology and Human AnatomyLoma Linda University School of Medicine Loma Linda California
| | - Christopher G. Wilson
- Division of Physiology, Basic Science DepartmentLoma Linda University School of Medicine California Loma Linda
- Lawrence D. Longo MD Center for Perinatal BiologyLoma Linda University School of Medicine Loma Linda California
- Department of PediatricsLoma Linda University School of Medicine Loma Linda California
| |
Collapse
|
19
|
Dickstein DL, Talty R, Bresnahan E, Varghese M, Perry B, Janssen WGM, Sowa A, Giedzinski E, Apodaca L, Baulch J, Acharya M, Parihar V, Limoli CL. Alterations in synaptic density and myelination in response to exposure to high-energy charged particles. J Comp Neurol 2018; 526:2845-2855. [PMID: 30198564 DOI: 10.1002/cne.24530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
High-energy charged particles are considered particularly hazardous components of the space radiation environment. Such particles include fully ionized energetic nuclei of helium, silicon, and oxygen, among others. Exposure to charged particles causes reactive oxygen species production, which has been shown to result in neuronal dysfunction and myelin degeneration. Here we demonstrate that mice exposed to high-energy charged particles exhibited alterations in dendritic spine density in the hippocampus, with a significant decrease of thin spines in mice exposed to helium, oxygen, and silicon, compared to sham-irradiated controls. Electron microscopy confirmed these findings and revealed a significant decrease in overall synapse density and in nonperforated synapse density, with helium and silicon exhibiting more detrimental effects than oxygen. Degeneration of myelin was also evident in exposed mice with significant changes in the percentage of myelinated axons and g-ratios. Our data demonstrate that exposure to all types of high-energy charged particles have a detrimental effect, with helium and silicon having more synaptotoxic effects than oxygen. These results have important implications for the integrity of the central nervous system and the cognitive health of astronauts after prolonged periods of space exploration.
Collapse
Affiliation(s)
- Dara L Dickstein
- Uniformed Services University of Health Sciences, Bethesda, Maryland.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronan Talty
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin Bresnahan
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Merina Varghese
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bayley Perry
- Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - William G M Janssen
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Allison Sowa
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, California
| | - Lauren Apodaca
- Department of Radiation Oncology, University of California, Irvine, California
| | - Janet Baulch
- Department of Radiation Oncology, University of California, Irvine, California
| | - Munjal Acharya
- Department of Radiation Oncology, University of California, Irvine, California
| | - Vipan Parihar
- Department of Radiation Oncology, University of California, Irvine, California
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| |
Collapse
|
20
|
Johnson SM, Randhawa KS, Epstein JJ, Gustafson E, Hocker AD, Huxtable AG, Baker TL, Watters JJ. Gestational intermittent hypoxia increases susceptibility to neuroinflammation and alters respiratory motor control in neonatal rats. Respir Physiol Neurobiol 2018; 256:128-142. [PMID: 29174411 PMCID: PMC5963968 DOI: 10.1016/j.resp.2017.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
Sleep disordered breathing (SDB) and obstructive sleep apnea (OSA) during pregnancy are growing health concerns because these conditions are associated with adverse outcomes for newborn infants. SDB/OSA during pregnancy exposes the mother and the fetus to intermittent hypoxia. Direct exposure of adults and neonates to IH causes neuroinflammation and neuronal apoptosis, and exposure to IH during gestation (GIH) causes long-term deficits in offspring respiratory function. However, the role of neuroinflammation in CNS respiratory control centers of GIH offspring has not been investigated. Thus, the goal of this hybrid review/research article is to comprehensively review the available literature both in humans and experimental rodent models of SDB in order to highlight key gaps in knowledge. To begin to address some of these gaps, we also include data demonstrating the consequences of GIH on respiratory rhythm generation and neuroinflammation in CNS respiratory control regions. Pregnant rats were exposed to daily intermittent hypoxia during gestation (G10-G21). Neuroinflammation in brainstem and cervical spinal cord was evaluated in P0-P3 pups that were injected with saline or lipopolysaccharide (LPS; 0.1mg/kg, 3h). In CNS respiratory control centers, we found that GIH attenuated the normal CNS immune response to LPS challenge in a gene-, sex-, and CNS region-specific manner. GIH also altered normal respiratory motor responses to LPS in newborn offspring brainstem-spinal cord preparations. These data underscore the need for further study of the long-term consequences of maternal SDB on the relationship between inflammation and the respiratory control system, in both neonatal and adult offspring.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Karanbir S Randhawa
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jenna J Epstein
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Ellen Gustafson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, OR 97401, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR 97401, United States
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
21
|
Ghezzi F, Monni L, Nistri A. Functional up-regulation of the M-current by retigabine contrasts hyperexcitability and excitotoxicity on rat hypoglossal motoneurons. J Physiol 2018; 596:2611-2629. [PMID: 29736957 DOI: 10.1113/jp275906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Excessive neuronal excitability characterizes several neuropathological conditions, including neurodegenerative diseases such as amyotrophic lateral sclerosis. Hypoglossal motoneurons (HMs), which control tongue muscles, are extremely vulnerable to this disease and undergo damage and death when exposed to an excessive glutamate extracellular concentration that causes excitotoxicity. Our laboratory devised an in vitro model of excitotoxicity obtained by pharmacological blockade of glutamate transporters. In this paradigm, HMs display hyperexcitability, collective bursting and eventually cell death. The results of the present study show that pharmacological up-regulation of a K+ current (M-current), via application of the anti-convulsant retigabine, prevented all hallmarks of HM excitotoxicity, comprising bursting, generation of reactive oxygen species, expression of toxic markers and cell death. ○Our data may have translational value to develop new treatments against neurological diseases by using positive pharmacological modulators of the M-current. ABSTRACT Neuronal hyperexcitability is a symptom characterizing several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). In the ALS bulbar form, hypoglossal motoneurons (HMs) are an early target for neurodegeneration because of their high vulnerability to metabolic insults. In recent years, our laboratory has developed an in vitro model of a brainstem slice comprising the hypoglossal nucleus in which HM neurodegeneration is achieved by blocking glutamate clearance with dl-threo-β-benzyloxyaspartate (TBOA), thus leading to delayed excitotoxicity. During this process, HMs display a set of hallmarks such as hyperexcitability (and network bursting), reactive oxygen species (ROS) generation and, finally, cell death. The present study aimed to investigate whether blocking early hyperexcitability and bursting with the anti-convulsant drug retigabine was sufficient to achieve neuroprotection against excitotoxicity. Retigabine is a selective positive allosteric modulator of the M-current (IM ), an endogenous mechanism that neurons (comprising HMs) express to dampen excitability. Retigabine (10 μm; co-applied with TBOA) contrasted ROS generation, release of endogenous toxic factors into the HM cytoplasm and excitotoxicity-induced HM death. Electrophysiological experiments showed that retigabine readily contrasted and arrested bursting evoked by TBOA administration. Because neuronal IM subunits (Kv7.2, Kv7.3 and Kv7.5) were expressed in the hypoglossal nucleus and in functionally connected medullary nuclei, we suggest that they were responsible for the strong reduction in network excitability, a potent phenomenon for achieving neuroprotection against TBOA-induced excitotoxicity. The results of the present study may have translational value for testing novel positive pharmacological modulators of the IM under pathological conditions (including neurodegenerative disorders) characterized by excessive neuronal excitability.
Collapse
Affiliation(s)
- Filippo Ghezzi
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Laura Monni
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
22
|
Jacquemet G, Paatero I, Carisey AF, Padzik A, Orange JS, Hamidi H, Ivaska J. FiloQuant reveals increased filopodia density during breast cancer progression. J Cell Biol 2017; 216:3387-3403. [PMID: 28765364 PMCID: PMC5626550 DOI: 10.1083/jcb.201704045] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/01/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022] Open
Abstract
Defective filopodia formation is linked to pathologies such as cancer, wherein actively protruding filopodia, at the invasive front, accompany cancer cell dissemination. Despite wide biological significance, delineating filopodia function in complex systems remains challenging and is particularly hindered by lack of compatible methods to quantify filopodia properties. Here, we present FiloQuant, a freely available ImageJ plugin, to detect filopodia-like protrusions in both fixed- and live-cell microscopy data. We demonstrate that FiloQuant can extract quantifiable information, including protrusion dynamics, density, and length, from multiple cell types and in a range of microenvironments. In cellular models of breast ductal carcinoma in situ, we reveal a link between filopodia formation at the cell-matrix interface, in collectively invading cells and 3D tumor spheroids, and the in vitro invasive capacity of the carcinoma. Finally, using intravital microscopy, we observe that tumor spheroids display filopodia in vivo, supporting a potential role for these protrusions during tumorigenesis.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ilkka Paatero
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Alexandre F Carisey
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX
- Department of Pediatrics, Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Artur Padzik
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jordan S Orange
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX
- Department of Pediatrics, Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
23
|
Mahmood U, Ahn S, Yang EJ, Choi M, Kim H, Regan P, Cho K, Kim HS. Dendritic spine anomalies and PTEN alterations in a mouse model of VPA-induced autism spectrum disorder. Pharmacol Res 2017; 128:110-121. [PMID: 28823725 DOI: 10.1016/j.phrs.2017.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 11/18/2022]
Abstract
Mounting evidence suggests that the etiology of autism spectrum disorders (ASDs) is profoundly influenced by exposure to environmental factors, although the precise molecular and cellular links remain ill-defined. In this study, we examined how exposure to valproic acid (VPA) during pregnancy is associated with an increased incidence of ASD. A mouse model was established by injecting VPA at embryonic day 13, and its behavioral phenotypes including impaired social interaction, increased repetitive behaviors and decreased nociception were observed at postnatal days 21-42. VPA-treated mice showed dysregulation of synaptic structure in cortical neurons, including a reduced proportion of filopodium-type and stubby spines and increased proportions of thin and mushroom-type spines, along with a decreased spine head size. We also found that VPA-treatment led to decreased expression of phosphate and tensin homolog (PTEN) and increased levels of p-AKT protein in the hippocampus and cortex. Our data suggest that there is a correlation between VPA exposure and dysregulation of PTEN with ASD-like behavioral and neuroanatomical changes, and this may be a potential mechanism of VPA-induced ASD.
Collapse
Affiliation(s)
- Usman Mahmood
- Interdisciplinary Program in Brain Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Present address: Department of Pharmacology, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Eun-Jeong Yang
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Moonseok Choi
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyunju Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Philip Regan
- School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Kwangwook Cho
- School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Hye-Sun Kim
- Interdisciplinary Program in Brain Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea; Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Seoul National University Bundang Hospital, Seoul National University College of Medicine, Sungnam, 13620, Republic of Korea.
| |
Collapse
|
24
|
Alterations in hypoglossal motor neurons due to GAD67 and VGAT deficiency in mice. Exp Neurol 2016; 289:117-127. [PMID: 27956032 DOI: 10.1016/j.expneurol.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/25/2016] [Accepted: 12/08/2016] [Indexed: 02/03/2023]
Abstract
There is an emerging body of evidence that glycinergic and GABAergic synaptic inputs onto motor neurons (MNs) help regulate the final number of MNs and axonal muscle innervation patterns. Using mutant glutamate decarboxylase 67 (GAD67) and vesicular inhibitory amino acid transporter (VGAT) deficient mice, we describe the effect that deficiencies of presynaptic GABAergic and/or glycinergic release have on the post-synaptic somato-dendritic structure of motor neurons, and the development of excitatory and inhibitory synaptic inputs to MNs. We use whole-cell patch clamp recording of synaptic currents in E18.5 hypoglossal MNs from brainstem slices, combined with dye-filling of these recorded cells with Neurobiotin™, high-resolution confocal imaging and 3-dimensional reconstructions. Hypoglossal MNs from GAD67- and VGAT-deficient mice display decreased inhibitory neurotransmission and increased excitatory synaptic inputs. These changes are associated with increased dendritic arbor length, increased complexity of dendritic branching, and increased density of spiny processes. Our results show that presynaptic release of inhibitory amino acid neurotransmitters are potent regulators of hypoglossal MN morphology and key regulators of synaptic inputs during this critical developmental time point.
Collapse
|
25
|
Morphology of Human Nucleus Accumbens Neurons Based on the Immunohistochemical Expression of Gad67. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2016. [DOI: 10.1515/sjecr-2016-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The nucleus accumbens is a part of the ventral striatum along with the caudate nucleus and putamen. The role of the human nucleus accumbens in drug addiction and other psychiatric disorders is of great importance. The aim of this study was to characterize medium spiny neurons in the nucleus accumbens according to the immunohistochemical expression of GAD67.
This study was conducted on twenty human brains of both sexes between the ages of 20 and 75. The expression of GAD67 was assessed immunohistochemically, and the characterization of the neurons was based on the shape and size of the soma and the number of impregnated primary dendrites.
We showed that neurons of the human nucleus accumbens expressed GAD67 in the neuron soma and in the primary dendrites. An analysis of the cell body morphology revealed the following four different types of neurons: fusiform neurons, fusiform neurons with lateral dendrites, pyramidal neurons and multipolar neurons.
An immunohistochemical analysis showed a strong GAD67 expression in GABAergic medium spiny neurons, which could be classifi ed into four different types, and these neurons morphologically correlated with those described by the Golgi study.
Collapse
|
26
|
Corsini S, Tortora M, Nistri A. Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons. J Physiol 2016; 594:6777-6798. [PMID: 27374167 PMCID: PMC5108918 DOI: 10.1113/jp272591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus hypoglossus. This process is the expression of the excitotoxicity that underlies motoneuron degeneration in diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons. In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic receptor antagonists. Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these phenomena synergize to provide motoneuron protection. Nicotinic receptors may represent a novel target to contrast pathological overactivity of brainstem motoneurons and therefore to prevent their metabolic distress and death. ABSTRACT Excitotoxicity is thought to be one of the early processes in the onset of amyotrophic lateral sclerosis (ALS) because high levels of glutamate have been detected in the cerebrospinal fluid of such patients due to dysfunctional uptake of this transmitter that gradually damages brainstem and spinal motoneurons. To explore potential mechanisms to arrest ALS onset, we used an established in vitro model of rat brainstem slice preparation in which excitotoxicity is induced by the glutamate uptake blocker dl-threo-β-benzyloxyaspartate (TBOA). Because certain brain neurons may be neuroprotected via activation of nicotinic acetylcholine receptors (nAChRs) by nicotine, we investigated if nicotine could arrest excitotoxic damage to highly ALS-vulnerable hypoglossal motoneurons (HMs). On 50% of patch-clamped HMs, TBOA induced intense network bursts that were inhibited by 1-10 μm nicotine, whereas nAChR antagonists facilitated burst emergence in non-burster cells. Furthermore, nicotine inhibited excitatory transmission and enhanced synaptic inhibition. Strong neuroprotection by nicotine prevented the HM loss observed after 4 h of TBOA exposure. This neuroprotective action was due to suppression of downstream effectors of neurotoxicity such as increased intracellular levels of reactive oxygen species, impaired energy metabolism and upregulated genes involved in endoplasmic reticulum (ER) stress. In addition, HMs surviving TBOA toxicity often expressed UDP-glucose glycoprotein glucosyltransferase, a key element in repair of misfolded proteins: this phenomenon was absent after nicotine application, indicative of ER stress prevention. Our results suggest nAChRs to be potential targets for inhibiting excitotoxic damage of motoneurons at an early stage of the neurodegenerative process.
Collapse
Affiliation(s)
- Silvia Corsini
- Department of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| | - Maria Tortora
- Department of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| | - Andrea Nistri
- Department of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| |
Collapse
|
27
|
Kanjhan R, Fogarty MJ, Noakes PG, Bellingham MC. Developmental changes in the morphology of mouse hypoglossal motor neurons. Brain Struct Funct 2016; 221:3755-86. [PMID: 26476929 PMCID: PMC5009180 DOI: 10.1007/s00429-015-1130-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022]
Abstract
Hypoglossal motor neurons (XII MNs) innervate tongue muscles important in breathing, suckling and vocalization. Morphological properties of 103 XII MNs were studied using Neurobiotin™ filling in transverse brainstem slices from C57/Bl6 mice (n = 34) from embryonic day (E) 17 to postnatal day (P) 28. XII MNs from areas thought to innervate different tongue muscles showed similar morphology in most, but not all, features. Morphological properties of XII MNs were established prior to birth, not differing between E17-18 and P0. MN somatic volume gradually increased for the first 2 weeks post-birth. The complexity of dendritic branching and dendrite length of XII MNs increased throughout development (E17-P28). MNs in the ventromedial XII motor nucleus, likely to innervate the genioglossus, frequently (42 %) had dendrites crossing to the contralateral side at all ages, but their number declined with postnatal development. Unexpectedly, putative dendritic spines were found in all XII MNs at all ages, and were primarily localized to XII MN somata and primary dendrites at E18-P4, increased in distal dendrites by P5-P8, and were later predominantly found in distal dendrites. Dye-coupling between XII MNs was common from E18 to P7, but declined strongly with maturation after P7. Axon collaterals were found in 20 % (6 of 28) of XII MNs with filled axons; collaterals terminated widely outside and, in one case, within the XII motor nucleus. These results reveal new morphological features of mouse XII MNs, and suggest that dendritic projection patterns, spine density and distribution, and dye-coupling patterns show specific developmental changes in mice.
Collapse
Affiliation(s)
- Refik Kanjhan
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew J Fogarty
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|