1
|
Kuo HT, Chen CY, Hsu AY, Wang YH, Lin CJ, Hsia NY, Tsai YY, Wei JCC. Association between immune checkpoint inhibitor medication and uveitis: a population-based cohort study utilizing TriNetX database. Front Immunol 2024; 14:1302293. [PMID: 38264654 PMCID: PMC10803449 DOI: 10.3389/fimmu.2023.1302293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Objective To explore the associations between the use of immune checkpoint inhibitors (ICIs) and the risk of developing uveitis among cancer patients. Methods Cancer patients who received ICI therapy and a comparison group of cancer patients who did not receive ICI therapy were retrospectively recruited from the TriNetX electronic heath-record registry. The outcome of interest was the development of new-onset uveitis. Propensity score matching based on a 1:1 ratio was conducted in order to reduce bias. Multi-variate cox proportional hazard models and Kaplan Meier method were also utilized to assess for the risk of uveitis among cancer patients who received ICI therapy. Results 71931 cancer patients (54.7% male; 76.5% white; mean age at index 63.6 ± 12.2 years) who received ICI treatment (ICI group) and 71931 cancer patients (54.7% male; 77% white; mean age at index 63.5 ± 12.4 years) who never received ICI (comparison group) were recruited. Associated Kaplan-Meier curves showed significantly increased uveitis risk among the ICI group for all follow-up years (p<0.001). The risk of uveitis was also higher among the ICI group during the 144-month follow-up period with a hazard ratio (HR) of 2.39 (95% CI: 2.07-2.75). Increased risk for specific uveitis diseases, such as iridocyclitis, chorioretinal inflammation, retinal vasculitis, unspecified purulent endophthalmitis, pan-uveitis and sympathetic uveitis were found. Subgroup analysis demonstrated an elevated hazard ratio for the development of uveitis among ICI recipients, spanning individuals below the age of 65 as well as those aged 65 and older. The elevated hazard ratio for uveitis development among ICI recipients was also observed across all genders, among those of white and Asian ethnicities, those with smoking history, and those with comorbid conditions such as hypertension and dyslipidemia, in comparison to their non-ICI counterparts. An additional subgroup analysis on monotherapy versus combinatory ICI regimens was also conducted. Individuals who received monotherapy from the class of anti-PD-1 (HR:1.98 [CI: 1.65-2.37]) and anti-CTLA-4 (HR:5.86 [CI:1.99-17.24]) exhibited elevated hazard ratios for uveitis development compared to their non-ICI comparators. Those exposed to combinatory ICI regimens, specifically a combination of anti-PD-1 and anti-CTLA4 (HR: 5.04 [CI:3.55-7.16]), showed increased hazard ratios for uveitis development compared to their non-ICI comparators. In contrast, individuals exposed to a combination of anti-PD-1 and anti-PD-L1 (HR: 2.47 [CI:0.81-7.50]) did not demonstrate an increased risk for uveitis compared to their non-ICI comparators. Conclusion A significantly increased risk for uveitis diseases was found among the ICI group from the first year of follow-up. Increased awareness should be promoted on the occurrence of uveitis among cancer patients receiving ICI therapy.
Collapse
Affiliation(s)
- Hou-Ting Kuo
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of General Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Yun Chen
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of General Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Alan Y. Hsu
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Ning-Yi Hsia
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Yi-Yu Tsai
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Kreniske JS, Kaner RJ, Glesby MJ. Pathogenesis and management of emphysema in people with HIV. Expert Rev Respir Med 2023; 17:873-887. [PMID: 37848398 PMCID: PMC10872640 DOI: 10.1080/17476348.2023.2272702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Since early in the HIV epidemic, emphysema has been identified among people with HIV (PWH) and has been associated with increased mortality. Smoking cessation is key to risk reduction. Health maintenance for PWH and emphysema should ensure appropriate vaccination and lung cancer screening. Treatment should adhere to inhaler guidelines for the general population, but inhaled corticosteroid (ICS) should be used with caution. Frontiers in treatment include targeted therapeutics. Major knowledge gaps exist in the epidemiology of and optimal care for PWH and emphysema, particularly in low and middle-income countries (LMIC). AREAS COVERED Topics addressed include risk factors, pathogenesis, current treatment and prevention strategies, and frontiers in research. EXPERT OPINION There are limited data on the epidemiology of emphysema in LMIC, where more than 90% of deaths from COPD occur and where the morbidity of HIV is most heavily concentrated. The population of PWH is aging, and age-related co-morbidities such as emphysema will only increase in salience. Over the next 5 years, the authors anticipate novel trials of targeted therapy for emphysema specific to PWH, and we anticipate a growing body of evidence to inform optimal clinical care for lung health among PWH in LMIC.
Collapse
Affiliation(s)
- Jonah S. Kreniske
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, USA
| | - Robert J. Kaner
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, USA
- Department of Genetic Medicine, Weill Cornell Medical College, USA
| | - Marshall J. Glesby
- Division of Infectious Diseases, Weill Cornell Medical College, USA
- Department of Population Health Sciences, Weill Cornell Medical College, USA
| |
Collapse
|
3
|
Chemparathy DT, Sil S, Callen S, Chand HS, Sopori M, Wyatt TA, Acharya A, Byrareddy SN, Fox HS, Buch S. Inflammation-Associated Lung Tissue Remodeling and Fibrosis in Morphine-Dependent SIV-Infected Macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:380-391. [PMID: 37003622 PMCID: PMC10116601 DOI: 10.1016/j.ajpath.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 04/03/2023]
Abstract
With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as one of the most devastating sequelae in PWH. The limited available data describing the lung complications in PWH with a history of opioid abuse warrants more research to better define the course of disease pathogenesis. The current study was conducted to investigate the progression of lung tissue remodeling in a morphine (Mor)-exposed rhesus macaque model of SIV infection. Pathologic features of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and proliferation of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic changes and collagen deposition in the alveolar and the bronchiolar region. There was increased oxidative stress, profibrotic transforming growth factor-β, fibroblast proliferation and trans-differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques, which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.
Collapse
Affiliation(s)
- Divya T Chemparathy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Mohan Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Todd A Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Howard S Fox
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
4
|
Kolloli A, Kumar R, Singh P, Narang A, Kaplan G, Sigal A, Subbian S. Aggregation state of Mycobacterium tuberculosis impacts host immunity and augments pulmonary disease pathology. Commun Biol 2021; 4:1256. [PMID: 34732811 PMCID: PMC8566596 DOI: 10.1038/s42003-021-02769-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022] Open
Abstract
In vitro phagocytosis of Mycobacterium tuberculosis (Mtb) aggregates (Mtb-AG), rather than similar numbers of single bacilli (Mtb-SC), induces host macrophage death and favors bacterial growth. Here, we examined whether aggregation contributes to enhanced Mtb pathogenicity in vivo in rabbit lungs. Rabbits were exposed to infectious aerosols containing mainly Mtb-AG or Mtb-SC. The lung bacterial load, systemic immune response, histology, and immune cell composition were investigated over time. Genome-wide transcriptome analysis, cellular and tissue-level assays, and immunofluorescent imaging were performed on lung tissue to define and compare immune activation and pathogenesis between Mtb-AG and Mtb-SC infection. Lung bacillary loads, disease scores, lesion size, and structure were significantly higher in Mtb-AG than Mtb-SC infected animals. Differences in immune cell distribution and activation were noted in the lungs of the two groups of infected animals. Consistently larger lung granulomas with large aggregates of Mtb, extensive necrotic foci, and elevated matrix metalloproteases expression were observed in Mtb-AG infected rabbits. Our findings suggest that bacillary aggregation increases Mtb fitness for improved growth and accelerates lung inflammation and infected host cell death, thereby exacerbating disease pathology in the lungs.
Collapse
Affiliation(s)
- Afsal Kolloli
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Ranjeet Kumar
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Pooja Singh
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
- Department of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Anshika Narang
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Gilla Kaplan
- University of Cape Town, Cape Town, 7925, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, 4013, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Selvakumar Subbian
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| |
Collapse
|
5
|
Chung NPY, Khan KMF, Kaner RJ, O'Beirne SL, Crystal RG. HIV induces airway basal progenitor cells to adopt an inflammatory phenotype. Sci Rep 2021; 11:3988. [PMID: 33597552 PMCID: PMC7889866 DOI: 10.1038/s41598-021-82143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the introduction of anti-retroviral therapy, chronic HIV infection is associated with an increased incidence of other comorbidities such as COPD. Based on the knowledge that binding of HIV to human airway basal stem/progenitor cells (BC) induces a destructive phenotype by increased MMP-9 expression through MAPK signaling pathways, we hypothesized that HIV induces the BC to express inflammatory mediators that contribute to the pathogenesis of emphysema. Our data demonstrate that airway BC isolated from HAART-treated HIV+ nonsmokers spontaneously release inflammatory mediators IL-8, IL-1β, ICAM-1 and GM-CSF. Similarly, exposure of normal BC to HIV in vitro up-regulates expression of the same inflammatory mediators. These HIV-BC derived mediators induce migration of alveolar macrophages (AM) and neutrophils and stimulate AM proliferation. This HIV-induced inflammatory phenotype likely contributes to lung inflammation in HIV+ individuals and provides explanation for the increased incidence of COPD in HIV+ individuals.
Collapse
Affiliation(s)
- Nancy P Y Chung
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - K M Faisal Khan
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sarah L O'Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
6
|
Neff CP, Atif SM, Logue EC, Siebert J, Görg C, Lavelle J, Fiorillo S, Twigg H, Campbell TB, Fontenot AP, Palmer BE. HIV Infection Is Associated with Loss of Anti-Inflammatory Alveolar Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2447-2455. [PMID: 32929038 PMCID: PMC7577929 DOI: 10.4049/jimmunol.2000361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
HIV type 1 is associated with pulmonary dysfunction that is exacerbated by cigarette smoke. Alveolar macrophages (AM) are the most prominent immune cell in the alveolar space. These cells play an important role in clearing inhaled pathogens and regulating the inflammatory environment; however, how HIV infection impacts AM phenotype and function is not well understood, in part because of their autofluorescence and the absence of well-defined surface markers. The main aim of this study was to evaluate the impact of HIV infection on human AM and to compare the effect of smoking on their phenotype and function. Time-of-flight mass cytometry and RNA sequencing were used to characterize macrophages from human bronchoalveolar lavage of HIV-infected and -uninfected smokers and nonsmokers. We found that the frequency of CD163+ anti-inflammatory AM was decreased, whereas CD163-CCR7+ proinflammatory AM were increased in HIV infection. HIV-mediated proinflammatory polarization was associated with increased levels of inflammatory cytokines and macrophage activation. Conversely, smoking heightened the inflammatory response evident by change in the expression of CXCR4 and TLR4. Altogether, these findings suggest that HIV infection, along with cigarette smoke, favors a proinflammatory macrophage phenotype associated with enhanced expression of inflammatory molecules. Further, this study highlights time-of-flight mass cytometry as a reliable method for immunophenotyping the highly autofluorescent cells present in the bronchoalveolar lavage of cigarette smokers.
Collapse
Affiliation(s)
- Charles Preston Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eric C Logue
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Janet Siebert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- CytoAnalytics, Denver, CO 80113
| | - Carsten Görg
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - James Lavelle
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Suzanne Fiorillo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Homer Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, Indianapolis, IN 46202; and
| | - Thomas B Campbell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Brent E Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
7
|
Cribbs SK, Crothers K, Morris A. Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiol Rev 2019; 100:603-632. [PMID: 31600121 DOI: 10.1152/physrev.00039.2018] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite anti-retroviral therapy (ART), human immunodeficiency virus-1 (HIV)-related pulmonary disease continues to be a major cause of morbidity and mortality for people living with HIV (PLWH). The spectrum of lung diseases has changed from acute opportunistic infections resulting in death to chronic lung diseases for those with access to ART. Chronic immune activation and suppression can result in impairment of innate immunity and progressive loss of T cell and B cell functionality with aberrant cytokine and chemokine responses systemically as well as in the lung. HIV can be detected in the lungs of PLWH and has profound effects on cellular immune functions. In addition, HIV-related lung injury and disease can occur secondary to a number of mechanisms including altered pulmonary and systemic inflammatory pathways, viral persistence in the lung, oxidative stress with additive effects of smoke exposure, microbial translocation, and alterations in the lung and gut microbiome. Although ART has had profound effects on systemic viral suppression in HIV, the impact of ART on lung immunology still needs to be fully elucidated. Understanding of the mechanisms by which HIV-related lung diseases continue to occur is critical to the development of new preventive and therapeutic strategies to improve lung health in PLWH.
Collapse
Affiliation(s)
- Sushma K Cribbs
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristina Crothers
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alison Morris
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Guo Y, Cao W, Zhu Y. Immunoregulatory Functions of the IL-12 Family of Cytokines in Antiviral Systems. Viruses 2019; 11:v11090772. [PMID: 31443406 PMCID: PMC6784021 DOI: 10.3390/v11090772] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the interleukin 12 (IL-12) family have been known to be inflammatory factors since their discovery. The IL-12 family consists of IL-12, IL-23, IL-27, IL-35, and a new member, IL-39, which has recently been identified and has not yet been studied extensively. Current literature has described the mechanisms of immunity of these cytokines and potential uses for therapy and medical cures. IL-12 was found first and is effective in combatting a wide range of naturally occurring viral infections through the upregulation of various cytokines to clear the infected cells. IL-23 has an essential function in immune networks, can induce IL-17 production, and can antagonize inhibition from IL-12 in the presence of T helper (Th) 17 cells, resulting in type II IFN (IFN-γ) regulation. IL-27 has a competitive relationship to IL-35 because they both include the same subunit, the Epstein–Barr virus-induced gene3 (EBi3). This review provides a simple introduction to the IL-12 family and focuses on their functions relevant to their actions to counteract viral infections.
Collapse
Affiliation(s)
- Yifei Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
9
|
Wells JM, Arenberg DA, Barjaktarevic I, Bhatt SP, Bowler RP, Christenson SA, Couper DJ, Dransfield MT, Han MK, Hoffman EA, Kaner RJ, Kim V, Kleerup E, Martinez FJ, Moore WC, O’Beirne SL, Paine R, Putcha N, Raman SM, Barr RG, Rennard SI, Woodruff PG, Curtis JL. Safety and Tolerability of Comprehensive Research Bronchoscopy in Chronic Obstructive Pulmonary Disease. Results from the SPIROMICS Bronchoscopy Substudy. Ann Am Thorac Soc 2019; 16:439-446. [PMID: 30653926 PMCID: PMC6441692 DOI: 10.1513/annalsats.201807-441oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022] Open
Abstract
RATIONALE There is an unmet need to investigate the lower airways in chronic obstructive pulmonary disease (COPD) to define pathogenesis and to identify potential markers to accelerate therapeutic development. Although bronchoscopy is well established to sample airways in various conditions, a comprehensive COPD research protocol has yet to be published. OBJECTIVES To evaluate the safety and tolerability of a comprehensive research bronchoscopy procedure suitable for multicenter trials and to identify factors associated with adverse events. METHODS We report the detailed methodology used to conduct the bronchoscopy used in SPIROMICS (the Subpopulations and Intermediate Outcome Measures in COPD Study). The protocol entailed collection of tongue scrapings and oral rinses as well as bronchoscopy with airway inspection, bronchoalveolar lavage (BAL), protected brushings, and endobronchial biopsies. Visual airway characteristics were graded on a scale of 0 (normal appearance) to 3 (severe abnormality) in four domains: erythema, edema, secretions, and friability. Adverse events were defined as events requiring intervention. Logistic regression modeling assessed associations between adverse event occurrence and key variables. RESULTS We enrolled 215 participants. They were 61 ± 9 years old, 71% were white, 53% were male, and post-bronchodilator forced expiratory volume in 1 second was 89 ± 19% predicted. Self-reported asthma was present in 22% of bronchoscopy participants. Oral samples were obtained in greater than or equal to 99% of participants. Airway characteristics were recorded in 99% and were most often characterized as free of edema (61.9%). Less than 50% reported secretions, friability, or erythema. BAL yielded 111 ± 57 ml (50%) of the 223 ± 65 ml of infusate, brushes were completed in 98%, and endobronchial biopsies were performed in 82% of procedures. Adverse events requiring intervention occurred in 14 (6.7%) of 208 bronchoscopies. In logistic regression models, female sex (risk ratio [RR], 1.10; 95% confidence interval [CI], 1.02-1.19), self-reported asthma (RR, 1.17; 95% CI, 1.02-1.34), bronchodilator reversibility (RR, 1.17; 95% CI, 1.04-1.32), COPD (RR, 1.10; 95% CI, 1.02-1.20), forced expiratory volume in 1 second (RR, 0.97; 95% CI, 0.95-0.99), and secretions (RR, 1.85; 1.08-3.16) or friability (RR, 1.64; 95% CI, 1.04-2.57) observed during bronchoscopy were associated with adverse events. CONCLUSIONS A research bronchoscopy procedure that includes oral sampling, BAL, endobronchial biopsy, and brushing can be safely performed. Airway characteristics during bronchoscopy, demographics, asthma or COPD, and lung function may convey increased risk for procedure-related events necessitating intervention.
Collapse
Affiliation(s)
- J. Michael Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
- UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham VA Medical Center, Birmingham, Alabama
| | - Douglas A. Arenberg
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, Los Angeles, California
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
- UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Russell P. Bowler
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado
- University of Colorado at Denver, Aurora, Colorado
| | - Stephanie A. Christenson
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
| | - David J. Couper
- Marsico Lung Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mark T. Dransfield
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
- UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham VA Medical Center, Birmingham, Alabama
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Robert J. Kaner
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York
| | - Victor Kim
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Eric Kleerup
- Wake Forest University, Winston-Salem, North Carolina
| | - Fernando J. Martinez
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York
| | | | - Sarah L. O’Beirne
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
- Salt Lake City VA Medical Center, Salt Lake City, Utah
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sanjeev M. Raman
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - R. Graham Barr
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, New York
| | - Stephen I. Rennard
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
| | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
10
|
Presti RM, Flores SC, Palmer BE, Atkinson JJ, Lesko CR, Lau B, Fontenot AP, Roman J, McDyer JF, Twigg HL. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease. Chest 2017; 152:1053-1060. [PMID: 28427967 DOI: 10.1016/j.chest.2017.04.154] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/28/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023] Open
Abstract
Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH.
Collapse
Affiliation(s)
- Rachel M Presti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO.
| | - Sonia C Flores
- Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Brent E Palmer
- Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Jeffrey J Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Catherine R Lesko
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Bryan Lau
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD
| | | | - Jesse Roman
- Department of Medicine, University of Louisville, Health Sciences Center and Robley Rex VA Medical Center, Louisville, KY
| | - John F McDyer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Homer L Twigg
- Department of Medicine, Indiana University, Indianapolis, IN
| |
Collapse
|