1
|
Barkas GI, Karakousis ND, Gourgoulianis KI, Daniil Z, Papanas N, Kotsiou OS. Pioglitazone and asthma: a review of current evidence. J Asthma 2024:1-11. [PMID: 39373513 DOI: 10.1080/02770903.2024.2414342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE This review aims to present existing evidence on the impact of pioglitazone, a thiazolidinedione class anti-diabetic drug, on asthma control and lung function, providing a comprehensive understanding of its potential as a treatment for asthma. DATA SOURCES The review draws upon data from preclinical animal studies and clinical trials investigating the effects of pioglitazone on asthma, focusing on its role in reducing airway inflammation, hyperreactivity, and remodeling, and its impact on pulmonary function. STUDY SELECTIONS Relevant studies were selected based on their examination of pioglitazone's therapeutic effects in asthma, including both animal models and clinical trials involving human asthma patients. RESULTS Animal studies have suggested that pioglitazone could alleviate inflammation, airway hyperreactivity, and airway remodeling, thereby improving pulmonary function in asthma. However, clinical trials have not demonstrated significant therapeutic benefits, with minimal improvements observed in asthma control and lung function, and the presence of notable side effects. CONCLUSION Despite promising preclinical data, the efficacy of pioglitazone in treating human asthma remains unproven, with safety concerns and limited clinical benefits observed in trials. Further research is needed to assess the safety and effectiveness of pioglitazone in asthma treatment and to explore its impact on other inflammatory mechanisms.
Collapse
Affiliation(s)
- Georgios I Barkas
- Human Pathophysiology Department, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos D Karakousis
- Department of Respiratory Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
- Department of Nursing, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - Zoe Daniil
- Department of Respiratory Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Center-Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ourania S Kotsiou
- Human Pathophysiology Department, School of Health Sciences, University of Thessaly, Larissa, Greece
- Department of Respiratory Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
2
|
Cui D, Yu T. Unveiling the glycolysis in sepsis: Integrated bioinformatics and machine learning analysis identifies crucial roles for IER3, DSC2, and PPARG in disease pathogenesis. Medicine (Baltimore) 2024; 103:e39867. [PMID: 39331858 PMCID: PMC11441936 DOI: 10.1097/md.0000000000039867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Sepsis, a multifaceted syndrome driven by an imbalanced host response to infection, remains a significant medical challenge. At its core lies the pivotal role of glycolysis, orchestrating immune responses especially in severe sepsis. The intertwined dynamics between glycolysis, sepsis, and immunity, however, have gaps in knowledge with several Crucial genes still shrouded in ambiguity. We harvested transcriptomic profiles from the peripheral blood of 107 septic patients juxtaposed against 29 healthy controls. Delving into this dataset, differential expression analysis shed light on genes distinctly linked to glycolysis in both cohorts. Harnessing the prowess of LASSO regression and SVM-RFE, we isolated Crucial genes, paving the way for a sepsis risk prediction model, subsequently vetted via Calibration and decision curve analysis. Using the CIBERSORT algorithm, we further mapped 22 immune cell subtypes within the septic samples, establishing potential interactions with the delineated Crucial genes. Our efforts unveiled 21 genes intricately tied to glycolysis that exhibited differential expression patterns. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses offered insights, spotlighting pathways predominantly associated with oxidative phosphorylation, PPAR signaling pathway, Glycolysis/Gluconeogenesis and HIF-1 signaling pathway. Among the myriad genes, IER3, DSC2, and PPARG emerged as linchpins, their prominence in sepsis further validated through ROC analytics. These sentinel genes demonstrated profound affiliations with various immune cell facets, bridging the complex terrain of glycolysis, sepsis, and immune responses. In line with our endeavor to "unveil the glycolysis in sepsis," the discovery of IER3, DSC2, and PPARG reinforces their cardinal roles in sepsis pathogenesis. These revelations accentuate the intricate dance between glycolysis and immunological shifts in septic conditions, offering novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Dongqing Cui
- Emergency Department, Beijing Sixth Hospital, Beijing, China
| | - Tian Yu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Nissa MU, Pinto N, Ghosh B, Singh U, Goswami M, Srivastava S. Proteomic analysis of liver tissue reveals Aeromonas hydrophila infection mediated modulation of host metabolic pathways in Labeo rohita. J Proteomics 2023; 279:104870. [PMID: 36906258 DOI: 10.1016/j.jprot.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Aeromonas hydrophila (Ah) is a Gram-negative bacterium and a serious global pathogen causing Motile Aeromonas Septicaemia (MAS) in fish leading to global loss in aquaculture. Investigation of the molecular alterations of host tissues such as liver could be a powerful approach to identify mechanistic and diagnostic immune signatures of disease pathogenesis. We performed a proteomic analysis of Labeo rohita liver tissue to examine the protein dynamics in the host cells during Ah infection. The proteomic data was acquired using two strategies; discovery and targeted proteomics. Label-free quantification was performed between Control and challenged group (AH) to identify the differentially expressed proteins (DEPs). A total of 2525 proteins were identified and 157 were DEPs. DEPs include metabolic enzymes (CS, SUCLG2), antioxidative proteins, cytoskeletal proteins and immune related proteins (TLR3, CLEC4E). Pathways like lysosome pathway, apoptosis, metabolism of xenobiotics by cytochrome P450 were enriched by downregulated proteins. However, upregulated proteins majorly mapped to innate immune system, signaling of B cell receptor, proteosome pathway, ribosome, carbon metabolism and protein processing in ER. Our study would help in exploring the role of Toll-like receptors, C-type lectins and, metabolic intermediates like citrate and succinate in Ah pathogenesis to understand the Ah infection in fish. SIGNIFICANCE: Bacterial diseases such as motile aeromonas septicaemia (MAS) are among the most serious problems in aquaculture industry. Small molecules that target the metabolism of the host have recently emerged as potential treatment possibilities in infectious diseases. However, the ability to develop new therapies is hampered due to lack of knowledge about pathogenesis mechanisms and host-pathogen interactions. We examined alterations in the host proteome during MAS caused by Aeromonas hydrophila (Ah) infection, in Labeo rohita liver tissue to find cellular proteins and processes affected by Ah infection. Upregulated proteins belong to innate immune system, signaling of B cell receptor, proteosome pathway, ribosome, carbon metabolism and protein processing. Our work is an important step towards leveraging host metabolism in targeting the disease by providing a bigger picture on proteome pathology correlation during Ah infection.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Biplab Ghosh
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Urvi Singh
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, 110034, India
| | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India.
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
4
|
Wang Q, Thiam M, Barreto Sánchez AL, Wang Z, Zhang J, Li Q, Wen J, Zhao G. Gene Co-Expression Network Analysis Reveals the Hub Genes and Key Pathways Associated with Resistance to Salmonella Enteritidis Colonization in Chicken. Int J Mol Sci 2023; 24:ijms24054824. [PMID: 36902251 PMCID: PMC10003191 DOI: 10.3390/ijms24054824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/16/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Salmonella negatively impacts the poultry industry and threatens animals' and humans' health. The gastrointestinal microbiota and its metabolites can modulate the host's physiology and immune system. Recent research demonstrated the role of commensal bacteria and short-chain fatty acids (SCFAs) in developing resistance to Salmonella infection and colonization. However, the complex interactions among chicken, Salmonella, host-microbiome, and microbial metabolites remain unelucidated. Therefore, this study aimed to explore these complex interactions by identifying the driver and hub genes highly correlated with factors that confer resistance to Salmonella. Differential gene expression (DEGs) and dynamic developmental genes (DDGs) analyses and weighted gene co-expression network analysis (WGCNA) were performed using transcriptome data from the cecum of Salmonella Enteritidis-infected chicken at 7 and 21 days after infection. Furthermore, we identified the driver and hub genes associated with important traits such as the heterophil/lymphocyte (H/L) ratio, body weight post-infection, bacterial load, propionate and valerate cecal contents, and Firmicutes, Bacteroidetes, and Proteobacteria cecal relative abundance. Among the multiple genes detected in this study, EXFABP, S100A9/12, CEMIP, FKBP5, MAVS, FAM168B, HESX1, EMC6, and others were found as potential candidate gene and transcript (co-) factors for resistance to Salmonella infection. In addition, we found that the PPAR and oxidative phosphorylation (OXPHOS) metabolic pathways were also involved in the host's immune response/defense against Salmonella colonization at the earlier and later stage post-infection, respectively. This study provides a valuable resource of transcriptome profiles from chicken cecum at the earlier and later stage post-infection and mechanistic understanding of the complex interactions among chicken, Salmonella, host-microbiome, and associated metabolites.
Collapse
|
5
|
Ferreira BL, Ramirez-Moral I, Otto NA, Salomão R, de Vos AF, van der Poll T. The PPAR-γ agonist pioglitazone exerts proinflammatory effects in bronchial epithelial cells during acute Pseudomonas aeruginosa pneumonia. Clin Exp Immunol 2022; 207:370-377. [PMID: 35553637 PMCID: PMC9113127 DOI: 10.1093/cei/uxab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/28/2021] [Accepted: 01/02/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is a common respiratory pathogen that causes injurious airway inflammation during acute pneumonia. Peroxisome proliferator-activated receptor (PPAR)-γ is involved in the regulation of metabolic and inflammatory responses in different cell types and synthetic agonists of PPAR-γ exert anti-inflammatory effects on myeloid cells in vitro and in models of inflammation in vivo. We sought to determine the effect of the PPAR-γ agonist pioglitazone on airway inflammation induced by acute P. aeruginosa pneumonia, focusing on bronchial epithelial cells. Mice pretreated with pioglitazone or vehicle (24 and 1 h) were infected with P. aeruginosa via the airways. Pioglitazone treatment was associated with increased expression of chemokine (Cxcl1, Cxcl2, and Ccl20) and cytokine genes (Tnfa, Il6, and Cfs3) in bronchial brushes obtained 6 h after infection. This pro-inflammatory effect was accompanied by increased expression of Hk2 and Pfkfb3 genes encoding rate-limiting enzymes of glycolysis; concurrently, the expression of Sdha, important for maintaining metabolite flux in the tricarboxylic acid cycle, was reduced in bronchial epithelial cells of pioglitazone treated-mice. Pioglitazone inhibited bronchoalveolar inflammatory responses measured in lavage fluid. These results suggest that pioglitazone exerts a selective proinflammatory effect on bronchial epithelial cells during acute P. aeruginosa pneumonia, possibly by enhancing intracellular glycolysis.
Collapse
Affiliation(s)
- Bianca L Ferreira
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Natasja A Otto
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Reinaldo Salomão
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Koh DH, Song WS, Kim EY. Multi-step structure-activity relationship screening efficiently predicts diverse PPARγ antagonists. CHEMOSPHERE 2022; 286:131540. [PMID: 34346341 DOI: 10.1016/j.chemosphere.2021.131540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
In discovering the potential antagonist of peroxisome proliferator-activated receptor gamma (PPARγ), the structure-activity relationship (SAR) is a useful in silico method. However, it is difficult for conventional SAR approaches to predict the activities of antagonists owing to the large structural diversity of antagonistic compounds. This study provides evidence that multi-step SAR screening is applicable for predicting PPARγ antagonists by combining different complementary methodologies. We constructed three models: read-across-like SAR, docking-simulation-interpreting SAR, and deep-learning-based SAR. To provide user-customized prediction results, our multi-step SAR screening model combined the three SAR models in a stepwise manner, which subdivided them according to potential levels of the PPARγ antagonist. The read-across-like SAR, which considered specific antagonist scaffolds, revealed the highest positive predictive value (PPV). The docking-simulation-interpreting SAR, which considered the molecular surface features, revealed high statistics for the PPV and the true-positive rate (TPR). The deep-learning-based SAR showed the highest TPR at the last classification step. This multi-step SAR screening covered the antagonists of high reliability provided by a read-across-like SAR, as well as the antagonists of diverse scaffolds provided by docking-simulation-interpreting SAR and deep-learning-based SAR. Therefore, to predict PPARγ antagonists, multi-step SAR screening could be as a useful tool.
Collapse
Affiliation(s)
- Dong-Hee Koh
- Department of Life and Nanopharmaceutical Science, South Korea
| | - Woo-Seon Song
- Department of Life and Nanopharmaceutical Science, South Korea
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science, South Korea; Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea.
| |
Collapse
|
7
|
Ramirez-Moral I, Ferreira BL, de Vos AF, van der Poll T. Post-treatment with the PPAR-γ agonist pioglitazone inhibits inflammation and bacterial growth during Klebsiella pneumonia. Respir Res 2021; 22:230. [PMID: 34412637 PMCID: PMC8375046 DOI: 10.1186/s12931-021-01823-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Agonists of peroxisome proliferator-activated receptor (PPAR)-γ have been suggested as potential adjuvant therapy in bacterial pneumonia because of their capacity to inhibit inflammation and enhance bacterial clearance. Previous studies only assessed the effects of pretreatment with these compounds, thereby bearing less relevance for the clinical scenario. Moreover, PPAR-γ agonists have not been studied in pneumonia caused by Klebsiella pneumoniae, a common human respiratory pathogen of which antibiotic treatment is hampered by increasing antimicrobial resistance. Here we show that administration of the PPAR-γ agonist pioglitazone 6 or 8 h after infection of mice with a highly virulent strain of Klebsiella pneumoniae via the airways results in reduced cytokine and myeloperoxidase levels in the lungs at 24 h after infection, as well as reduced bacterial growth in the lungs and decreased dissemination to distant organs at 42 h post-infection. These results suggest that pioglitazone may be an interesting agent in the treatment of Klebsiella pneumonia.
Collapse
Affiliation(s)
- Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands. .,Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands.
| | - Bianca Lima Ferreira
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.,Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Hadova K, Mesarosova L, Kralova E, Doka G, Krenek P, Klimas J. The tyrosine kinase inhibitor crizotinib influences blood glucose and mRNA expression of GLUT4 and PPARs in the heart of rats with experimental diabetes. Can J Physiol Pharmacol 2021; 99:635-643. [PMID: 33201727 DOI: 10.1139/cjpp-2020-0572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases inhibitors (TKIs) may alter glycaemia and may be cardiotoxic with importance in the diabetic heart. We investigated the effect of multi-TKI crizotinib after short-term administration on metabolic modulators of the heart of diabetic rats. Experimental diabetes mellitus (DM) was induced by streptozotocin (STZ; 80 mg·kg-1, i.p.), and controls (C) received vehicle. Three days after STZ, crizotinib (STZ+CRI; 25 mg·kg-1 per day p.o.) or vehicle was administered for 7 days. Blood glucose, C-peptide, and glucagon were assessed in plasma samples. Receptor tyrosine kinases (RTKs), cardiac glucose transporters, and peroxisome proliferator-activated receptors (PPARs) were determined in rat left ventricle by RT-qPCR method. Crizotinib moderately reduced blood glucose (by 25%, P < 0.05) when compared to STZ rats. The drug did not affect levels of C-peptide, an indicator of insulin secretion, suggesting altered tissue glucose utilization. Crizotinib had no impact on cardiac RTKs. However, an mRNA downregulation of insulin-dependent glucose transporter Glut4 in the hearts of STZ rats was attenuated after crizotinib treatment. Moreover, crizotinib normalized Ppard and reduced Pparg mRNA expression in diabetic hearts. Crizotinib decreased blood glucose independently of insulin and glucagon. This could be related to changes in regulators of cardiac metabolism such as GLUT4 and PPARs.
Collapse
Affiliation(s)
- Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Lucia Mesarosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, the Netherlands
| | - Eva Kralova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| |
Collapse
|
9
|
Tiwari D, Gupta P. Nuclear Receptors in Asthma: Empowering Classical Molecules Against a Contemporary Ailment. Front Immunol 2021; 11:594433. [PMID: 33574813 PMCID: PMC7870687 DOI: 10.3389/fimmu.2020.594433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The escalation in living standards and adoption of 'Western lifestyle' has an allied effect on the increased allergy and asthma burden in both developed and developing countries. Current scientific reports bespeak an association between allergic diseases and metabolic dysfunction; hinting toward the critical requirement of organized lifestyle and dietary habits. The ubiquitous nuclear receptors (NRs) translate metabolic stimuli into gene regulatory signals, integrating diet inflences to overall developmental and physiological processes. As a consequence of such promising attributes, nuclear receptors have historically been at the cutting edge of pharmacy world. This review discusses the recent findings that feature the cardinal importance of nuclear receptors and how they can be instrumental in modulating current asthma pharmacology. Further, it highlights a possible future employment of therapy involving dietary supplements and synthetic ligands that would engage NRs and aid in eliminating both asthma and linked comorbidities. Therefore, uncovering new and evolving roles through analysis of genomic changes would represent a feasible approach in both prevention and alleviation of asthma.
Collapse
Affiliation(s)
| | - Pawan Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
10
|
de Carvalho MV, Gonçalves-de-Albuquerque CF, Silva AR. PPAR Gamma: From Definition to Molecular Targets and Therapy of Lung Diseases. Int J Mol Sci 2021; 22:E805. [PMID: 33467433 PMCID: PMC7830538 DOI: 10.3390/ijms22020805] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARβ or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.
Collapse
Affiliation(s)
- Márcia V. de Carvalho
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
| | - Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
11
|
Lu H, Wen D, Sun J, Zeng L, Du J, Du D, Zhang L, Deng J, Jiang J, Zhang A. Enhancer polymorphism rs10865710 associated with traumatic sepsis is a regulator of PPARG gene expression. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:430. [PMID: 31888703 PMCID: PMC6938012 DOI: 10.1186/s13054-019-2707-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
Background Peroxisome proliferator-activated receptor gamma (PPARγ) is a major regulator in sepsis. Our previous study identified the enhancer polymorphism rs10865710C/G to be associated with susceptibility to sepsis in trauma patients. We performed two-stage cohort studies integrating biological experiments of potential functional variants that modify susceptibility to traumatic sepsis. Methods Improved multiplex ligation detection reaction (iMLDR) was used to genotype rs10865710 in 797 Han Chinese trauma patients in Chongqing. Clinical relevance was validated in 334 patients in Guizhou. The potential function of rs10865710 in transcriptional regulation was explored through a dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). Expression of PPARγ was assessed by expression quantitative trait locus (e-QTL) and western blot analyses. Results The association results confirmed rs10865710 to be significantly strongly associated with sepsis risk in trauma patients of the Chongqing and Guizhou cohorts (OR = 1.41 (1.11–1.79), P = 0.004 and OR = 1.45 (1.01–2.09), P = 0.046, both for allele-dose effect, respectively). A meta-analysis of both cohorts and a previous study indicated strong evidence for this association (OR = 1.41 (1.17–1.71), P = 0.0004 for the dominant model, OR = 1.78 (1.34–2.36), P < 0.0001 for the recessive model and OR = 1.38 (1.20–1.58), P < 0.0001 for the allelic model). Functional experiments verified that rs10865710 was a causative variant influencing enhancer activity (G vs. C, 0.068 ± 0.004 vs. 0.096 ± 0.002, P = 0.0005) and CREB2 binding. Expression analysis also indicatevd rs10865710 genotypes to be associated with levels of PPARγ expression (P = 9.2 × 10−5 for dominant effect and P = 0.005 for recessive effect). Conclusions Our study provides evidence that the enhancer-region polymorphism rs10865710 might influence transcription factor binding and regulate PPARγ expression, thus conferring susceptibility to traumatic sepsis. Trial registration ClinicalTrials.gov, NCT01713205. Registered 18 October 2012, retrospectively registered.
Collapse
Affiliation(s)
- Hongxiang Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Dalin Wen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Jianhui Sun
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Dingyuan Du
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, The Affiliated Central Hospital of Chongqing University, Chongqing, 400042, China
| | - Lianyang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Jin Deng
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China.
| | - Anqiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
12
|
Bando M, Masumoto S, Kuroda M, Tsutsumi R, Sakaue H. Effect of olive oil consumption on aging in a senescence-accelerated mice-prone 8 (SAMP8) model. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:241-247. [PMID: 31656282 DOI: 10.2152/jmi.66.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Background : Mediterranean diets have been linked to a reduced risk of cancer, vascular illnesses, Parkinson's and Alzheimer's disease. Olive oil is the primary fat source in the Mediterranean diet ; however, only a few studies have investigated the effect of olive oil on aging. In the present study, we aimed to determine whether consumption of olive oil significantly influences aging and memory in senescence-accelerated mouse-prone 8 (SAMP8). Methods : SAMP8 and senescence-accelerated mouse resistant 1 (SAMR1) mice were fed either 7% soy oil or 1% olive oil and 6% soy oil during a six-month study period. Reduction in memory in passive avoidance learning was examined after two months from the initiation of the experiment. Results : The weight of organs including the liver, kidney, spleen, and fat tissue changed significantly and memory performance was reduced in SAMP8 than in SAMR1 mice. There were no significant differences in SAMP8 and SAMR1 mice; however, blood triglyceride level decreased significantly in SAMP8 mice fed on olive oil. Conclusions : These results suggest that consuming olive oil may not have a protective role in aging and memory recall, but beneficial effects may be related to improvement in lipid metabolism. J. Med. Invest. 66 : 241-247, August, 2019.
Collapse
Affiliation(s)
- Masahiro Bando
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Saeko Masumoto
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
13
|
Seiri P, Abi A, Soukhtanloo M. PPAR-γ: Its ligand and its regulation by microRNAs. J Cell Biochem 2019; 120:10893-10908. [PMID: 30770587 DOI: 10.1002/jcb.28419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. PPARs are categorized into three subtypes, PPARα, β/δ, and γ, encoded by different genes, expressed in diverse tissues and participate in various biological functions and can be activated by their metabolic derivatives in the body or dietary fatty acids. The PPAR-γ also takes parts in the regulation of energy balance, lipoprotein metabolism, insulin sensitivity, oxidative stress, and inflammatory signaling. It has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis, and cancers. Among various cellular and molecular targets that are able to regulate PPAR-γ and its underlying pathways, microRNAs (miRNAs) appeared as important regulators. Given that the deregulation of these molecules via targeting PPAR-γ could affect initiation and progression of various diseases, identification of miRNAs that affects PPAR-γ could contribute to the better understanding of roles of PPAR-γ in various biological and pathological conditions. Here, we have summarized the function and various ligands of PPAR-γ and have highlighted various miRNAs involved in the regulation of PPAR-γ.
Collapse
Affiliation(s)
- Parvaneh Seiri
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abi
- Department of Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Ganguli G, Mukherjee U, Sonawane A. Peroxisomes and Oxidative Stress: Their Implications in the Modulation of Cellular Immunity During Mycobacterial Infection. Front Microbiol 2019; 10:1121. [PMID: 31258517 PMCID: PMC6587667 DOI: 10.3389/fmicb.2019.01121] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Host redox dependent physiological responses play crucial roles in the determination of mycobacterial infection process. Mtb explores oxygen rich lung microenvironments to initiate infection process, however, later on the bacilli adapt to oxygen depleted conditions and become non-replicative and unresponsive toward anti-TB drugs to enter in the latency stage. Mtb is equipped with various sensory mechanisms and a battery of pro- and anti-oxidant enzymes to protect themselves from the host oxidative stress mechanisms. After host cell invasion, mycobacteria induces the expression of NADPH oxidase 2 (NOX2) to generate superoxide radicals (O 2 - ), which are then converted to more toxic hydrogen peroxide (H2O2) by superoxide dismutase (SOD) and subsequently reduced to water by catalase. However, the metabolic cascades and their key regulators associated with cellular redox homeostasis are poorly understood. Phagocytosed mycobacteria en route through different subcellular organelles, where the local environment generated during infection determines the outcome of disease. For a long time, mitochondria were considered as the key player in the redox regulation, however, accumulating evidences report vital role for peroxisomes in the maintenance of cellular redox equilibrium in eukaryotic cells. Deletion of peroxisome-associated peroxin genes impaired detoxification of reactive oxygen species and peroxisome turnover post-infection, thereby leading to altered synthesis of transcription factors, various cell-signaling cascades in favor of the bacilli. This review focuses on how mycobacteria would utilize host peroxisomes to alter redox balance and metabolic regulatory mechanisms to support infection process. Here, we discuss implications of peroxisome biogenesis in the modulation of host responses against mycobacterial infection.
Collapse
Affiliation(s)
- Geetanjali Ganguli
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Utsav Mukherjee
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
15
|
Silva AR, Gonçalves-de-Albuquerque CF, Pérez AR, Carvalho VDF. Immune-endocrine interactions related to a high risk of infections in chronic metabolic diseases: The role of PPAR gamma. Eur J Pharmacol 2019; 854:272-281. [PMID: 30974105 DOI: 10.1016/j.ejphar.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Diverse disturbances in immune-endocrine circuitries are involved in the development and aggravation of several chronic metabolic diseases (CMDs), including obesity, diabetes, and metabolic syndrome. The chronic inflammatory syndrome observed in CMDs culminates in dysregulated immune responses with low microbial killing efficiency, by means low host innate immune response, and loss of ability to eliminate the pathogens, which results in a high prevalence of infectious diseases, including pneumonia, tuberculosis, and sepsis. Herein, we review evidence pointing out PPARγ as a putative player in immune-endocrine disturbances related to increased risk of infections in CMDs. Cumulated evidence indicates that PPARγ activation modulates host cells to control inflammation during CMDs because of PPARγ agonists have anti-inflammatory and pro-resolutive properties, increasing host ability to eliminate pathogen, modulating hormone production, and restoring glucose and lipid homeostasis. As such, we propose PPARγ as a putative therapeutic adjuvant for patients with CMDs to favor a better infection control.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Unirio, Brazil.
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET UNR), 2000, Rosario, Argentina.
| | - Vinicius de Frias Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
Leopold Wager CM, Arnett E, Schlesinger LS. Macrophage nuclear receptors: Emerging key players in infectious diseases. PLoS Pathog 2019; 15:e1007585. [PMID: 30897154 PMCID: PMC6428245 DOI: 10.1371/journal.ppat.1007585] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a variety of cells, including macrophages. For decades, NRs have been therapeutic targets because their activity can be pharmacologically modulated by specific ligands and small molecule inhibitors. NRs regulate a variety of processes, including those intersecting metabolic and immune functions, and have been studied in regard to various autoimmune diseases. However, the complex roles of NRs in host response to infection are only recently being investigated. The NRs peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptors (LXRs) have been most studied in the context of infectious diseases; however, recent work has also linked xenobiotic pregnane X receptors (PXRs), vitamin D receptor (VDR), REV-ERBα, the nuclear receptor 4A (NR4A) family, farnesoid X receptors (FXRs), and estrogen-related receptors (ERRs) to macrophage responses to pathogens. Pharmacological inhibition or antagonism of certain NRs can greatly influence overall disease outcome, and NRs that are protective against some diseases can lead to susceptibility to others. Targeting NRs as a novel host-directed treatment approach to infectious diseases appears to be a viable option, considering that these transcription factors play a pivotal role in macrophage lipid metabolism, cholesterol efflux, inflammatory responses, apoptosis, and production of antimicrobial byproducts. In the current review, we discuss recent findings concerning the role of NRs in infectious diseases with an emphasis on PPARγ and LXR, the two most studied. We also highlight newer work on the activity of emerging NRs during infection.
Collapse
Affiliation(s)
| | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Larry S. Schlesinger
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
17
|
Abstract
Sepsis was known to ancient Greeks since the time of great physician Hippocrates (460-377 BC) without exact information regarding its pathogenesis. With time and medical advances, it is now considered as a condition associated with organ dysfunction occurring in the presence of systemic infection as a result of dysregulation of the immune response. Still with this advancement, we are struggling for the development of target-based therapeutic approach for the management of sepsis. The advancement in understanding the immune system and its working has led to novel discoveries in the last 50 years, including different pattern recognition receptors. Inflammasomes are also part of these novel discoveries in the field of immunology which are <20 years old in terms of their first identification. They serve as important cytosolic pattern recognition receptors required for recognizing cytosolic pathogens, and their pathogen-associated molecular patterns play an important role in the pathogenesis of sepsis. The activation of both canonical and non-canonical inflammasome signaling pathways is involved in mounting a proinflammatory immune response via regulating the generation of IL-1β, IL-18, IL-33 cytokines and pyroptosis. In addition to pathogens and their pathogen-associated molecular patterns, death/damage-associated molecular patterns and other proinflammatory molecules involved in the pathogenesis of sepsis affect inflammasomes and vice versa. Thus, the present review is mainly focused on the inflammasomes, their role in the regulation of immune response associated with sepsis, and their targeting as a novel therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Australia,
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia,
| |
Collapse
|
18
|
Wang JL, Dong YH, Ko WC, Chang CH, Wu LC, Chuang LM, Chen PC. Thiazolidinediones and reduced risk of incident bacterial abscess in adults with type 2 diabetes: A population-based cohort study. Diabetes Obes Metab 2018; 20:2811-2820. [PMID: 29974616 DOI: 10.1111/dom.13461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 01/01/2023]
Abstract
AIM Previous research has suggested that peroxisome proliferator-activated receptor-gamma (PPAR-γ) may play an important role in immunomodulation. We aimed to examine the association between thiazolidinediones, PPAR-γ agonists and incidence of bacterial abscess among patients with type 2 diabetes. MATERIALS AND METHODS This retrospective cohort study between 2000 and 2010 included 46 986 propensity (PS)-matched patients diagnosed with type 2 diabetes. We compared the incidence of bacterial abscess, including liver and non-liver abscesses, between patients treated with metformin plus a thiazolidinedione (M + T, N = 7831) or metformin plus a sulfonylurea (M + S, N = 39 155). Data were retrieved from a population-based Taiwanese database. We applied Cox proportional hazard regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs), comparing M + T and M + S after PS matching. RESULTS During a median follow-up of 4.5 years, the incidence rate of bacterial abscess was lower with M + T than with M + S treatment (1.89 vs 3.15 per 1000 person-years) in the PS-matched cohort. M + T was associated with a reduced risk of bacterial abscess (HRs after PS matching, 0.58; 95% CI, 0.42-0.80 for total bacterial abscess; 0.54; 95% CI, 0.28-1.07 for liver abscess; 0.59; 95% CI, 0.41-0.85 for non-liver abscess). Results did not change materially after accounting for unmeasured confounding factors using high-dimenional PS matching and differential censoring between regimen groups. Rosiglitazone and pioglitazone, in combination with metformin, produced similar reductions in risk of all abscess outcomes. CONCLUSION We found that M + T may provide a protective benefit in reducing the incidence of bacterial abscesses. These findings merit further investigation.
Collapse
Affiliation(s)
- Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Department of Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Yaa-Hui Dong
- Faculty of Pharmacy, School of Pharmaceutical Science, National Yang-Ming University, Taipei, Taiwan
- Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Department of Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Chia-Hsuin Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Li-Chiu Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
19
|
Omega-9 Oleic Acid, the Main Compound of Olive Oil, Mitigates Inflammation during Experimental Sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6053492. [PMID: 30538802 PMCID: PMC6260523 DOI: 10.1155/2018/6053492] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
The Mediterranean diet, rich in olive oil, is beneficial, reducing the risk of cardiovascular diseases and cancer. Olive oil is mostly composed of the monounsaturated fatty acid omega-9. We showed omega-9 protects septic mice modulating lipid metabolism. Sepsis is initiated by the host response to infection with organ damage, increased plasma free fatty acids, high levels of cortisol, massive cytokine production, leukocyte activation, and endothelial dysfunction. We aimed to analyze the effect of omega-9 supplementation on corticosteroid unbalance, inflammation, bacterial elimination, and peroxisome proliferator-activated receptor (PPAR) gamma expression, an omega-9 receptor and inflammatory modulator. We treated mice for 14 days with omega-9 and induced sepsis by cecal ligation and puncture (CLP). We measured systemic corticosterone levels, cytokine production, leukocyte and bacterial counts in the peritoneum, and the expression of PPAR gamma in both liver and adipose tissues during experimental sepsis. We further studied omega-9 effects on leukocyte rolling in mouse cremaster muscle-inflamed postcapillary venules and in the cerebral microcirculation of septic mice. Here, we demonstrate that omega-9 treatment is associated with increased levels of the anti-inflammatory cytokine IL-10 and decreased levels of the proinflammatory cytokines TNF-α and IL-1β in peritoneal lavage fluid of mice with sepsis. Omega-9 treatment also decreased systemic corticosterone levels. Neutrophil migration from circulation to the peritoneal cavity and leukocyte rolling on the endothelium were decreased by omega-9 treatment. Omega-9 also decreased bacterial load in the peritoneal lavage and restored liver and adipose tissue PPAR gamma expression in septic animals. Our data suggest a beneficial anti-inflammatory role of omega-9 in sepsis, mitigating leukocyte rolling and leukocyte influx, balancing cytokine production, and controlling bacterial growth possibly through a PPAR gamma expression-dependent mechanism. The significant reduction of inflammation detected after omega-9 enteral injection can further contribute to the already known beneficial properties facilitated by unsaturated fatty acid-enriched diets.
Collapse
|
20
|
Tunctan B, Kucukkavruk SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S. Bexarotene, a Selective RXRα Agonist, Reverses Hypotension Associated with Inflammation and Tissue Injury in a Rat Model of Septic Shock. Inflammation 2018; 41:337-355. [PMID: 29188497 DOI: 10.1007/s10753-017-0691-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor (RXR). The aim of this study was to investigate effects of bexarotene, a selective RXRα agonist, on the changes in renal, cardiac, hepatic, and pulmonary expression/activity of inducible nitric oxide synthase (iNOS) and cytochrome P450 (CYP) 4F6 in relation to PPARα/β/γ-RXRα heterodimer formation in a rat model of septic shock. Rats were injected with dimethyl sulfoxide or bexarotene 1 h after administration of saline or lipopolysaccharide (LPS). Mean arterial pressure (MAP) and heart rate (HR) were recorded from rats, which had received either saline or LPS before and after 1, 2, 3, and 4 h. Serum iNOS, LTB4, myeloperoxidase (MPO), and lactate dehydrogenase (LDH) levels as well as tissue iNOS and CYP4F6 mRNA expression in addition to PPARα/β/γ and RXRα proteins were measured. LPS-induced decrease in MAP and increase in HR were associated with a decrease in PPARα/β/γ-RXRα heterodimer formation and CYP4F6 mRNA expression. LPS also caused an increase in systemic iNOS, LTB4, MPO, and LDH levels as well as iNOS mRNA expression. Bexarotene at 0.1 mg/kg (i.p.) prevented the LPS-induced changes, except tachycardia. The results suggest that increased formation of PPARα/β/γ-RXRα heterodimers and CYP4F6 expression/activity in addition to decreased iNOS expression contributes to the beneficial effect of bexarotene to prevent the hypotension associated with inflammation and tissue injury during rat endotoxemia.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey.
| | - Sefika P Kucukkavruk
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Meryem Temiz-Resitoglu
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Demet S Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Ayse N Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| |
Collapse
|
21
|
Portulaca Extract Attenuates Development of Dextran Sulfate Sodium Induced Colitis in Mice through Activation of PPAR γ. PPAR Res 2018; 2018:6079101. [PMID: 29483924 PMCID: PMC5816873 DOI: 10.1155/2018/6079101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Portulaca oleracea L. is a traditional Chinese medicine, which has been used as adjuvant therapy for inflammatory bowel disease (IBD). However, the mechanism of its activity in IBD still remains unclear. Since previous studies have documented the anti-inflammatory effect of peroxisome proliferator activated receptors-γ (PPAR-γ), Portulaca regulation of PPAR-γ in inflammation was examined in current study. Ulcerative colitis (UC) was generated by 5% dextran sulfate sodium (DSS) in mice and four groups were established as normal control, DSS alone, DSS plus mesalamine, and DSS plus Portulaca. Severity of UC was evaluated by body weight, stool blood form, and length of colorectum. Inflammation was examined by determination of inflammatory cytokines (TNF-a, IL-6, and IL-1a). Portulaca extract was able to attenuate development of UC in DSS model similar to the treatment of mesalazine. Moreover, Portulaca extract inhibited proinflammatory cytokines release and reduced the level of DSS-induced NF-κB phosphorylation. Furthermore, Portulaca extract restored PPAR-γ level, which was reduced by DSS. In addition, Portulaca extract protected DSS induced apoptosis in mice. In conclusion, Portulaca extract can alleviate colitis in mice through regulation of inflammatory reaction, apoptosis, and PPAR-γ level; therefore, Portulaca extract can be a potential candidate for the treatment of IBD.
Collapse
|
22
|
Tikhanovich I, Zhao J, Olson J, Adams A, Taylor R, Bridges B, Marshall L, Roberts B, Weinman SA. Protein arginine methyltransferase 1 modulates innate immune responses through regulation of peroxisome proliferator-activated receptor γ-dependent macrophage differentiation. J Biol Chem 2017; 292:6882-6894. [PMID: 28330868 DOI: 10.1074/jbc.m117.778761] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
Arginine methylation is a common posttranslational modification that has been shown to regulate both gene expression and extranuclear signaling events. We recently reported defects in protein arginine methyltransferase 1 (PRMT1) activity and arginine methylation in the livers of cirrhosis patients with a history of recurrent infections. To examine the role of PRMT1 in innate immune responses in vivo, we created a cell type-specific knock-out mouse model. We showed that myeloid-specific PRMT1 knock-out mice demonstrate higher proinflammatory cytokine production and a lower survival rate after cecal ligation and puncture. We found that this defect is because of defective peroxisome proliferator-activated receptor γ (PPARγ)-dependent M2 macrophage differentiation. PPARγ is one of the key transcription factors regulating macrophage polarization toward a more anti-inflammatory and pro-resolving phenotype. We found that PRMT1 knock-out macrophages failed to up-regulate PPARγ expression in response to IL4 treatment resulting in 4-fold lower PPARγ expression in knock-out cells than in wild-type cells. Detailed study of the mechanism revealed that PRMT1 regulates PPARγ gene expression through histone H4R3me2a methylation at the PPARγ promoter. Supplementing with PPARγ agonists rosiglitazone and GW1929 was sufficient to restore M2 differentiation in vivo and in vitro and abrogated the difference in survival between wild-type and PRMT1 knock-out mice. Taken together these data suggest that PRMT1-dependent regulation of macrophage PPARγ expression contributes to the infection susceptibility in PRMT1 knock-out mice.
Collapse
Affiliation(s)
| | - Jie Zhao
- From the Department of Internal Medicine and
| | - Jody Olson
- From the Department of Internal Medicine and
| | - Abby Adams
- From the Department of Internal Medicine and
| | - Ryan Taylor
- From the Department of Internal Medicine and
| | - Brian Bridges
- the Liver Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Laurie Marshall
- the Liver Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Benjamin Roberts
- the Liver Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Steven A Weinman
- From the Department of Internal Medicine and .,the Liver Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|