1
|
Fachrial E, Ismawati, Jati AP, Nugroho TT, Saryono. Isolation and Characterization of Lactic Acid Bacteria From " Trites" Having the Ability to Produce α-Glucosidase Inhibitors. Int J Microbiol 2025; 2025:8864668. [PMID: 39810844 PMCID: PMC11732287 DOI: 10.1155/ijm/8864668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Alpha-glucosidase inhibitors are one of the therapies used for treating type 2 diabetes by inhibiting the absorption of carbohydrates in the gastrointestinal tract. In addition to antimicrobial activity, some probiotic species show α-glucosidase inhibitor activity, making them potential alternative therapies for type 2 diabetes. This study aimed to characterize probiotics from "trites," a traditional food from North Sumatra, Indonesia, that exhibit α-glucosidase inhibition, potentially useful for type 2 diabetes treatment. The probiotic potential of the isolates was evaluated through antagonistic activity, acid tolerance, bile tolerance, and susceptibility to antimicrobial agents. α-Glucosidase inhibition was tested with acarbose as a control. The best-performing isolate, LBSU8, was identified as Pediococcus acidilactici through 16S rRNA gene sequencing. Gene analysis using genome sequencing for LBSU8 revealed antimicrobial secondary metabolites, including RiPPs, polyketide, and NRP, while capsular polysaccharide might contribute to its antidiabetic activity. Though no specific α-glucosidase inhibitory secondary metabolites were identified, enzymes like dTDP-glucose 4,6-dehydratase, transketolase, and glucose-1-phosphate thymidylyltransferase may contribute to this activity. P. acidilactici LBSU8 shows potential as an alternative diabetes therapy in the food and drug industries. Further studies are needed to elucidate the exact mechanism behind its α-glucosidase inhibitory activity and to explore its efficacy in clinical settings.
Collapse
Affiliation(s)
- Edy Fachrial
- Doctoral Program of Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, Universitas Prima Indonesia, Medan, Indonesia
| | - Ismawati
- Department of Biochemistry, Faculty of Medicine, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
| | - Afif Pranaya Jati
- Indonesian Society of Bioinformatics and Biodiversity, Malang, Indonesia
- Synthetic Biology Division, Bioinformatics Research Center, Indonesian Institute of Bioinformatics, Malang, Indonesia
| | - Titania Tjandrawati Nugroho
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
| | - Saryono
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
| |
Collapse
|
2
|
Gupta T, Rani D, Nainwal LM, Badhwar R. Advancement in chiral heterocycles for the antidiabetic activity. Chirality 2024; 36:e23637. [PMID: 38384150 DOI: 10.1002/chir.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 02/23/2024]
Abstract
For the synthesis and development of pharmaceuticals, chirality is an important structural component. Chiral heterocyclic compounds have annoyed the interest of synthetic chemists who are working to create useful and efficient techniques for these molecules. As indicated by the expanding number of chiral drugs created in the last two decades, the link between chirality and pharmacological activity has become more important in the pharmaceutical and biopharmaceutical industries. Approximately 65% of currently used drugs are chiral, and many of them are promoted as racemates in many circumstances. There are a growing number of new chiral heterocyclic compounds with important biological properties and intriguing uses in medical chemistry and drug discovery. In this study, we review current breakthroughs in chiral heterocycles and their different physiological activities that have been published in the last year (from 2010 to early 2023). This study focuses on the current trends in the use of chiral heterocycles in drug design and the creation of several powerful and competent candidates for diabetic illnesses.
Collapse
Affiliation(s)
- Tinku Gupta
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Dimpy Rani
- School of Medical and Allied Sciences, G.D. Goenka University, Haryana, India
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - Reena Badhwar
- Department of Pharmacy, SGT University, Budhera, Haryana, India
| |
Collapse
|
3
|
Vinaykumar A, Surender B, Rao BV. Chemoselective Nozaki-Hiyama-Takai-Kishi and Grignard reaction: short synthesis of some carbahexopyranoses. RSC Adv 2023; 13:22824-22830. [PMID: 37520087 PMCID: PMC10375257 DOI: 10.1039/d3ra03704e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
A common, divergent, efficient, stereoselective and short approach for the total syntheses of some carbahexopyranoses namely, MK7607, (-)-gabosine A, (-)-conduritol E, (-)-conduritol F, 6a-carba-β-d-fructopyranose and other carbasugars using chemoselective Grignard or Nozaki-Hiyama-Takai-Kishi (NHTK) reactions and RCM. Herein, the Grignard and NHTK reactions are able to differentiate the reactivity difference between lactol or lactolacetate and aldehyde of 2 & 6 under given conditions to give the desired skeleton chemoselectivity.
Collapse
Affiliation(s)
- Allam Vinaykumar
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Hyderabad India
| | - Banothu Surender
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad India
| | - Batchu Venkateswara Rao
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad India
| |
Collapse
|
4
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
5
|
Liang C, Duan X, Shahab M, Zheng G. Biocatalytic synthesis of chiral five-membered carbasugars intermediates utilizing CV2025 ω-transaminase from Chromobacterium violaceum. J Biosci Bioeng 2023; 135:369-374. [PMID: 36934040 DOI: 10.1016/j.jbiosc.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023]
Abstract
(S)-4-(Hydroxymethyl)cyclopent-2-enone is a key intermediate in the synthesis of chiral five-membered carbasugars, which can be used to synthesize a large number of pharmacologically relevant carbocyclic nucleosides. Herein, CV2025 ω-transaminase from Chromobacterium violaceum was selected based on substrate similarity to convert ((1S,4R)-4-aminocyclopent-2-enyl)methanol to (S)-4-(hydroxymethyl)cyclopent-2-enone. The enzyme was successfully cloned, expressed in Escherichia coli, purified and characterized. We show that it has R configuration preference in contrast with the conventional S preference. The highest activity was obtained below 60 °C and at pH 7.5. Cations Ca2+ and K+ enhanced activity by 21% and 13%, respectively. The conversion rate reached 72.4% within 60 min at 50 °C, pH 7.5, using 0.5 mM pyridoxal-5'-phosphate, 0.6 μM CV2025, and 10 mM substrate. The present study provides a promising strategy for preparing five-membered carbasugars economically and efficiently.
Collapse
Affiliation(s)
- Chaoqun Liang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiuyuan Duan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Shahab
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guojun Zheng
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Jia Y, Wang M, Wu F, Wang Y, Chen X. A Synthetic Approach to Several C7-Carbasugars via a Key Intramolecular Morita-Baylis-Hillman Reaction. J Org Chem 2022; 87:14636-14645. [PMID: 36223290 DOI: 10.1021/acs.joc.2c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new synthetic strategy for C7-carbasugars is developed via an intramolecular Morita-Baylis-Hillman reaction, in which a substituted dial precursor prepared from d-mannose cyclizes smoothly in the presence of DMAP to afford polyhydroxylated cyclohex-1-enecarbaldehyde with good yield. By employment of the cyclization products as key intermediates, the first syntheses of carbasugar ester 1 and epicorepoxydon A, as well as practical syntheses of epoxydines B and C, (-)-MK7607, (-)-streptol, and (-)-gabosine E are achieved.
Collapse
Affiliation(s)
- Yuanliang Jia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Maolin Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Folei Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yue Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiaochuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
7
|
Riester O, Burkhardtsmaier P, Gurung Y, Laufer S, Deigner HP, Schmidt MS. Synergy of R-(-)carvone and cyclohexenone-based carbasugar precursors with antibiotics to enhance antibiotic potency and inhibit biofilm formation. Sci Rep 2022; 12:18019. [PMID: 36289389 PMCID: PMC9606123 DOI: 10.1038/s41598-022-22807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The widespread use of antibiotics in recent decades has been a major factor in the emergence of antibiotic resistances. Antibiotic-resistant pathogens pose increasing challenges to healthcare systems in both developing and developed countries. To counteract this, the development of new antibiotics or adjuvants to combat existing resistance to antibiotics is crucial. Glycomimetics, for example carbasugars, offer high potential as adjuvants, as they can inhibit metabolic pathways or biofilm formation due to their similarity to natural substrates. Here, we demonstrate the synthesis of carbasugar precursors (CSPs) and their application as biofilm inhibitors for E. coli and MRSA, as well as their synergistic effect in combination with antibiotics to circumvent biofilm-induced antibiotic resistances. This results in a biofilm reduction of up to 70% for the CSP rac-7 and a reduction in bacterial viability of MRSA by approximately 45% when combined with the otherwise ineffective antibiotic mixture of penicillin and streptomycin.
Collapse
Affiliation(s)
- Oliver Riester
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pia Burkhardtsmaier
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Yuna Gurung
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Stefan Laufer
- grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,Tuebingen Center for Academic Drug Discovery and Development (TüCAD2), 72076 Tübingen, Germany
| | - Hans-Peter Deigner
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Faculty of Science, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,grid.418008.50000 0004 0494 3022EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
| | - Magnus S. Schmidt
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| |
Collapse
|
8
|
Kudo F, Eguchi T. Biosynthesis of cyclitols. Nat Prod Rep 2022; 39:1622-1642. [PMID: 35726901 DOI: 10.1039/d2np00024e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Zorin A, Klenk L, Mack T, Deigner HP, Schmidt MS. Current Synthetic Approaches to the Synthesis of Carbasugars from Non-Carbohydrate Sources. Top Curr Chem (Cham) 2022; 380:12. [PMID: 35138497 PMCID: PMC8827411 DOI: 10.1007/s41061-022-00370-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
Carbasugars are a group of carbohydrate derivatives in which the ring oxygen is replaced by a methylene group, producing a molecule with a nearly identical structure but highly different behavior. Over time, this definition has been extended to include other unsaturated cyclohexenols and carba-, di-, and polysaccharides. Such molecules can be found in bacterial strains and the human body, acting as neurotransmitters (e.g., inositol trisphosphate). In science, there are a wide range of research areas that are affected by, and involve, carbasugars, such as studies on enzyme inhibition, lectin-binding, and even HIV and cancer treatment. In this review article, different methods for synthesizing carbasugars, their derivatives, and similar cyclohexanes presenting comparable characteristics are summarized and evaluated, utilizing diverse starting materials and synthetic procedures.
Collapse
Affiliation(s)
- Alexandra Zorin
- Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany
| | - Lukas Klenk
- Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany
| | - Tonia Mack
- Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany
- EXIM Department, Fraunhofer Institute IZI Leipzig, Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, Associated Member of Tuebingen University, Auf der Morgenstelle 8, 72076 Tubingen, Germany
| | - Magnus S. Schmidt
- Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany
| |
Collapse
|
10
|
Athiyarath V, Roy NJ, Vijil ATV, Sureshan KM. Synthesis of novel seven-membered carbasugars and evaluation of their glycosidase inhibition potentials. RSC Adv 2021; 11:9410-9420. [PMID: 35423467 PMCID: PMC8698521 DOI: 10.1039/d1ra00804h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Here, we report the synthesis of five novel seven-membered carbasugar analogs. We adopted a chiral-pool strategy starting from the cheap and readily available d-mannitol to synthesize these ring-expanded carbasugars. Apart from several regioselective protecting group manipulations, these syntheses involved Wittig olefination and ring-closing metathesis as the key steps. We observed an unprecedented deoxygenation reaction of an allylic benzyl ether upon treatment with H2/Pd during the synthesis. Preliminary biological evaluation of the carbasugars revealed that these ring expanded carbasugars act as inhibitors of various glycosidases. This study highlights the importance of the synthesis of novel ring expanded carbasugars and their biological exploration. Here, we report the synthesis of five novel seven-membered carbasugar analogs.![]()
Collapse
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- India
| | - Naveen J. Roy
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- India
| | - A. T. V. Vijil
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- India
| | - Kana M. Sureshan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- India
| |
Collapse
|
11
|
Actinomycetes from the Red Sea Sponge Coscinoderma mathewsi: Isolation, Diversity, and Potential for Bioactive Compounds Discovery. Microorganisms 2020; 8:microorganisms8050783. [PMID: 32456212 PMCID: PMC7285244 DOI: 10.3390/microorganisms8050783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
The diversity of actinomycetes associated with the marine sponge Coscinoderma mathewsi collected from Hurghada (Egypt) was studied. Twenty-three actinomycetes were separated and identified based on the 16S rDNA gene sequence analysis. Out of them, three isolates were classified as novel species of the genera Micromonospora, Nocardia, and Gordonia. Genome sequencing of actinomycete strains has revealed many silent biosynthetic gene clusters and has shown their exceptional capacity for the production of secondary metabolites, not observed under classical cultivation conditions. Therefore, the effect of mycolic-acid-containing bacteria or mycolic acid on the biosynthesis of cryptic natural products was investigated. Sponge-derived actinomycete Micromonospora sp. UA17 was co-cultured using liquid fermentation with two mycolic acid-containing actinomycetes (Gordonia sp. UA19 and Nocardia sp. UA 23), or supplemented with pure mycolic acid. LC-HRESIMS data were analyzed to compare natural production across all crude extracts. Micromonospora sp. UA17 was rich with isotetracenone, indolocarbazole, and anthracycline analogs. Some co-culture extracts showed metabolites such as a chlorocardicin, neocopiamycin A, and chicamycin B that were not found in the respective monocultures, suggesting a mycolic acid effect on the induction of cryptic natural product biosynthetic pathways. The antibacterial, antifungal, and antiparasitic activities for the different cultures extracts were also tested.
Collapse
|
12
|
Costa E Silva R, Oliveira da Silva L, de Andrade Bartolomeu A, Brocksom TJ, de Oliveira KT. Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches. Beilstein J Org Chem 2020; 16:917-955. [PMID: 32461773 PMCID: PMC7214915 DOI: 10.3762/bjoc.16.83] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
In this review we present relevant and recent applications of porphyrin derivatives as photocatalysts in organic synthesis, involving both single electron transfer (SET) and energy transfer (ET) mechanistic approaches. We demonstrate that these highly conjugated photosensitizers show increasing potential in photocatalysis since they combine both photo- and electrochemical properties which can substitute available metalloorganic photocatalysts. Batch and continuous-flow approaches are presented highlighting the relevance of enabling technologies for the renewal of porphyrin applications in photocatalysis. Finally, the reaction scale in which the methodologies were developed are highlighted since this is an important parameter in the authors' opinion.
Collapse
Affiliation(s)
- Rodrigo Costa E Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Luely Oliveira da Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.,Departamento de Ciências Naturais, Universidade do Estado do Pará, Marabá, PA, 68502-100, Brazil
| | | | - Timothy John Brocksom
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | |
Collapse
|
13
|
Tamburrini A, Colombo C, Bernardi A. Design and synthesis of glycomimetics: Recent advances. Med Res Rev 2020; 40:495-531. [DOI: 10.1002/med.21625] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alice Tamburrini
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Cinzia Colombo
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Anna Bernardi
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| |
Collapse
|
14
|
Di Pietro S, Bordoni V, Mezzetta A, Chiappe C, Signore G, Guazzelli L, Di Bussolo V. Remarkable Effect of [Li(G4)]TFSI Solvate Ionic Liquid (SIL) on the Regio- and Stereoselective Ring Opening of α-Gluco Carbasugar 1,2-Epoxides. Molecules 2019; 24:E2946. [PMID: 31416186 PMCID: PMC6720504 DOI: 10.3390/molecules24162946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022] Open
Abstract
Carba analogues of biologically relevant natural carbohydrates are promising structures for the development of future drugs endowed with enhanced hydrolytic stability. An open synthetic challenge in this field is the optimization of new methodologies for the stereo- and regioselective opening of α-gluco carbasugar 1,2-epoxides that allow for the preparation of pseudo mono- and disaccharides of great interest. Therefore, we investigated the effect of Lewis acids and solvate ionic liquids (SILs) on the epoxide ring opening of a model substrate. Of particular interest was the complete stereo- and regioselectivity, albeit limited to simple nucleophiles, toward the desired C(1) isomer that was observed using LiClO4. The results obtained with SILs were also remarkable. In particular, Li[NTf2]/tetraglyme ([Li(G4)]TFSI) was able to function as a Lewis acid and to direct the attack of the nucleophile preferentially at the pseudo anomeric position, even with a more complex and synthetically interesting nucleophile. The regioselectivity observed for LiClO4 and [Li(G4)]TFSI was tentatively ascribed to the formation of a bidentate chelating system, which changed the conformational equilibrium and ultimately permitted a trans-diaxial attack on C(1). To the best of our knowledge, we report here the first case in which SILs were successfully employed in a ring-opening process of epoxides.
Collapse
Affiliation(s)
| | - Vittorio Bordoni
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Present address: Max Planck Institute of Colloids and Interfaces, Am Mühlen- berg 1, 14476 Potsdam, Germany
| | - Andrea Mezzetta
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Cinzia Chiappe
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Giovanni Signore
- Fondazione Pisana per la Scienza, via F. Giovannini 13, San Giuliano Terme (PI), 56017 Pisa, Italy
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Valeria Di Bussolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 3, 56124 Pisa, Italy.
| |
Collapse
|
15
|
Banachowicz P, Buda S. Gram-scale carbasugar synthesis via intramolecular seleno-Michael/aldol reaction. RSC Adv 2019; 9:12928-12935. [PMID: 35520757 PMCID: PMC9063748 DOI: 10.1039/c9ra02002k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/17/2019] [Indexed: 12/04/2022] Open
Abstract
Carbasugars represent an important category of natural products possessing a broad spectrum of biological activities. Lots of effort has been done to develop gram scale synthesis. We are presenting a new approach to gram scale synthesis of the carbasugar skeleton via intramolecular seleno-Michael/aldol reaction. The proposed strategy gave gram amounts of 6-hydroxy shikimic ester in a tandem process in 36% overall yield starting from d-lyxose. We have attempted to demonstrate the synthetic utility of 6-hydroxyshikimic acid derivatives by covering the important synthetic modifications and related applications, namely synthesis of protected (-)-gabosine E, (-)-MK7606, (-)-valienamine and finally unprotected methyl (-)-shikimate.
Collapse
Affiliation(s)
- Piotr Banachowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Szymon Buda
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| |
Collapse
|
16
|
Zajičková M, Moncoľ J, Šesták S, Kóňa J, Koóš M, Bella M. Synthesis of 4a-Carba- d-lyxofuranose Derivatives and Their Evaluation as Inhibitors of GH38 α-Mannosidases. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mária Zajičková
- Centre for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry; Institute of Chemistry; Faculty of Chemical and Food Technology; Radlinského 9 SK-812 37 Bratislava Slovakia
| | - Sergej Šesták
- Centre for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| | - Juraj Kóňa
- Centre for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| | - Miroslav Koóš
- Centre for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| | - Maroš Bella
- Centre for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| |
Collapse
|
17
|
Itoh N. Biosynthesis and production of quercitols and their application in the production of pharmaceuticals: current status and prospects. Appl Microbiol Biotechnol 2018; 102:4641-4651. [PMID: 29663050 DOI: 10.1007/s00253-018-8972-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
(-)-vibo-Quercitol is a deoxyinositol (1L-1,2,4/3,5-cyclohexanepentol) that occurs naturally in low concentrations in oak species, honeydew honey, and Gymnema sylvestre. The author's research group recently reported that (-)-vibo-quercitol and scyllo-quercitol (2-deoxy-myo-inositol, 1,3,5/2,4-cyclohexanepentol), a stereoisomer of (-)-vibo-quercitol, are stereoselectively synthesized from 2-deoxy-scyllo-inosose by the reductive reaction of a novel (-)-vibo-quercitol 1-dehydrogenase in Burkholderia terrae and of a known scyllo-inositol dehydrogenase in Bacillus subtilis, respectively. The author's research group therefore identified two enzymes capable of producing both stereoisomers of deoxyinositols, which are rare in nature. (-)-vibo-Quercitol and scyllo-quercitol are potential intermediates for pharmaceuticals. In this review, the author describes the biosynthesis and enzymatic production of quercitols and myo-inositol stereoisomers and their application in the production of potential pharmaceuticals.
Collapse
Affiliation(s)
- Nobuya Itoh
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
18
|
A quantitative analytical method for valienone and its application in the evaluation of valienone production by a breakthrough microbial process. Chin J Nat Med 2017; 15:794-800. [DOI: 10.1016/s1875-5364(17)30111-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Indexed: 11/21/2022]
|
19
|
|
20
|
|
21
|
Schalli M, Wolfsgruber A, Gonzalez Santana A, Tysoe C, Fischer R, Stütz AE, Thonhofer M, Withers SG. C-5a-substituted validamine type glycosidase inhibitors. Carbohydr Res 2017; 440-441:1-9. [PMID: 28135569 DOI: 10.1016/j.carres.2017.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 11/30/2022]
Abstract
A series of N-alkyl derivatives of the D-galactosidase inhibitor 1,4-di-epi-validamine featuring lipophilic substituents at position C-5a was prepared and screened for their glycosidase inhibitory properties. Products turned out selective for β-galactosidases as well as β-glucosidases.
Collapse
Affiliation(s)
- Michael Schalli
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Andreas Wolfsgruber
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Andres Gonzalez Santana
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Christina Tysoe
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Roland Fischer
- Institute of Inorganic Chemistry Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria.
| | - Martin Thonhofer
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Stephen G Withers
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|