1
|
Mad Azli AA, Salamt N, Aminuddin A, Roos NAC, Mokhtar MH, Kumar J, Hamid AA, Ugusman A. The Role of Curcumin in Modulating Vascular Function and Structure during Menopause: A Systematic Review. Biomedicines 2024; 12:2281. [PMID: 39457594 PMCID: PMC11504472 DOI: 10.3390/biomedicines12102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The risk of developing cardiovascular disease (CVD) escalates in women during menopause, which is associated with increased vascular endothelial dysfunction, arterial stiffness, and vascular remodeling. Meanwhile, curcumin has been demonstrated to enhance vascular function and structure in various studies. Therefore, this study systematically reviewed the recent literature regarding the potential role of curcumin in modulating vascular function and structure during menopause. The Ovid MEDLINE, PubMed, Scopus, and Web of Science electronic databases were searched to identify relevant articles. Clinical and preclinical studies involving menopausal women and postmenopausal animal models with outcomes related to vascular function or structure were included. After thorough screening, seven articles were selected for data extraction, comprising three animal studies and four clinical trials. The findings from this review suggested that curcumin has beneficial effects on vascular function and structure during menopause by addressing endothelial function, arterial compliance, hemodynamic parameters, and the formation of atherosclerotic lesions. Therefore, curcumin has the potential to be utilized as a supplement to enhance vascular health in menopausal women. However, larger-scale clinical trials employing gold-standard techniques to evaluate vascular health in menopausal women are necessary to validate the preliminary results obtained from small-scale randomized clinical trials involving curcumin supplementation (INPLASY, INPLASY202430043).
Collapse
Affiliation(s)
- Amanina Athirah Mad Azli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Norizam Salamt
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
2
|
Baudin J, Hernandez-Baixauli J, Quesada-Vázquez S, Mulero F, Puiggròs F, Arola L, Caimari A. Combined supplementation with hesperidin, phytosterols and curcumin decreases adiposity and improves metabolic health in ovariectomized rats. Food Funct 2024; 15:4905-4924. [PMID: 38598180 DOI: 10.1039/d3fo05122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent years many women have looked for alternative therapies to address menopause. Hesperidin, phytosterols and curcumin are bioactive compounds that can ameliorate some cardiovascular risk factors associated with menopause, although there are no data concerning the effects of their combined supplementation. We used ovariectomized (OVX) rats, a postmenopausal model with oestrogen deficiency, to evaluate whether supplementation with a multi-ingredient (MI) including hesperidin, phytosterols and curcumin for 57 days would display beneficial effects against fat mass accretion and metabolic disturbances associated with menopause. Twenty OVX rats were orally supplemented with either MI (OVX-MI) or vehicle (OVX). Furthermore, 10 OVX rats orally received the vehicle along with subcutaneous injections of 17β-oestradiol biweekly (OVX-E2), whereas 10 rats were sham operated and received oral and injected vehicles (control group; SH). MI supplementation partly counteracted the fat mass accretion observed in OVX animals, which was evidenced by decreased total fat mass, adiposity index, the weight of retroperitoneal, inguinal and mesenteric white adipose tissue (MWAT) depots and MWAT adipocyte hypertrophy. These effects were accompanied by a significant decrease in the circulating levels of leptin and the mRNA levels of the fatty acid uptake-related genes Lpl and Cd36 in MWAT. These results were very similar to those observed in OVX-E2 animals. OVX-MI rats also displayed a higher lean body mass, lean/fat mass ratio, adiponectin-to-leptin ratio and insulin sensitivity than their OVX counterparts. Our findings can pave the way for using this MI formulation as an alternative therapy to manage obesity and to improve the cardiometabolic health of menopausal women.
Collapse
Affiliation(s)
- Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain.
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain.
| |
Collapse
|
3
|
Lan H, Dong Z, Zhang M, Li W, Chong C, Wu Y, Wang Z, Liu J, Liu Z, Qin X, Jiang T, Song J. Sinapic acid modulates oxidative stress and metabolic disturbances to attenuate ovarian fibrosis in letrozole-induced polycystic ovary syndrome SD rats. Food Sci Nutr 2024; 12:2917-2931. [PMID: 38628198 PMCID: PMC11016395 DOI: 10.1002/fsn3.3973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 04/19/2024] Open
Abstract
Sinapic acid (SA) is renowned for its many pharmacological activities as a polyphenolic compound. The cause of polycystic ovary syndrome (PCOS), a commonly encountered array of metabolic and hormonal abnormalities in females, has yet to be determined. The present experiment was performed to evaluate the antifibrotic properties of SA in rats with letrozole-induced PCOS-related ovarian fibrosis. SA treatment successfully mitigated the changes induced by letrozole in body weight (BW) (p < .01) and relative ovary weight (p < .05). Histological observation revealed that SA reduced the number of atretic and cystic follicles (AFs) and (CFs) (p < .01), as well as ovarian fibrosis, in PCOS rats. Additionally, SA treatment impacted the serum levels of sex hormones in PCOS rats. Luteinizing hormone (LH) and testosterone (T) levels were decreased (p < .01, p < .05), and follicle-stimulating hormone (FSH) levels were increased (p < .05). SA administration also decreased triglyceride (TG) (p < .01) and total cholesterol (TC) levels (p < .05) and increased high-density lipoprotein cholesterol (HDL-C) levels (p < .01), thereby alleviating letrozole-induced metabolic dysfunction in PCOS rats. Furthermore, SA treatment targeted insulin resistance (IR) and increased the messenger RNA (mRNA) levels of antioxidant enzymes in the ovaries of PCOS rats. Finally, SA treatment enhanced the activity of peroxisome proliferator-activated receptor-γ (PPAR-γ), reduced the activation of transforming growth factor-β1 (TGF-β1)/Smads, and decreased collagen I, α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF) levels in the ovaries of PCOS rats. These observations suggest that SA significantly ameliorates metabolic dysfunction and oxidative stress and ultimately reduces ovarian fibrosis in rats with letrozole-induced PCOS.
Collapse
Affiliation(s)
- Huan Lan
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
- College of Chinese Material MedicaGuangzhou University of Chinese MedicineGuangzhouGuangzhouChina
| | - Zhe‐Wen Dong
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
- College of PharmacyShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Ming‐Yu Zhang
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Wan‐Ying Li
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Chao‐Jie Chong
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Ya‐Qi Wu
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Zi‐Xian Wang
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Jun‐Yang Liu
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Zhi‐Qiang Liu
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Xiao‐Hui Qin
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Tie‐Min Jiang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child HealthGuilin University of TechnologyGuilinGuangxiChina
| | - Jia‐Le Song
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child HealthGuilin University of TechnologyGuilinGuangxiChina
- Department of Obstetrics and Clinical NutritionThe Second Affiliated Hospital of Guilin Medical UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
| |
Collapse
|
4
|
Strehle LD, Russart KLG, Burch VA, Grant CV, Pyter LM. Ovarian status modulates endocrine and neuroinflammatory responses to a murine mammary tumor. Am J Physiol Regul Integr Comp Physiol 2022; 323:R432-R444. [PMID: 35993563 PMCID: PMC9512114 DOI: 10.1152/ajpregu.00124.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Patients with breast cancer have increased circulating inflammatory markers and mammary tumors increase neuroinflammation in rodent models. Menopausal status is not only important in the context of breast cancer as circulating estrogen influences tumor progression, but also because estrogen is anti-inflammatory and an essential modulator of endocrine function in the brain and body. Here, we manipulated "menopause" status (ovary-intact and ovariectomized) in an estrogen receptor (ER)+ mouse mammary tumor model to determine the extent to which ovarian status modulates: 1) tumor effects on estrogen concentrations and signaling in the brain, 2) tumor effects on estrogen-associated neurobiology and inflammation, and 3) the ability for tumor resection to resolve the effects of a tumor. We hypothesized that reduced circulating estradiol (E2) after an ovariectomy exacerbates tumor-induced peripheral and central inflammation. Notably, we observed ovarian-dependent modulation on tumor-induced peripheral outcomes, including E2-dependent processes and, to a lesser degree, circulating inflammatory markers. In the brain, ovariectomy exacerbated neuroinflammatory markers in select brain regions and modulated E2-related neurobiology due to a tumor and/or resection. Overall, our data suggest that ovarian status has moderate implications for tumor-induced alterations in neuroendocrinology and neuroinflammation and mild effects on peripheral inflammatory outcomes in this murine mammary tumor model.
Collapse
Affiliation(s)
- Lindsay D Strehle
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Kathryn L G Russart
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Valerie A Burch
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Corena V Grant
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Leah M Pyter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Mitra S, Tareq AM, Das R, Emran TB, Nainu F, Chakraborty AJ, Ahmad I, Tallei TE, Idris AM, Simal-Gandara J. Polyphenols: A first evidence in the synergism and bioactivities. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2026376] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Bgc Trust University Bangladesh, Chittagong, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar, Indonesia
| | | | - Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Trina E. Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (Rcams), King Khalid University, Abha, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, E32004, Spain
| |
Collapse
|
6
|
Costa Calmon Rodrigues PH, da Fonseca SE, de Almeida Pretti Rocha A, de Paula Pereira P, dos Santos RV, Brasil GA, Sertorio MN, Vasconcelos CM. Albedo flour of Tahiti lime (Citrus latifolia Tanaka) as a strategy to control bone fragility in ovariectomized rats. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
7
|
Combined Effects of Exercise and Phytoanabolic Extracts in Castrated Male and Female Mice. Nutrients 2021; 13:nu13041177. [PMID: 33918334 PMCID: PMC8066446 DOI: 10.3390/nu13041177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/21/2022] Open
Abstract
Dry extracts from the Eurasian plants, Ajuga turkestanica, Eurycoma longifolia, and Urtica dioica have been used as anabolic supplements, despite the limited scientific data on these effects. To assess their actions on early sarcopenia signs, male and female castrated mice were supplemented with lyophilized extracts of the three plants, isolated or in association (named TLU), and submitted to resistance exercise. Ovariectomy (OVX) led to body weight increase and non-high-density cholesterol (HDL) cholesterol elevation, which had been restored by exercise plus U. dioica extract, or by exercise and TLU, respectively. Orchiectomy (ORX) caused skeletal muscle weight loss, accompanied by increased adiposity, being the latter parameter reduced by exercise plus E. longifolia or U. dioica extracts. General physical activity was improved by exercise plus herbal extracts in either OVX or ORX animals. Exercise combined with TLU improved resistance to fatigue in OVX animals, though A. turkestanica enhanced the grip strength in ORX mice. E. longifolia or TLU also reduced the ladder climbing time in ORX mice. Resistance exercise plus herbal extracts partly altered gastrocnemius fiber size frequencies in OVX or ORX mice. We provide novel data that tested ergogenic extracts, when combined with resistance exercise, improved early sarcopenia alterations in castrated male and female mice.
Collapse
|
8
|
Camargo TF, Zanesco AM, Pacher KAS, Andrade TAM, Alves AA, do Amaral MEC. Physiological profile regulation during weight gain and loss by ovariectomized females: importance of SIRT1 and SIRT4. Am J Physiol Endocrinol Metab 2020; 319:E769-E778. [PMID: 32865007 DOI: 10.1152/ajpendo.00465.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity in menopausal women occurs because of the systemic effects of loss of ovarian function, resulting in increased body weight and oxidative stress. Caloric restriction (CR) is essential for weight loss, since it provides benefits associated with metabolic normalization resulting from the action of sirtuins. The aim of this work was to evaluate the physiological effects of weight cycling in ovariectomized females. Females aged 2 mo (n = 8/group) were submitted to simulated surgery, ovariectomy (OVX group), and ovariectomy with weight fluctuation (WF group). In the WF group, weight cycling was performed two times, using 21 days of ad libitum commercial feed and 21 days of caloric restriction with 40% of the feed consumed by the OVX group. After 17 wk, the animals were evaluated experimentally. Weight fluctuations reduced triacylglycerol and the adipose tissue index of the WF animals, while increasing the expression of antioxidant proteins. In addition to causing fluctuations in the physiological parameters, the weight cycling led to increases of adipocyte number and serum fatty acids. These effects were reflected in increased expression of the sirtuin (SIRT) 1 and SIRT4 proteins, as well as protein complexes of the mitochondrial electron transport chain, especially in the liver and adipose tissues. The weight-cycling results suggested that mitochondrial and nuclear sirtuins were active in cellular signaling for the control of lipid metabolism, oxidative phosphorylation, and redox status. Weight cycling was able to restore the health characteristics of lean animals.
Collapse
Affiliation(s)
- Thaís Furtado Camargo
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, Sãu Paulo, Brazil
| | - Ariane Maria Zanesco
- College of Biomedicine, Centro Universitário Hermínio Ometto, Araras, Sãu Paulo, Brazil
| | - Kayo Augusto Salandin Pacher
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, Sãu Paulo, Brazil
| | | | | | | |
Collapse
|
9
|
N-acetylcysteine and alpha-lipoic acid improve antioxidant defenses and decrease oxidative stress, inflammation and serum lipid levels in ovariectomized rats via estrogen-independent mechanisms. J Nutr Biochem 2019; 67:190-200. [DOI: 10.1016/j.jnutbio.2019.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 01/16/2023]
|
10
|
Zych M, Kaczmarczyk-Sedlak I, Wojnar W, Folwarczna J. Effect of Rosmarinic Acid on the Serum Parameters of Glucose and Lipid Metabolism and Oxidative Stress in Estrogen-Deficient Rats. Nutrients 2019; 11:E267. [PMID: 30691017 PMCID: PMC6412204 DOI: 10.3390/nu11020267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022] Open
Abstract
Rosmarinic acid is found in medicinal and spice plants such as rosemary, lemon balm, and mint. The aim of the study was to investigate the effect of rosmarinic acid on parameters of glucose and lipid metabolism and parameters of oxidative stress in rats in the early phase of estrogen deficiency. The study was carried out on mature female Wistar rats divided into the following groups: sham-operated control rats, ovariectomized control rats, and ovariectomized rats treated orally with rosmarinic acid at a dose of 10 mg/kg or 50 mg/kg daily for 28 days. The concentration of sex hormones, parameters related to glucose and lipid metabolism as well as parameters of antioxidant abilities and oxidative damage were determined in the blood serum. In the ovariectomized control rats, the homeostasis model assessment of insulin resistance (HOMA-IR) index and cholesterol concentration increased, the superoxide dismutase activity increased, and the reduced glutathione concentration decreased. Administration of rosmarinic acid at both doses induced decreases in the fructosamine concentration and HOMA-IR, an increase in the concentration of reduced glutathione, and a decrease in the concentration of advanced oxidation protein products in ovariectomized rats. Moreover, rosmarinic acid at a dose of 50 mg/kg induced a decrease in the total cholesterol and triglyceride concentrations. The results indicate that rosmarinic acid may be useful in the prevention of metabolic disorders associated with estrogen deficiency, however further studies are necessary.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Weronika Wojnar
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| |
Collapse
|
11
|
Zych M, Kaczmarczyk-Sedlak I, Wojnar W, Folwarczna J. The Effects of Sinapic Acid on the Development of Metabolic Disorders Induced by Estrogen Deficiency in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9274246. [PMID: 29967666 PMCID: PMC6008867 DOI: 10.1155/2018/9274246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/23/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
Sinapic acid is a natural phenolic acid found in fruits, vegetables, and cereals, exerting numerous pharmacological effects. The aim of the study was to investigate the influence of sinapic acid on biochemical parameters related to glucose and lipid metabolism, as well as markers of antioxidant abilities and parameters of oxidative damage in the blood serum in estrogen-deficient rats. The study was performed on 3-month-old female Wistar rats, divided into 5 groups, including sham-operated control rats, ovariectomized control rats, and ovariectomized rats administered orally with estradiol (0.2 mg/kg) or sinapic acid (5 and 25 mg/kg) for 28 days. The levels of estradiol, progesterone, interleukin 18, insulin, glucose, fructosamine, lipids, and enzymatic and nonenzymatic antioxidants (superoxide dismutase, catalase, and glutathione); total antioxidant capacity; and oxidative damage parameters (thiobarbituric acid-reactive substances, protein carbonyl groups, and advanced oxidation protein products) were determined in the serum. Estradiol counteracted the carbohydrate and cholesterol metabolism disorders induced by estrogen deficiency. Sinapic acid increased the serum estradiol concentration; decreased insulin resistance and the triglyceride and total cholesterol concentrations; and favorably affected the parameters of antioxidant abilities (reduced glutathione, superoxide dismutase) and oxidative damage (advanced oxidation protein products).
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Weronika Wojnar
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
12
|
Abd El-Fattah AI, Fathy MM, Ali ZY, El-Garawany AERA, Mohamed EK. Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chem Biol Interact 2017; 271:30-38. [DOI: 10.1016/j.cbi.2017.04.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
|