1
|
Wang D, Nan N, Bing H, He B. Controlled attenuation parameters to assess liver steatosis in obese patients with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1241734. [PMID: 37720537 PMCID: PMC10501797 DOI: 10.3389/fendo.2023.1241734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Objectives This study was performed to investigate the changes and influencing factors of liver controlled attenuation parameter (CAP) in obese patients with polycystic ovary syndrome (PCOS), and to determine the prevalence and risk factors of nonalcoholic fatty liver disease (NAFLD) in PCOS patients with obesity. Methods Forty-one PCOS patients with obesity and twenty age- and body mass index (BMI)-matched control women without PCOS were enrolled in this study. General data, body composition, biochemical parameters, sex hormones, and liver CAP in the two groups were collected and compared. Liver CAP was measured using transient elastography. Results NAFLD was more common in the Obese PCOS group than in the control group (75.61% vs. 45.00%, P=0.018). Compared to the control group, the obese PCOS group showed apparent increases in alanine transaminase (ALT), aspartate transaminase (AST), CAP, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), totle testosterone (TT), free androgen index (FAI), fasting insulin (FIns), and homeostasis model assessment-insulin resistance (HOMA-IR), along with lower high-density lipoprotein cholesterol (HDL-C) and sex hormone binding globulin (SHBG) levels. In addition, as shown by Spearman analysis, liver CAP in PCOS patients with obesity had a positive correlation with ALT, AST, TG, TT, FAI, FIns, and HOMA-IR, and a negative correlation with SHBG. Logistic regression analysis showed that TG, TT, FIns, and HOMA-IR were risk factors for NAFLD, while TT was an independent risk factor for NAFLD in PCOS patients with obesity. Conclusion PCOS patients with obesity had a significantly higher prevalence of NAFLD. Furthermore, in PCOS patients with obesity, liver CAP was associated with disorders of lipid metabolism, insulin resistance, and hyperandrogenemia, with elevated testosterone levels being an independent risk factor for NAFLD in PCOS patients with obesity.
Collapse
Affiliation(s)
- Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nan Nan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Bing
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Di Giuseppe G, Ciccarelli G, Soldovieri L, Capece U, Cefalo CMA, Moffa S, Nista EC, Brunetti M, Cinti F, Gasbarrini A, Pontecorvi A, Giaccari A, Mezza T. First-phase insulin secretion: can its evaluation direct therapeutic approaches? Trends Endocrinol Metab 2023; 34:216-230. [PMID: 36858875 DOI: 10.1016/j.tem.2023.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Our work is aimed at unraveling the role of the first-phase insulin secretion in the natural history of type 2 diabetes mellitus (T2DM) and its interrelationship with insulin resistance and with β cell function and mass. Starting from pathophysiology, we investigate the impact of impaired secretion on glucose homeostasis and explore postmeal hyperglycemia as the main clinical feature, underlining its relevance in the management of the disease. We also review dietary and pharmacological approaches aimed at improving early secretory defects and restoring residual β cell function. Furthermore, we discuss possible approaches to detect early secretory defects in clinical practice. By providing a journey through human and animal data, we attempt a unification of the recent evidence in an effort to offer a new outlook on β cell secretion.
Collapse
Affiliation(s)
- Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara M A Cefalo
- Department of Clinical and Molecular Medicine, University of Rome - Sapienza, Rome, Italy
| | - Simona Moffa
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico C Nista
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
3
|
Brusco N, Sebastiani G, Di Giuseppe G, Licata G, Grieco GE, Fignani D, Nigi L, Formichi C, Aiello E, Auddino S, Quero G, Cefalo CMA, Cinti F, Mari A, Ferraro PM, Pontecorvi A, Alfieri S, Giaccari A, Dotta F, Mezza T. Intra-islet insulin synthesis defects are associated with endoplasmic reticulum stress and loss of beta cell identity in human diabetes. Diabetologia 2023; 66:354-366. [PMID: 36280617 PMCID: PMC9807540 DOI: 10.1007/s00125-022-05814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Endoplasmic reticulum (ER) stress and beta cell dedifferentiation both play leading roles in impaired insulin secretion in overt type 2 diabetes. Whether and how these factors are related in the natural history of the disease remains, however, unclear. METHODS In this study, we analysed pancreas biopsies from a cohort of metabolically characterised living donors to identify defects in in situ insulin synthesis and intra-islet expression of ER stress and beta cell phenotype markers. RESULTS We provide evidence that in situ altered insulin processing is closely connected to in vivo worsening of beta cell function. Further, activation of ER stress genes reflects the alteration of insulin processing in situ. Using a combination of 17 different markers, we characterised individual pancreatic islets from normal glucose tolerant, impaired glucose tolerant and type 2 diabetic participants and reconstructed disease progression. CONCLUSIONS/INTERPRETATION Our study suggests that increased beta cell workload is accompanied by a progressive increase in ER stress with defects in insulin synthesis and loss of beta cell identity.
Collapse
Affiliation(s)
- Noemi Brusco
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Guido Sebastiani
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giada Licata
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giuseppina E Grieco
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Daniela Fignani
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Laura Nigi
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Caterina Formichi
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Elena Aiello
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Stefano Auddino
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giuseppe Quero
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Pancreatic surgery unit, Pancreatic Advanced Research Center (CRMPG), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Chiara M A Cefalo
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Pietro M Ferraro
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Sergio Alfieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Pancreatic surgery unit, Pancreatic Advanced Research Center (CRMPG), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Francesco Dotta
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| |
Collapse
|
4
|
Georgakis MK, Harshfield EL, Malik R, Franceschini N, Langenberg C, Wareham NJ, Markus HS, Dichgans M. Diabetes Mellitus, Glycemic Traits, and Cerebrovascular Disease: A Mendelian Randomization Study. Neurology 2021; 96:e1732-e1742. [PMID: 33495378 PMCID: PMC8055310 DOI: 10.1212/wnl.0000000000011555] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE We employed Mendelian randomization to explore the effects of genetic predisposition to type 2 diabetes (T2D), hyperglycemia, insulin resistance, and pancreatic β-cell dysfunction on risk of stroke subtypes and related cerebrovascular phenotypes. METHODS We selected instruments for genetic predisposition to T2D (74,124 cases, 824,006 controls), HbA1c levels (n = 421,923), fasting glucose levels (n = 133,010), insulin resistance (n = 108,557), and β-cell dysfunction (n = 16,378) based on published genome-wide association studies. Applying 2-sample Mendelian randomization, we examined associations with ischemic stroke (60,341 cases, 454,450 controls), intracerebral hemorrhage (1,545 cases, 1,481 controls), and ischemic stroke subtypes (large artery, cardioembolic, small vessel stroke), as well as with related phenotypes (carotid atherosclerosis, imaging markers of cerebral white matter integrity, and brain atrophy). RESULTS Genetic predisposition to T2D and higher HbA1c levels were associated with higher risk of any ischemic stroke, large artery stroke, and small vessel stroke. Similar associations were also noted for carotid atherosclerotic plaque, fractional anisotropy, a white matter disease marker, and markers of brain atrophy. We further found associations of genetic predisposition to insulin resistance with large artery and small vessel stroke, whereas predisposition to β-cell dysfunction was associated with small vessel stroke, intracerebral hemorrhage, lower gray matter volume, and total brain volume. CONCLUSIONS This study supports causal effects of T2D and hyperglycemia on large artery and small vessel stroke. We show associations of genetically predicted insulin resistance and β-cell dysfunction with large artery and small vessel stroke that might have implications for antidiabetic treatments targeting these mechanisms. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that genetic predisposition to T2D and higher HbA1c levels are associated with a higher risk of large artery and small vessel ischemic stroke.
Collapse
Affiliation(s)
- Marios K Georgakis
- From the Institute for Stroke and Dementia Research (M.K.G., R.M., M.D.), Department of Neurology (M.K.G), University Hospital, and Graduate School for Systemic Neurosciences (M.K.G.), Ludwig-Maximilians-University, Munich, Germany; Stroke Research Group, Department of Clinical Neurosciences (E.L.H., H.S.M.), and MRC Epidemiology Unit (C.L., N.J.W.), University of Cambridge, UK; Department of Epidemiology (N.F.), UNC Gillings Global School of Public Health, Chapel Hill, NC; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Centre for Neurodegenerative Diseases (DZNE) (M.D.), Munich, Germany
| | - Eric L Harshfield
- From the Institute for Stroke and Dementia Research (M.K.G., R.M., M.D.), Department of Neurology (M.K.G), University Hospital, and Graduate School for Systemic Neurosciences (M.K.G.), Ludwig-Maximilians-University, Munich, Germany; Stroke Research Group, Department of Clinical Neurosciences (E.L.H., H.S.M.), and MRC Epidemiology Unit (C.L., N.J.W.), University of Cambridge, UK; Department of Epidemiology (N.F.), UNC Gillings Global School of Public Health, Chapel Hill, NC; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Centre for Neurodegenerative Diseases (DZNE) (M.D.), Munich, Germany
| | - Rainer Malik
- From the Institute for Stroke and Dementia Research (M.K.G., R.M., M.D.), Department of Neurology (M.K.G), University Hospital, and Graduate School for Systemic Neurosciences (M.K.G.), Ludwig-Maximilians-University, Munich, Germany; Stroke Research Group, Department of Clinical Neurosciences (E.L.H., H.S.M.), and MRC Epidemiology Unit (C.L., N.J.W.), University of Cambridge, UK; Department of Epidemiology (N.F.), UNC Gillings Global School of Public Health, Chapel Hill, NC; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Centre for Neurodegenerative Diseases (DZNE) (M.D.), Munich, Germany
| | - Nora Franceschini
- From the Institute for Stroke and Dementia Research (M.K.G., R.M., M.D.), Department of Neurology (M.K.G), University Hospital, and Graduate School for Systemic Neurosciences (M.K.G.), Ludwig-Maximilians-University, Munich, Germany; Stroke Research Group, Department of Clinical Neurosciences (E.L.H., H.S.M.), and MRC Epidemiology Unit (C.L., N.J.W.), University of Cambridge, UK; Department of Epidemiology (N.F.), UNC Gillings Global School of Public Health, Chapel Hill, NC; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Centre for Neurodegenerative Diseases (DZNE) (M.D.), Munich, Germany
| | - Claudia Langenberg
- From the Institute for Stroke and Dementia Research (M.K.G., R.M., M.D.), Department of Neurology (M.K.G), University Hospital, and Graduate School for Systemic Neurosciences (M.K.G.), Ludwig-Maximilians-University, Munich, Germany; Stroke Research Group, Department of Clinical Neurosciences (E.L.H., H.S.M.), and MRC Epidemiology Unit (C.L., N.J.W.), University of Cambridge, UK; Department of Epidemiology (N.F.), UNC Gillings Global School of Public Health, Chapel Hill, NC; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Centre for Neurodegenerative Diseases (DZNE) (M.D.), Munich, Germany
| | - Nicholas J Wareham
- From the Institute for Stroke and Dementia Research (M.K.G., R.M., M.D.), Department of Neurology (M.K.G), University Hospital, and Graduate School for Systemic Neurosciences (M.K.G.), Ludwig-Maximilians-University, Munich, Germany; Stroke Research Group, Department of Clinical Neurosciences (E.L.H., H.S.M.), and MRC Epidemiology Unit (C.L., N.J.W.), University of Cambridge, UK; Department of Epidemiology (N.F.), UNC Gillings Global School of Public Health, Chapel Hill, NC; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Centre for Neurodegenerative Diseases (DZNE) (M.D.), Munich, Germany
| | - Hugh S Markus
- From the Institute for Stroke and Dementia Research (M.K.G., R.M., M.D.), Department of Neurology (M.K.G), University Hospital, and Graduate School for Systemic Neurosciences (M.K.G.), Ludwig-Maximilians-University, Munich, Germany; Stroke Research Group, Department of Clinical Neurosciences (E.L.H., H.S.M.), and MRC Epidemiology Unit (C.L., N.J.W.), University of Cambridge, UK; Department of Epidemiology (N.F.), UNC Gillings Global School of Public Health, Chapel Hill, NC; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Centre for Neurodegenerative Diseases (DZNE) (M.D.), Munich, Germany
| | - Martin Dichgans
- From the Institute for Stroke and Dementia Research (M.K.G., R.M., M.D.), Department of Neurology (M.K.G), University Hospital, and Graduate School for Systemic Neurosciences (M.K.G.), Ludwig-Maximilians-University, Munich, Germany; Stroke Research Group, Department of Clinical Neurosciences (E.L.H., H.S.M.), and MRC Epidemiology Unit (C.L., N.J.W.), University of Cambridge, UK; Department of Epidemiology (N.F.), UNC Gillings Global School of Public Health, Chapel Hill, NC; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Centre for Neurodegenerative Diseases (DZNE) (M.D.), Munich, Germany.
| |
Collapse
|
5
|
Abstract
This review is motivated by the need to question dogma that has not yielded significant improvements in outcomes of Type 2 Diabetes treatment: that insulin resistance is the driver of ß-Cell failure and resulting hyperglycemia. We highlight the fact that hyperlipidemia, insulin resistance, and hyperinsulinemia all precede overt diabetes diagnosis and can each induce the other when tested experimentally. New research highlights the importance of high levels of circulating insulin as both a driver of weight gain and insulin resistance. Data from our lab and others document that several nutrients and environmental toxins can stimulate insulin secretion at non-stimulatory glucose in the absence of insulin resistance. This occurs either by direct action on the ß-Cell or by shifting its sensitivity to known secretagogues. We raise the next logical question of whether ß-Cell dysfunction in Type 2 Diabetes is due to impaired function, defined as failure, or if chronic overstimulation of the ß-Cell that exceeds its capacity to synthesize and secrete insulin, defined as abuse, is the main abnormality in Type 2 Diabetes. These questions are important as they have direct implications for how to best prevent and treat Type 2 Diabetes.
Collapse
Affiliation(s)
- Karel Erion
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Barbara E Corkey
- Evans Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Nikołajuk A, Matulewicz N, Stefanowicz M, Karczewska-Kupczewska M. Serum Matrix Metalloproteinase 9 and Macrophage Migration Inhibitory Factor (MIF) Are Increased in Young Healthy Nonobese Subjects with Positive Family History of Type 2 Diabetes. Int J Endocrinol 2018; 2018:3470412. [PMID: 30302090 PMCID: PMC6158960 DOI: 10.1155/2018/3470412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance increases the risk for cardiovascular disease (CVD) even in the absence of classic risk factors, such as hyperglycemia, hypertension, dyslipidemia, and obesity. Low-grade chronic inflammatory state is associated both with insulin resistance and atherosclerosis. An increased circulating level of proinflammatory proatherogenic factors and biomarkers of endothelial activation was observed in diabetes and CVD. The aim of our study was to assess serum proatherogenic and proinflammatory factors in young healthy nonobese subjects with positive family history of type 2 diabetes. We studied 74 young healthy nonobese subjects with normal glucose tolerance (age < 35 years, BMI < 30 kg/m2), 29 with positive family history of type 2 diabetes (relatives, 25 males and 4 females) and 45 subjects without family history of diabetes (control group, 39 males and 6 females). Hyperinsulinemic-euglycemic clamp was performed, and serum concentrations of monocyte chemoattractant protein-1 (MCP-1), interleukin 18 (IL-18), macrophage inhibitory cytokine 1 (MIC-1), macrophage migration inhibitory factor (MIF), matrix metalloproteinase (MMP-9), and soluble forms of adhesion molecules were measured. Relatives had markedly lower insulin sensitivity (p = 0.019) and higher serum MMP-9 (p < 0.001) and MIF (p = 0.006), but not other chemokines and biomarkers of endothelial function. Insulin sensitivity correlated negatively with serum MMP-9 (r = -0.23, p = 0.045). Our data show that young healthy subjects with positive family history of type 2 diabetes already demonstrate an increase in some nonclassical cardiovascular risk factors.
Collapse
Affiliation(s)
- Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Monika Karczewska-Kupczewska
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- Department of Internal Medicine and Metabolic Disorders, Medical University of Białystok, Białystok, Poland
| |
Collapse
|