1
|
Ye R, Li S, Li Y, Shi K, Li L. Revealing the role of regulatory b cells in cancer: development, function and treatment significance. Cancer Immunol Immunother 2025; 74:125. [PMID: 39998678 PMCID: PMC11861783 DOI: 10.1007/s00262-025-03973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
B cells are essential components of the immune response, primarily recognized for their ability to produce antibodies. However, emerging research reveals their important roles in regulating immune responses and influencing tumor development, independent of antibodies. The connection between tumor progression and alterations in the tumor microenvironment is well-established, as immune infiltrating cells can enhance the survival of tumor cells by modifying their surroundings. Despite this, the majority of studies have focused on T cells and macrophages, creating a gap in our understanding of B cells. Regulatory B cells (Bregs) represent a crucial subpopulation that plays a significant role in maintaining immune balance. They may have a substantial impact on tumor immunity by negatively regulating tumor-infiltrating immune cells. This paper reviews the existing literature on Bregs, examining their development, phenotypes, functions, and the mechanisms through which they exert their regulatory effects. Furthermore, we highlight their potential interventional roles and prognostic significance in cancer therapy. By addressing the current gaps in knowledge regarding Bregs within tumors, we hope to inspire further research that could lead to innovative cancer treatments and improved outcomes for patients.
Collapse
Affiliation(s)
- Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yuxiao Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Kaixin Shi
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
2
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|
3
|
Shbeer AM, Ahmed Robadi I. The role of Interleukin-21 in autoimmune Diseases: Mechanisms, therapeutic Implications, and future directions. Cytokine 2024; 173:156437. [PMID: 37972478 DOI: 10.1016/j.cyto.2023.156437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
IL-21 is a multifunctional cytokine that regulates the functional activity of various immune cells. Initial studies have shown that IL-21 can influence the differentiation, proliferation and function of T and B cells, as well as promote the maturation and increase the cytotoxicity of CD8 + T cells and NK cells. During humoral immune responses, IL-21 has significant effects on B cell activation, differentiation and apoptosis. In addition, IL-21 promotes the differentiation of both naive and memory B cells, ultimately leading to the activation of plasma cells. The function of IL-21 in the immune system is complex, as it has the ability to either stimulate or inhibit immune responses. in addition, IL-21 facilitates the differentiation of naive and memory B cells into plasma cells. The functionality of IL-21 in the immune system is diverse, as it has the ability to stimulate or inhibit immune responses. This cytokine has been implicated in several diseases including cancer, allergies and autoimmune diseases. Research has suggested that this cytokine is involved in the development of autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Several studies have suggested that inhibition of IL-21 has a therapeutic effect on autoimmune diseases. Therefore, targeting both the cytokine's receptor and IL-21 in autoimmune diseases may be an effective approach to reduce the severity of the disease or to treat it. This review will examine the biological effects of IL-21 on various immune cells and the role of the cytokine in autoimmune diseases.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Ibrahim Ahmed Robadi
- Department of pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
4
|
Xue J, Xu L, Zhong H, Bai M, Li X, Yao R, Wang Z, Zhao Z, Li H, Zhu H, Hu F, Su Y. Impaired regulatory function of granzyme B-producing B cells against T cell inflammatory responses in lupus mice. Lupus Sci Med 2023; 10:e000974. [PMID: 37500293 PMCID: PMC10387741 DOI: 10.1136/lupus-2023-000974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE Recently, a new subtype of granzyme B (GrB)-producing Breg cells has been identified, which was proven to be involved in autoimmune disease. Our recent report demonstrated that GrB-producing Breg cells were correlated with clinical and immunological features of SLE. However, the effect of GrB-producing Breg cells in lupus mice is unclear. METHODS GrB expression in naïve and lupus mouse B cells was analysed using flow cytometry, PCR, ELISA and ELISpot assays. To study the role of GrB-producing B cells in a lupus model, GrB knockout (KO) and wild-type (WT) mice were intraperitoneally injected with monoclonal cells from the mutant mouse strain B6.C-H-2bm12 (bm12) for 2 weeks. In addition, the function of GrB-producing Breg cells in naïve and lupus mice was further explored using in vitro B cells-CD4+CD25- T cell co-culture assays with GrB blockade/KO of B cells. RESULTS B cells from the spleens of WT C57BL/6 (B6) mice could express and secret GrB (p<0.001). GrB-producing Breg cells from WT mice showed their regulatory functions on CD4+CD25- T cell. While the frequency of GrB-producing Breg cells was significantly decreased (p=0.001) in lupus mice (p<0.001). Moreover, GrB-producing Breg cells in lupus mice failed to suppress T cell-mediated proinflammatory responses, partially due to the impaired capacity of downregulating the T cell receptor-zeta chain and inducing CD4+CD25- T cell apoptosis. CONCLUSION This study further revealed the function and mechanism of GrB-producing Breg cells in regulating T cell homeostasis in lupus mice and highlighted GrB-producing Breg cells as a therapeutic target in SLE.
Collapse
Affiliation(s)
- Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Hua Zhong
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Xin Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ranran Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Ziye Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Zhen Zhao
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Hongchao Li
- Department of Rheumatology and Immunology, Beijing Jishuitan Hospital, Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| |
Collapse
|
5
|
Michée-Cospolite M, Boudigou M, Grasseau A, Simon Q, Mignen O, Pers JO, Cornec D, Le Pottier L, Hillion S. Molecular Mechanisms Driving IL-10- Producing B Cells Functions: STAT3 and c-MAF as Underestimated Central Key Regulators? Front Immunol 2022; 13:818814. [PMID: 35359922 PMCID: PMC8961445 DOI: 10.3389/fimmu.2022.818814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
Regulatory B cells (Bregs) have been highlighted in very different pathology settings including autoimmune diseases, allergy, graft rejection, and cancer. Improving tools for the characterization of Bregs has become the main objective especially in humans. Transitional, mature B cells and plasma cells can differentiate into IL-10 producing Bregs in both mice and humans, suggesting that Bregs are not derived from unique precursors but may arise from different competent progenitors at unrestricted development stages. Moreover, in addition to IL-10 production, regulatory B cells used a broad range of suppressing mechanisms to modulate the immune response. Although Bregs have been consistently described in the literature, only a few reports described the molecular aspects that control the acquisition of the regulatory function. In this manuscript, we detailed the latest reports describing the control of IL-10, TGFβ, and GZMB production in different Breg subsets at the molecular level. We focused on the understanding of the role of the transcription factors STAT3 and c-MAF in controlling IL-10 production in murine and human B cells and how these factors may represent an important crossroad of several key drivers of the Breg response. Finally, we provided original data supporting the evidence that MAF is expressed in human IL-10- producing plasmablast and could be induced in vitro following different stimulation cocktails. At steady state, we reported that MAF is expressed in specific human B-cell tonsillar subsets including the IgD+ CD27+ unswitched population, germinal center cells and plasmablast.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Divi Cornec
- U1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France
| | | | - Sophie Hillion
- U1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France
| |
Collapse
|
6
|
Bai M, Xu L, Zhu H, Xue J, Liu T, Sun F, Yao H, Zhao Z, Wang Z, Yao R, Hu F, Su Y. Impaired granzyme B-producing regulatory B cells in systemic lupus erythematosus. Mol Immunol 2021; 140:217-224. [PMID: 34749262 DOI: 10.1016/j.molimm.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
Granzyme B (GrB)-producing B cells are proposed to be a kind of regulatory B cells (Bregs) and have been revealed to be implicated in the pathogenesis of autoimmune diseases. Nevertheless, their role in SLE remains elusive. In this study, the frequencies of GrB-producing Bregs in peripheral blood of heathy control (HC) and systemic lupus erythematosus (SLE) were evaluated by flow cytometry, and their correlation with SLE patient clinical and immunological features were analyzed. The expression of GrB in HC and SLE B cells were also further detected by RT-qPCR analysis and ELISpot. The function of GrB-producing Bregs in HC and SLE patients was further investigated by in vitro CD4+ effector T cells-B cells co-culture assays with GrB blockade. We found that GrB-producing Bregs were significantly decreased in SLE patients and correlated with the clinical and immunological features. Moreover, these cells were functionally impaired under SLE circumstance. The negative correlation between GrB-producing Bregs and CD4+ T cells observed in healthy individuals disappeared in SLE patients. In vitro cell co-culture assay further showed that GrB-producing Bregs from SLE patients failed to suppress the Th1, Th2 and Th17 cell inflammatory responses, partially due to the dampened capacity of down-regulating TCR zeta and inducing T cell apoptosis. Taken together, these results revealed the disturbance of GrB-producing Bregs in SLE that might contribute to the disease initiation and progression.
Collapse
Affiliation(s)
- Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Tian Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Feng Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Haihong Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhen Zhao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ziye Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ranran Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| |
Collapse
|
7
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
8
|
Du W, Han M, Zhu X, Xiao F, Huang E, Che N, Tang X, Zou H, Jiang Q, Lu L. The Multiple Roles of B Cells in the Pathogenesis of Sjögren's Syndrome. Front Immunol 2021; 12:684999. [PMID: 34168653 PMCID: PMC8217880 DOI: 10.3389/fimmu.2021.684999] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease characterized by lymphocytic infiltration and tissue destruction of exocrine glands such as salivary glands. Although the formation of ectopic lymphoid tissue in exocrine glands and overproduction of autoantibodies by autoreactive B cells highlight the critical involvement of B cells in disease development, the precise roles of various B cell subsets in pSS pathogenesis remain partially understood. Current studies have identified several novel B cell subsets with multiple functions in pSS, among which autoreactive age-associated B cells, and plasma cells with augmented autoantibody production contribute to the disease progression. In addition, tissue-resident Fc Receptor-Like 4 (FcRL4)+ B cell subset with enhanced pro-inflammatory cytokine production serves as a key driver in pSS patients with mucosa-associated lymphoid tissue (MALT)-lymphomas. Recently, regulatory B (Breg) cells with impaired immunosuppressive functions are found negatively correlated with T follicular helper (Tfh) cells in pSS patients. Further studies have revealed a pivotal role of Breg cells in constraining Tfh response in autoimmune pathogenesis. This review provides an overview of recent advances in the identification of pathogenic B cell subsets and Breg cells, as well as new development of B-cell targeted therapies in pSS patients.
Collapse
Affiliation(s)
- Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Man Han
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital and Fudan University, Shanghai, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Xiaopo Tang
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital and Fudan University, Shanghai, China
| | - Quan Jiang
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.,Chongqing International Institute for Immunology, Chongqing, China
| |
Collapse
|
9
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
10
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Chesneau M, Le Mai H, Brouard S. New Method for the Expansion of Highly Purified Human Regulatory Granzyme B-Expressing B Cells. Methods Mol Biol 2021; 2270:203-216. [PMID: 33479900 DOI: 10.1007/978-1-0716-1237-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Granzyme B (GZMB)-expressing B cells inhibit CD4+ T-lymphocyte proliferation in a contact- and GZMB-dependent manner, through degradation of TCR zeta or induction of T-cell apoptosis. This regulatory B-cell population is present in human healthy individuals and represents about 1% of circulating B cells. Their small proportion requires the development of expansion methods to enable their study and envision clinical applications. We describe here how to expand GZMB-expressing B cells to obtain more than 90% of highly purified GZMB+ B cells, and the protocol of B/T cells coculture for the evaluation of the suppressive function of the GZMB+ B-cell population.
Collapse
Affiliation(s)
- Mélanie Chesneau
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,Labex IGO, Nantes, France
| | - Hoa Le Mai
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,Labex IGO, Nantes, France
| | - Sophie Brouard
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France. .,Labex IGO, Nantes, France. .,Centre d'Investigation Clinique en Biothérapie, Centre de ressources biologiques (CRB), Nantes, France.
| |
Collapse
|
12
|
IL-10-producing regulatory B cells are present and functional in primary Sjögren patients. Immunol Res 2021; 69:107-113. [PMID: 33483936 DOI: 10.1007/s12026-021-09171-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
|
13
|
Srivastava A, Makarenkova HP. Innate Immunity and Biological Therapies for the Treatment of Sjögren's Syndrome. Int J Mol Sci 2020; 21:E9172. [PMID: 33271951 PMCID: PMC7730146 DOI: 10.3390/ijms21239172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disorder affecting approximately 3% of the population in the United States. This disease has a female predilection and affects exocrine glands, including lacrimal and salivary glands. Dry eyes and dry mouths are the most common symptoms due to the loss of salivary and lacrimal gland function. Symptoms become more severe in secondary SS, where SS is present along with other autoimmune diseases like systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. It is known that aberrant activation of immune cells plays an important role in disease progression, however, the mechanism for these pathological changes in the immune system remains largely unknown. This review highlights the role of different immune cells in disease development, therapeutic treatments, and future strategies that are available to target various immune cells to cure the disease.
Collapse
Affiliation(s)
| | - Helen P. Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA;
| |
Collapse
|
14
|
Mielle J, Tison A, Cornec D, Le Pottier L, Daien C, Pers JO. B cells in Sjögren's syndrome: from pathophysiology to therapeutic target. Rheumatology (Oxford) 2019; 60:2545-2560. [PMID: 30770916 DOI: 10.1093/rheumatology/key332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Biological abnormalities associated with B lymphocytes are a hallmark of patients with primary Sjögren's syndrome. Those patients present abnormal distribution of B lymphocytes in peripheral blood and B cells in exocrine glands. B cells produce auto-antibodies, cytokines and present antigens but can also suppressive functions. In this review, we will summarize current knowledge on B cells in primary Sjögren's syndrome patients, demonstrate their critical role in the immunopathology of the disease and describe the past and current trials targeting B cells.
Collapse
Affiliation(s)
- Julie Mielle
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | - Alice Tison
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | | | - Claire Daien
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | | |
Collapse
|
15
|
Long D, Chen Y, Wu H, Zhao M, Lu Q. Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun 2019; 99:1-14. [PMID: 30773373 DOI: 10.1016/j.jaut.2019.01.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022]
Abstract
Interleukin-21 (IL-21), an autocrine cytokine predominantly produced by follicular helper T (Tfh) and T helper 17 (Th17) cells, has been proven to play an important role in the immune system, for example, by promoting proliferation and the development of Tfh and Th17 cells, balancing helper T cell subsets, inducing B cell generation and differentiation into plasma cells, and enhancing the production of immunoglobulin. These effects are mainly mediated by activation of the JAK/STAT, MAPK and PI3K pathways. Some IL-21 target genes, such as B lymphocyte induced maturation protein-1 (Blimp-1), suppressor of cytokine signaling (SOCS), CXCR5 and Bcl-6, play important roles in the immune response. Therefore, IL-21 has been linked to autoimmune diseases. Indeed, IL-21 levels are increased in the peripheral blood and tissues of patients with systematic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes (T1D), immune thrombocytopenia (ITP), primary Sjogren's syndrome (pSS), autoimmune thyroid disease (AITD) and psoriasis. This increased IL-21 even positively associates with Tfh cells, plasma cells, autoantibodies and disease activity in SLE and RA. Additionally, IL-21 has been utilized as a therapeutic target in SLE, RA, T1D and psoriatic mouse models. Profoundly, clinical trials have shown safety and improvement in RA patients. However, tolerance and long-term pharmacodynamics effects with low bioavailability have been found in SLE patients. Therefore, this review aims to summarize the latest progress on IL-21 function and its signaling pathway and discuss the role of IL-21 in the pathogenesis of and therapy for autoimmune diseases, with the hope of providing potential therapeutic and diagnostic strategies for clinical use.
Collapse
Affiliation(s)
- Di Long
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Yongjian Chen
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China.
| |
Collapse
|
16
|
Sakkas LI, Daoussis D, Mavropoulos A, Liossis SN, Bogdanos DP. Regulatory B cells: New players in inflammatory and autoimmune rheumatic diseases. Semin Arthritis Rheum 2018; 48:1133-1141. [PMID: 30409417 DOI: 10.1016/j.semarthrit.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Regulatory B cells (Bregs) are a new subset of B cells with immunoregulatory functions, mainly through IL-10 production. Bregs suppress inflammatory Th1 and Th17 differentiation and induce Tregs suppressing autoimmune diseases. The aim of the study was to review the literature related to Bregs in autoimmune rheumatic diseases (ARDs). METHODS A literature review of publications in PUBMED published in English was performed using the relevant combinations of terms. RESULTS All relevant publications are discussed. Overall, recent studies in rheumatic diseases found Bregs to be decreased in ANCA-associated vasculitides (AAV) and in systemic sclerosis (SSc), particularly in SSc-associated lung fibrosis. In AAV Bregs levels are negatively correlated with autoantibody levels whereas in SSc this association is less clear but there is an inverse association with Th1 and Th17 cells. In rheumatoid arthritis (RA), Bregs were decreased, particularly in RA-associated lung fibrosis. In psoriatic arthritis IL-10 + Bregs are decreased and inversely associated with Th1 and Th17 cells. In systemic lupus erythematosus (SLE), the role of Bregs is unclear. In experimental diseases, when Bregs were expanded ex-vivo, they ameliorated established disease. CONCLUSION Bregs appear to be a new player in the pathogenesis of ARDs, and may offer a new strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece.
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| |
Collapse
|
17
|
Modulation of Apoptosis by Cytotoxic Mediators and Cell-Survival Molecules in Sjögren's Syndrome. Int J Mol Sci 2018; 19:ijms19082369. [PMID: 30103522 PMCID: PMC6121505 DOI: 10.3390/ijms19082369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Sjögren’s syndrome (SS) involves multiple factors including genetic background, cell death, and exocrine dysfunction. We here discuss apoptotic control in exocrine glands in SS by showing various pro- and anti-apoptotic pathways. Although the membrane-bound and soluble form of the Fas/Fas ligand system is a leading player with activation of the death domain and caspase 8/3 cleavage, the role of soluble Fas/FasL (including its polymorphism) in apoptosis is controversial. The tumor necrosis factor related apoptosis-inducing ligand (TRAIL)-mediated apoptosis of salivary gland epithelial cells (SGECs) involves a mitochondrial pathway that includes caspase 9 cleavage. The involvement of innate immunity cells such as toll-like receptors (TLRs) has been investigated; TLR2-4 and TLR7-9 are associated with the induction of inflammation in exocrine glands of SS patients. TLR3 has the potential to induce the apoptosis of SS patients’ SGECs. Linkage of epidermal growth factor (EGF) was shown in exocrine glands in SS, and it inhibited the Fas/FasL system with the help of cell-survival factors. TLR3 has dual actions to cause inflammation as well as apoptosis, which are inhibited by EGF. In conclusion, apoptosis in exocrine glands of SS patients is tightly controlled by balance of pro-apoptotic signals and growth factor.
Collapse
|
18
|
Rabani M, Wilde B, Hübbers K, Xu S, Kribben A, Witzke O, Dolff S. IL-21 dependent Granzyme B production of B-cells is decreased in patients with lupus nephritis. Clin Immunol 2017; 188:45-51. [PMID: 29274388 DOI: 10.1016/j.clim.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/06/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES B-cells play a crucial role in the pathogenesis of lupus nephritis. Recently, a separate subset has been discovered characterized by expression of Granzyme B. The aim of this study is to investigate this subset in patients with systemic lupus erythematosus (SLE). METHODS Isolated PBMCs of SLE-patients (n=30) and healthy controls (n=21) were in vitro stimulated with CPG, IgG+IgM and IL-21. Patients were sub-grouped in patients with and without biopsy proven lupus nephritis. B-cells were analyzed for intracellular Granzyme B expression by flow cytometry. RESULTS The strongest stimulus for Granzyme B secretion of B-cells was IgG+IgM in presence of IL-21. SLE-patients had a significant decreased percentage of Granzyme B+ B-cells in particular SLE-patients with active disease and with lupus nephritis. CONCLUSIONS The frequency of GrB+ producing B-cells is reduced in SLE patients. This may contribute to an imbalanced B-cell regulation towards effector B-cells which might promote the development of lupus nephritis.
Collapse
Affiliation(s)
- Mariam Rabani
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Katharina Hübbers
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Shilei Xu
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| |
Collapse
|
19
|
Retamozo S, Flores-Chavez A, Consuegra-Fernández M, Lozano F, Ramos-Casals M, Brito-Zerón P. Cytokines as therapeutic targets in primary Sjögren syndrome. Pharmacol Ther 2017; 184:81-97. [PMID: 29092775 DOI: 10.1016/j.pharmthera.2017.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Primary Sjögren syndrome (SjS) is a systemic autoimmune disease that may affect 1 in 1000 people (overwhelmingly women) and that can be a serious disease with excess mortality due to severe organ-specific involvements and the development of B cell lymphoma; systemic involvement clearly marks the disease prognosis, and strongly suggests the need for closer follow-up and more robust therapeutic management. Therapy is established according to the organ involved and severity. As a rule, the management of systemic SjS should be organ-specific, with glucocorticoids and immunosuppressive agents limited to potentially-severe involvements; unfortunately, the limited evidence available for these drugs, together with the potential development of serious adverse events, makes solid therapeutic recommendations difficult. The emergence of biological therapies has increased the therapeutic armamentarium available to treat primary SjS. Biologics currently used in SjS patients are used off-label and are overwhelmingly agents targeting B cells, but the most recent studies are moving on into the evaluation of targeting specific cytokines involved in the SjS pathogenesis. The most recent etiopathogenic advances in SjS are shedding some light in the search for new highly-selective biological therapies without the adverse effects of the standard drugs currently used (corticosteroids and immunosuppressant drugs). This review summarizes the potential pharmacotherapeutic options targeting the main cytokine families involved in the etiopathogenesis of primary SjS and analyzes potential insights for developing new therapies.
Collapse
Affiliation(s)
- Soledad Retamozo
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (INICSA-UNC-CONICET), Córdoba, Argentina; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain
| | - Alejandra Flores-Chavez
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Biomedical Research Unit 02, Clinical Epidemiology Research Unit, UMAE, Specialties Hospital, Western Medical Center, Mexican Institute for Social Security (IMSS), Guadalajara, Mexico; Postgraduate Program of Medical Science, University Center for Biomedical Research (CUIB), University of Colima, Colima, Mexico; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat I Adaptatiu, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
| | - Manuel Ramos-Casals
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain.
| | - Pilar Brito-Zerón
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, CELLEX-IDIBAPS, Spain; Autoimmune Diseases Unit, Department of Medicine, Hospital CIMA-Sanitas, Barcelona, Spain; Department of Autoimmune Diseases, ICMiD, Hospital Clínic Barcelona, Spain
| |
Collapse
|
20
|
Regulatory immune cells and functions in autoimmunity and transplantation immunology. Autoimmun Rev 2017; 16:435-444. [DOI: 10.1016/j.autrev.2017.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 12/15/2022]
|
21
|
Kotb A, Klippert A, Daskalaki M, Sauermann U, Stahl-Hennig C, Neumann B. Elevated granzyme B + B-cell level in SIV-infection correlate with viral load and low CD4 T-cell count. Immunol Cell Biol 2016; 95:316-320. [PMID: 27779180 PMCID: PMC5364320 DOI: 10.1038/icb.2016.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/02/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023]
Abstract
Granzyme B-expressing (GrB+) B cells are thought to contribute to immune dysfunctions in HIV patients, but so far their exact role is unknown. This report demonstrates for the first time the existence of GrB+ B cells in SIV-infected rhesus macaques, which represent the most commonly used nonhuman primate model for HIV research. Similar to HIV patients, we found significantly higher frequencies of these cells in the blood of chronically SIV-infected rhesus monkeys compared with uninfected healthy ones. These frequencies correlated with plasma viral load and inversely with absolute CD4 T-cell counts. When investigating GrB+ B cells in different compartments, levels were highest in blood, spleen and bone marrow, but considerably lower in lymph nodes and tonsils. Analysis of expression of various surface markers on this particular B-cell subset in SIV-infected macaques revealed differences between the phenotype in macaques and in humans. GrB+ B cells in SIV-infected rhesus macaques exhibit an elevated expression of CD5, CD10, CD25 and CD27, while expression of CD19, CD185 and HLA-DR is reduced. In contrast to human GrB+ B cells, we did not observe a significantly increased expression of CD43 and CD86. B-cell receptor stimulation in combination with IL-21 of purified B cells from healthy animals led to the induction of GrB expression. Furthermore, initial functional analyses indicated a regulatory role on T-cell proliferation. Overall, our data pave the way for longitudinal analyses including studies on the functionality of GrB+ B cells in the nonhuman primate model for AIDS.
Collapse
Affiliation(s)
- Ahmad Kotb
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Department of Virology Research, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Antonina Klippert
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Maria Daskalaki
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Christiane Stahl-Hennig
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Berit Neumann
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| |
Collapse
|