1
|
Fauvel D, Daniel O, Struber L, Palluel E. Attentional management of cognitive-motor interference in adults during walking: Insights from an EEG study. Neuroscience 2024; 561:144-156. [PMID: 39424262 DOI: 10.1016/j.neuroscience.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Dual-task paradigms, which involve performing cognitive and motor tasks simultaneously, are commonly used to study how attentional resources are allocated and managed under varying task demands. This study aimed to investigate cognitive-motor interferences (CMI) under different levels of cognitive and motor task difficulty without instruction on task prioritization. 17 healthy young adults performed an auditory oddball task with increasing cognitive and motor (walking vs. sitting) difficulty. Cognitive and motor performances, along with P3 (P3a and P3b) brainwave components, were analysed. Increasing cognitive difficulty resulted in more errors and increased P3a amplitude, reflecting enhanced attentional demand, while P3b remained unaffected. This suggests a threshold effect on attentional resources. Motor complexity lengthened P3a and P3b latencies without affecting amplitude, indicating delayed attentional resource recruitment. Additionally, walking with the most difficult cognitive task increased cognitive error, suggesting attentional resource limits. With increased motor and cognitive complexity, CMI emerged, leading to cognitive error increase and improved gait stability without amplitude changes in P3a and P3b. Two hypotheses were proposed: motor prioritization and motor facilitation. Our study suggests managing attentional resources to balance cognitive and motor tasks rather than linearly increasing task complexity. Viewing dual tasks as a new, integrated task is proposed, supported by previous neural network integration studies. Thus, understanding how the brain organizes tasks in response to constraints is crucial for comprehending complex task execution.
Collapse
Affiliation(s)
- Delphine Fauvel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Olivier Daniel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Lucas Struber
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Estelle Palluel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
| |
Collapse
|
2
|
Marshall S, Jeyarajan G, Hayhow N, Gabiazon R, Seleem T, Hammerstrom MR, Krigolson O, Nagamatsu LS. Cortical activation among young adults during mobility in an indoor real-world environment: A mobile EEG approach. Neuropsychologia 2024; 203:108971. [PMID: 39128610 DOI: 10.1016/j.neuropsychologia.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Human mobility requires neurocognitive inputs to safely navigate the environment. Previous research has examined neural processes that underly walking using mobile neuroimaging technologies, yet few studies have incorporated true real-world methods without a specific task imposed on participants (e.g., dual-task, motor demands). The present study included 40 young adults (M = 22.60, SD = 2.63, 24 female) and utilized mobile electroencephalography (EEG) to examine and compare theta, alpha, and beta frequency band power (μV2) during sitting and walking in laboratory and real-world environments. EEG data was recorded using the Muse S brain sensing headband, a portable system equipped with four electrodes (two frontal, two temporal) and one reference sensor. Qualitative data detailing the thoughts of each participant were collected after each condition. For the quantitative data, a 2 × 2 repeated measures ANOVA with within subject factors of environment and mobility was conducted with full participant datasets (n = 17, M = 22.59, SD = 2.97, 10 female). Thematic analysis was performed on the qualitative data (n = 40). Our findings support that mobility and environment may modulate neural activity, as we observed increased brain activation for walking compared to sitting, and for real-world walking compared to laboratory walking. We identified five qualitative themes across the four conditions 1) physical sensations and bodily awareness, 2) responsibilities and planning, 3) environmental awareness, 4) mobility, and 5) spotlight effect. Our study highlights the importance and potential for real-world methods to supplement standard research practices to increase the ecological validity of studies conducted in the fields of neuroscience and kinesiology.
Collapse
Affiliation(s)
- Samantha Marshall
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada.
| | - Gianna Jeyarajan
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Nicholas Hayhow
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Raphael Gabiazon
- Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, Western University, Ontario, Canada
| | - Tia Seleem
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Mathew R Hammerstrom
- Department of Exercise Science, Physical and Health Education, University of Victoria, British Columbia, Canada
| | - Olav Krigolson
- Department of Exercise Science, Physical and Health Education, University of Victoria, British Columbia, Canada
| | - Lindsay S Nagamatsu
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| |
Collapse
|
3
|
Borji R, Baccouch R, Laatar R, Falhi S, Sahli S, Rebai H. Do Motor-Cognitive and Motor-Motor Dual-Task Training Differently Affect Dual-Task Interference in Individuals With Intellectual Disability? Adapt Phys Activ Q 2024; 41:611-631. [PMID: 38955343 DOI: 10.1123/apaq.2024-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 07/04/2024] Open
Abstract
This study explored the effect of different dual-task (DT) training programs on DT interference in adults with intellectual disability. Center-of-pressure (CoP) mean velocity in single-task (ST) and cognitive-DT conditions and the Timed Up-and-Go Test (TUGT) during ST, cognitive-DT, and motor-DT conditions were assessed before and after intervention in a cognitive-motor training group, a motor-motor training group, and a control group. Before training, CoP mean velocity and TUGT time increased (p < .001) in DT compared with the ST condition. After training, the CoP mean velocity values remained unchanged (p = .07) in DT compared with the ST condition among the cognitive-motor training group. Furthermore, compared with the ST condition, no increase (p = 1) was reported in the TUGT time during the cognitive-DT condition for the cognitive-motor training group and during the motor-DT for the motor-motor training group (p = .12). The effect of DT training on DT interference depends on the training modality.
Collapse
Affiliation(s)
- Rihab Borji
- Research Laboratory: Education, Motricité, Sport et Santé, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Rym Baccouch
- Research Laboratory: Education, Motricité, Sport et Santé, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Rabeb Laatar
- Research Laboratory: Education, Motricité, Sport et Santé, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Sirine Falhi
- Research Laboratory: Education, Motricité, Sport et Santé, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Sonia Sahli
- Research Laboratory: Education, Motricité, Sport et Santé, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Haithem Rebai
- Sports Performance Optimization Research Laboratory, National Center for Sports Medicine and Science, Tunis, Tunisia
| |
Collapse
|
4
|
He C, Chen YY, Phang CR, Chen IP, Tzou SC, Jung TP, Ko LW. Exploring Embodied Cognition and Brain Dynamics Under Multi-Tasks Target Detection in Immerse Projector-Based Augmented Reality (IPAR) Scenarios. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3476-3485. [PMID: 39133582 DOI: 10.1109/tnsre.2024.3442241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Embodied cognition explores the intricate interaction between the brain, body, and the surrounding environment. The advancement of mobile devices, such as immersive interactive computing and wireless electroencephalogram (EEG) devices, has presented new challenges and opportunities for studying embodied cognition. To address how mobile technology within immersive hybrid settings affects embodied cognition, we propose a target detection multitask incorporating mixed body movement interference and an environmental distraction light signal. We aim to investigate human embodied cognition in immersive projector-based augmented reality (IPAR) scenarios using wireless EEG technology. We recruited and engaged fifteen participants in four multitasking conditions: standing without distraction (SND), walking without distraction (WND), standing with distraction (SD), and walking with distraction (WD). We pre-processed the EEG data using Independent Component Analysis (ICA) to isolate brain sources and K-means clustering to categorize Independent Components (ICs). Following that, we conducted time-frequency and correlation analyses to identify neural dynamics changes associated with multitasking. Our findings reveal a decline in behavioral performance during multitasking activities. We also observed decreases in alpha and beta power in the frontal and motor cortex during standing target search tasks, decreases in theta power, and increases in alpha power in the occipital lobe during multitasking. We also noted perturbations in theta band power during distraction tasks. Notably, physical movement induced more significant fluctuations in the frontal and motor cortex than distractions from social environment light signals. Particularly in scenarios involving walking and multitasking, there was a noticeable reduction in beta suppression. Our study underscores the importance of brain-body collaboration in multitasking scenarios, where the simultaneous engagement of the body and brain in complex tasks highlights the dynamic nature of cognitive processes within the framework of embodied cognition. Furthermore, integrating immersive augmented reality technology into embodied cognition research enhances our understanding of the interplay between the body, environment, and cognitive functions, with profound implications for advancing human-computer interaction and elucidating cognitive dynamics in multitasking.
Collapse
|
5
|
Handiru VS, Suviseshamuthu ES, Saleh S, Su H, Yue G, Allexandre D. Identifying neural correlates of balance impairment in traumatic brain injury using partial least squares correlation analysis. J Neural Eng 2024; 21:056012. [PMID: 39178907 DOI: 10.1088/1741-2552/ad7320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Objective.Balance impairment is one of the most debilitating consequences of traumatic brain injury (TBI). To study the neurophysiological underpinnings of balance impairment, the brain functional connectivity during perturbation tasks can provide new insights. To better characterize the association between the task-relevant functional connectivity and the degree of balance deficits in TBI, the analysis needs to be performed on the data stratified based on the balance impairment. However, such stratification is not straightforward, and it warrants a data-driven approach.Approach.We conducted a study to assess the balance control using a computerized posturography platform in 17 individuals with TBI and 15 age-matched healthy controls. We stratified the TBI participants into balance-impaired and non-impaired TBI usingk-means clustering of either center of pressure (COP) displacement during a balance perturbation task or Berg Balance Scale score as a functional outcome measure. We analyzed brain functional connectivity using the imaginary part of coherence across different cortical regions in various frequency bands. These connectivity features are then studied using the mean-centered partial least squares correlation analysis, which is a multivariate statistical framework with the advantage of handling more features than the number of samples, thus making it suitable for a small-sample study.Main results.Based on the nonparametric significance testing using permutation and bootstrap procedure, we noticed that the weakened theta-band connectivity strength in the following regions of interest significantly contributed to distinguishing balance impaired from non-impaired population, regardless of the type of stratification:left middle frontal gyrus, right paracentral lobule, precuneus, andbilateral middle occipital gyri. Significance.Identifying neural regions linked to balance impairment enhances our understanding of TBI-related balance dysfunction and could inform new treatment strategies. Future work will explore the impact of balance platform training on sensorimotor and visuomotor connectivity.
Collapse
Affiliation(s)
- Vikram Shenoy Handiru
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States of America
- Department of Physical Medicine and Rehabilitation, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| | - Easter Selvan Suviseshamuthu
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States of America
- Department of Physical Medicine and Rehabilitation, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| | - Soha Saleh
- Department of Physical Medicine and Rehabilitation, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, Newark, NJ 07107, United States of America
- Department of Neurology, Rutgers University, Newark, NJ 07101, United States of America
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Haiyan Su
- School of Computing, Montclair State University, Montclair, NJ, United States of America
| | - Guang Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States of America
- Department of Physical Medicine and Rehabilitation, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| | | |
Collapse
|
6
|
Praça GM, de Almeida Oliveira PH, Santos Resende VH. Dual-Tasks in Soccer: Effects of Players' Experience and Task Condition on Physical Performance. Percept Mot Skills 2024; 131:1378-1397. [PMID: 38804982 DOI: 10.1177/00315125241257398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In this study, we examined whether experience level and various dual motor and cognitive or single tasks influenced young soccer players' physical performance during small-sided games. Participants were 72 players from U-13 (n = 36) and U-17 (n = 36) groups who participated in 3-to-a-side small-sided games under four experimental conditions: control, a secondary motor task, an additional related secondary cognitive task, and an additional secondary non-specific task. We used GPS devices to measure physical performance in terms of distances covered and accelerations at different thresholds. We found no significant interaction effect between player experience and task condition (p = .540), meaning that dual tasks had comparable effects on players of different experience levels. There were significant main effects of both experience level (p < .001) and condition (p < .001) on most physically related variables. Older players outperformed younger ones, particularly in high-intensity actions. While secondary motor tasks decreased physical performance, secondary cognitive tasks, irrespective of specificity, did not impair players' performances. In conclusion, experience level did not influence the players' physical response to dual tasks, and a secondary motor task was more disruptive to physical performance than either of two types of secondary cognitive tasks. Cognitive tasks can be incorporated into soccer training without compromising physical performance.
Collapse
|
7
|
Yano S, Nakamura A, Suzuki Y, Smith CE, Nomura T. Smartphone usage during walking decreases the positive persistency in gait cycle variability. Sci Rep 2024; 14:16410. [PMID: 39013927 PMCID: PMC11252135 DOI: 10.1038/s41598-024-66727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Gait cycle variability during steady walking, described by the stride interval time series, has been used as a gait-stability-related measure. In particular, the positive persistency in the stride intervals with 1/f-like fluctuation and reduction of the persistency are the well-documented metrics that can characterize gait patterns of healthy young adults and elderly including patients with neurological diseases, respectively. Here, we examined effects of a dual task on gait cycle variability in healthy young adults, based on the mean and standard deviation statistics as well as the positive persistency of the stride intervals during steady walking on a treadmill. Specifically, three gait conditions were examined: control condition, non-cognitive task with holding a smartphone in front of the chest using their dominant hand and looking fixedly at a blank screen of the smartphone, and cognitive motor task with holding a smartphone as in the non-cognitive task and playing a puzzle game displayed on the smartphone by one-thumb operation. We showed that only the positive persistency, not the mean and standard deviation statistics, was affected by the cognitive and motor load of smartphone usage in the cognitive condition. More specifically, the positive persistency exhibited in the control and the non-cognitive conditions was significantly reduced in the cognitive condition. Our results suggest that the decrease in the positive persistency during the cognitive task, which might represent the deterioration of healthy gait pattern, is caused endogenously by the cognitive and motor load, not necessarily by the reduction of visual field as often hypothesized.
Collapse
Affiliation(s)
- Shunpei Yano
- Department of Mechanical Science and Bioengineering, Osaka University, Osaka, 5608531, Japan
| | - Akihiro Nakamura
- Department of Mechanical Science and Bioengineering, Osaka University, Osaka, 5608531, Japan
| | - Yasuyuki Suzuki
- Department of Mechanical Science and Bioengineering, Osaka University, Osaka, 5608531, Japan
| | - Charles E Smith
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695-8203, USA
| | - Taishin Nomura
- Department of Mechanical Science and Bioengineering, Osaka University, Osaka, 5608531, Japan.
- Department of Informatics, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
8
|
Brinkbäumer M, Kupper C, Reichert L, Zentgraf K. Dual-task costs in speed tasks: a comparison between elite ice hockey, open-skill and closed-skill sports athletes. Front Psychol 2024; 15:1357312. [PMID: 39077212 PMCID: PMC11284104 DOI: 10.3389/fpsyg.2024.1357312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Ice hockey is a high pace sports game that requires players to integrate multiple skills. Players face perceptive, cognitive, and motor tasks concurrently; hence, players are regularly exposed to dual- or multi-task demands. Dual-tasking has been shown to lead to decreased performance in one or both performed tasks. The degree of performance reductions might be modulated by the exhaustion of cognitive resources. Literature on dual-task paradigms that combine sport-relevant elements is scarce. Therefore, a novel paradigm combining cyclical speed of the lower extremities and concurrent visuo-verbal speed reading was tested and validated. Additionally, to understand the nature of dual-task costs, the relationship between these costs and cognitive performance was assessed. We hypothesized occurrence of dual-task costs in all athletes without relationship to single task performance. Differences in dual-task cost were expected between open-skill and closed-skill sports, as well as differing expertise levels. Level of cognitive function was expected to explain some variance in dual-task cost. Methods A total of 322 elite athletes (120 ice hockey, 165 other team sports, 37 closed-skill sports) participated in this study. Each athlete performed a tapping task, a visuo-verbal speed-reading task, and both tasks simultaneously. All ice hockey athletes performed additional cognitive tests assessing processing speed, spatial working memory, sustained attention, two choice reaction time, and motor inhibition. Results The results of paired-sample t-tests confirmed significant dual-task costs for all sport groups (p < 0.001). Single-task performance and dual-task costs correlated weakly in a positive direction. A one-way ANOVA revealed significantly greater costs in closed-skill sports athletes than in ice hockey and other sports athletes. No significant differences in dual-task costs were found between teams of differing expertise levels. Lastly, no significant regression model was found to predict dual-task costs from cognitive test performance. Discussion Our study suggests that this novel dual-task paradigm was successful in inducing dual-task costs for all elite athletes. Since it distinguishes between closed-skill and open-skill sports athletes, it might be a valuable diagnostic tool for performance and for talent development of open-skill athletes. Dual-task costs could not be relevantly predicted via cognitive performance measures, questioning cognitive resource theories as an explanation for dual-task costs.
Collapse
Affiliation(s)
| | | | | | - Karen Zentgraf
- Department of Movement and Exercise Science, Institute for Sport Sciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
9
|
Chen YC, Lo IP, Tsai YY, Zhao CG, Hwang IS. Dual-task improvement of older adults after treadmill walking combined with blood flow restriction of low occlusion pressure: the effect on the heart-brain axis. J Neuroeng Rehabil 2024; 21:116. [PMID: 38997727 PMCID: PMC11241870 DOI: 10.1186/s12984-024-01412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
OBJECTIVE This study explored the impact of one session of low-pressure leg blood flow restriction (BFR) during treadmill walking on dual-task performance in older adults using the neurovisceral integration model framework. METHODS Twenty-seven older adults participated in 20-min treadmill sessions, either with BFR (100 mmHg cuff pressure on both thighs) or without it (NBFR). Dual-task performance, measured through light-pod tapping while standing on foam, and heart rate variability during treadmill walking were compared. RESULTS Following BFR treadmill walking, the reaction time (p = 0.002) and sway area (p = 0.012) of the posture dual-task were significantly reduced. Participants exhibited a lower mean heart rate (p < 0.001) and higher heart rate variability (p = 0.038) during BFR treadmill walking. Notably, BFR also led to band-specific reductions in regional brain activities (theta, alpha, and beta bands, p < 0.05). The topology of the EEG network in the theta and alpha bands became more star-like in the post-test after BFR treadmill walking (p < 0.005). CONCLUSION BFR treadmill walking improves dual-task performance in older adults via vagally-mediated network integration with superior neural economy. This approach has the potential to prevent age-related falls by promoting cognitive reserves.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - I-Ping Lo
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Yi-Ying Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Chen-Guang Zhao
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan.
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
10
|
Händel BF, Chen X, Murali S. Reduced occipital alpha power marks a movement induced state change that facilitates creative thinking. Neuropsychologia 2024; 193:108743. [PMID: 38096980 DOI: 10.1016/j.neuropsychologia.2023.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Walking and minimized movement restriction has a positive effect on creativity, such as divergent thinking. Walking is further known to reduce occipital alpha activity. We used mobile EEG during free and restricted movement, while subjects (N = 23) solved a Guilford's alternate uses test, to understand if occipital alpha power is also affected by movement restriction and if it is a neural marker for creativity. We found that, independent of the task, relative occipital alpha power was higher during movement restriction and showed a negative relationship with creativity scores even though the task was purely based on auditory information. Alpha lateralization was only modulated during the task related think-time (mainly during sitting) and showed a positive relationship with creativity scores but no correlation with the relative alpha power. This indicates that the ongoing alpha power and alpha lateralization mark two independent processes. Overall, our work shows that movement and movement restriction leads to a general change in state which affects cognitive processes. Specifically, limiting one's movements e.g. due to sitting and fixating on a screen can introduce a state of increased occipital alpha power and lowered creativity.
Collapse
Affiliation(s)
- Barbara F Händel
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Xinyu Chen
- Institute of Psychology III, University of Würzburg, 97070, Germany.
| | - Supriya Murali
- Institute of Psychology III, University of Würzburg, 97070, Germany
| |
Collapse
|
11
|
Huang CY, Chen YA, Wu RM, Hwang IS. Neural Oscillations and Functional Significances for Prioritizing Dual-Task Walking in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:283-296. [PMID: 38457151 PMCID: PMC10977445 DOI: 10.3233/jpd-230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/09/2024]
Abstract
Background Task prioritization involves allocating brain resources in a dual-task scenario, but the mechanistic details of how prioritization strategies affect dual-task walking performance for Parkinson's disease (PD) are little understood. Objective We investigated the performance benefits and corresponding neural signatures for people with PD during dual-task walking, using gait-prioritization (GP) and manual-prioritization (MP) strategies. Methods Participants (N = 34) were asked to hold two inter-locking rings while walking and to prioritize either taking big steps (GP strategy) or separating the two rings (MP strategy). Gait parameters and ring-touch time were measured, and scalp electroencephalograph was performed. Results Compared with the MP strategy, the GP strategy yielded faster walking speed and longer step length, whereas ring-touch time did not significantly differ between the two strategies. The MP strategy led to higher alpha (8-12 Hz) power in the posterior cortex and beta (13-35 Hz) power in the left frontal-temporal area, but the GP strategy was associated with stronger network connectivity in the beta band. Changes in walking speed and step length because of prioritization negatively correlated with changes in alpha power. Prioritization-related changes in ring-touch time correlated negatively with changes in beta power but positively with changes in beta network connectivity. Conclusions A GP strategy in dual-task walking for PD can enhance walking speed and step length without compromising performance in a secondary manual task. This strategy augments attentional focus and facilitates compensatory reinforcement of inter-regional information exchange.
Collapse
Affiliation(s)
- Cheng-Ya Huang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-An Chen
- Department of Rehabilitation, Division of Physical Therapy, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Khajuria A, Sharma R, Joshi D. EEG Dynamics of Locomotion and Balancing: Solution to Neuro-Rehabilitation. Clin EEG Neurosci 2024; 55:143-163. [PMID: 36052404 DOI: 10.1177/15500594221123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past decade has witnessed tremendous growth in analyzing the cortical representation of human locomotion and balance using Electroencephalography (EEG). With the advanced developments in miniaturized electronics, wireless brain recording systems have been developed for mobile recordings, such as in locomotion. In this review, the cortical dynamics during locomotion are presented with extensive focus on motor imagery, and employing the treadmill as a tool for performing different locomotion tasks. Further, the studies that examine the cortical dynamics during balancing, focusing on two types of balancing tasks, ie, static and dynamic, with the challenges in sensory inputs and cognition (dual-task), are presented. Moreover, the current literature demonstrates the advancements in signal processing methods to detect and remove the artifacts from EEG signals. Prior studies show the electrocortical sources in the anterior cingulate, posterior parietal, and sensorimotor cortex was found to be activated during locomotion. The event-related potential has been observed to increase in the fronto-central region for a wide range of balance tasks. The advanced knowledge of cortical dynamics during mobility can benefit various application areas such as neuroprosthetics and gait/balance rehabilitation. This review will be beneficial for the development of neuroprostheses, and rehabilitation devices for patients suffering from movement or neurological disorders.
Collapse
Affiliation(s)
- Aayushi Khajuria
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Richa Sharma
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Deepak Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Patelaki E, Foxe JJ, McFerren AL, Freedman EG. Maintaining Task Performance Levels Under Cognitive Load While Walking Requires Widespread Reallocation of Neural Resources. Neuroscience 2023; 532:113-132. [PMID: 37774910 PMCID: PMC10842245 DOI: 10.1016/j.neuroscience.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
This study elucidates the neural mechanisms underlying increasing cognitive load while walking by employing 2 versions of a response inhibition task, the '1-back' version and the more cognitively demanding '2-back' version. By using the Mobile Brain/Body Imaging (MoBI) modality, electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and task-related behavioral responses were collected while young adults (n = 61) performed either the 1-back or 2-back response inhibition task. Interestingly, increasing inhibitory difficulty from 1-back to 2-back during walking was not associated with any detectable costs in response accuracy, response speed, or gait consistency. However, the more difficult cognitive task was associated with distinct EEG component changes during both successful inhibitions (correct rejections) and successful executions (hits) of the motor response. During correct rejections, ERP changes were found over frontal regions, during latencies related to sensory gain control, conflict monitoring and working memory storage and processing. During hits, ERP changes were found over left-parietal regions during latencies related to orienting attention and subsequent selection and execution of the motor plan. The pattern of attenuation in walking-related EEG amplitude changes, during 2-back task performance, is thought to reflect more effortful recalibration of neural processes, a mechanism which might be a key driver of performance maintenance in the face of increased cognitive demands while walking. Overall, the present findings shed light on the extent of the neurocognitive capacity of young adults and may lead to a better understanding of how factors such as aging or neurological disorders could impinge on this capacity.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Amber L McFerren
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
14
|
Dalecki M, Steinberg F, Beurskens R. Rapid Dual-Task Decrements After a Brief Period of Manual Tracking in Simulated Weightlessness by Water Submersion. HUMAN FACTORS 2023; 65:1001-1013. [PMID: 34861791 DOI: 10.1177/00187208211051804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Investigating dual-task (DT) performance during simulated weightlessness by water submersion, using a manual tracking and a choice reaction task. In contrast to previous work, we focus on performance changes over time. BACKGROUND Previous research showed motor tracking and choice reaction impairments under DT and single-task (ST) conditions in shallow water submersion. Recent research analyzed performance as average across task time, neglecting potential time-related changes or fluctuations of task-performance. METHOD An unstable tracking and a choice reaction task was performed for one minute under ST and DT conditions in 5 m water submersion and on dry land in 43 participants. Tracking and choice reaction time performance for both tasks were analyzed in blocks of 10 seconds. RESULTS Tracking performance deteriorated underwater compared to dry land conditions during the second half while performing one minute in DT conditions. Choice reaction time increased underwater as well, but independent of task time and type. CONCLUSION Tracking error increased over time when performing unstable tracking and choice reaction together. Potentially, physiological and psychological alterations under shallow submersion further strain the human system during DT operations, exceeding available recourse capacities such that DT performance deteriorated over time. APPLICATION Humans operating in simulated weightlessness underwater should be aware of substantial performance declines that can occur within a short amount of time during DT situations that include continuous tracking.
Collapse
Affiliation(s)
- Marc Dalecki
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Fabian Steinberg
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Rainer Beurskens
- Fachhochschule des Mittelstandes, University of Applied Sciences, Bielefeld, Germany
| |
Collapse
|
15
|
Camp N, Vagnetti R, Bisele M, Felton P, Hunter K, Magistro D. The Effect of Cognitive Task Complexity on Healthy Gait in the Walking Corsi Test. Brain Sci 2023; 13:1019. [PMID: 37508951 PMCID: PMC10377536 DOI: 10.3390/brainsci13071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Dual-task activities are essential within everyday life, requiring visual-spatial memory (VSM) and mobility skills. Navigational memory is an important component of VSM needed to carry out everyday activities, but this is often not included in traditional tests such as the Corsi block tapping test (CBT). The Walking Corsi Test (WalCT) allows both VSM and navigational memory to be tested together, as well as allowing measures of gait to be collected, thus providing a more complete understanding of dual-task function. The aim of this study was to investigate the effect of an increasingly complex cognitive task on gait in a healthy adult population, using the WalCT and body-worn inertial measurement unit (IMU) sensors. Participants completed both the CBT and WalCT, where they were asked to replicate increasingly complex sequences until they were no longer able to carry this out correctly. IMU sensors were worn on the shins throughout the WalCT to assess changes in gait as task complexity increased. Results showed that there were significant differences in several gait parameters between completing a relatively simple cognitive task and completing a complex task. The type of memory used also appeared to have an impact on some gait variables. This indicates that even within a healthy population, gait is affected by cognitive task complexity, which may limit function in everyday dual-task activities.
Collapse
Affiliation(s)
- Nicola Camp
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Roberto Vagnetti
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Maria Bisele
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Paul Felton
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Kirsty Hunter
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Daniele Magistro
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
16
|
Belluscio V, Cartocci G, Terbojevich T, Di Feo P, Inguscio BMS, Ferrari M, Quaresima V, Vannozzi G. Facilitating or disturbing? An investigation about the effects of auditory frequencies on prefrontal cortex activation and postural sway. Front Neurosci 2023; 17:1197733. [PMID: 37425019 PMCID: PMC10324668 DOI: 10.3389/fnins.2023.1197733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Auditory stimulation activates brain areas associated with higher cognitive processes, like the prefrontal cortex (PFC), and plays a role in postural control regulation. However, the effects of specific frequency stimuli on upright posture maintenance and PFC activation patterns remain unknown. Therefore, the study aims at filling this gap. Twenty healthy adults performed static double- and single-leg stance tasks of 60s each under four auditory conditions: 500, 1000, 1500, and 2000 Hz, binaurally delivered through headphones, and in quiet condition. Functional near-infrared spectroscopy was used to measure PFC activation through changes in oxygenated hemoglobin concentration, while an inertial sensor (sealed at the L5 vertebra level) quantified postural sway parameters. Perceived discomfort and pleasantness were rated through a 0-100 visual analogue scale (VAS). Results showed that in both motor tasks, different PFC activation patterns were displayed at the different auditory frequencies and the postural performance worsened with auditory stimuli, compared to quiet conditions. VAS results showed that higher frequencies were considered more discomfortable than lower ones. Present data prove that specific sound frequencies play a significant role in cognitive resources recruitment and in the regulation of postural control. Furthermore, it supports the importance of exploring the relationship among tones, cortical activity, and posture, also considering possible applications with neurological populations and people with hearing dysfunctions.
Collapse
Affiliation(s)
- Valeria Belluscio
- Department of Movement, Human and Health Sciences, Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, Rome, Italy
- Fondazione Santa Lucia, Rome, Italy
| | - Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- BrainSigns Ltd, Rome, Italy
| | | | - Paolo Di Feo
- Department of Movement, Human and Health Sciences, Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, Rome, Italy
| | | | - Marco Ferrari
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giuseppe Vannozzi
- Department of Movement, Human and Health Sciences, Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, Rome, Italy
- Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
17
|
Vandenheever D, Lambrechts M. Dual-task changes in gait and brain activity measured in a healthy young adult population. Gait Posture 2023; 103:119-125. [PMID: 37156164 DOI: 10.1016/j.gaitpost.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Dual Task (DT) walking in everyday life is the norm rather than the exception. Complex cognitive-motor strategies are employed during DT and it is necessary to coordinate and regulate neural resources to ensure adequate performance. However, the underlying neurophysiology involved is not fully understood. Therefore, the aim of this study was to examine the neurophysiology and gait kinematics during DT gait. RESEARCH QUESTION Our main research question was whether gait kinematics changed during DT walking for healthy young adults and whether this is reflected in brain activity. METHODS Ten healthy young adults walked on a treadmill, performed a Flanker test while standing and performed the Flanker test while walking on a treadmill. Electroencephalography (EEG), spatial temporal, and kinematic data was recorded and analyzed. RESULTS Average alpha and beta activities were modulated during DT walking compared to single task (ST) walking while ERPs during the Flanker test showed larger P300 amplitudes and longer latencies for DT compared to standing. Cadence reduced and cadence variability increased during DT compared to ST whilst kinematic results showed that hip and knee flexions decreased, and the center of mass moved slightly back in the sagittal plane. SIGNIFICANCE It was found that healthy young adults employed a cognitive-motor strategy that included directing more neural resources to the cognitive task while adopting a more upright posture during DT walking.
Collapse
Affiliation(s)
- David Vandenheever
- Neural Engineering Research Division, Agricultural and Biological Engineering Department, Mississippi State University, MS, USA; Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch, South Africa.
| | - Marezelle Lambrechts
- Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
Patelaki E, Foxe JJ, Mazurek KA, Freedman EG. Young adults who improve performance during dual-task walking show more flexible reallocation of cognitive resources: a mobile brain-body imaging (MoBI) study. Cereb Cortex 2023; 33:2573-2592. [PMID: 35661873 PMCID: PMC10016048 DOI: 10.1093/cercor/bhac227] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION In young adults, pairing a cognitive task with walking can have different effects on gait and cognitive task performance. In some cases, performance clearly declines whereas in others compensatory mechanisms maintain performance. This study investigates the preliminary finding of behavioral improvement in Go/NoGo response inhibition task performance during walking compared with sitting, which was observed at the piloting stage. MATERIALS AND METHODS Mobile brain/body imaging (MoBI) was used to record electroencephalographic (EEG) activity, 3-dimensional (3D) gait kinematics and behavioral responses in the cognitive task, during sitting or walking on a treadmill. RESULTS In a cohort of 26 young adults, 14 participants improved in measures of cognitive task performance while walking compared with sitting. These participants exhibited walking-related EEG amplitude reductions over frontal scalp regions during key stages of inhibitory control (conflict monitoring, control implementation, and pre-motor stages), accompanied by reduced stride-to-stride variability and faster responses to stimuli compared with those who did not improve. In contrast, 12 participants who did not improve exhibited no EEG amplitude differences across physical condition. DISCUSSION The neural activity changes associated with performance improvement during dual tasking hold promise as cognitive flexibility markers that can potentially help assess cognitive decline in aging and neurodegeneration.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall Rochester, NY 14627, United States
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Kevin A Mazurek
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Joseph Building 4-184W, 200 First Street SW, Rochester, MN 55905, United States
- Well Living Lab, Well Living Lab, Inc., 221 First Avenue SW, Rochester, MN 55902, United States
| | | |
Collapse
|
19
|
Müller C, Baumann T, Einhäuser W, Kopiske K. Slipping while counting: gaze-gait interactions during perturbed walking under dual-task conditions. Exp Brain Res 2023; 241:765-780. [PMID: 36725725 PMCID: PMC9985588 DOI: 10.1007/s00221-023-06560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Walking is a complex task. To prevent falls and injuries, gait needs to constantly adjust to the environment. This requires information from various sensory systems; in turn, moving through the environment continuously changes available sensory information. Visual information is available from a distance, and therefore most critical when negotiating difficult terrain. To effectively sample visual information, humans adjust their gaze to the terrain or-in laboratory settings-when facing motor perturbations. During activities of daily living, however, only a fraction of sensory and cognitive resources can be devoted to ensuring safe gait. How do humans deal with challenging walking conditions when they face high cognitive load? Young, healthy participants (N = 24) walked on a treadmill through a virtual, but naturalistic environment. Occasionally, their gait was experimentally perturbed, inducing slipping. We varied cognitive load by asking participants in some blocks to count backward in steps of seven; orthogonally, we varied whether visual cues indicated upcoming perturbations. We replicated earlier findings on how humans adjust their gaze and their gait rapidly and flexibly on various time scales: eye and head movements responded in a partially compensatory pattern and visual cues mostly affected eye movements. Interestingly, the cognitive task affected mainly head orientation. During the cognitive task, we found no clear signs of a less stable gait or of a cautious gait mode, but evidence that participants adapted their gait less to the perturbations than without secondary task. In sum, cognitive load affects head orientation and impairs the ability to adjust to gait perturbations.
Collapse
Affiliation(s)
- Carl Müller
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126, Chemnitz, Germany.
| | - Thomas Baumann
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126, Chemnitz, Germany
| | - Wolfgang Einhäuser
- Physics of Cognition Group, Institute of Physics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Karl Kopiske
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126, Chemnitz, Germany
| |
Collapse
|
20
|
Kondo R, Okada K, Wakasa M, Saito A, Kimoto M, Terui Y. Foot pressure-based analysis of gait while using a smartphone. Gait Posture 2023; 100:196-200. [PMID: 36603325 DOI: 10.1016/j.gaitpost.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The number of incidents related to walking while using smartphones is rising. However, it is not clear how smartphone usage might affect a gait pattern in terms of the foot pressure, and this may address the mechanism leading to incidents while using smartphones. RESEARCH QUESTION How do the characteristics of walking while using a smartphone affect foot pressure patterns? METHODS In this cross-sectional study, we recruited 40 healthy young participants and investigated the walking speed, step length, coefficient of variance of the walking cycle (CV), anteroposterior length of the center of pressure (COP) trajectory (%Long), partial foot pressure ratios (% partial foot pressure [%PFP]), and COP existence time (COPexT) under the following four conditions: normal walking, screen gazing, while using social networking services (SNS), and while using a cognitive application. Parameters were compared among the four conditions using a repeated-measures ANOVA. Further, according to the presence or absence of an incident history (e.g. stumbles, collisions), participants were divided into either the incident or non-incident group. Parameters were compared between the two groups using a two-way repeated-measures ANOVA. RESULTS Under the SNS and cognitive application conditions, the walking speed, step length, %Long, %PFP, and COPexT in the heel were significantly lower, and the CV and %PFP in the metatarsal region were higher than those under normal walking or screen gazing. %PFP in the heel and metatarsal regions showed a significant group-by-condition interaction; the incident group had lower %PFP in the heel region and higher %PFP in the metatarsal region than the non-incident group. SIGNIFICANCE These findings indicate a trend of loading more pressure on the forefoot than on the heel. This pattern was markedly evident in individuals with a history of incidents related to the smartphone usage and may be one of the factors causing stumbles and collisions.
Collapse
Affiliation(s)
- Ryohei Kondo
- Nakadori Rehabilitation Hospital, 6-1-58 Nakadori, Akita city, Akita 010-0001, Japan.
| | - Kyoji Okada
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 44-2 Hasunuma, Hiroomote, Akita city, Akita 010-0825, Japan
| | - Masahiko Wakasa
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 44-2 Hasunuma, Hiroomote, Akita city, Akita 010-0825, Japan
| | - Akira Saito
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 44-2 Hasunuma, Hiroomote, Akita city, Akita 010-0825, Japan
| | - Minoru Kimoto
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 44-2 Hasunuma, Hiroomote, Akita city, Akita 010-0825, Japan
| | - Yoshino Terui
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 44-2 Hasunuma, Hiroomote, Akita city, Akita 010-0825, Japan
| |
Collapse
|
21
|
Huang CY, Chen YA, Wu RM, Hwang IS. Dual-task walking improvement with enhanced kinesthetic awareness in Parkinson’s disease with mild gait impairment: EEG connectivity and clinical implication. Front Aging Neurosci 2022; 14:1041378. [DOI: 10.3389/fnagi.2022.1041378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Due to basal ganglia dysfunction, short step length is a common gait impairment in Parkinson’s disease (PD), especially in a dual-task walking. Here, we use electroencephalography (EEG) functional connectivity to investigate neural mechanisms of a stride awareness strategy that could improve dual-task walking in PD. Eighteen individuals with PD who had mild gait impairment walked at self-paced speed while keeping two interlocking rings from touching each other. During the dual-task walking trial, the participants received or did not receive awareness instruction to take big steps. Gait parameters, ring-touching time, and EEG connectivity in the alpha and beta bands were analyzed. With stride awareness, individuals with PD exhibited greater gait velocity and step length, along with a significantly lower mean EEG connectivity strength in the beta band. The awareness-related changes in the EEG connectivity strength of the beta band positively correlated with the awareness-related changes in gait velocity, cadence, and step length, but negatively correlated with the awareness-related change in step-length variability. The smaller reduction in beta connectivity strength was associated with greater improvement in locomotion control with stride awareness. This study is the first to reveal that a stride awareness strategy modulates the beta band oscillatory network and is related to walking efficacy in individuals with PD in a dual-task condition.
Collapse
|
22
|
Jacobsen NSJ, Blum S, Scanlon JEM, Witt K, Debener S. Mobile electroencephalography captures differences of walking over even and uneven terrain but not of single and dual-task gait. Front Sports Act Living 2022; 4:945341. [PMID: 36275441 PMCID: PMC9582531 DOI: 10.3389/fspor.2022.945341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Walking on natural terrain while performing a dual-task, such as typing on a smartphone is a common behavior. Since dual-tasking and terrain change gait characteristics, it is of interest to understand how altered gait is reflected by changes in gait-associated neural signatures. A study was performed with 64-channel electroencephalography (EEG) of healthy volunteers, which was recorded while they walked over uneven and even terrain outdoors with and without performing a concurrent task (self-paced button pressing with both thumbs). Data from n = 19 participants (M = 24 years, 13 females) were analyzed regarding gait-phase related power modulations (GPM) and gait performance (stride time and stride time-variability). GPMs changed significantly with terrain, but not with the task. Descriptively, a greater beta power decrease following right-heel strikes was observed on uneven compared to even terrain. No evidence of an interaction was observed. Beta band power reduction following the initial contact of the right foot was more pronounced on uneven than on even terrain. Stride times were longer on uneven compared to even terrain and during dual- compared to single-task gait, but no significant interaction was observed. Stride time variability increased on uneven terrain compared to even terrain but not during single- compared to dual-tasking. The results reflect that as the terrain difficulty increases, the strides become slower and more irregular, whereas a secondary task slows stride duration only. Mobile EEG captures GPM differences linked to terrain changes, suggesting that the altered gait control demands and associated cortical processes can be identified. This and further studies may help to lay the foundation for protocols assessing the cognitive demand of natural gait on the motor system.
Collapse
Affiliation(s)
- Nadine Svenja Josée Jacobsen
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany,*Correspondence: Nadine Svenja Josée Jacobsen
| | - Sarah Blum
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany,Hörzentrum Oldenburg GmbH, Oldenburg, Germany,Cluster of Excellence Hearing4all, Oldenburg, Germany
| | - Joanna Elizabeth Mary Scanlon
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany,Branch for Hearing, Speech and Audio Technology HSA, Fraunhofer Institute for Digital Media Technology IDMT, Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology and Research Center Neurosensory Science, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany,Cluster of Excellence Hearing4all, Oldenburg, Germany
| |
Collapse
|
23
|
Uribe P, Fuentes N, Álvarez-Ruf J, Cornejo I, Mariman JJ. Differentiation of the motor cost associated with cognitive tasks in Parkinson's disease: a dual-task study. Eur J Neurosci 2022; 56:5106-5115. [PMID: 35962541 DOI: 10.1111/ejn.15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Parkinson's disease is a neurodegenerative condition associated with motor and cognitive impairments. While the execution of dual cognitive-motor tasks imposes a cost on gait velocity, it has been barely determined if the gait deterioration depends on the specific cognitive domain involved in the dual-task. Twenty-four subjects (twelve patients with Parkinson's disease and twelve healthy subjects) carried out a single task (gait alone) and several dual tasks where the concurrent second task was the Trail Making Test (Part A) and the six tasks of the Frontal Assessment Battery. Gait variables were measured by accelerometry via smartphone. Data analysis included analysis of variance and exploratory factorial analysis. Both groups showed a similar gait performance, except for velocity, where patients exhibited a bradykinetic profile. The dual-task during the Trail Making Test showed the highest motor cost. Frontal Assessment Battery's tasks as conceptualization, mental flexibility, and motor programming showed a higher motor cost than the other tasks (sensibility to interference, inhibitory control, and environmental autonomy). The factorial analysis applied to the motor costs confirmed two profiles, grouping those related to the dorsolateral prefrontal cortex (mental flexibility and motor programming tasks) in an independent factor. Among cognitive functions, attention is critical for gait control in Parkinson's disease and healthy elderly people. The interference posed by several executive operations suggests a specific competition in prefrontal regions that support dual tasks. Moreover, the higher cost for Parkinson's disease patients emphasizes the cognitive decline and compensatory cognitive strategy for gait control related to attention and executive functions.
Collapse
Affiliation(s)
- Paula Uribe
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Natalia Fuentes
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Joel Álvarez-Ruf
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Laboratorio de Biomecánica Clínica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Carrera de Kinesiología, Santiago, Chile
| | - Isabel Cornejo
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Liga Chilena contra el Mal de Parkinson, Santiago, Chile
| | - Juan J Mariman
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
Curcic J, Vallejo V, Sorinas J, Sverdlov O, Praestgaard J, Piksa M, Deurinck M, Erdemli G, Bügler M, Tarnanas I, Taptiklis N, Cormack F, Anker R, Massé F, Souillard-Mandar W, Intrator N, Molcho L, Madero E, Bott N, Chambers M, Tamory J, Shulz M, Fernandez G, Simpson W, Robin J, Snædal JG, Cha JH, Hannesdottir K. Description of the Method for Evaluating Digital Endpoints in Alzheimer Disease Study: Protocol for an Exploratory, Cross-sectional Study. JMIR Res Protoc 2022; 11:e35442. [PMID: 35947423 PMCID: PMC9403829 DOI: 10.2196/35442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND More sensitive and less burdensome efficacy end points are urgently needed to improve the effectiveness of clinical drug development for Alzheimer disease (AD). Although conventional end points lack sensitivity, digital technologies hold promise for amplifying the detection of treatment signals and capturing cognitive anomalies at earlier disease stages. Using digital technologies and combining several test modalities allow for the collection of richer information about cognitive and functional status, which is not ascertainable via conventional paper-and-pencil tests. OBJECTIVE This study aimed to assess the psychometric properties, operational feasibility, and patient acceptance of 10 promising technologies that are to be used as efficacy end points to measure cognition in future clinical drug trials. METHODS The Method for Evaluating Digital Endpoints in Alzheimer Disease study is an exploratory, cross-sectional, noninterventional study that will evaluate 10 digital technologies' ability to accurately classify participants into 4 cohorts according to the severity of cognitive impairment and dementia. Moreover, this study will assess the psychometric properties of each of the tested digital technologies, including the acceptable range to assess ceiling and floor effects, concurrent validity to correlate digital outcome measures to traditional paper-and-pencil tests in AD, reliability to compare test and retest, and responsiveness to evaluate the sensitivity to change in a mild cognitive challenge model. This study included 50 eligible male and female participants (aged between 60 and 80 years), of whom 13 (26%) were amyloid-negative, cognitively healthy participants (controls); 12 (24%) were amyloid-positive, cognitively healthy participants (presymptomatic); 13 (26%) had mild cognitive impairment (predementia); and 12 (24%) had mild AD (mild dementia). This study involved 4 in-clinic visits. During the initial visit, all participants completed all conventional paper-and-pencil assessments. During the following 3 visits, the participants underwent a series of novel digital assessments. RESULTS Participant recruitment and data collection began in June 2020 and continued until June 2021. Hence, the data collection occurred during the COVID-19 pandemic (SARS-CoV-2 virus pandemic). Data were successfully collected from all digital technologies to evaluate statistical and operational performance and patient acceptance. This paper reports the baseline demographics and characteristics of the population studied as well as the study's progress during the pandemic. CONCLUSIONS This study was designed to generate feasibility insights and validation data to help advance novel digital technologies in clinical drug development. The learnings from this study will help guide future methods for assessing novel digital technologies and inform clinical drug trials in early AD, aiming to enhance clinical end point strategies with digital technologies. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/35442.
Collapse
Affiliation(s)
- Jelena Curcic
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Vanessa Vallejo
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | - Jens Praestgaard
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States
| | - Mateusz Piksa
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Mark Deurinck
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gul Erdemli
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States
| | | | - Ioannis Tarnanas
- Altoida Inc, Washington, DC, United States
- Global Brain Health Institute, Trinity College, Dublin, Ireland
| | | | | | | | | | - William Souillard-Mandar
- Linus Health, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | | | - Erica Madero
- Neurotrack Technologies Inc, Redwood City, CA, United States
| | - Nicholas Bott
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | | | - Josef Tamory
- Neurovision Imaging Inc, Sacramento, CA, United States
| | | | | | | | | | | | - Jang-Ho Cha
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States
| | | |
Collapse
|
25
|
Attentional focus effect on dual-task walking in Parkinson's disease with and without freezing of gait. GeroScience 2022; 45:177-195. [PMID: 35726118 PMCID: PMC9886752 DOI: 10.1007/s11357-022-00606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/07/2022] [Indexed: 02/03/2023] Open
Abstract
In Parkinson's disease, the optimal attentional focus strategy for dual-task walking may vary with freezing of gait (FOG), due to different severities of impaired automaticity. The study aimed to investigate (i) the immediate effect of attentional focus on dual-task walking in participants with and without FOG, and (ii) the training effect of attentional focus on walking, FOG, and falls. In experiment 1, FOG and non-FOG groups (16 participants each) performed a dual-task of holding two interlocking rings apart while walking, either without attention instruction or with instructions to focus attention internally or externally. Gait parameters and ring-touching times were measured. In experiment 2, 30 participants with FOG were randomized to 6 weeks of dual-task training with internal-focus or external-focus instruction. Before and after training, we recorded timed up-and-go (TUG) and TUG dual-task (TUGdt) in on-medication and off-medication states, and the numbers of FOG episodes and falls. The non-FOG group showed less step length variability and shorter ring-touching times with external-focus. The FOG group showed less step length variability, less cadence, increased gait velocity, and longer step lengths with internal-focus compared to external-focus and no-focus instructions. Both internal-focus and external-focus training reduced FOG and falls after intervention, but only internal-focus training reduced TUG and TUGdt in both on-medication and off-medication states. Our findings suggest external-focus would enhance walking automaticity and the concurrent task accuracy for non-freezers, whereas for freezers, internal-focus could increase gait stability and lead to a more positive effect on improving locomotion control and reducing falling risk.
Collapse
|
26
|
Wang J, Wang W, Ren S, Shi W, Hou ZG. Neural Correlates of Single-Task Versus Cognitive-Motor Dual-Task Training. IEEE Trans Cogn Dev Syst 2022. [DOI: 10.1109/tcds.2021.3053050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiaxing Wang
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Weiqun Wang
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shixin Ren
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Weiguo Shi
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zeng-Guang Hou
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Obuz T, Topcu ZG. The effects of exercises with a Pilates ball on balance, reaction time and dual-task performance of kindergarten children. J Comp Eff Res 2022; 11:583-593. [PMID: 35514277 DOI: 10.2217/cer-2021-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigated the effects of exercises conducted with a Pilates ball on the motor skills of preschool children. Methods: 62 preschool children were randomly divided into two groups: an intervention group (IG) (n = 30) and a control group (CG) (n = 32). Exercises with a Pilates ball were practiced in IG. The One Leg Standing test, Functional Reach test, Ruler Drop test and Timed-Up and Go test were the outcome measures. Results: Static balance performance and dual-task performance were found to be significantly improved in the intragroup and intergroup comparisons, favoring the IG (p < 0.05). Conclusion: The exercises carried out in this study were found to be effective on static balance and dual-task performance. The study can guide an exercise program for the preschool age group. Clinical Trial Registration: NCT04575441 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Tuğba Obuz
- Department of Physiotherapy & Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, 99628, Cyprus
| | - Zehra Güçhan Topcu
- Department of Physiotherapy & Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, 99628, Cyprus
| |
Collapse
|
28
|
Head-Mounted and Hand-Held Displays Diminish the Effectiveness of Fall-Resisting Skills. SENSORS 2022; 22:s22010344. [PMID: 35009886 PMCID: PMC8749840 DOI: 10.3390/s22010344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023]
Abstract
Use of head-mounted displays (HMDs) and hand-held displays (HHDs) may affect the effectiveness of stability control mechanisms and impair resistance to falls. This study aimed to examine whether the ability to control stability during locomotion is diminished while using HMDs and HHDs. Fourteen healthy adults (21–46 years) were assessed under single-task (no display) and dual-task (spatial 2-n-back presented on the HMD or the HHD) conditions while performing various locomotor tasks. An optical motion capture system and two force plates were used to assess locomotor stability using an inverted pendulum model. For perturbed standing, 57% of the participants were not able to maintain stability by counter-rotation actions when using either display, compared to the single-task condition. Furthermore, around 80% of participants (dual-task) compared to 50% (single-task) showed a negative margin of stability (i.e., an unstable body configuration) during recovery for perturbed walking due to a diminished ability to increase their base of support effectively. However, no evidence was found for HMDs or HHDs affecting stability during unperturbed locomotion. In conclusion, additional cognitive resources required for dual-tasking, using either display, are suggested to result in delayed response execution for perturbed standing and walking, consequently diminishing participants’ ability to use stability control mechanisms effectively and increasing the risk of falls.
Collapse
|
29
|
The effects of cognitive versus motor concurrent task on gait in individuals with transtibial amputation, transfemoral amputation and in a healthy control group. Gait Posture 2022; 91:223-228. [PMID: 34741932 DOI: 10.1016/j.gaitpost.2021.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Lower limb amputation causes difficulties in mobility together with motor and sensory loss. Challenging situations such as concurrent tasks cause gait parameters to deteriorate. Understanding the effect of concurrent tasks on gait is important for the rehabilitation of amputees. RESEARCH QUESTION Are the effects of concurrent cognitive and motor tasks on gait parameters at fixed speed different in individuals with transtibial amputation, or transfemoral amputation compared to healthy individuals? METHODS The gait parameters were evaluated of 20 individuals with transtibial amputation, 13 individuals with transfemoral amputation and 20 healthy individuals while walking on a motorized treadmill under single task (ST), cognitive dual task (CDT) and motor dual task (MDT) conditions. The self-selected comfortable velocity, which was determined in the single-task gait, was used in all three walking tests. RESULTS ST, CDT and MDT gait parameters of individuals with transtibial amputation, transfemoral amputation and healthy individuals were significantly different (p < 0.01). Covariance of step length variability increased in amputees when walking under MDT (p < 0.05). The dual task cost (DTC) for all the gait parameters was similar in all three groups (p > 0.05). The motor DTC of covariance of step length was greater than cognitive DTC (p < 0.05). SIGNIFICANCE Individuals with lower limb amputation have the capacity to walk with cognitive and motor tasks without changing velocity on the treadmill, but concurrent motor tasks cause an increase in gait variability. The results of this study suggest that there is an increase in gait variability especially with motor tasks, which may cause a higher risk of falling. Trial number: NCT04392466 (clinicaltrials.gov).
Collapse
|
30
|
Rahman TT, Polskaia N, St-Amant G, Salzman T, Vallejo DT, Lajoie Y, Fraser SA. An fNIRS Investigation of Discrete and Continuous Cognitive Demands During Dual-Task Walking in Young Adults. Front Hum Neurosci 2021; 15:711054. [PMID: 34867235 PMCID: PMC8637836 DOI: 10.3389/fnhum.2021.711054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction: Dual-task studies have demonstrated that walking is attention-demanding for younger adults. However, numerous studies have attributed this to task type rather than the amount of required to accomplish the task. This study examined four tasks: two discrete (i.e., short intervals of attention) and two continuous (i.e., sustained attention) to determine whether greater attentional demands result in greater dual-task costs due to an overloaded processing capacity. Methods: Nineteen young adults (21.5 ± 3.6 years, 13 females) completed simple reaction time (SRT) and go/no-go (GNG) discrete cognitive tasks and n-back (NBK) and double number sequence (DNS) continuous cognitive tasks with or without self-paced walking. Prefrontal cerebral hemodynamics were measured using functional near-infrared spectroscopy (fNIRS) and performance was measured using response time, accuracy, and gait speed. Results: Repeated measures ANOVAs revealed decreased accuracy with increasing cognitive demands (p = 0.001) and increased dual-task accuracy costs (p < 0.001). Response times were faster during the single compared to dual-tasks during the SRT (p = 0.005) and NBK (p = 0.004). DNS gait speed was also slower in the dual compared to single task (p < 0.001). Neural findings revealed marginally significant interactions between dual-task walking and walking alone in the DNS (p = 0.06) and dual -task walking compared to the NBK cognitive task alone (p = 0.05). Conclusion: Neural findings suggest a trend towards increased PFC activation during continuous tasks. Cognitive and motor measures revealed worse performance during the discrete compared to continuous tasks. Future studies should consider examining different attentional demands of motor tasks.
Collapse
Affiliation(s)
- Tabassum Tahmina Rahman
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Nadia Polskaia
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Gabrielle St-Amant
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Talia Salzman
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Diana Tobón Vallejo
- Electronics and Telecommunications Engineering Department, Universidad de Medellín, Medellín, Colombia
| | - Yves Lajoie
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Sarah Anne Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
31
|
Tortora S, Rubega M, Formaggio E, Marco RD, Masiero S, Menegatti E, Tonin L, Felice AD. Age-related differences in visual P300 ERP during dual-task postural balance. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6511-6514. [PMID: 34892601 DOI: 10.1109/embc46164.2021.9630088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Standing and concurrently performing a cognitive task is a very common situation in everyday life. It is associated with a higher risk of falling in the elderly. Here, we aim at evaluating the differences of the P300 evoked potential elicited by a visual oddball paradigm between healthy younger (< 35 y) and older (> 64 y) adults during a simultaneous postural task. We found that P300 latency increases significantly (p < 0.001) when the elderly are engaged in more challenging postural tasks; younger adults show no effect of balance condition. Our results demonstrate that, even if the elderly have the same accuracy in odd stimuli detection as younger adults do, they require a longer processing time for stimulus discrimination. This finding suggests an increased attentional load which engages additional cerebral reserves.
Collapse
|
32
|
Soulard J, Vaillant J, Baillet A, Gaudin P, Vuillerme N. The effects of a secondary task on gait in axial spondyloarthritis. Sci Rep 2021; 11:19537. [PMID: 34599222 PMCID: PMC8486771 DOI: 10.1038/s41598-021-98732-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Studies on the effects of dual tasking in patients with chronic inflammatory rheumatic diseases are limited. The aim of this study was to assess dual tasking while walking in patients with axial spondyloarthritis (axSpA) in comparison to healthy controls. Thirty patients with axSpA and thirty healthy controls underwent a 10-m walk test at a self-selected comfortable walking speed in single- and dual-task conditions. Foot-worn inertial sensors were used to compute spatiotemporal gait parameters. Analysis of spatiotemporal gait parameters showed that the secondary manual task negatively affected walking performance in terms of significantly decreased mean speed (p < 0.001), stride length (p < 0.001) and swing time (p = 0.008) and increased double support (p = 0.002) and stance time (p = 0.008). No significant interaction of group and condition was observed. Both groups showed lower gait performance in dual task condition by reducing speed, swing time and stride length, and increasing double support and stance time. Patients with axSpA were not more affected by the dual task than matched healthy controls, suggesting that the secondary manual task did not require greater attention in patients with axSpA. Increasing the complexity of the walking and/or secondary task may increase the sensitivity of the dual-task design to axial spondyloarthritis.
Collapse
Affiliation(s)
- Julie Soulard
- University Grenoble Alpes, AGEIS, Grenoble, France.
- CHU Grenoble Alpes, Grenoble, France.
| | | | - Athan Baillet
- CHU Grenoble Alpes, Grenoble, France
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG UMR5525, Grenoble, France
| | - Philippe Gaudin
- CHU Grenoble Alpes, Grenoble, France
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG UMR5525, Grenoble, France
| | - Nicolas Vuillerme
- University Grenoble Alpes, AGEIS, Grenoble, France
- Institut Universitaire de France, Paris, France
- LabCom Telecom4Health, Orange Labs & Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP-UGA, Grenoble, France
| |
Collapse
|
33
|
Paul AP, McNulty B, Parcetich KM. Influence of Single Bouts of Aerobic Exercise on Dual-Tasking Performance in Healthy Adults. J Mot Behav 2021; 54:372-381. [PMID: 34547989 DOI: 10.1080/00222895.2021.1980366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dual-tasking performance (DTP) is critical for most real-life activities. Interventions to improve DTP would be clinically valuable. This study investigated effects of single-bouts of two different aerobic exercises on the performance of Extended cognitive Timed-Up and Go (ETUGcog), a dual-task test involving concurrent performance of a physical (ETUG) and cognitive (counting backwards serial 7 s) task. Twenty-two adults performed single bouts of high-intensity interval training (HIIT) and moderate-intensity exercise (MIE), separately. ETUGcog was performed before, immediately following, and 24 hours after each exercise. Number and rates of correct serial 7 s were significantly higher 24 hours after HIIT, with no difference in times to complete ETUGcog. No such effects were found for MIE. Single bouts of HIIT could provide delayed improvements in DTP.
Collapse
Affiliation(s)
- Arco P Paul
- Department of Physical Therapy, Radford University Carilion, Roanoke, Virginia, USA.,Carilion Roanoke Community Hospital, Roanoke, Virginia, USA
| | - Brendan McNulty
- Genesis Rehab Services, Envoy of Staunton, Staunton, Virginia, USA
| | - Kevin M Parcetich
- Department of Physical Therapy, Radford University Carilion, Roanoke, Virginia, USA
| |
Collapse
|
34
|
Protzak J, Gramann K. EEG beta-modulations reflect age-specific motor resource allocation during dual-task walking. Sci Rep 2021; 11:16110. [PMID: 34373506 PMCID: PMC8352863 DOI: 10.1038/s41598-021-94874-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/16/2021] [Indexed: 11/09/2022] Open
Abstract
The parallel execution of two motor tasks can lead to performance decrements in either one or both of the tasks. Age-related declines can further magnify the underlying competition for cognitive resources. However, little is known about the neural dynamics underlying motor resource allocation during dual-task walking. To better understand motor resource conflicts, this study investigated sensorimotor brain rhythms in younger and older adults using a dual-task protocol. Time-frequency data from two independent component motor clusters were extracted from electroencephalography data during sitting and walking with an additional task requiring manual responses. Button press-related desynchronization in the alpha and beta frequency range were analyzed for the impact of age (< 35 years, ≥ 70 years) and motor task (sitting, walking). Button press-related desynchronization in the beta band was more pronounced for older participants and both age groups demonstrated less pronounced desynchronizations in both frequency bands during walking compared to sitting. Older participants revealed less power modulations between sitting and walking, and less pronounced changes in beta and alpha suppression were associated with greater slowing in walking speed. Our results indicate age-specific allocations strategies during dual-task walking as well as interdependencies of concurrently performed motor tasks reflected in modulations of sensorimotor rhythms.
Collapse
Affiliation(s)
- Janna Protzak
- Junior research group FANS (Pedestrian Assistance System for Older Road User), Technische Universitaet Berlin, 10587, Berlin, Germany.
| | - Klaus Gramann
- Biological Psychology and Neuroergonomics, Technische Universitaet Berlin, 10623, Berlin, Germany
| |
Collapse
|
35
|
Nohelova D, Bizovska L, Vuillerme N, Svoboda Z. Gait Variability and Complexity during Single and Dual-Task Walking on Different Surfaces in Outdoor Environment. SENSORS (BASEL, SWITZERLAND) 2021; 21:4792. [PMID: 34300532 PMCID: PMC8309897 DOI: 10.3390/s21144792] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
Nowadays, gait assessment in the real life environment is gaining more attention. Therefore, it is desirable to know how some factors, such as surfaces (natural, artificial) or dual-tasking, influence real life gait pattern. The aim of this study was to assess gait variability and gait complexity during single and dual-task walking on different surfaces in an outdoor environment. Twenty-nine healthy young adults aged 23.31 ± 2.26 years (18 females, 11 males) walked at their preferred walking speed on three different surfaces (asphalt, cobbles, grass) in single-task and in two dual-task conditions (manual task-carrying a cup filled with water, cognitive task-subtracting the number 7). A triaxial inertial sensor attached to the lower trunk was used to record trunk acceleration during gait. From 15 strides, sample entropy (SampEn) as an indicator of gait complexity and root mean square (RMS) as an indicator of gait variability were computed. The findings demonstrate that in an outdoor environment, the surfaces significantly impacted only gait variability, not complexity, and that the tasks affected both gait variability and complexity in young healthy adults.
Collapse
Affiliation(s)
- Denisa Nohelova
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, 771 11 Olomouc, Czech Republic; (L.B.); (Z.S.)
- Laboratory AGEIS, Université Grenoble Alpes, AGEIS, 38000 Grenoble, France;
- LabCom Telecom4Health, Orange Labs & Université Grenoble Alpes, CNRS, Inria, Grenoble INP-UGA, 38000 Grenoble, France
| | - Lucia Bizovska
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, 771 11 Olomouc, Czech Republic; (L.B.); (Z.S.)
| | - Nicolas Vuillerme
- Laboratory AGEIS, Université Grenoble Alpes, AGEIS, 38000 Grenoble, France;
- LabCom Telecom4Health, Orange Labs & Université Grenoble Alpes, CNRS, Inria, Grenoble INP-UGA, 38000 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
| | - Zdenek Svoboda
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, 771 11 Olomouc, Czech Republic; (L.B.); (Z.S.)
| |
Collapse
|
36
|
Sandoval R, Pesquera M, Kim A, Dickerson C, Dedick J, Brown N. Noon is the best time to perform a dual task while cognitive performance may be boosted by concurrent performance of a physical task. Gait Posture 2021; 87:95-100. [PMID: 33895637 DOI: 10.1016/j.gaitpost.2021.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dual-task is the concurrent performance of two independent single tasks (ST) that have distinct goals. Daily variations in performance of singular cognitive or motor tasks are reported in the literature. RESEARCH QUESTION To investigate whether performance of a dual-task (DT) varies based on the time of day and whether there is interference between the motor and cognitive aspect of DT. METHODS Participants performed a 10 Meter Walk Test (10MWT) for motor and a Stroop Test for cognitive task. The DT activity combined both STs. All participants performed three trials for all three conditions at three different times of the day (morning, noon, afternoon), on separate testing days. RESULTS Data were collected on 42 participants. Most participants were female (28/42), average age of 27.95 ± 9.28 years, and BMI of 25.58 ± 4.49 Kg/m2. Walking velocities in ST were consistently faster than in DT, p < .0005. In DT conditions, the participants walked faster at noon (1.21 ± 0.13 m/s) compared to the morning (1.16 ± 0.15 m/s, p = 0.01) or the afternoon (1.16 ± 0.18 m/s, p = 0.04). The participants' score on the DT-Stroop test were only different at noon (11.43 ± 2.28) when compared to morning (10.67 ± 1.34, p = 0.006). The percentage DT-Cognitive interference effect was 26.1 % in the morning, 11.8 % at noon and 13.4 % in the afternoon. The Motor interference was -14.6 % in the morning, -12.2 % at noon and -13.8 % in the afternoon. SIGNIFICANCE Noon is the best time to perform a dual task condition. Noon consistently exhibited the least motor or cognitive interference. Conversely, the maximum boost in cognitive performance was observed in the mornings.
Collapse
Affiliation(s)
- Roberto Sandoval
- Department of Veteran's Affairs, South Texas Veterans Health Care System Audie L. Murphy Medical Center, Research Department, San Antonio, TX, United States.
| | - Mason Pesquera
- University of the Incarnate Word, School of Physical Therapy, San Antonio, TX, United States
| | - Andrew Kim
- University of the Incarnate Word, School of Physical Therapy, San Antonio, TX, United States
| | - Corey Dickerson
- University of the Incarnate Word, School of Physical Therapy, San Antonio, TX, United States
| | - Joseph Dedick
- University of the Incarnate Word, School of Physical Therapy, San Antonio, TX, United States
| | - Nathan Brown
- University of the Incarnate Word, School of Physical Therapy, San Antonio, TX, United States
| |
Collapse
|
37
|
Spatio-temporal gait parameters obtained from foot-worn inertial sensors are reliable in healthy adults in single- and dual-task conditions. Sci Rep 2021; 11:10229. [PMID: 33986307 PMCID: PMC8119721 DOI: 10.1038/s41598-021-88794-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Inertial measurement units (IMUs) are increasingly popular and may be usable in clinical routine to assess gait. However, assessing their intra-session reliability is crucial and has not been tested with foot-worn sensors in healthy participants. The aim of this study was to assess the intra-session reliability of foot-worn IMUs for measuring gait parameters in healthy adults. Twenty healthy participants were enrolled in the study and performed the 10-m walk test in single- and dual-task ('carrying a full cup of water') conditions, three trials per condition. IMUs were used to assess spatiotemporal gait parameters, gait symmetry parameters (symmetry index (SI) and symmetry ratio (SR)), and dual task effects parameters. The relative and the absolute reliability were calculated for each gait parameter. Results showed that spatiotemporal gait parameters measured with foot-worn inertial sensors were reliable; symmetry gait parameters relative reliability was low, and SR showed better absolute reliability than SI; dual task effects were poorly reliable, and taking the mean of the second and the third trials was the most reliable. Foot-worn IMUs are reliable to assess spatiotemporal and symmetry ratio gait parameters but symmetry index and DTE gait parameters reliabilities were low and need to be interpreted with cautious by clinicians and researchers.
Collapse
|
38
|
Sombric CJ, Torres-Oviedo G. Cognitive and Motor Perseveration Are Associated in Older Adults. Front Aging Neurosci 2021; 13:610359. [PMID: 33986654 PMCID: PMC8110726 DOI: 10.3389/fnagi.2021.610359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Aging causes perseveration (difficulty to switch between actions) in motor and cognitive tasks, suggesting that the same neural processes could govern these abilities in older adults. To test this, we evaluated the relation between independently measured motor and cognitive perseveration in young (21.4 ± 3.7 y/o) and older participants (76.5 ± 2.9 y/o). Motor perseveration was measured with a locomotor task in which participants had to transition between distinct walking patterns. Cognitive perseveration was measured with a card matching task in which participants had to switch between distinct matching rules. We found that perseveration in the cognitive and motor domains were positively related in older, but not younger individuals, such that participants exhibiting greater perseveration in the motor task also perseverated more in the cognitive task. Additionally, exposure reduces motor perseveration: older adults who had practiced the motor task could transition between walking patterns as proficiently as naïve, young individuals. Our results suggest an overlap in neural processes governing cognitive and motor perseveration with aging and that exposure can counteract the age-related motor perseveration.
Collapse
Affiliation(s)
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
39
|
Brahms M, Heinzel S, Rapp M, Reisner V, Wahmkow G, Rimpel J, Schauenburg G, Stelzel C, Granacher U. Cognitive-Postural Multitasking Training in Older Adults - Effects of Input-Output Modality Mappings on Cognitive Performance and Postural Control. J Cogn 2021; 4:20. [PMID: 33748665 PMCID: PMC7954177 DOI: 10.5334/joc.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/31/2020] [Indexed: 11/20/2022] Open
Abstract
Older adults exhibit impaired cognitive and balance performance, particularly under multi-task conditions, which can be improved through training. Compatibility of modality mappings in cognitive tasks (i.e., match between stimulus modality and anticipated sensory effects of motor responses), modulates physical and cognitive dual-task costs. However, the effects of modality specific training programs have not been evaluated yet. Here, we tested the effects of cognitive-postural multi-tasking training on the ability to coordinate task mappings under high postural demands in healthy older adults. Twenty-one adults aged 65-85 years were assigned to one of two groups. While group 1 performed cognitive-postural triple-task training with compatible modality mappings (i.e., visual-manual and auditory-vocal dual n-back tasks), group 2 performed the same tasks with incompatible modality mappings (i.e., visual-vocal and auditory-manual n-back tasks). Throughout the 6-weeks balance training intervention, working-memory load was gradually increased while base-of-support was reduced. Before training (T0), after a 6-week passive control period (T1), and immediately after the intervention (T2), participants performed spatial dual one-back tasks in semi-tandem stance position. Our results indicate improved working-memory performance and reduced dual-task costs for both groups after the passive control period, but no training-specific performance gains. Furthermore, balance performance did not improve in response to training. Notably, the cohort demonstrated meaningful interindividual variability in training responses. Our findings raise questions about practice effects and age-related heterogeneity of training responses following cognitive-motor training. Following multi-modal balance training, neither compatible nor incompatible modality mappings had an impact on the observed outcomes.
Collapse
Affiliation(s)
- Markus Brahms
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Stephan Heinzel
- Clinical Psychology and Psychotherapy, Freie Universität Berlin, Berlin, Germany
| | - Michael Rapp
- University of Potsdam, Research Focus Cognitive Sciences, Division of Social and Preventive Medicine, Potsdam, Germany
| | - Volker Reisner
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gunnar Wahmkow
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Jérôme Rimpel
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Gesche Schauenburg
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | | | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
40
|
Robles D, Kuziek JWP, Wlasitz NA, Bartlett NT, Hurd PL, Mathewson KE. EEG in motion: Using an oddball task to explore motor interference in active skateboarding. Eur J Neurosci 2021; 54:8196-8213. [PMID: 33644960 DOI: 10.1111/ejn.15163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/18/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
Recent advancements in portable computer devices have opened new avenues in the study of human cognition outside research laboratories. This flexibility in methodology has led to the publication of several electroencephalography studies recording brain responses in real-world scenarios such as cycling and walking outside. In the present study, we tested the classic auditory oddball task while participants moved around an indoor running track using an electric skateboard. This novel approach allows for the study of attention in motion while virtually removing body movement. Using the skateboard auditory oddball paradigm, we found reliable and expected standard-target differences in the P3 and MMN/N2b event-related potentials. We also recorded baseline electroencephalography activity and found that, compared to this baseline, alpha power is attenuated in frontal and parietal regions during skateboarding. In order to explore the influence of motor interference in cognitive resources during skateboarding, we compared participants' preferred riding stance (baseline level of riding difficulty) versus their non-preferred stance (increased level of riding difficulty). We found that an increase in riding difficulty did not modulate the P3 and tonic alpha amplitude during skateboard motion. These results suggest that increases in motor demands might not lead to reductions in cognitive resources as shown in previous literature.
Collapse
Affiliation(s)
- Daniel Robles
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jonathan W P Kuziek
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Nicole A Wlasitz
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Nathan T Bartlett
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Pete L Hurd
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Kyle E Mathewson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
41
|
Moreira PED, Dieguez GTDO, Bredt SDGT, Praça GM. The Acute and Chronic Effects of Dual-Task on the Motor and Cognitive Performances in Athletes: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041732. [PMID: 33579018 PMCID: PMC7916747 DOI: 10.3390/ijerph18041732] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
Athletes must distribute their attention to many relevant cues during a match. Therefore, athletes’ ability to deal with dual-tasks may be different from the non-athlete population, demanding a deeper investigation within the sports domain. This study aimed to systematically review the acute and chronic effects of dual-tasks in motor and cognitive performances in athletes from different modalities. The search for articles followed all the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The keywords used were: “dual-task” OR “double task” OR “multi-task” OR “divided attention” OR “secondary task” OR “second task” AND “working memory” OR “visual” OR “decision making” OR “gaze behavior” OR “attention” AND “sports” OR “athletes” OR “players”. The Scopus, Pubmed, and Web of Science databases were screened for studies comparing single and dual-tasks, in which the participants were athletes competing at any level, and in which at least one of the following variables were investigated: working memory, decision-making, visual search behavior, perception, anticipation, attention, or motor tasks. Articles were screened using pre-defined selection criteria, and methodological quality was assessed by two researchers independently. Following the eligibility criteria, we included 18 articles in the review: 13 on the acute effects, and five on the chronic effects. This review showed that the acute effect of dual-tasks impairs the motor and cognitive performances of athletes (dual-task cost). However, training with dual-tasks (chronic effect) improved working memory skills and attentional control. We conclude that dual-tasks acutely and chronically impacts motor and cognitive performance.
Collapse
|
42
|
Hoffmann R, Brodowski H, Steinhage A, Grzegorzek M. Detecting Walking Challenges in Gait Patterns Using a Capacitive Sensor Floor and Recurrent Neural Networks. SENSORS 2021; 21:s21041086. [PMID: 33562548 PMCID: PMC7914733 DOI: 10.3390/s21041086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 11/16/2022]
Abstract
Gait patterns are a result of the complex kinematics that enable human two-legged locomotion, and they can reveal a lot about a person’s state and health. Analysing them is useful for researchers to get new insights into the course of diseases, and for physicians to track the progress after healing from injuries. When a person walks and is interfered with in any way, the resulting disturbance can show up and be found in the gait patterns. This paper describes an experimental setup for capturing gait patterns with a capacitive sensor floor, which can detect the time and position of foot contacts on the floor. With this setup, a dataset was recorded where 42 participants walked over a sensor floor in different modes, inter alia, normal pace, closed eyes, and dual-task. A recurrent neural network based on Long Short-Term Memory units was trained and evaluated for the classification task of recognising the walking mode solely from the floor sensor data. Furthermore, participants were asked to do the Unilateral Heel-Rise Test, and their gait was recorded before and after doing the test. Another neural network instance was trained to predict the number of repetitions participants were able to do on the test. As the results of the classification tasks turned out to be promising, the combination of this sensor floor and the recurrent neural network architecture seems like a good system for further investigation leading to applications in health and care.
Collapse
Affiliation(s)
- Raoul Hoffmann
- SensProtect GmbH, 85635 Höhenkirchen-Siegertsbrunn, Germany;
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany;
- Correspondence:
| | - Hanna Brodowski
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Lübeck (P.E.R.L.), University of Lübeck, 23538 Lübeck, Germany;
- Geriatrics Research Group, Charité-Universitätsmedizin Berlin, 13347 Berlin, Germany
| | - Axel Steinhage
- SensProtect GmbH, 85635 Höhenkirchen-Siegertsbrunn, Germany;
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany;
| |
Collapse
|
43
|
Khan H, Naseer N, Yazidi A, Eide PK, Hassan HW, Mirtaheri P. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review. Front Hum Neurosci 2021; 14:613254. [PMID: 33568979 PMCID: PMC7868344 DOI: 10.3389/fnhum.2020.613254] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Human gait is a complex activity that requires high coordination between the central nervous system, the limb, and the musculoskeletal system. More research is needed to understand the latter coordination's complexity in designing better and more effective rehabilitation strategies for gait disorders. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are among the most used technologies for monitoring brain activities due to portability, non-invasiveness, and relatively low cost compared to others. Fusing EEG and fNIRS is a well-known and established methodology proven to enhance brain-computer interface (BCI) performance in terms of classification accuracy, number of control commands, and response time. Although there has been significant research exploring hybrid BCI (hBCI) involving both EEG and fNIRS for different types of tasks and human activities, human gait remains still underinvestigated. In this article, we aim to shed light on the recent development in the analysis of human gait using a hybrid EEG-fNIRS-based BCI system. The current review has followed guidelines of preferred reporting items for systematic reviews and meta-Analyses (PRISMA) during the data collection and selection phase. In this review, we put a particular focus on the commonly used signal processing and machine learning algorithms, as well as survey the potential applications of gait analysis. We distill some of the critical findings of this survey as follows. First, hardware specifications and experimental paradigms should be carefully considered because of their direct impact on the quality of gait assessment. Second, since both modalities, EEG and fNIRS, are sensitive to motion artifacts, instrumental, and physiological noises, there is a quest for more robust and sophisticated signal processing algorithms. Third, hybrid temporal and spatial features, obtained by virtue of fusing EEG and fNIRS and associated with cortical activation, can help better identify the correlation between brain activation and gait. In conclusion, hBCI (EEG + fNIRS) system is not yet much explored for the lower limb due to its complexity compared to the higher limb. Existing BCI systems for gait monitoring tend to only focus on one modality. We foresee a vast potential in adopting hBCI in gait analysis. Imminent technical breakthroughs are expected using hybrid EEG-fNIRS-based BCI for gait to control assistive devices and Monitor neuro-plasticity in neuro-rehabilitation. However, although those hybrid systems perform well in a controlled experimental environment when it comes to adopting them as a certified medical device in real-life clinical applications, there is still a long way to go.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
| | - Noman Naseer
- Department of Mechatronics and Biomedical Engineering, Air University, Islamabad, Pakistan
| | - Anis Yazidi
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Hafiz Wajahat Hassan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
| | - Peyman Mirtaheri
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
- Department of Biomedical Engineering, Michigan Technological University, Michigan, MI, United States
| |
Collapse
|
44
|
Hoang I, Ranchet M, Derollepot R, Moreau F, Paire-Ficout L. Measuring the Cognitive Workload During Dual-Task Walking in Young Adults: A Combination of Neurophysiological and Subjective Measures. Front Hum Neurosci 2020; 14:592532. [PMID: 33328938 PMCID: PMC7714906 DOI: 10.3389/fnhum.2020.592532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Walking while performing a secondary task (dual-task (DT) walking) increases cognitive workload in young adults. To date, few studies have used neurophysiological measures in combination to subjective measures to assess cognitive workload during a walking task. This combined approach can provide more insights into the amount of cognitive resources in relation with the perceived mental effort involving in a walking task. Research Question: The objective was to examine cognitive workload in young adults during walking conditions varying in complexity. Methods: Twenty-five young adults (mean = 24.4 ± 5.4) performed four conditions: (1) usual walking, (2) simple DT walking, (3) complex DT walking and (4) standing while subtracting. During the walking task, mean speed, cadence, stride time, stride length, and their respective coefficient of variation (CV) were recorded. Cognitive workload will be measured through changes in oxy- and deoxy-hemoglobin (ΔHbO2 and ΔHbR) during walking in the dorsolateral prefrontal cortex (DLPFC) and perceived mental demand score from NASA-TLX questionnaire. Results: In young adults, ΔHbO2 in the DLPFC increased from usual walking to both DT walking conditions and standing while subtracting condition. ΔHbO2 did not differ between the simple and complex DT and between the complex DT and standing while subtracting condition. Perceived mental demand gradually increased with walking task complexity. As expected, all mean values of gait parameters were altered according to task complexity. CV of speed, cadence and stride time were significantly higher during DT walking conditions than during usual walking whereas CV of stride length was only higher during complex DT walking than during usual walking. Significance: Young adults had greater cognitive workload in the two DT walking conditions compared to usual walking. However, only the mental demand score from NASA-TLX questionnaire discriminated simple from complex DT walking. Subjective measure provides complementary information to objective one on changes in cognitive workload during challenging walking tasks in young adults. These results may be useful to improve our understanding of cognitive workload during walking.
Collapse
Affiliation(s)
- Isabelle Hoang
- Transport, Health, Safety Department, Laboratory Ergonomics and Cognitive Sciences Applied to Transport, Univ Gustave Eiffel, Univ Lyon, Lyon, France
| | - Maud Ranchet
- Transport, Health, Safety Department, Laboratory Ergonomics and Cognitive Sciences Applied to Transport, Univ Gustave Eiffel, Univ Lyon, Lyon, France
| | - Romain Derollepot
- Transport, Health, Safety Department, Laboratory Ergonomics and Cognitive Sciences Applied to Transport, Univ Gustave Eiffel, Univ Lyon, Lyon, France
| | - Fabien Moreau
- Transport, Health, Safety Department, Laboratory Ergonomics and Cognitive Sciences Applied to Transport, Univ Gustave Eiffel, Univ Lyon, Lyon, France
| | - Laurence Paire-Ficout
- Transport, Health, Safety Department, Laboratory Ergonomics and Cognitive Sciences Applied to Transport, Univ Gustave Eiffel, Univ Lyon, Lyon, France
| |
Collapse
|
45
|
Villafaina S, Fuentes-García JP, Cano-Plasencia R, Gusi N. Neurophysiological Differences Between Women With Fibromyalgia and Healthy Controls During Dual Task: A Pilot Study. Front Psychol 2020; 11:558849. [PMID: 33250807 PMCID: PMC7672184 DOI: 10.3389/fpsyg.2020.558849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Background Women with FM have a reduced ability to perform two simultaneous tasks. However, the impact of dual task (DT) on the neurophysiological response of women with FM has not been studied. Objective To explore both the neurophysiological response and physical performance of women with FM and healthy controls while performing a DT (motor–cognitive). Design Cross-sectional study. Methods A total of 17 women with FM and 19 age- and sex-matched healthy controls (1:1 ratio) were recruited. The electroencephalographic (EEG) activity was recorded while participants performed two simultaneous tasks: a motor (30 seconds arm-curl test) and a cognitive (remembering three unrelated words). Theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30) frequency bands were analyzed by using EEGLAB. Results Significant differences were obtained in the healthy control group between single task (ST) and DT in the theta, alpha, and beta frequency bands (p-value < 0.05). Neurophysiological differences between ST and DT were not found in women with FM. In addition, between-group differences were found in the alpha and beta frequency bands between healthy and FM groups, with lower values of beta and alpha in the FM group. Therefore, significant group∗condition interactions were detected in the alpha and beta frequency bands. Regarding physical condition performance, between groups, analyses showed that women with FM obtained significantly worse results in the arm curl test than healthy controls, in both ST and DT. Conclusion Women with FM showed the same electrical brain activity pattern during ST and DT conditions, whereas healthy controls seem to adapt their brain activity to task commitment. This is the first study that investigates the neurophysiological response of women with FM while simultaneously performing a motor and a cognitive task.
Collapse
Affiliation(s)
- Santos Villafaina
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | | | - Ricardo Cano-Plasencia
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain.,Clinical Neurophysiology, San Pedro de Alcántara Hospital, Cáceres, Spain
| | - Narcis Gusi
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| |
Collapse
|
46
|
Gorecka MM, Vasylenko O, Rodríguez-Aranda C. Dichotic listening while walking: A dual-task paradigm examining gait asymmetries in healthy older and younger adults. J Clin Exp Neuropsychol 2020; 42:794-810. [PMID: 32900290 DOI: 10.1080/13803395.2020.1811207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Dual-task studies have employed various cognitive tasks to evaluate the relationship between gait and cognition. Most of these tests are not specific to a single cognitive ability or sensory modality and have limited ecological validity. In this study, we employed a dual-task paradigm using Dichotic Listening (DL) as concomitant cognitive task to walking. We argue that DL is a robust task to unravel the gait-cognition link in different healthy populations of different age groups. Thirty-six healthy older adults (Mean = 67.11) and forty younger adults (Mean = 22.75) participated in the study. DL consists of three conditions where spontaneous attention and attention directed to right or left-ear are tested while walking. We calculated dual-task costs (DTCs) and percent of baseline values for three spatio-temporal gait parameters as compared to single-walking during three DL conditions. Results showed that both groups had larger DTCs on gait during volitional control of attention, i.e., directing attention to one specific ear. Group differences were present across all DL conditions where older adults reported consistently less correct stimuli than younger participants. Similar findings were observed in the neuropsychological battery where older participants showed restricted abilities for executive functioning and processing speed. However, the main finding of this investigation was that younger adults exhibited unique adjustments in step length variability as shown by changes in DTCs and percent of baseline values. Particularly, an asymmetric effect was observed on the young group when attending right-ear stimuli. We interpreted this gait asymmetry as a compensatory outcome in the younger participants due to their optimal perceptual and motor abilities, which allow them to cope suitably with the dual-task situation. Many studies suggest that gait asymmetries are indicators of pathology, the present data demonstrate that gait asymmetries arise under specific constraints in healthy people as an adaptation to task requirements.
Collapse
Affiliation(s)
- Marta Maria Gorecka
- Department of Psychology, UiT- the Arctic University of Norway , Tromsø, Norway
| | - Olena Vasylenko
- Department of Psychology, UiT- the Arctic University of Norway , Tromsø, Norway
| | | |
Collapse
|
47
|
Nenna F, Do CT, Protzak J, Gramann K. Alteration of brain dynamics during dual-task overground walking. Eur J Neurosci 2020; 54:8158-8174. [PMID: 32881128 DOI: 10.1111/ejn.14956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
When walking in our natural environment, we often solve additional cognitive tasks. This increases the demand of resources needed for both the cognitive and motor systems, resulting in Cognitive-Motor Interference (CMI). A large portion of neurophysiological investigations on CMI took place in static settings, emphasizing the experimental rigor but overshadowing the ecological validity. As a more ecologically valid alternative to treadmill and desktop-based setups to investigate CMI, we developed a dual-task walking scenario in virtual reality (VR) combined with Mobile Brain/Body Imaging (MoBI). We aimed at investigating how brain dynamics are modulated by dual-task overground walking with an additional task in the visual domain. Participants performed a visual discrimination task in VR while standing (single-task) and walking overground (dual-task). Even though walking had no impact on the performance in the visual discrimination task, a P3 amplitude reduction along with changes in power spectral densities (PSDs) were observed for discriminating visual stimuli during dual-task walking. These results reflect an impact of walking on the parallel processing of visual stimuli even when the cognitive task is particularly easy. This standardized and easy to modify VR paradigm helps to systematically study CMI, allowing researchers to control for the impact of additional task complexity of tasks in different sensory modalities. Future investigations implementing an improved virtual design with more challenging cognitive and motor tasks will have to investigate the roles of both cognition and motion, allowing for a better understanding of the functional architecture of attention reallocation between cognitive and motor systems during active behavior.
Collapse
Affiliation(s)
- Federica Nenna
- Department of General Psychology, University of Padova, Padova, Italy
| | - Cao Tri Do
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Janna Protzak
- Junior research group FANS (Pedestrian Assistance System for Older Road User), Berlin Institute of Technology, Berlin, Germany
| | - Klaus Gramann
- Biological Psychology and Neuroergonomics, Berlin Institute of Technology, Berlin, Germany.,School of Computer Science, University of Technology Sydney, Sydney, NSW, Australia.,Center for Advanced Neurological Engineering, University of California, San Diego, CA, USA
| |
Collapse
|
48
|
Possti D, Fahoum F, Sosnik R, Giladi N, Hausdorff JM, Mirelman A, Maidan I. Changes in the EEG spectral power during dual-task walking with aging and Parkinson's disease: initial findings using Event-Related Spectral Perturbation analysis. J Neurol 2020; 268:161-168. [PMID: 32754831 DOI: 10.1007/s00415-020-10104-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The ability to maintain adequate motor-cognitive performance under increasing task demands depends on the regulation and coordination of neural resources. Studies have shown that such resources diminish with aging and disease. EEG spectral analysis is a method that has the potential to provide insight into neural alterations affecting motor-cognitive performance. The aim of this study was to assess changes in spectral analysis during dual-task walking in aging and disease METHODS: 10 young adults, ten older adults, and ten patients with Parkinson's disease (PD) completed an auditory oddball task while standing and while walking on a treadmill. Spectral power within four frequency bandwidths, delta (< 4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-30 Hz), was calculated using Event-Related Spectral Perturbation (ERSP) analyses and compared between single task and dual task and between groups. RESULTS Differences in ERSP were found in all groups between the single and dual-task conditions. In response to dual-task walking, beta increased in all groups (p < 0.026), delta decreased in young adults (p = 0.03) and patients with PD (0.015) while theta increased in young adults (p = 0.028) but decreased in older adults (p = 0.02) and patients with PD (p = 0.015). Differences were seen between the young, the older adults, and the patients with PD. CONCLUSIONS These findings are the first to show changes in the power of different frequency bands during dual-task walking with aging and disease. These specific brain modulations may reflect deficits in readiness and allocation of attention that may be responsible for the deficits in dual-task performance.
Collapse
Affiliation(s)
- Daniel Possti
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Sosnik
- Faculty of Electrical Engineering, Holon Institute of Technology (H.I.T.), Holon, Israel
| | - Nir Giladi
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Orthopedic Surgery, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
49
|
New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci 2020; 10:brainsci10060342. [PMID: 32503207 PMCID: PMC7348779 DOI: 10.3390/brainsci10060342] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking. While there is a strong theoretical rationale for using indicators of internal load (e.g., heart rate) in exercise prescription, the most suitable parameters have yet to be determined. In this perspective article, we discuss the role of brain-derived parameters (e.g., brain activity) as valuable indicators of internal load which can be beneficial for individualizing the exercise prescription in exercise–cognition research. Therefore, we focus on the application of functional near-infrared spectroscopy (fNIRS), since this neuroimaging modality provides specific advantages, making it well suited for monitoring cortical hemodynamics as a proxy of brain activity during physical exercise.
Collapse
|
50
|
Dual-task costs of texting while walking forward and backward are greater for older adults than younger adults. Hum Mov Sci 2020; 71:102619. [DOI: 10.1016/j.humov.2020.102619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 11/17/2022]
|