1
|
Varlı M, Ji M, Kim E, Kim SJ, Choi B, Ha HH, Kim KK, Paik MJ, Kim H. Emodin disrupts the KITENIN oncogenic complex by binding ErbB4 and suppresses colorectal cancer progression in dual blockade with KSRP-binding compound. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156247. [PMID: 39586126 DOI: 10.1016/j.phymed.2024.156247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The KITENIN/ErbB4 complex has been reported to participate in metastasis, which is the principal reason of death in most colorectal cancer patients. PURPOSE New therapeutics need to be developed to suppress the malignant effects of the KITENIN/ErbB4 complex, which is related to drug resistance. The present study aimed to evaluate changes in cancer cell invasion capacity, transcriptional regulators, and cellular bioenergetics after targeting the KITENIN/ErbB4 complex with emodin. Moreover, we aimed to reveal the mechanistic effects of emodin and observe the dual blockade effects of ErbB4-targeted therapy with KH-type splicing regulatory protein (KSRP) and search for new alternative blockade pathways. METHODS Using in vitro, in vivo, molecular-docking, and metabolomics studies, we evaluated the anticancer effect of emodin alone or in combination with DKCC14S. RESULTS Emodin treatment decreased KITENIN and ErbB4 protein levels. The dysfunctional KITENIN/ErbB4 complex suppressed KITENIN-mediated cell invasion and downregulated AP-1 activity, aerobic glycolysis, and the levels of transcriptional regulators associated with cell metabolism. We conclude that emodin targets the KITENIN/ErbB4 complex and offering a novel mechanism by which it disrupts KITENIN-mediated signaling. Furthermore, we were demonstrated that the dual blocking effect of emodin and DKC-C14S on the KITENIN complex showed synergistic effects in suppressing colorectal cancer progression under in cell-based and animal assay. CONCLUSION The results suggest that co-treatment with ErbB4 and KSRP-binding compounds could constitute a potential strategy for controlling colorectal cancer progression by disrupting the KITENIN complex.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Eunae Kim
- College of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju 61452, Republic of Korea.
| | - Sung Jin Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61469, Republic of Korea.
| | - Byeongchan Choi
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61469, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Shen Q, Feng L, Zhang C, Jiang X, Liu F, Pang B. A nanoscale natural drug delivery system for targeted drug delivery against ovarian cancer: action mechanism, application enlightenment and future potential. Front Immunol 2024; 15:1427573. [PMID: 39464892 PMCID: PMC11502327 DOI: 10.3389/fimmu.2024.1427573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/22/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological malignancies in the world and is the leading cause of cancer-related death in women. The complexity and difficult-to-treat nature of OC pose a huge challenge to the treatment of the disease, Therefore, it is critical to find green and sustainable drug treatment options. Natural drugs have wide sources, many targets, and high safety, and are currently recognized as ideal drugs for tumor treatment, has previously been found to have a good effect on controlling tumor progression and reducing the burden of metastasis. However, its clinical transformation is often hindered by structural stability, bioavailability, and bioactivity. Emerging technologies for the treatment of OC, such as photodynamic therapy, immunotherapy, targeted therapy, gene therapy, molecular therapy, and nanotherapy, are developing rapidly, particularly, nanotechnology can play a bridging role between different therapies, synergistically drive the complementary role of differentiated treatment schemes, and has a wide range of clinical application prospects. In this review, nanoscale natural drug delivery systems (NNDDS) for targeted drug delivery against OC were extensively explored. We reviewed the mechanism of action of natural drugs against OC, reviewed the morphological composition and delivery potential of drug nanocarriers based on the application of nanotechnology in the treatment of OC, and discussed the limitations of current NNDDS research. After elucidating these problems, it will provide a theoretical basis for future exploration of novel NNDDS for anti-OC therapy.
Collapse
Affiliation(s)
- Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Talib WH, Baban MM, Bulbul MF, Al-Zaidaneen E, Allan A, Al-Rousan EW, Ahmad RHY, Alshaeri HK, Alasmari MM, Law D. Natural Products and Altered Metabolism in Cancer: Therapeutic Targets and Mechanisms of Action. Int J Mol Sci 2024; 25:9593. [PMID: 39273552 PMCID: PMC11394730 DOI: 10.3390/ijms25179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer is characterized by uncontrolled cell proliferation and the dysregulation of numerous biological functions, including metabolism. Because of the potential implications of targeted therapies, the metabolic alterations seen in cancer cells, such as the Warburg effect and disruptions in lipid and amino acid metabolism, have gained attention in cancer research. In this review, we delve into recent research examining the influence of natural products on altered cancer metabolism. Natural products were selected based on their ability to target cancer's altered metabolism. We identified the targets and explored the mechanisms of action of these natural products in influencing cellular energetics. Studies discussed in this review provide a solid ground for researchers to consider natural products in cancer treatment alone and in combination with conventional anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Media Mohammad Baban
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Mais Fuad Bulbul
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Esraa Al-Zaidaneen
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Aya Allan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eiman Wasef Al-Rousan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rahaf Hamed Yousef Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
4
|
Liu S, Li L, Ren D. Anti-Cancer Potential of Phytochemicals: The Regulation of the Epithelial-Mesenchymal Transition. Molecules 2023; 28:5069. [PMID: 37446730 DOI: 10.3390/molecules28135069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A biological process called epithelial-mesenchymal transition (EMT) allows epithelial cells to change into mesenchymal cells and acquire some cancer stem cell properties. EMT contributes significantly to the metastasis, invasion, and development of treatment resistance in cancer cells. Current research has demonstrated that phytochemicals are emerging as a potential source of safe and efficient anti-cancer medications. Phytochemicals could disrupt signaling pathways related to malignant cell metastasis and drug resistance by suppressing or reversing the EMT process. In this review, we briefly describe the pathophysiological properties and the molecular mechanisms of EMT in the progression of cancers, then summarize phytochemicals with diverse structures that could block the EMT process in different types of cancer. Hopefully, these will provide some guidance for future research on phytochemicals targeting EMT.
Collapse
Affiliation(s)
- Shuangyu Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Lingyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
5
|
Islam MR, Rahman MM, Dhar PS, Nowrin FT, Sultana N, Akter M, Rauf A, Khalil AA, Gianoncelli A, Ribaudo G. The Role of Natural and Semi-Synthetic Compounds in Ovarian Cancer: Updates on Mechanisms of Action, Current Trends and Perspectives. Molecules 2023; 28:2070. [PMID: 36903316 PMCID: PMC10004182 DOI: 10.3390/molecules28052070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Ovarian cancer represents a major health concern for the female population: there is no obvious cause, it is frequently misdiagnosed, and it is characterized by a poor prognosis. Additionally, patients are inclined to recurrences because of metastasis and poor treatment tolerance. Combining innovative therapeutic techniques with established approaches can aid in improving treatment outcomes. Because of their multi-target actions, long application history, and widespread availability, natural compounds have particular advantages in this connection. Thus, effective therapeutic alternatives with improved patient tolerance hopefully can be identified within the world of natural and nature-derived products. Moreover, natural compounds are generally perceived to have more limited adverse effects on healthy cells or tissues, suggesting their potential role as valid treatment alternatives. In general, the anticancer mechanisms of such molecules are connected to the reduction of cell proliferation and metastasis, autophagy stimulation and improved response to chemotherapeutics. This review aims at discussing the mechanistic insights and possible targets of natural compounds against ovarian cancer, from the perspective of medicinal chemists. In addition, an overview of the pharmacology of natural products studied to date for their potential application towards ovarian cancer models is presented. The chemical aspects as well as available bioactivity data are discussed and commented on, with particular attention to the underlying molecular mechanism(s).
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Feana Tasmim Nowrin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
6
|
Sharifi-Rad J, Herrera-Bravo J, Kamiloglu S, Petroni K, Mishra AP, Monserrat-Mesquida M, Sureda A, Martorell M, Aidarbekovna DS, Yessimsiitova Z, Ydyrys A, Hano C, Calina D, Cho WC. Recent advances in the therapeutic potential of emodin for human health. Biomed Pharmacother 2022; 154:113555. [PMID: 36027610 DOI: 10.1016/j.biopha.2022.113555] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 01/01/2023] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier molecules to the target, thus opening up new therapeutic perspectives.
Collapse
Affiliation(s)
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Gorukle, Bursa, Turkey; Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174, India.
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health and Health Research Institute of Balearic Islands (IdISBa), University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health and Health Research Institute of Balearic Islands (IdISBa), University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Miquel Martorell
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile.
| | - Dossymbetova Symbat Aidarbekovna
- Almaty Tecnological University, Kazakh-Russian Medical University, Almaty 050012, str. Tole bi 100, Str. Torekulova 71, Kazakhstan.
| | - Zura Yessimsiitova
- Department of Biodiversity and Bioresource, Al-Farabi Kazakh National University, al-Farabi av. 71, 050040 Almaty, Kazakhstan.
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, al-Farabi av. 71, 050040 Almaty, Kazakhstan.
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, 28000 Chartres, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Yu Y, Liu W, Zhan X, Zhong Y, Feng Y, Cao Q, Tan B. Synergistic effect of Tripterygium glycosides and cisplatin on drug-resistant human epithelial ovarian cancer via ILK/GSK3β/Slug signal pathway. Am J Transl Res 2022; 14:2051-2062. [PMID: 35422913 PMCID: PMC8991152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The side-effects of therapeutic drugs and the intrinsic or acquired cisplation resistance are considered impediments in the clinic treatment of human epithelial ovarian cancer, which contribute heavily to the startlingly high mortality. It is imperative to look for drugs to inhibit cancer and minimize the chemotherapy resistance safely and effectively from the Chinese herbal medicine. In the present study, we evaluated the anti-cancer effect of Tripterygium glycosides (GTW) and its sensitizing effect with cisplation (DDP) both in vitro and in vivo. The 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay, transwell assay, and scratch wound healing assay demonstrated that GTW and DDP+GTW prominently inhibited the proliferation, migration, and invasion of SKOV3/DDP cells. In addition, treatment using GTW and DDP+GTW for 24 h significantly decreased the expression of ILK, p-AKT, p-GSK3β, N-Cadherin, and Slug, and markedly enhanced the expression of E-cadherin. Moreover, animal results confirmed that GTW and DDP+GTW significantly inhibited the tumor volume, increased the apoptosis of tumors cells and reduced the production of tumor markers CA125 and HE4 in mice serum. Similar to the results in vitro, GTW and DDP+GTW significantly inhibited the expression of proteins in epithelial-mesenchymal transition (EMT) and ILK/GSK3β/Slug signal pathway in tumors in vivo. In conclusion, our results indicated that GTW may be served as a potential therapeutic drug combination with DDP to treat drug resistant ovarian cancer via regulating ILK/GSK3β/Slug signal pathway.
Collapse
Affiliation(s)
- Yayuan Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children HospitalJiaxing 314000, Zhejiang, P. R. China
| | - Wencheng Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Xinlu Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Yanying Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Ying Feng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Qing Cao
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| |
Collapse
|
8
|
Zheng Q, Li S, Li X, Liu R. Advances in the study of emodin: an update on pharmacological properties and mechanistic basis. Chin Med 2021; 16:102. [PMID: 34629100 PMCID: PMC8504117 DOI: 10.1186/s13020-021-00509-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rhei Radix et Rhizoma, also known as rhubarb or Da Huang, has been widely used as a spice and as traditional herbal medicine for centuries, and is currently marketed in China as the principal herbs in various prescriptions, such as Da-Huang-Zhe-Chong pills and Da-Huang-Qing-Wei pills. Emodin, a major bioactive anthraquinone derivative extracted from rhubarb, represents multiple health benefits in the treatment of a host of diseases, such as immune-inflammatory abnormality, tumor progression, bacterial or viral infections, and metabolic syndrome. Emerging evidence has made great strides in clarifying the multi-targeting therapeutic mechanisms underlying the efficacious therapeutic potential of emodin, including anti-inflammatory, immunomodulatory, anti-fibrosis, anti-tumor, anti-viral, anti-bacterial, and anti-diabetic properties. This comprehensive review aims to provide an updated summary of recent developments on these pharmacological efficacies and molecular mechanisms of emodin, with a focus on the underlying molecular targets and signaling networks. We also reviewed recent attempts to improve the pharmacokinetic properties and biological activities of emodin by structural modification and novel material-based targeted delivery. In conclusion, emodin still has great potential to become promising therapeutic options to immune and inflammation abnormality, organ fibrosis, common malignancy, pathogenic bacteria or virus infections, and endocrine disease or disorder. Scientifically addressing concerns regarding the poor bioavailability and vague molecular targets would significantly contribute to the widespread acceptance of rhubarb not only as a dietary supplement in food flavorings and colorings but also as a health-promoting TCM in the coming years.
Collapse
Affiliation(s)
- Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
9
|
Wu J, Zhou T, Wang Y, Jiang Y, Wang Y. Mechanisms and Advances in Anti-Ovarian Cancer with Natural Plants Component. Molecules 2021; 26:molecules26195949. [PMID: 34641493 PMCID: PMC8512305 DOI: 10.3390/molecules26195949] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer ranks seventh in the most common malignant tumors among female disease, which seriously threatens female reproductive health. It is characterized by hidden pathogenesis, missed diagnosis, high reoccurrence rate, and poor prognosis. In clinic, the first-line treatment prioritized debulking surgery with paclitaxel-based chemotherapy. The harsh truth is that female patients are prone to relapse due to the dissemination of tumor cells and drug resistance. In these circumstances, the development of new therapy strategies combined with traditional approaches is conductive to improving the quality of treatment. Among numerous drug resources, botanical compounds have unique advantages due to their potentials in multitarget functions, long application history, and wide availability. Previous studies have revealed the therapeutic effects of bioactive plant components in ovarian cancer. These natural ingredients act as part of the initial treatment or an auxiliary option for maintenance therapy, further reducing the tumor and metastatic burden. In this review, we summarized the functions and mechanisms of natural botanical components applied in human ovarian cancer. We focused on the molecular mechanisms of cell apoptosis, autophagy, RNA and DNA lesion, ROS damage, and the multiple-drug resistance. We aim to provide a theoretical reference for in-depth drug research so as to manage ovarian cancer better in clinic.
Collapse
Affiliation(s)
- Jingyuan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yinxue Wang
- The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou 730000, China;
| | - Yanbiao Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
| | - Yiqing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
- Gansu Key Laboratory of Reproductive Medicine and Embryology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Correspondence:
| |
Collapse
|
10
|
Zheng Q, Hou W. Regulation of angiogenesis by microRNAs in cancer. Mol Med Rep 2021; 24:583. [PMID: 34132365 PMCID: PMC8223106 DOI: 10.3892/mmr.2021.12222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) are endogenous, small, non‑coding RNA molecules with ~22 nucleotides, and are involved in regulating the expression of multiple genes and controlling cellular functions. miRs serve key roles in angiogenesis by regulating the proliferation, differentiation, apoptosis and migration of endothelial cells. Regulation of angiogenesis is essential for several physiological and pathological processes, particularly for tumor development and progression. Therefore, it is important to investigate the roles served by miRs in angiogenesis as this may aid in discovering novel strategies for treating tumors via modulating angiogenesis. In this review, miRNA biogenesis, regulation and functions are described with new information and corresponding references. In particular, the latest advances in the role of various miRs and their target genes involved in tumor angiogenesis were updated. Next, different signaling pathways by which miRNAs could be regulated in different types of tumor progression were addressed. Furthermore, the potential clinical value of miRs as biomarkers for diagnosing and monitoring the response to therapy, as well as their ability to regulate tumor angiogenesis and the mechanism underlying this regulation, were investigated.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
11
|
Tuli HS, Aggarwal V, Tuorkey M, Aggarwal D, Parashar NC, Varol M, Savla R, Kaur G, Mittal S, Sak K. Emodin: A metabolite that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Toxicol In Vitro 2021; 73:105142. [PMID: 33722736 DOI: 10.1016/j.tiv.2021.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
|
12
|
Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin. Cancers (Basel) 2021; 13:cancers13112733. [PMID: 34073059 PMCID: PMC8198870 DOI: 10.3390/cancers13112733] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Many anticancer active compounds are known to have the capacity to destroy pathologically proliferating cancer cells in the body, as well as to destroy rapidly proliferating normal cells. Despite remarkable advances in cancer research over the past few decades, the inclusion of natural compounds in researches as potential drug candidates is becoming increasingly important. However, the perception that the natural is reliable is an issue that needs to be clarified. Among the various chemical classes of natural products, anthraquinones have many biological activities and have also been proven to exhibit a unique anticancer activity. Emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. The anticancer property of emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of suppressing cell growth and proliferation through the attenuation of oncogenic growth signaling, such as protein kinase B (AKT), mitogen-activated protein kinase (MAPK), HER-2 tyrosine kinase, Wnt/-catenin, and phosphatidylinositol 3-kinase (PI3K). However, it is known that emodin, which shows toxicity to cancer cells, may cause kidney toxicity, hepatotoxicity, and reproductive toxicity especially at high doses and long-term use. At the same time, studies of emodin, which has poor oral bioavailability, to transform this disadvantage into an advantage with nano-carrier systems reveal that natural compounds are not always directly usable compounds. Consequently, this review aimed to shed light on the anti-proliferative and anti-carcinogenic properties of emodin, as well as its potential toxicities and the advantages of drug delivery systems on bioavailability.
Collapse
|
13
|
Glibo M, Serman A, Karin-Kujundzic V, Bekavac Vlatkovic I, Miskovic B, Vranic S, Serman L. The role of glycogen synthase kinase 3 (GSK3) in cancer with emphasis on ovarian cancer development and progression: A comprehensive review. Bosn J Basic Med Sci 2021; 21:5-18. [PMID: 32767962 PMCID: PMC7861620 DOI: 10.17305/bjbms.2020.5036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a monomeric serine-threonine kinase discovered in 1980 in a rat skeletal muscle. It has been involved in various cellular processes including embryogenesis, immune response, inflammation, apoptosis, autophagy, wound healing, neurodegeneration, and carcinogenesis. GSK3 exists in two different isoforms, GSK3α and GSK3β, both containing seven antiparallel beta-plates, a short linking part and an alpha helix, but coded by different genes and variously expressed in human tissues. In the current review, we comprehensively appraise the current literature on the role of GSK3 in various cancers with emphasis on ovarian carcinoma. Our findings indicate that the role of GSK3 in ovarian cancer development cannot be decisively determined as the currently available data support both prooncogenic and tumor-suppressive effects. Likewise, the clinical impact of GSK3 expression on ovarian cancer patients and its potential therapeutic implications are also limited. Further studies are needed to fully elucidate the pathophysiological and clinical implications of GSK3 activity in ovarian cancer.
Collapse
Affiliation(s)
- Mislav Glibo
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alan Serman
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivanka Bekavac Vlatkovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Berivoj Miskovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
14
|
Zheng Q, Wang J, Li W, Chen X, Chen S, Chen L. Emodin Reverses the Epithelial-Mesenchymal Transition of Human Endometrial Stromal Cells by Inhibiting ILK/GSK-3β Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3663-3672. [PMID: 32982173 PMCID: PMC7490435 DOI: 10.2147/dddt.s262816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Purpose To explore the exact mechanism through which emodin down-regulates the migration and invasion abilities of endometrial stromal cells. Moreover, to explore the theoretical basis of emodin in the treatment of endometriosis. Patients and Methods Endometriosis endometrial stromal cells (EESs) were cultured from 15 women with endometriosis and control endometrial stromal cells (CESs) were cultured from 12 women without endometriosis. The levels of proteins were evaluated by Western blot. The migration and invasion abilities of cells were detected by transwell assays. Results The abilities of migration and invasion of EESs were much stronger than those of CESs. After treated with emodin, the migration and invasion abilities of EESs and CESs were significantly down-regulated, and the levels of integrin-linked kinase (ILK) and p-GSK-3β were statistically down-regulated in EESs. Besides that, the expression of keratin was up-regulated while the expression of vimentin, β-catenin and slug were all down-regulated by emodin in a dose- and time-dependent manner. Silencing of ILK gene in EESs also achieved the above effects, which were strengthened by emodin. Conversely, exogenous expression of ILK in CESs increased the expression of p-GSK-3β, which were abrogated by emodin. Furthermore, SB216763 increased migration and invasion abilities of CESs by facilitating the epithelial-mesenchymal transition (EMT) through up-regulating levels of p-GSK-3β, β-catenin and slug, which were also abrogated by emodin. Conclusion Emodin inhibits the migration and invasion abilities of human endometrial stromal cells by reversing the EMT via ILK/GSK-3β pathway. So, emodin may be considered as a promising targeted therapy for endometriosis.
Collapse
Affiliation(s)
- Qiaomei Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian 350001, People's Republic of China
| | - Jinhua Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian 350001, People's Republic of China
| | - Wenwen Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian 350001, People's Republic of China
| | - Xiaoyun Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian 350001, People's Republic of China
| | - Shaozhan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian 350001, People's Republic of China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian 350001, People's Republic of China
| |
Collapse
|
15
|
Majc B, Sever T, Zarić M, Breznik B, Turk B, Lah TT. Epithelial-to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118782. [PMID: 32554164 DOI: 10.1016/j.bbamcr.2020.118782] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is an essential molecular and cellular process that is part of normal embryogenesis and wound healing, and also has a ubiquitous role in various types of carcinoma and glioblastoma. EMT is activated and regulated by specific microenvironmental endogenous triggers and a complex network of signalling pathways. These mostly include epigenetic events that affect protein translation-controlling factors and proteases, altogether orchestrated by the switching on and off of oncogenes and tumour-suppressor genes in cancer cells. The hallmark of cancer-linked EMT is that the process is incomplete, as it is opposed by the reverse process of mesenchymal-to-epithelial transition, which results in a hybrid epithelial/mesenchymal phenotype that shows notable cell plasticity. This is a characteristic of cancer stem cells (CSCs), and it is of the utmost importance in their niche microenvironment, where it governs CSC migratory and invasive properties, thereby creating metastatic CSCs. These cells have high resistance to therapeutic treatments, in particular in glioblastoma.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Tilen Sever
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Department of Biochemistry, Molecular and Structural Biology, Josef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Miki Zarić
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Department of Biochemistry, Molecular and Structural Biology, Josef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Josef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia; Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Ulitsa, 19с1, Moscow 119146, Russia
| | - Tamara T Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Cai W, Xu Y, Zuo W, Su Z. MicroR-542-3p can mediate ILK and further inhibit cell proliferation, migration and invasion in osteosarcoma cells. Aging (Albany NY) 2020; 11:18-32. [PMID: 30636169 PMCID: PMC6339804 DOI: 10.18632/aging.101698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022]
Abstract
MiR-542-3p and its target gene integrin linked kinase (ILK) in human osteosarcoma together with the differentially expressed genes from osteosarcoma tissues was analyzed through bioinformatics analysis in this study. Real time quantitative polymerase chain reaction (qRT-PCR) and western blot showed that the miR-542-3p expression decreased while the ILK expression increased in the osteosarcoma tissues. The overexpressed miR-542-3p or silenced ILK restrained cell invasion, proliferation and migration and arrested cell cycle, facilitated cell apoptosis in U-2OS and 143B cells. The dual-luciferase assay confirmed the targeting relationship between miR-542-3p and ILK. MiR-542-3p overexpression inhibited osteosarcoma growth in vivo. In conclusion, miR-542-3p overexpression down-regulated its target gene ILK, promoted osteosarcoma cells apoptosis and inhibited their proliferation, migration and invasion.
Collapse
Affiliation(s)
- Wei Cai
- Department of Orthopedics, Huai'An First People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Yong Xu
- Department of Orthopedics, Huai'An First People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Wenshan Zuo
- Department of Orthopedics, Huai'An First People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Zhen Su
- Department of Anesthesiology, Huai'An First People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| |
Collapse
|
17
|
Dai J, Wei R, Zhang P, Kong B. Overexpression of microRNA-195-5p reduces cisplatin resistance and angiogenesis in ovarian cancer by inhibiting the PSAT1-dependent GSK3β/β-catenin signaling pathway. J Transl Med 2019; 17:190. [PMID: 31171023 PMCID: PMC6551881 DOI: 10.1186/s12967-019-1932-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background Ovarian cancer (OC) is one of the leading causes for cancer-related deaths among women. MicroRNAs (miRs) have been proved to be vital to the development and progression of OC. Hence, the study aims to evaluate the ability of miR-195-5p affecting cisplatin (DDP) resistance and angiogenesis in OC and the underlying mechanism. Methods MiRs that could target phosphoserine aminotransferase 1 (PSAT1), a differentially expressed gene in OC, were predicted by miRNA-mRNA prediction websites. The expression patterns of miR-195-5p in the OC tissues and cells were determined using RNA quantification assay. The role of miR-195-5p in OC was evaluated by determining DDP resistance, apoptosis and angiogenesis of OC cells after up-regulating or down-regulating miR-195-5p or PSAT1, or blocking the glycogen synthase kinase-3β (GSK3β)/β-catenin signaling pathway. Animal experiment was conducted to explore the effect of miR-195-5p on resistance to DDP and angiogenesis. Result MiR-195-5p directly targeted PSAT1 and down-regulated its expression. The expression of miR-195-5p was lower while that of PSAT1 was higher in OC tissues than in adjacent normal tissues. When miR-195-5p was over-expressed or PSAT1 was silenced, the expression of HIF-1α, VEGF, PSAT1, β-catenin as well as the extent of GSK3β phosphorylation was reduced, the angiogenesis and resistance to DDP was diminished and apoptosis was promoted both in vitro and in vivo. The inhibition of GSK3β/β-catenin signaling pathway was involved in the regulation process. Conclusion Over-expression of miR-195-5p reduced angiogenesis and DDP resistance in OC, which provides a potential therapeutic target for the treatment of OC.
Collapse
Affiliation(s)
- Jun Dai
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Jinan, 250012, Shandong, People's Republic of China
| | - Rujia Wei
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Peihai Zhang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University (Qingdao Hospital District), No. 758, Hefei Road, Shibei District, Qingdao, 266035, Shandong, People's Republic of China.
| | - Beihua Kong
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Gu J, Cui CF, Yang L, Wang L, Jiang XH. Emodin Inhibits Colon Cancer Cell Invasion and Migration by Suppressing Epithelial-Mesenchymal Transition via the Wnt/β-Catenin Pathway. Oncol Res 2019; 27:193-202. [PMID: 29301594 PMCID: PMC7848449 DOI: 10.3727/096504018x15150662230295] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colon cancer (CC) is the third most common cancer worldwide. Emodin is an anthraquinone-active substance that has the ability to affect tumor progression. Our study aims to explore the effects and the relevant mechanism of emodin on the invasion and migration of CC in vitro and in vivo. In our study, we found that emodin inhibited the invasion and migration abilities of RKO cells and decreased the expression of matrix metalloproteinase-7 (MMP-7), MMP-9, and vascular endothelial growth factor (VEGF) in a dose-dependent manner. Further research suggested that emodin inhibited EMT by increasing the mRNA level of E-cadherin and decreasing the expression of N-cadherin, Snail, and β-catenin. Emodin also significantly inhibited the activation of the Wnt/β-catenin signaling pathway by downregulating the expression of related downstream target genes, including TCF4, cyclin D1, and c-Myc. A Wnt/β-catenin signaling pathway agonist abolished the effect of emodin on EMT and cell mobility, suggesting that emodin exerted its regulating role through the Wnt/β-catenin pathway. The CC xenograft model was established to study the antitumor efficiency of emodin in vivo. The in vivo study further demonstrated that emodin (40 mg/kg) suppressed tumor growth by inhibiting EMT via the Wnt/β-catenin signaling pathway in vivo. Taken together, we suggest that emodin inhibits the invasion and migration of CC cells in vitro and in vivo by blocking EMT, which is related with the inhibition of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Juan Gu
- *Department of Clinical Pharmacy, West China School of Pharmacy, Sichuan University, Sichuan, P.R. China
| | - Chang-fu Cui
- †Department of Neurology, Research Institute of China Weapons Industry, 521 Hospital, Shanxi, P.R. China
| | - Li Yang
- ‡Microbiological Laboratory, Xinyang Vocational and Technical College, Henan, P.R. China
| | - Ling Wang
- *Department of Clinical Pharmacy, West China School of Pharmacy, Sichuan University, Sichuan, P.R. China
| | - Xue-hua Jiang
- *Department of Clinical Pharmacy, West China School of Pharmacy, Sichuan University, Sichuan, P.R. China
| |
Collapse
|
19
|
Hong L, Chen W, Wu D, Wang Y. Upregulation of SNHG3 expression associated with poor prognosis and enhances malignant progression of ovarian cancer. Cancer Biomark 2018; 22:367-374. [PMID: 29758922 DOI: 10.3233/cbm-170710] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Aberrant expression of long non-coding RNAs is involved in the progression of ovarian cancer. However, the clinical significance and biological functions of SNHG3 expression was little known in ovarian cancer (OC). METHODS The SNHG3 expression in ovarian cancer tissues and paired adjacent normal tissues was detected using quantitative real time polymerase chain reaction (qRT-PCR). Gain-of function and loss-of function assays were performed in ovarian cancer cells to demonstrate the effects of SNHG3 expression on cell proliferation and invasion. The relative protein expression levels were determined using western blot analyses. RESULTS The expression of SNHG3 was significantly up-regulated in ovarian cancer tissues compared with adjacent normal tissues. Higher SNHG3 expression levels positively associated with FIGO stage, lymph node metastasis, and poor prognosis of ovarian cancer patients. Univariate and multivariate Cox regression analysis implied that FIGO stage, lymph node metastasis, higher SNHG3 expression were independent prognostic factors for overall survival (OS) rate in ovarian cancer patients. Gain-of function and loss-of function assays demonstrated that SNHG3 knockdown inhibited ovarian cancer cell proliferation and invasion abilities. However, SNHG3 overexpression promoted ovarian cancer cell proliferation and invasion abilities. Furthermore, cell proliferation and invasion related protein CyclinD1, CDK1, MMP9 and MMP3 were significantly downregulated after SNHG3 knockdown in ovarian cancer cells, while SNHG3 overexpression had reverse effects. In addition, SNHG3 functioned as an oncogene by regulating GSK3β/β-catenin signaling activity in ovarian cancer. CONCLUSIONS Taken together, our data provide that SNHG3 has potential clinical value of and may serve as target of ovarian cancer treatment.
Collapse
Affiliation(s)
- Lan Hong
- Department of Gynecology and Obstetrics, Zhujiang Hospital,Southern Medical University, Guangzhou, Guangdong, China.,Department of Gynecology and Obstetrics, Hainan General Hospital, Haikou 570311, Hainan, China.,Department of Gynecology and Obstetrics, Zhujiang Hospital,Southern Medical University, Guangzhou, Guangdong, China
| | - Wangsheng Chen
- Department of Radiology, Hainan General Hospital, Haikou 570311, Hainan, China.,Department of Gynecology and Obstetrics, Zhujiang Hospital,Southern Medical University, Guangzhou, Guangdong, China
| | - Dongcai Wu
- Department of Gynecology and Obstetrics, Hainan General Hospital, Haikou 570311, Hainan, China
| | - Yifeng Wang
- Department of Gynecology and Obstetrics, Zhujiang Hospital,Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Therapy Effects of Wogonin on Ovarian Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9381513. [PMID: 29181409 PMCID: PMC5664191 DOI: 10.1155/2017/9381513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023]
Abstract
Background Wogonin is a plant monoflavonoid and has been reported to induce apoptosis of cancer cells and show inhibitory effect on cancer cell growth. However, the detailed and underlying molecular mechanisms are not elucidated. In this study, we investigated the molecular and biological effects of wogonin in human ovarian A2780 cancer cells. Materials and Methods We determined the effects of wogonin on the changes of cell cycling and apoptotic responses of cells. Western blot analysis was used to measure the effects of wogonin on protein expressions. Results Our results showed that treatment with wogonin inhibited the cancer cell proliferation, decreased the percentage of G0/G1 subpopulation, and reduced invasiveness of A2780 cells. Exposure to wogonin also resulted in downregulated protein levels of estrogen receptor alpha (ER-α), VEGF, Bcl-2, and Akt and increased expressions of Bax and p53. In addition, exposure to wogonin increased caspase-3 cleavage and induced apoptosis in A2780 cells. Our study further showed that MPP, a specific ER-α inhibitor, significantly enhanced antitumor effects of wogonin in A2780 cells. Conclusion Our results suggest a potential clinical impact of wogonin on management of ovarian cancer.
Collapse
|
21
|
Lu J, Xu Y, Zhao Z, Ke X, Wei X, Kang J, Zong X, Mao H, Liu P. Emodin suppresses proliferation, migration and invasion in ovarian cancer cells by down regulating ILK in vitro and in vivo. Onco Targets Ther 2017; 10:3579-3589. [PMID: 28790850 PMCID: PMC5530856 DOI: 10.2147/ott.s138217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Although our previous studies have confirmed that 1, 3, 8-trihydroxy-6-methylant hraquinone (emodin) inhibits migration and invasion in epithelial ovarian cancer (EOC) cells, the underlying molecular mechanism remains unknown. Here, the aim was to investigate the effects of emodin on EOC cells and to study further the mechanism underlying this process, both in vitro and in vivo. MATERIALS AND METHODS Cell proliferation was evaluated by the methylthiazolyl tetrazolium assay. Cell migration and invasion abilities were tested using the transwell assay. The expression of integrin-linked kinase (ILK) and epithelial-mesenchymal transition (EMT)-associated factors were measured with western blotting. RESULTS Exogenous ILK enhanced the proliferation, migration and invasion properties of A2780 and SK-OV-3 cells. After treatment with emodin, the survival rate of cells was gradually reduced, including those of SK-OV-3/pLVX-ILK and A2780/pLVX-ILK cells, with increasing emodin concentrations. The migration and invasion abilities of A2780 and SK-OV-3 cells were effectively increased by the transfection of pLVX-ILK, which could be abrogated by following this with 48 hours of emodin treatment. Treatment with emodin significantly downregulated the expression of ILK and EMT-related proteins. So, emodin suppressed proliferation, migration and invasion in ovarian cancer cells by downregulating ILK in vitro. SK-OV-3/pLVX-Con and SK-OV-3/pLVX-ILK cells were used to generate xenografts in nude mice. Tumors grew more rapidly in the SK-OV-3/pLVX-ILK group compared with the control group, and this could be significantly inhibited by emodin. Also, the expression of E-cadherin was downregulated, while the expression of Slug, MMP-9 and Vimentin were upregulated in the SK-OV-3/pLVX-ILK group, and this could be reversed by following treatment with emodin. Emodin did not demonstrate target toxicity on hepatocytes, nephrocytes and cardiomyocytes. CONCLUSION Emodin suppresses proliferation, migration and invasion in ovarian cancer by targeting ILK.
Collapse
Affiliation(s)
- Jingjing Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong.,Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, People's Republic of China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Zhe Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Xiaoning Ke
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, People's Republic of China
| | - Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Jia Kang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Xuan Zong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Hongluan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| |
Collapse
|
22
|
Santamaria PG, Moreno‐Bueno G, Portillo F, Cano A. EMT: Present and future in clinical oncology. Mol Oncol 2017; 11:718-738. [PMID: 28590039 PMCID: PMC5496494 DOI: 10.1002/1878-0261.12091] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Epithelial/mesenchymal transition (EMT) has emerged as a key regulator of metastasis by facilitating tumor cell invasion and dissemination to distant organs. Recent evidences support that the reverse mesenchymal/epithelial transition (MET) is required for metastatic outgrowth; moreover, the existence of hybrid epithelial/mesenchymal (E/M) phenotypes is increasingly being reported in different tumor contexts. The accumulated data strongly support that plasticity between epithelial and mesenchymal states underlies the dissemination and metastatic potential of carcinoma cells. However, the translation into the clinics of EMT and epithelial plasticity processes presents enormous challenges and still remains a controversial issue. In this review, we will evaluate current evidences for translational applicability of EMT and depict an overview of the most recent EMT in vivo models, EMT marker analyses in human samples as well as potential EMT therapeutic approaches and ongoing clinical trials. We foresee that standardized analyses of EMT markers in solid and liquid tumor biopsies in addition to innovative tools targeting the E/M states will become promising strategies for future translation to the clinical setting.
Collapse
Affiliation(s)
- Patricia G. Santamaria
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| | - Gema Moreno‐Bueno
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
- Fundación MD Anderson InternationalMadridSpain
| | - Francisco Portillo
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| | - Amparo Cano
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| |
Collapse
|
23
|
Shang M, Xie Z, Tang Z, He L, Wang X, Wang C, Wu Y, Li Y, Zhao L, Lv Z, Wu Z, Huang Y, Yu X, Li X. Expression of Clonorchis sinensis GIIIsPLA 2 protein in baculovirus-infected insect cells and its overexpression facilitating epithelial-mesenchymal transition in Huh7 cells via AKT pathway. Parasitol Res 2017; 116:1307-1316. [PMID: 28220242 DOI: 10.1007/s00436-017-5409-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/12/2017] [Indexed: 12/29/2022]
Abstract
Although prior studies confirmed that group III secretory phospholipase A2 of Clonorchis sinensis (CsGIIIsPLA2) had stimulating effect on liver fibrosis by binding to LX-2 cells, large-scale expression of recombinant protein and its function in the progression of hepatoma are worth exploring. Because of high productivity and low lipopolysaccharides (LPS) in the Sf9-baculovirus expression system, we firstly used this system to express the coding region of CsGIIIsPLA2. The molecular weight of recombinant CsGIIIsPLA2 protein was about 34 kDa. Further investigation showed that most of the recombinant protein presented intracellular expression in Sf9 insect cell nucleus and could be detected only into cell debris, which made the protein purification and further functional study difficult. Therefore, to study the role of CsGIIIsPLA2 in hepatocellular carcinoma (HCC) progression, CsGIIIsPLA2 overexpression Huh7 cell model was applied. Cell proliferation, migration, and the expression level of epithelial-mesenchymal transition (EMT)-related molecules (E-cadherin, N-cadherin, α-catenin, Vimentin, p300, Snail, and Slug) along with possible mechanism were measured. The results indicated that CsGIIIsPLA2 overexpression not only inhibited cell proliferation and promoted migration and EMT but also enhanced the phosphorylation of AKT in HCC cells. In conclusion, this study supported that CsGIIIsPLA2 overexpression suppressed cell proliferation and induced EMT through the AKT pathway.
Collapse
Affiliation(s)
- Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Zhizhi Xie
- Department of Clinical Laboratory, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Department of Clinical Laboratory, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510060, People's Republic of China
| | - Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Caiqin Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Ye Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|