1
|
Zhang JQ, Zhang PF. Advances in clinical research on pharmacological management of chemotherapy-induced constipation in gastrointestinal tumor: A perspective. Medicine (Baltimore) 2024; 103:e40137. [PMID: 39432646 PMCID: PMC11495705 DOI: 10.1097/md.0000000000040137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Gastrointestinal tumors, including those of the stomach, colon, rectum, and esophagus, present significant global health challenges. Chemotherapy, essential for treating these cancers, often causes constipation, adversely affecting patients' quality of life. This study examines the mechanisms behind chemotherapy-induced constipation, such as the direct impact of chemotherapeutic drugs on intestinal function, reduced fluid intake, decreased physical activity, opioid use, and psychological stress. While traditional treatments like stimulant and osmotic laxatives are commonly used, emerging therapies such as 5-HT4 receptor agonists and probiotics show promise. Traditional Chinese medicine offers additional strategies with herbal remedies and dietary adjustments. Future research should prioritize precision medicine, combining pharmacological and non-pharmacological approaches, and developing innovative therapeutics utilizing biologics and nanotechnology. Ongoing research is crucial for improving chemotherapy-induced constipation management, aiming to enhance treatment outcomes and the quality of life for chemotherapy patients with gastrointestinal tumors.
Collapse
Affiliation(s)
- Jin-Qiang Zhang
- First Ward of General Surgery Department, The First Hospital of Yulin, Yulin, China
| | - Peng-Fei Zhang
- First Ward of General Surgery Department, The First Hospital of Yulin, Yulin, China
| |
Collapse
|
2
|
Vanzan DF, Goma EP, Locatelli FR, Honorio TDS, Furtado PDS, Rodrigues CR, de Sousa VP, Mata dos Santos HA, do Carmo FA, Simon A, Pyrrho ADS, Ribeiro AJ, Cabral LM. Evaluation of Silybin Nanoparticles against Liver Damage in Murine Schistosomiasis mansoni Infection. Pharmaceutics 2024; 16:618. [PMID: 38794280 PMCID: PMC11125168 DOI: 10.3390/pharmaceutics16050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Silybin (SIB) is a hepatoprotective drug known for its poor oral bioavailability, attributed to its classification as a class IV drug with significant metabolism during the first-pass effect. This study explored the potential of solid lipid nanoparticles with (SLN-SIB-U) or without (SLN-SIB) ursodeoxycholic acid and polymeric nanoparticles (PN-SIB) as delivery systems for SIB. The efficacy of these nanosystems was assessed through in vitro studies using the GRX and Caco-2 cell lines for permeability and proliferation assays, respectively, as well as in vivo experiments employing a murine model of Schistosomiasis mansoni infection in BALB/c mice. The mean diameter and encapsulation efficiency of the nanosystems were as follows: SLN-SIB (252.8 ± 4.4 nm, 90.28 ± 2.2%), SLN-SIB-U (252.9 ± 14.4 nm, 77.05 ± 2.8%), and PN-SIB (241.8 ± 4.1 nm, 98.0 ± 0.2%). In the proliferation assay with the GRX cell line, SLN-SIB and SLN-SIB-U exhibited inhibitory effects of 43.09 ± 5.74% and 38.78 ± 3.78%, respectively, compared to PN-SIB, which showed no inhibitory effect. Moreover, SLN-SIB-U demonstrated a greater apparent permeability coefficient (25.82 ± 2.2) than PN-SIB (20.76 ± 0.1), which was twice as high as that of SLN-SIB (11.32 ± 4.6) and pure SIB (11.28 ± 0.2). These findings suggest that solid lipid nanosystems hold promise for further in vivo investigations. In the murine model of acute-phase Schistosomiasis mansoni infection, both SLN-SIB and SLN-SIB-U displayed hepatoprotective effects, as evidenced by lower alanine amino transferase values (22.89 ± 1.6 and 23.93 ± 2.4 U/L, respectively) than those in control groups I (29.55 ± 0.7 U/L) and I+SIB (34.29 ± 0.3 U/L). Among the prepared nanosystems, SLN-SIB-U emerges as a promising candidate for enhancing the pharmacokinetic properties of SIB.
Collapse
Affiliation(s)
- Daniel Figueiredo Vanzan
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ester Puna Goma
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Fernanda Resende Locatelli
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Thiago da Silva Honorio
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Priscila de Souza Furtado
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Carlos Rangel Rodrigues
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Hilton Antônio Mata dos Santos
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Flávia Almada do Carmo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Alice Simon
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Alexandre dos Santos Pyrrho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Group Genetics of Cognitive Dysfunction, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4169-007 Porto, Portugal
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| |
Collapse
|
3
|
Baranauskaite J, Aydin M, Uner B, Tas C. Formulation of Metoclopramide Hydrochloride-Loaded Lipid Carriers by QbD Approach for Combating Nausea: Safety and Bioavailability Evaluation in New Zealand Rabbit. AAPS PharmSciTech 2024; 25:73. [PMID: 38575825 DOI: 10.1208/s12249-024-02791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
The focus of the research was to overcome the limitations of metoclopramide (MTC) when administered intranasally. The aim was to improve its bioavailability, increase patient compliance, and prolong its residence time in the nasal cavity. MTC-loaded liposomes were prepared by applying the film hydration method. A study was conducted to determine how formulation variables affected encapsulation efficiency (EE %), mean particle size (MPS), and zeta potential (ZP). The MTC-liposomes were further loaded into the in situ gel (gellan gum) for longer residence times following intranasal administration. pH, gelling time, and in vitro release tests were conducted on the formulations produced. In vivo performance of the MTC-loaded in situ gels was appraised based on disparate parameters such as plasma peak concentration, plasma peak time, and elimination coefficient compared to intravenous administration. When the optimal liposome formulation contained 1.98% of SPC, 0.081% of cholesterol, 97.84% of chloroform, and 0.1% of MTC, the EE of MTC was 83.21%, PS was 107.3 nm. After 5 h, more than 80% of the drug was released from MTC-loaded liposome incorporated into gellan gum in situ gel formulation (Lip-GG), which exhibited improved absorption and higher bioavailability compared to MTC loaded into gellan gum in situ gel (MTC-GG). Acceptable cell viability was also achieved. It was found out that MTC-loaded liposomal in situ gel formulations administered through the nasal route could be a better choice than other options due to its ease of administration, accurate dosing, and higher bioavailability in comparison with MTC-GG.
Collapse
Affiliation(s)
- Juste Baranauskaite
- Department of Pharmaceutical Technology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| | - Meryem Aydin
- Department of Pharmaceutical Technology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| | - Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, Missouri, USA.
| | - Cetin Tas
- Department of Pharmaceutical Technology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| |
Collapse
|
4
|
Fan M, Liu W, Zhao L, Nie L, Wang Y. Engineering nanosystems for transdermal delivery of antihypertensive drugs. Pharm Dev Technol 2024; 29:265-279. [PMID: 38416123 DOI: 10.1080/10837450.2024.2324981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
To control hypertension, long-term continuous antihypertensive therapeutics are required and five classes of antihypertensive drugs are frequently involved, including diuretics, β-blockers, calcium channel blockers, angiotensin II receptor blockers, and angiotensin-converting enzyme inhibitors. Although with demonstrated clinical utility, there is still room for the improvement of many antihypertensive drugs in oral tablet or capsule dosage form, in terms of reducing systemic side effects and first-pass hepatic drug uptake. Meanwhile, nanocarrier-mediated transdermal drug delivery systems have emerged as a powerful tool for various disease treatments. With benefits such as promoting patient compliance for long-time administration, enhancing skin permeability, and reducing systemic side effects, these systems are reasonably investigated and developed for the transdermal delivery of multiple antihypertensive drugs. This review aims to summarize the literature relating to nanosystem-based transdermal antihypertensive drug delivery and update recent advances in this field, as well as briefly discuss the challenges and prospects of engineering transdermal delivery nanosystems for hypertension treatment.
Collapse
Affiliation(s)
- Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wengang Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liangfeng Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lirong Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Vaseem RS, D’cruz A, Shetty S, - H, Vardhan A, R SS, Marques SM, Kumar L, Verma R. Transdermal Drug Delivery Systems: A Focused Review of the Physical Methods of Permeation Enhancement. Adv Pharm Bull 2024; 14:67-85. [PMID: 38585458 PMCID: PMC10997930 DOI: 10.34172/apb.2024.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/07/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
The skin is the body's largest organ and serves as a site of administration for various medications. Transdermal drug delivery systems have several advantages over traditional delivery systems. It has both local and systemic therapeutic properties. Controlled plasma drug levels, reduced dosing frequency, and avoidance of hepatic first-pass metabolism are just a few of these systems' advantages. To achieve maximum efficacy, it is critical to understand the kinetics, physiochemical properties of the drug moiety, and drug transport route. This manuscript focused on the principles of various physical means to facilitate transdermal drug delivery. Some examples are iontophoresis, electrophoresis, photomechanical waves, ultrasound, needleless injections, and microneedles. Mechanical, chemical, magnetic, and electrical energy are all used in physical methods. A major advantage of physical methods is their capability to abbreviate pain, which can be used for effective disease management. Further investigation should be carried out at the clinical level to understand these methods for effective drug delivery.
Collapse
Affiliation(s)
- Rifath Sheikh Vaseem
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Alison D’cruz
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Srishti Shetty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Hafsa -
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Aditya Vardhan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Shreya Shenoy R
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India
| | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| |
Collapse
|
6
|
Mathure D, Sonawane P, Ranpise H, Awasthi R. Nanoliposomes Embedded Nanocochleates for Codelivery of Artemether and Lumefantrine: An In Vitro and In Vivo Study. Assay Drug Dev Technol 2024; 22:63-72. [PMID: 38193797 DOI: 10.1089/adt.2023.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Antimalarial drugs are being encapsulated in nanotechnology-based carriers because there are not enough new treatment options and people are becoming more resistant to the ones that are already available. This approach uses two or more biochemical targets of malarial parasites. The codelivery of artemether and lumefantrine (AL) combines the synergistic effect of artemether for an early onset of action followed by the prolonged effect of lumefantrine. The bioavailability of artemether and lumefantrine is low due to their low solubility. Thus, an alternative lipidic formulation, namely nanocochleate, was developed for the selected drugs by adding calcium ions into preformed nanoliposomes (AL-loaded liposomes). Using phospholipon 90H and cholesterol, a thin-film hydration method produced drug-loaded liposomes. The synthesized AL-loaded liposomes were further incorporated into nanocochleates. The formulations were evaluated for in vitro and in vivo parameters. Nanocochleates had a particle size of 200.7 nm, a zeta potential of -9.4 mV, and an entrapment efficiency of 73.12% ± 1.82% and 61.46% ± 0.78%, respectively, for artemether and lumefantrine. Whereas liposomes had a particle size of 210 nm and an entrapment efficiency of 67.34% ± 1.52% and 53.24% ± 0.78%, respectively, for artemether and lumefantrine. An X-ray diffraction study confirmed the amorphous state of artemether and lumefantrine in liposomes and nanocochleate. Nanocochleate showed a controlled release profile for loaded drugs. When compared with free drugs, nanocochleate showed low tissue distribution and a 20-fold increase in bioavailability in rats. Thus, nanocochleate offers an interesting alternative to an existing dosage form for the treatment of malaria.
Collapse
Affiliation(s)
- Dyandevi Mathure
- Department of Pharmaceutics, Bharati Vidyapeeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Prashant Sonawane
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Hemantkumar Ranpise
- Department of Pharmaceutics, RMPs Bhalchandra College of Pharmacy, Pune, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University, Dehradun, India
| |
Collapse
|
7
|
Moura MLV, de Menezes AAPM, de Oliveira Filho JWG, do Nascimento MLLB, dos Reis AC, Ribeiro AB, da Silva FCC, Nunes AMV, Rolim HML, de Carvalho Melo Cavalcante AA, Sousa JMDCE. Advances in Antitumor Effects Using Liposomal Citrinin in Induced Breast Cancer Model. Pharmaceutics 2024; 16:174. [PMID: 38399235 PMCID: PMC10892831 DOI: 10.3390/pharmaceutics16020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
The study aimed to evaluate the antitumor and toxicogenetic effects of liposomal nanoformulations containing citrinin in animal breast carcinoma induced by 7,12-dimethylbenzanthracene (DMBA). Mus musculus virgin females were divided into six groups treated with (1) olive oil (10 mL/kg); (2) 7,12-DMBA (6 mg/kg); (3) citrinin, CIT (2 mg/kg), (4) cyclophosphamide, CPA (25 mg/kg), (5) liposomal citrinin, LP-CIT (2 μg/kg), and (6) LP-CIT (6 µg/kg). Metabolic, behavioral, hematological, biochemical, histopathological, and toxicogenetic tests were performed. DMBA and cyclophosphamide induced behavioral changes, not observed for free and liposomal citrinin. No hematological or biochemical changes were observed for LP-CIT. However, free citrinin reduced monocytes and caused hepatotoxicity. During treatment, significant differences were observed regarding the weight of the right and left breasts treated with DMBA compared to negative controls. Treatment with CPA, CIT, and LP-CIT reduced the weight of both breasts, with better results for liposomal citrinin. Furthermore, CPA, CIT, and LP-CIT presented genotoxic effects for tumor, blood, bone marrow, and liver cells, although less DNA damage was observed for LP-CIT compared to CIT and CPA. Healthy cell damage induced by LP-CIT was repaired during treatment, unlike CPA, which caused clastogenic effects. Thus, LP-CIT showed advantages for its use as a model of nanosystems for antitumor studies.
Collapse
Affiliation(s)
- Michely Laiany Vieira Moura
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Ag-Anne Pereira Melo de Menezes
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - José Williams Gomes de Oliveira Filho
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Maria Luiza Lima Barreto do Nascimento
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Antonielly Campinho dos Reis
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Alessandra Braga Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Felipe Cavalcanti Carneiro da Silva
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | | | - Hercília Maria Lins Rolim
- Laboratory of Pharmaceutical Nanosystems—NANOSFAR, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil
| | - Ana Amélia de Carvalho Melo Cavalcante
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - João Marcelo de Castro e Sousa
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| |
Collapse
|
8
|
Engin AB, Engin ED, Engin A. Targeted Nano-Based Systems for the Anti-Obesity Agent's Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:657-676. [PMID: 39287868 DOI: 10.1007/978-3-031-63657-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity is a global health concern and a chronic disease that is accompanied by excessive fat storage in adipose and nonadipose tissues. An increase in the body-mass index (BMI) is directly proportional to the 2- to 3.9-fold increase in all-cause mortality in obesity. If left untreated for a longer period, obesity-related metabolic, cardiovascular, inflammatory, and malignant diseases reduce life expectancy. Currently, most of the anti-obesity drugs have failed and fallen into disrepute, either due to their ineffectiveness or adverse effects. In this review, depending on their enhanced pharmacokinetic and biodistribution profiles, whether nanocarriers alter the basic properties and bioactivity of anti-obesity drugs used in clinical practice are debated. First, nanocarriers can improve the safety of still-used anti-obesity drugs by lowering their systemic toxicity through increasing targeting efficacy and preventing drug carrier toxicity. Second, when the micro-ribonucleic acids (miRNAs), which are aberrantly expressed in obesity and obesity-related diseases, are encapsulated into nanoparticles, they are effective in multiple obesity-related metabolic pathways and gene networks. Finally, a synergistic anti-obesity effect with low dose and low toxicity can be obtained with the combinatory therapy applied by encapsulating the anti-obesity drug and gene in the same nanocarrier delivery vehicle.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
9
|
Pradhan SP, Sahu PK, Behera A. New insights toward molecular and nanotechnological approaches to antidiabetic agents for Alzheimer's disease. Mol Cell Biochem 2023; 478:2739-2762. [PMID: 36949264 DOI: 10.1007/s11010-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder affecting a major class of silver citizens. The disorder shares a mutual relationship on account of its cellular and molecular pathophysiology with type-II diabetes mellitus (DM). Chronic DM increases the risk for AD. Emerging evidence recommended that resistance in insulin production develops cognitive dysfunction, which generally leads to AD. Repurposing of antidiabetic drugs can be effective in preventing and treatment of the neurodegenerative disorder. Limitations of antidiabetic drugs restrict the repurposing of the drugs for other disorders. Therefore, nanotechnological intervention plays a significant role in the treatment of neurological disorders. In this review, we discuss the common cellular and molecular pathophysiologies between AD and type-II DM, the relevance of in vivo models of type II DM in the study of AD, and the repurposing of antidiabetic drugs and the nanodelivery systems of antidiabetic drugs against AD.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India.
| |
Collapse
|
10
|
Tao C, Li F, Ma Z, Li X, Zhang Y, Le Y, Wang J, Zhao J, Liu C, Zhang J. Highly Efficient Oral Iguratimod/Polyvinyl Alcohol Nanodrugs Fabricated by High-Gravity Nanoprecipitation Technique for Treatment of Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304150. [PMID: 37964398 DOI: 10.1002/smll.202304150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/22/2023] [Indexed: 11/16/2023]
Abstract
Rheumatoid arthritis (RA), a systemic autoimmune disease, poses a significant human health threat. Iguratimod (IGUR), a novel disease-modifying antirheumatic drug (DMARD), has attracted great attention for RA treatment. Due to IGUR's hydrophobic nature, there's a pressing need for effective pharmaceutical formulations to enhance bioavailability and therapeutic efficacy. The high-gravity nanoprecipitation technique (HGNPT) emerges as a promising approach for formulating poorly water-soluble drugs. In this study, IGUR nanodrugs (NanoIGUR) are synthesized using HGNPT, with a focus on optimizing various operational parameters. The outcomes revealed that HGNPT enabled the continuous production of NanoIGUR with smaller sizes (ranging from 300 to 1000 nm), more uniform shapes, and reduced crystallinity. In vitro drug release tests demonstrated improved dissolution rates with decreasing particle size and crystallinity. Notably, in vitro and in vivo investigations showcased NanoIGUR's efficacy in inhibiting synovial fibroblast proliferation, migration, and invasion, as well as reducing inflammation in collagen-induced arthritis. This study introduces a promising strategy to enhance and broaden the application of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Cheng Tao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feifei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhenzhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Xiaoming Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yali Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuan Le
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiexin Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianjun Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
11
|
El Hoffy NM, Yacoub AS, Ghoneim AM, Ibrahim M, Ammar HO, Eissa N. Computational Amendment of Parenteral In Situ Forming Particulates' Characteristics: Design of Experiment and PBPK Physiological Modeling. Pharmaceutics 2023; 15:2513. [PMID: 37896273 PMCID: PMC10609842 DOI: 10.3390/pharmaceutics15102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Lipid and/or polymer-based drug conjugates can potentially minimize side effects by increasing drug accumulation at target sites and thus augment patient compliance. Formulation factors can present a potent influence on the characteristics of the obtained systems. The selection of an appropriate solvent with satisfactory rheological properties, miscibility, and biocompatibility is essential to optimize drug release. This work presents a computational study of the effect of the basic formulation factors on the characteristics of the obtained in situ-forming particulates (IFPs) encapsulating a model drug using a 21.31 full factorial experimental design. The emulsion method was employed for the preparation of lipid and/or polymer-based IFPs. The IFP release profiles and parameters were computed. Additionally, a desirability study was carried out to choose the optimum formulation for further morphological examination, rheological study, and PBPK physiological modeling. Results revealed that the type of particulate forming agent (lipid/polymer) and the incorporation of structure additives like Brij 52 and Eudragit RL can effectively augment the release profile as well as the burst of the drug. The optimized formulation exhibited a pseudoplastic rheological behavior and yielded uniformly spherical-shaped dense particulates with a PS of 573.92 ± 23.5 nm upon injection. Physiological modeling simulation revealed the pioneer pharmacokinetic properties of the optimized formulation compared to the observed data. These results assure the importance of controlling the formulation factors during drug development, the potentiality of the optimized IFPs for the intramuscular delivery of piroxicam, and the reliability of PBPK physiological modeling in predicting the biological performance of new formulations with effective cost management.
Collapse
Affiliation(s)
- Nada M. El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt; (A.S.Y.); (A.M.G.); (H.O.A.)
| | - Ahmed S. Yacoub
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt; (A.S.Y.); (A.M.G.); (H.O.A.)
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX 76013, USA
| | - Amira M. Ghoneim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt; (A.S.Y.); (A.M.G.); (H.O.A.)
| | - Magdy Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| | - Hussein O. Ammar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt; (A.S.Y.); (A.M.G.); (H.O.A.)
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| |
Collapse
|
12
|
Garcia-Tarazona YM, Morantes SJ, Gordillo JFI, Sepúlveda P, Ramos FA, Lafaurie GI. Candesartan exhibits low intrinsic permeation capacity and affects buccal tissue viability and integrity: An ex vivo study in porcine buccal mucosa. Eur J Pharm Sci 2023; 188:106495. [PMID: 37329923 DOI: 10.1016/j.ejps.2023.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Candesartan is a nonpeptide angiotensin II receptor blocker that selectively binds to angiotensin II receptor subtype 1. It is administered orally in its ester form (candesartan cilexetil). However, its poor aqueous solubility results in its low bioavailability; therefore, other routes of administration must be explored. The buccal mucosa has been extensively studied as an alternative route for drug delivery as it improves the bioavailability of drugs administered via the peroral route. Porcine buccal mucosa has been widely used as an ex vivo model to study the permeability of various diffusants; however, studies on candesartan are limited. This study aimed to evaluate the ex vivo permeation profile of candesartan and its effects on the viability and integrity of porcine buccal mucosa. Initially, we evaluated the viability, integrity, and barrier function of the buccal tissue before performing permeability tests using freshly excised tissues or tissues after 12 h of resection. Here, three indicators were used: caffeine, β-estradiol, and FD-20 penetration; mucosal metabolic activity, as determined using MTT reduction assay; and haematoxylin and eosin staining. Our results indicated that the porcine buccal mucosa preserved its viability, integrity, and barrier function before the permeation assay, allowing the passage of molecules with a molecular mass of less than 20 kDa, such as caffeine, but not β-estradiol and FD-20. Furthermore, we analyzed the intrinsic capacity of candesartan to diffuse through the fresh porcine buccal mucosa under two pH conditions. The concentration of candesartan in the receptor chamber of Franz diffusion cell was quantified using ultra-high liquid chromatography. In the permeation assay, candesartan exhibited a low intrinsic permeation capacity that impacted the buccal tissue viability and integrity, suggesting that using the buccal mucosa as an alternative route of administration requires developing a pharmaceutical formulation that reduces the adverse effects on mucosa and increasing the buccal permeability of candesartan.
Collapse
Affiliation(s)
- Yenny M Garcia-Tarazona
- Universidad El Bosque, Unidad de Investigación Básica Oral UIBO, Bogotá, Colombia; Universidad El Bosque, Facultad de Odontología, Maestría en Ciencias Odontológicas, Bogotá, Colombia
| | - Sandra Johanna Morantes
- Universidad El Bosque, Unidad de Investigación Básica Oral UIBO, Bogotá, Colombia; Facultad de Ciencias, Programa Química Farmacéutica, Grupo de Investigación en Química Aplicada INQA, Universidad El Bosque, Bogotá, Colombia.
| | | | - Paula Sepúlveda
- Facultad de Ciencias, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Freddy A Ramos
- Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gloria Inés Lafaurie
- Universidad El Bosque, Unidad de Investigación Básica Oral UIBO, Bogotá, Colombia
| |
Collapse
|
13
|
Huang TH, Chen CJ, Lin HCA, Chen CH, Fang JY. Self-Nanoemulsifying Drug Delivery System-Containing the Poorly Absorbed Drug - Valsartan in Post-Bariatric Surgery. Int J Nanomedicine 2023; 18:2647-2658. [PMID: 37220630 PMCID: PMC10200115 DOI: 10.2147/ijn.s394624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Purpose Morbid obesity and its related metabolic syndrome are an important health issue. Recently, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) have accounted for the most popular bariatric surgeries. Valsartan (VST) is a common hypertension drug, and nano-carriers can increase its solubility and bioavailability. This study aims to explore the nano-VST formula in bariatric surgery subjects. Methods High-fat fed animals were used as obese models. Operations were performed according to a standardized protocol. The drug was administrated by gavage, and blood samples were taken by serial tail vein sampling. Caco-2 cells were used for examining cell viability and drug uptake. A self-nano-emusifying drug delivery system (SNEDDS) formula was composed of sefsol-218, RH-40 and propylene glycol by a specified ratio, while high-performance liquid chromatography (HPLC) was used for determining drug concentrations. Results Post-operatively, subjects that underwent RYGB lost more body weight compared to the SG group. The SNEDDS did not exhibit cytotoxicity after adequate dilution, and the cytotoxicity was not related to VST dose. A better cellular uptake of SNEDDS was observed in vitro. The SNEDDS formula achieved a diameter of 84 nm in distilled water and 140 nm in simulated gastric fluid. In obese animals, the maximum serum concentration (Cmax) of VST was increased 1.68-folds by SNEDDS. In RYGB with SUS, the Cmax was reduced to less than 50% of the obese group. SNEDDS increased the Cmax to 3.5 folds higher than SUS and resulted in 3.28-folds higher AUC0-24 in the RYGB group. Fluorescence imaging also confirmed a stronger signal of SNEDDS in the gastrointestinal mucosa. SNEDDS accumulated a higher drug concentration than suspension alone in the liver of the obese group. Conclusion SNEDDS could reverse the VST malabsorption in RYGB. Further studies are mandatory to clarify post-SG change of drug absorption.
Collapse
Affiliation(s)
- Tzu-Hao Huang
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Chia Angela Lin
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
14
|
Pawar SD, Gawali K, Kulhari H, Murty US, Kumar P. Amoxapine-Loaded Solid Lipid Nanoparticles with Superior Preclinical Pharmacokinetics for Better Brain Delivery: LC-MS/MS and GC-MS Analysis. ACS Chem Neurosci 2023. [PMID: 37027804 DOI: 10.1021/acschemneuro.2c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
The tricyclic antidepressant amoxapine (AMX) has been reported for a rapid onset of action compared to other cyclic antidepressants. It has very low solubility and bioavailability due to first-pass metabolism. Therefore, we planned to develop solid lipid nanoparticles (SLNs) of AMX using a single emulsification method to increase its solubility and bioavailability. HPLC and LC-MS/MS methods were developed further to quantify AMX in the formulation, plasma, and brain tissue samples. The formulation was studied for entrapment efficiency, loading, and in vitro drug release. Particle size and ζ potential analyses, AFM, SEM, TEM, DSC, and XRD were used for further characterization. In vivo oral pharmacokinetic and brain pharmacokinetic studies were performed using Wistar rats. The entrapment and loading efficiencies of AMX in SLNs were 85.8 ± 3.42 and 4.5 ± 0.45%, respectively. The developed formulation had a mean particle size of 151.5 ± 7.02 nm and a polydispersity index of 0.40 ± 0.11. DSC and XRD results indicated that AMX was incorporated into the nanocarrier system in an amorphous form. SEM, TEM, and AFM studies of AMX-SLNs confirmed the particles' spherical shape and nanoscale size. AMX solubility increased by approx. 2.67 times compared to the pure drug. The developed LC-MS/MS method was successfully applied to the oral and brain pharmacokinetic study of AMX-loaded SLNs in rats. Oral bioavailability was enhanced 1.6 times compared to the pure drug. The peak plasma concentrations of pure AMX and AMX-SLNs were 617.4 ± 137.4 and 1043.5 ± 150.2 (ng/mL), respectively. AMX-SLNs showed more than 5.8 times brain concentration compared to the pure drug. Based on the findings, it appears that utilizing a solid lipid nanoparticle carrier to transport AMX can be a highly effective delivery method with improved pharmacokinetic properties in the brain. This approach may prove valuable for future antidepressant treatment.
Collapse
Affiliation(s)
- Sachin Dattram Pawar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Post Office Changsari, Kamrup, Assam 781101, India
| | - Komal Gawali
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Post Office Changsari, Kamrup, Assam 781101, India
| | - Hitesh Kulhari
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Post Office Changsari, Kamrup, Assam 781101, India
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Post Office Changsari, Kamrup, Assam 781101, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Post Office Changsari, Kamrup, Assam 781101, India
| |
Collapse
|
15
|
Badshah SF, Minhas MU, Khan KU, Barkat K, Abdullah O, Munir A, Suhail M, Malik NS, Jan N, Chopra H. Structural and in-vitro characterization of highly swellable β-cyclodextrin polymeric nanogels fabricated by free radical polymerization for solubility enhancement of rosuvastatin. PARTICULATE SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1080/02726351.2023.2183161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
| | | | | | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Punjab, Pakistan
| | - Orva Abdullah
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad, Pakistan
| | - Abubakar Munir
- Faculty of Pharmacy, Superior University, Lahore, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology, Mirpur, AJK, Pakistan
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
16
|
Patel R, Yadav BK, Patel G. Progresses in Nano-Enabled Platforms for the Treatment of Vaginal Disorders. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:208-227. [PMID: 35762539 DOI: 10.2174/1872210516666220628150447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The most common vaginal disorders are within the uterus. According to the latest statistics, vaginal disorders occur in 50% to 60% of females. Although curative treatments rely on surgical therapy, still first-line treatment is a non invasive drug. Conventional therapies are available in the oral and parenteral route, leading to nonspecific targeting, which can cause dose-related side effects. Vaginal disorders are localized uterine disorders in which intrauterine delivery via the vaginal site is deemed the preferable route to mitigate clinical drug delivery limitations. OBJECTIVE This study emphasizes the progress of site-specific and controlled delivery of therapeutics in the treatment of vaginal disorders and systemic adverse effects as well as the therapeutic efficacy. METHODS Related research reports and patents associated with topics are collected, utilized, and summarized the key findings. RESULTS The comprehensive literature study and patents like (US 9393216 B2), (JP6672370B2), and (WO2018041268A1) indicated that nanocarriers are effective above traditional treatments and have some significant efficacy with novelty. CONCLUSION Nowadays, site-specific and controlled delivery of therapeutics for the treatment of vaginal disorders is essential to prevent systemic adverse effects and therapeutic efficacy would be more effective. Nanocarriers have therefore been used to bypass the problems associated with traditional delivery systems for the vaginal disorder.
Collapse
Affiliation(s)
- Riya Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Bindu Kumari Yadav
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Gayatri Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
17
|
Ashwagandha-loaded nanocapsules improved the behavioral alterations, and blocked MAPK and induced Nrf2 signaling pathways in a hepatic encephalopathy rat model. Drug Deliv Transl Res 2023; 13:252-274. [PMID: 35672652 PMCID: PMC9726678 DOI: 10.1007/s13346-022-01181-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 12/14/2022]
Abstract
Ashwagandha (ASH), a vital herb in Ayurvedic medicine, demonstrated potent preclinical hepato- and neuroprotective effects. However, its efficacy is limited due to low oral bioavailability. Accordingly, we encapsulated ASH extract in chitosan-alginate bipolymeric nanocapsules (ASH-BPNCs) to enhance its physical stability and therapeutic effectiveness in the gastrointestinal tract. ASH-BPNC was prepared by emulsification followed by sonication. The NCs showed small particle size (< 220 nm), zeta-potential of 25.2 mV, relatively high entrapment efficiency (79%), physical stability at acidic and neutral pH, and in vitro release profile that extended over 48 h. ASH-BPNC was then investigated in a thioacetamide-induced hepatic encephalopathy (HE) rat model. Compared with free ASH, ASH-BPNC improved survival, neurological score, general motor activity, and cognitive task-performance. ASH-BPNC restored ALT, AST and ammonia serum levels, and maintained hepatic and brain architecture. ASH-BPNC also restored GSH, MDA, and glutathione synthetase levels, and Nrf2 and MAPK signaling pathways in liver and brain tissues. Moreover, ASH-BPNC downregulated hepatic NF-κB immunohistochemical expression. Moreover, the in vivo biodistribution studies demonstrated that most of the administered ASH-BPNC is accumulated in the brain and hepatic tissues. In conclusion, chitosan-alginate BPNCs enhanced the hepatoprotective and neuroprotective effects of ASH, thus providing a promising therapeutic approach for HE.
Collapse
|
18
|
Shahidi S, Rostamizadeh K, Fathi M, Nedaei K, Ramazani A. Combination of Quercetin or/and siRNA-loaded DDAB-mPEG-PCL hybrid nanoparticles reverse resistance to Regorafenib in colon cancer cells. BMC Complement Med Ther 2022; 22:340. [PMID: 36575448 PMCID: PMC9793538 DOI: 10.1186/s12906-022-03787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/10/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer death. Although Regorafenib showed survival benefits in patients with CRC, reports imply the recurrence of malignant phenotype resulting from chemotherapy. Evidence demonstrated that a5β1 integrin plays an important role in the Regorafenib treatment, which, may be led to resistance. In this study, the effects of /siRNA or/ and Quercetin loaded DDAB-mPEG-PCLnanoparticles could reverse this resistance phenotype in colon cancer cells in vitro. METHODS Regorafenib-resistant Ls-180 colon cancer cell line was developed by long-term exposure to Regorafenib. Quercetin and Regorafenib were separately encapsulated into mPEG-PCL micelles through the nano-precipitation method and characterized by DLS. Optimized doses of Quercetin and Regorafenib were used for combination therapy of resistant cells followed cytotoxicity study using MTT. Gene expression levels of the β1 subunit of integrin were determined by the real-time method of RT-PCR. RESULTS Developed Regorafenib resistant LS-180 showed to have Regorafenib IC50 of 38.96 ± 1.72 µM whereas IC50 in non-resistant cells were 8.51 ± 0.29 µM, which meaningful was lower statistically compared to that of a resistant one. The β1 mRNA level of whole α5β1 integrin was significantly higher in the resistant cells compared to those of non-resistant ones. Gene expression levels in each siRNA-loaded nanoparticle and Quercetin-loaded one were lower than that in mock experiments. Finally, when these two types of nanoparticles were used to treat resistant cells, gene expression decrease of integrin indicated a greater effect that could be capable of reverse resistancy. CONCLUSION Results of this study demonstrated another confirmation of involving integrins in cancer resistance following chemotherapy using Regorafenib. Also, it indicated how using siRNA targeting integrin could enhance the plant derivatives like Quercetin effects to reverse resistance in vitro.
Collapse
Affiliation(s)
- Shabnam Shahidi
- grid.469309.10000 0004 0612 8427Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- grid.469309.10000 0004 0612 8427Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.469309.10000 0004 0612 8427Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mojtaba Fathi
- grid.469309.10000 0004 0612 8427Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.412606.70000 0004 0405 433XDepartment of Biochemistry and Genetics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Keivan Nedaei
- grid.469309.10000 0004 0612 8427Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- grid.469309.10000 0004 0612 8427Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.469309.10000 0004 0612 8427Department of Pharmaceutical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
19
|
Reddy MR, Gubbiyappa KS. Formulation development, optimization and characterization of Pemigatinib-loaded supersaturable self-nanoemulsifying drug delivery systems. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Pemigatinib is a small molecule tyrosine kinase inhibitor of fibroblast growth factor receptor inhibitors. The oral bioavailability of Pemigatinib is constricted due to its limited solubility at physiological pH. It is essential to develop a novel formulation of Pemigatinib to improve the intrinsic solubility and to reduce the pharmacokinetic variability. Self-nanoemulsifying drug delivery system is an effective, smart and more adequate formulation approach for poorly soluble drugs. Different from conventional self-nanoemulsifying drug delivery system, a supersaturable self-nanoemulsifying drug delivery system of Pemigatinib was prepared by using a supersaturation promoter.
Results
Among all the oils, Captex® 300 have shown maximum solubility of Pemigatinib. Considering the solubilization potential and emulsification ability Kolliphor®RH 40 was selected as surfactant. Transcutol®HP was selected as co-surfactant. The composition of oil, surfactant and co-surfactant was identified using phase diagrams and further adjusted by simplex-lattice design. HPMC K4M as precipitation inhibitor at 5% concentration resulted in effective supersaturating with increased self-emulsification time. The droplet of sSNEDDS ranges from 166.78 ± 3.14 to 178.86 ± 1.24 nm with PDI 0.212 – 0.256, which is significantly smaller than that observed with plain SNEDDS. TEM images revealed the spherical shape of the nanodroplets. The final optimized formulation formed spontaneous nanoemulsion within 15 secs when added to physiological fluids. The percent transmittance of the diluted formulation was found to be 99.12 ± 0.46. The viscosity was found to be 574 ± 26 centipoises indicating the good flow ability. FTIR and DSC studies indicated the amorphization of the drug. The dissolution profile of sSNEDDS indicated the faster release of drug compared to both pure drug suspension and SNEDDS formulation. The drug release rate is directly proportional to the concentration of the drug. The drug release from the insoluble matrix is a square root of time-dependent Fickian diffusion process. The formulation was found to be stable and transparent at all pH values and the percent transmittance was more than 95%. Any kind of separation or precipitation was not observed at different temperatures cycles. No significant difference was observed with all the samples exposed at different storage conditions.
Conclusions
This study demonstrated the feasibility of stabilizing and improving the in-vitro performance of self-nanoemulsifying drug delivery systems of Pemigatinib by incorporating HPMC K4M as precipitation inhibitor.
Collapse
|
20
|
Preparation, physicochemical characterization, and bioactivity evaluation of berberine-entrapped albumin nanoparticles. Sci Rep 2022; 12:17431. [PMID: 36261663 PMCID: PMC9581884 DOI: 10.1038/s41598-022-21568-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid with several clinical therapeutic applications. Its low water solubility, absorption, and cellular bioavailability diminish BBR's therapeutic efficacy. In this study, BBR was encapsulated into bovine serum albumin nanoparticles (BSA NPs) core to reduce BBR limitations and enhance its clinical therapeutic properties. Several physicochemical characterization tools, such as Dynamic Light Scattering and Ultraviolet-Visible spectroscopic measurements, field emission transmission electron microscopy surface morphology, Fourier transforms infrared spectroscopy, thermal stability analysis, and releasing studies, were used to evaluate the BBR-BSA NPs. Compared to BBR, BBR-BSA nanoparticles demonstrated superior free radical scavenging and antioxidant capacities, anti-hemolytic and anticoagulant efficacies, and antimicrobial activities, as demonstrated by the findings of the in vitro studies. Furthermore, a stressed pancreatic rat model was induced using a high-fat, high-sucrose diet plus carbon tetrachloride injection. The in vivo results revealed that BBR-BSA NPs substantially restored peripheral glucose metabolism and insulin sensitivity. Oral administration of BBR-BSA NPs also improved pancreatic β-cells homeostasis, upregulated pancreatic antioxidant mechanisms, inhibited oxidants generation, and attenuated oxidative injury in the stressed pancreatic tissues. In conclusion, our in vitro and in vivo results confirmed that BBR-BSA NPs demonstrated more potent antioxidant properties and restored pancreatic homeostasis compared to BBR.
Collapse
|
21
|
Scariot DB, Staneviciute A, Zhu J, Li X, Scott EA, Engman DM. Leishmaniasis and Chagas disease: Is there hope in nanotechnology to fight neglected tropical diseases? Front Cell Infect Microbiol 2022; 12:1000972. [PMID: 36189341 PMCID: PMC9523166 DOI: 10.3389/fcimb.2022.1000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology is revolutionizing many sectors of science, from food preservation to healthcare to energy applications. Since 1995, when the first nanomedicines started being commercialized, drug developers have relied on nanotechnology to improve the pharmacokinetic properties of bioactive molecules. The development of advanced nanomaterials has greatly enhanced drug discovery through improved pharmacotherapeutic effects and reduction of toxicity and side effects. Therefore, highly toxic treatments such as cancer chemotherapy, have benefited from nanotechnology. Considering the toxicity of the few therapeutic options to treat neglected tropical diseases, such as leishmaniasis and Chagas disease, nanotechnology has also been explored as a potential innovation to treat these diseases. However, despite the significant research progress over the years, the benefits of nanotechnology for both diseases are still limited to preliminary animal studies, raising the question about the clinical utility of nanomedicines in this field. From this perspective, this review aims to discuss recent nanotechnological developments, the advantages of nanoformulations over current leishmanicidal and trypanocidal drugs, limitations of nano-based drugs, and research gaps that still must be filled to make these novel drug delivery systems a reality for leishmaniasis and Chagas disease treatment.
Collapse
Affiliation(s)
- Debora B. Scariot
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
- *Correspondence: Debora B. Scariot,
| | - Austeja Staneviciute
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - Jennifer Zhu
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - Xiaomo Li
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Evan A. Scott
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - David M. Engman
- Department of Pathology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
22
|
Yao S, Chen N, Li M, Wang Q, Sun X, Feng X, Chen Y. Elucidating the Particle Size Effect of Andrographolide Suspensions on Their IVIVC Performance in Oral Absorption. Eur J Pharm Biopharm 2022; 179:65-73. [PMID: 36058447 DOI: 10.1016/j.ejpb.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
The study aimed to explore the size effect on the in vitro-in vivo correlation (IVIVC) in the oral absorption of andrographolide nanosuspensions (Ag-NS). Ag-NS with controllable particle sizes were prepared by ultrasonic dispersion method, and the formulation and process parameters were optimized through single factor experiments using mean particle size, polydispersity index, and stability as evaluation indicators. The morphology of Ag-NS was observed by scanning electron microscopy (SEM), and the crystalline state of the nanosuspensions was characterized by X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). The dissolution tests were carried out with the paddle method in two different mediums simulating the pH conditions in intestinal fluid pH 6.8 and gastric fluid (pH 1.2), respectively. The pharmacokinetic behaviors were investigated in rats after oral administration, and a deconvolution approach was introduced to determine the correlation between in vitro dissolution and in vivo absorption (IVIVC). The formulation with the use of lecithin and PEG-800 as stabilizers showed its potential in the size-controllable preparation of Ag-NS. Via altering the ultrasonication amplitude and time, three Ag-NS suspensions with particle sizes of particle size, i.e., Ag-NS 250 (244.3 ± 0.4 nm), Ag-NS 450 (464.3 ± 32.2 nm), Ag-NS 1000 (1015 ± 36.1 nm) were prepared. Their morphological and crystal characteristics did not change during the size reduction process, but both of their in vitro dissolution and in vivo absorption were improved. Relatively better IVIVC performance was observed with the in vitro dissolution data at pH 6.8 (r > 0.9). With the reduction of particle size, the in vivo absorption fraction was more closed to the level of the in vitro dissolution. In conclusion, the decrease in particle size would improve the dissolution and absorption of Ag-NS, and also affect their IVIVC performance. The study would facilitate the design and quality control of Ag-NS in terms of particle size and dissolution specifications.
Collapse
Affiliation(s)
- Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Mingming Li
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, China
| | - Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Xinxing Sun
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
23
|
Bhatia T, Gupta GD, Kurmi BD, Singh D. Role of solid lipid nanoparticle for the delivery of Lipophilic Drugs and Herbal Medicines in the treatment of pulmonary hypertension. Pharm Nanotechnol 2022; 10:PNT-EPUB-126042. [PMID: 36045536 DOI: 10.2174/2211738510666220831113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon condition marked by elevated pulmonary artery pressure that leads to right ventricular failure. The majority of drugs are now been approved by FDA for PAH, however, several biopharmaceutical hindrances lead to failure of the therapy. Various novel drug delivery systems are available in the literature from which lipid-based nanoparticles i.e. solid lipid nanoparticle is widely investigated for improving the solubility and bioavailability of drugs. In this paper, the prototype phytoconstituents used in pulmonary arterial hypertension have limited solubility and bioavailability. We highlighted the novel concepts of SLN for lipophilic phytoconstituents with their potential applications. This paper also reviews the present state of the art regarding production techniques for SLN like High-Pressure Homogenization, Micro-emulsion Technique, and Phase Inversion Temperature Method, etc. Furthermore, toxicity aspects and in vivo fate of SLN are also highlighted in this review. In a nutshell, safer delivery of phytoconstituents by SLN added a novel feather to the cap of successful drug delivery technologies.
Collapse
Affiliation(s)
- Tanuja Bhatia
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| |
Collapse
|
24
|
Li J, Duan H, Liu Y, Wang L, Zhou X. Biomaterial-Based Therapeutic Strategies for Obesity and Its Comorbidities. Pharmaceutics 2022; 14:1445. [PMID: 35890340 PMCID: PMC9320151 DOI: 10.3390/pharmaceutics14071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a global public health issue that results in many health complications or comorbidities, including type 2 diabetes mellitus, cardiovascular disease, and fatty liver. Pharmacotherapy alone or combined with either lifestyle alteration or surgery represents the main modality to combat obesity and its complications. However, most anti-obesity drugs are limited by their bioavailability, target specificity, and potential toxic effects. Only a handful of drugs, including orlistat, liraglutide, and semaglutide, are currently approved for clinical obesity treatment. Thus, there is an urgent need for alternative treatment strategies. Based on the new revelation of the pathogenesis of obesity and the efforts toward the multi-disciplinary integration of materials, chemistry, biotechnology, and pharmacy, some emerging obesity treatment strategies are gradually entering the field of preclinical and clinical research. Herein, by analyzing the current situation and challenges of various new obesity treatment strategies such as small-molecule drugs, natural drugs, and biotechnology drugs, the advanced functions and prospects of biomaterials in obesity-targeted delivery, as well as their biological activities and applications in obesity treatment, are systematically summarized. Finally, based on the systematic analysis of biomaterial-based obesity therapeutic strategies, the future prospects and challenges in this field are proposed.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Hongli Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Yan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Lu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
25
|
Sharma A, Streets J, Bhatt P, Patel P, Sutariya V, Varghese Gupta S. Formulation and Characterization of Raloxifene Nanostructured Lipid Carriers for Permeability and Uptake Enhancement Applications. Assay Drug Dev Technol 2022; 20:164-174. [DOI: 10.1089/adt.2022.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anju Sharma
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Jarriaun Streets
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Priyanka Bhatt
- Department of Pharmaceutical Sciences, Wegmans School of Pharmacy, St. John Fisher College, Rochester, New York, USA
| | | | - Vijaykumar Sutariya
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
26
|
Drug-dendrimer complexes and conjugates: Detailed furtherance through theory and experiments. Adv Colloid Interface Sci 2022; 303:102639. [PMID: 35339862 DOI: 10.1016/j.cis.2022.102639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
Abstract
Dendritic nanovectors-based drug delivery has gained significant attention in the past couple of decades. Dendrimers play a crucial role in deciding the solubility of sparingly soluble drug molecules and help in improving pharmacokinetics. A few important steps in drug delivery through dendrimers, such as drug encapsulation, formulation, and target-specific delivery, play an important role in deciding the fate of a drug molecule. It is also of prime importance to understand the interactions between a drug molecule and dendrimers at atomistic levels to decode the mechanism of action of drug-dendrimer complexes and their reliability in terms of drug delivery. Colossal progress in current experimental and computational approaches in the field has resulted in a vast amount of data that needs to be curated to be further implemented efficiently. Improved computational power has led to greater accuracy and prompt predictions of properties of drug-dendrimer complexes and their mechanism of action. The current review encapsulates the pioneering work in the field, experimental achievements in terms of drug delivery, and newer computational techniques employed in the advancement of the field.
Collapse
|
27
|
Kumar G, Virmani T, Pathak K, Alhalmi A. A Revolutionary Blueprint for Mitigation of Hypertension via Nanoemulsion. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4109874. [PMID: 35463984 PMCID: PMC9023159 DOI: 10.1155/2022/4109874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Hypertension is one of the most important causes of mortality, affecting the health status of the patient. At the same time, hypertension causes a huge health and economic burden on the whole world. The incidence and prevalence of hypertension are rising even among young people in both urban as well as rural communities. Although various conventional therapeutic moieties are available for the management of hypertension, they have serious flaws such as hepatic metabolism, reduced dose frequency, poor aqueous solubility, reduced bioavailability, and increased adverse effects, making the drug therapy ineffective. Therefore, it is required to design a novel drug delivery system having the capability to solve the constraints associated with conventional treatment of hypertension. Nanotechnology is a new way of using and manipulating the matter at the molecular level, whose functional organization is measured in nanometers. The applications of nanotechnology in the field of medicine provide an alternative and novel direction for the treatment of cardiovascular diseases and show excellent performance in the field of targeted drug therapy. Various nanotechnologies based drug delivery systems, such as solid lipid nanoparticles, nanosuspension, nanoemulsion, liposome, self-emulsifying systems, and polymeric nanoparticles, are available. Among them, nanoemulsion has provided a niche to supplement currently available therapeutic choices due to numerous benefits like stability, ease of preparation, enhanced drug absorption, reduced hepatic metabolism, increased dose frequency, enhanced bioavailability, and encapsulation of hydrophilic as well as hydrophobic drugs. This present review provides an in-depth idea about progression in treatment of hypertension, constraints for antihypertensive drug therapy, need of nanoemulsions to overcome these constraints, comparative analysis of nanoemulsions over other nanostructure drug delivery systems, pharmacodynamics studies of nanoemulsions for treatment of hypertension, recent patents for drug-loaded nanoemulsions meant for hypertension, and marketed formulations of nanoemulsions for hypertension.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Kamla Pathak
- Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh 206001, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
28
|
Soliman ME, Adewumi AT, Akawa OB, Subair TI, Okunlola FO, Akinsuku OE, Khan S. Simulation Models for Prediction of Bioavailability of Medicinal Drugs-the Interface Between Experiment and Computation. AAPS PharmSciTech 2022; 23:86. [PMID: 35292867 DOI: 10.1208/s12249-022-02229-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
The oral drug bioavailability (BA) problems have remained inevitable over the years, impairing drug efficacy and indirectly leading to eventual human morbidity and mortality. However, some conventional lab-based methods improve drug absorption leading to enhanced BA, and the recent experimental techniques are up-and-coming. Nevertheless, some have inherent drawbacks in improving the efficacy of poorly insoluble and low impermeable drugs. Drug BA and strategies to overcome these challenges were briefly highlighted. This review has significantly unravelled the different computational models for studying and predicting drug bioavailability. Several computational approaches provide mechanistic insights into the oral drug delivery system simulation of descriptors like solubility, permeability, transport protein-ligand interactions, and molecular structures. The in silico techniques have long been known still are just being applied to unravel drug bioavailability issues. Many publications have reported novel applications of the computational models towards achieving improved drug BA, including predicting gastrointestinal tract (GIT) drug absorption properties and passive intestinal membrane permeability, thus maximizing time and resources. Also, the classical molecular simulation models for free solvation energies of soluble-related processes such as solubilization, dissolutions, supersaturation, and precipitation have been used in virtual screening studies. A few of the tools are GastroPlusTM that supports biowaiver for drugs, mainly BCS class III and predicts drug compounds' absorption and pharmacokinetic process; SimCyp® simulator for mechanistic modelling and simulation of drug formulation processes; pharmacodynamics analysis on non-linear mixed-effects modelling; and mathematical models, predicting absorption potential/maximum absorption dose. This review provides in silico-experiment annexation in the drug bioavailability enhancement, possible insights that lead to critical opinion on the applications and reliability of the various in silico models as a growing tool for drug development and discovery, thus accelerating drug development processes.
Collapse
|
29
|
Liew KB, Janakiraman AK, Sundarapandian R, Khalid SH, Razzaq FA, Ming LC, Khan A, Kalusalingam A, Ng PW. A review and revisit of nanoparticles for antimicrobial drug delivery. J Med Life 2022; 15:328-335. [PMID: 35449993 PMCID: PMC9015166 DOI: 10.25122/jml-2021-0097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/09/2021] [Indexed: 11/14/2022] Open
Abstract
Antimicrobials are widely used to treat bacteria, viruses, fungi, and protozoa. Therefore, research and development of newer types of antimicrobials are important. Antimicrobial resistance has emerged as a major challenge to the healthcare system, although various alternative antimicrobials have been proposed. However, none of these show consistent and comparable efficacy to antimicrobials in clinical trials. More recently, nanoparticles have emerged as a potential solution to antimicrobial agents to overcome antimicrobial resistance. This article revisits and updates applications of various types of nanoparticles for the delivery of antimicrobial agents and their characterization. Though nanoparticle technology has some limitations, it provides an innovative approach to pharmaceutical technology. Furthermore, nanoparticles offer a variety of advantages, such as enhancement of solubility and permeation, leading to better efficacy. In this article, approaches commonly employed to improve antimicrobial therapy are discussed. These approaches have advantages and applications and provide a broader opportunity for pharmaceutical scientists to choose the proper method per the desired outcome.
Collapse
Affiliation(s)
- Kai Bin Liew
- Corresponding Author: Kai Bin Liew, Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yadav D, Kwak M, Chauhan PS, Puranik N, Lee PCW, Jin JO. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin Cancer Biol 2022; 86:909-922. [PMID: 35181474 DOI: 10.1016/j.semcancer.2022.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Traditional approaches, such as surgery, chemotherapy, and radiotherapy have been the main cancer therapeutic modalities in recent years. Cancer immunotherapy is a novel therapeutic modality that potentiates the immune responses of patients against malignancy. Immune checkpoint proteins expressed on T cells or tumor cells serve as a target for inhibiting T cell overactivation, maintaining the balance between self-reactivity and autoimmunity. Tumors essentially hijack the immune checkpoint pathway in order to survive and spread. Immune checkpoint inhibitors (ICIs) are being developed as a result to reactivate the anti-tumor immune response. Recent advances in nanotechnology have contributed to the development of successful, safe, and efficient anticancer drug systems based on nanoparticles. Nanoparticle-based cancer immunotherapy overcomes numerous challenges and offers novel strategies for improving conventional immunotherapies. The fundamental and physiochemical properties of nanoparticles depend on various cancer therapeutic strategies, such as chemotherapeutics, nucleic acid-based treatments, photothermal therapy, and photodynamic agents. The review discusses the use of nanoparticles as carriers for delivering immune checkpoint inhibitors and their efficacy in cancer combination therapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, South Korea
| | | | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea.
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
31
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
32
|
|
33
|
Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci 2022; 288:120156. [PMID: 34801512 DOI: 10.1016/j.lfs.2021.120156] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disease affecting both upper and lower motor neurons. In the United States alone, there are 16,000-20,000 established cases of ALS. The early disease diagnosis is challenging due to many overlapping pathophysiologies with other neurological diseases. The etiology of ALS is unknown; however, it is divided into two categories: familial ALS (fALS) which occurs due to gene mutations & contributes to 5-10% of ALS, and sporadic ALS (sALS) which is due to environmental factors & contributes to 90-95% of ALS. There is still no curative treatment for ALS: palliative care and symptomatic treatment are therefore essential components in the management of these patients. In this review, we provide a panoramic view of ALS, which includes epidemiology, risk factors, pathophysiologies, biomarkers, diagnosis, therapeutics (natural, synthetic, gene-based, pharmacological, stem cell, extracellular vesicles, and physical therapy), controversies (in the clinical trials of ALS), the scope of nanomedicine in ALS, and future perspectives.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Acharan S Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
34
|
Cochleate drug delivery systems: An approach to their characterization. Int J Pharm 2021; 610:121225. [PMID: 34710542 DOI: 10.1016/j.ijpharm.2021.121225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
Cochleate systems formed from phospholipids have very useful properties as drug delivery systems with sustained release capabilities, which are able to improve bioavailability and efficacy, reduce toxicity and increase the shelf-life of encapsulated molecules. These nanometric or micrometric structures are usually obtained after interaction of negatively charged liposomes with a positively charged bridging agent. Many different methods are now available to prepare cochleates and there are also numerous techniques that can be used to characterize them, some of which can be easily applied while others require more sophisticated equipment or analysis. The present review describes the important features of this drug delivery system; including their structural properties and potential applications, as well as a brief account of methods for their preparation and an extensive description of the techniques used for their characterization. This information could guide formulators in their choice of methods of characterization that would be best suited to their needs in terms of time, precision and technological difficulty.
Collapse
|
35
|
Grilc NK, Sova M, Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics 2021; 13:2137. [PMID: 34959418 PMCID: PMC8708625 DOI: 10.3390/pharmaceutics13122137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is associated with a wide range of diseases characterised by oxidant-mediated disturbances of various signalling pathways and cellular damage. The only effective strategy for the prevention of cellular damage is to limit the production of oxidants and support their efficient removal. The implication of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the cellular redox status has spurred new interest in the use of its natural modulators (e.g., curcumin, resveratrol). Unfortunately, most natural Nrf2 modulators are poorly soluble and show extensive pre-systemic metabolism, low oral bioavailability, and rapid elimination, which necessitates formulation strategies to circumvent these limitations. This paper provides a brief introduction on the cellular and molecular mechanisms involved in Nrf2 modulation and an overview of commonly studied formulations for the improvement of oral bioavailability and in vivo pharmacokinetics of Nrf2 modulators. Some formulations that have also been studied in vivo are discussed, including solid dispersions, self-microemulsifying drug delivery systems, and nanotechnology approaches, such as polymeric and solid lipid nanoparticles, nanocrystals, and micelles. Lastly, brief considerations of nano drug delivery systems for the delivery of Nrf2 modulators to the brain, are provided. The literature reviewed shows that the formulations discussed can provide various improvements to the bioavailability and pharmacokinetics of natural Nrf2 modulators. This has been demonstrated in animal models and clinical studies, thereby increasing the potential for the translation of natural Nrf2 modulators into clinical practice.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Matej Sova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
36
|
Mollaeva MR, Yabbarov N, Sokol M, Chirkina M, Mollaev MD, Zabolotskii A, Seregina I, Bolshov M, Kaplun A, Nikolskaya E. Optimization, Characterization and Pharmacokinetic Study of Meso-Tetraphenylporphyrin Metal Complex-Loaded PLGA Nanoparticles. Int J Mol Sci 2021; 22:12261. [PMID: 34830136 PMCID: PMC8618356 DOI: 10.3390/ijms222212261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
The selection of technological parameters for nanoparticle formulation represents a complicated development phase. Therefore, the statistical analysis based on Box-Behnken methodology is widely used to optimize technological processes, including poly(lactic-co-glycolic acid) nanoparticle formulation. In this study, we applied a two-level three-factor design to optimize the preparation of nanoparticles loaded with cobalt (CoTPP), manganese (MnClTPP), and nickel (NiTPP) metalloporphyrins (MeP). The resulting nanoparticles were examined by dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, MTT test, and hemolytic activity assay. The optimized model of nanoparticle formulation was validated, and the obtained nanoparticles possessed a spherical shape and physicochemical characteristics enabling them to deliver MeP in cancer cells. In vitro hemolysis assay revealed high safety of the formulated MeP-loaded nanoparticles. The MeP release demonstrated a biphasic profile and release mechanism via Fick diffusion, according to release exponent values. Formulated MeP-loaded nanoparticles revealed significant antitumor activity and ability to generate reactive oxygen species. MnClTPP- and CoTPP-nanoparticles specifically accumulated in tissues, preventing wide tissue distribution caused by long-term circulation of the hydrophobic drug. Our results suggest that MnClTPP- and CoTPP-nanoparticles represent the greatest potential for utilization in in anticancer therapy due to their effectiveness and safety.
Collapse
Affiliation(s)
- Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Murad D. Mollaev
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Artur Zabolotskii
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Irina Seregina
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Mikhail Bolshov
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Alexander Kaplun
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia;
| | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| |
Collapse
|
37
|
Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9322282. [PMID: 34746313 PMCID: PMC8570876 DOI: 10.1155/2021/9322282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
The emerging science of nanotechnology sparked a research attention in its potential benefits in comparison to the conventional materials used. Oral products prepared via nanoparticles (NPs) have garnered great interest worldwide. They are used commonly to incorporate nutrients and provide antimicrobial activity. Formulation into NPs can offer opportunities for targeted drug delivery, improve drug stability in the harsh environment of the gastrointestinal (GI) tract, increase drug solubility and bioavailability, and provide sustained release in the GI tract. However, some issues like the management of toxicity and safe handling of NPs are still debated and should be well concerned before their application in oral preparations. This article will help the reader to understand safety issues of NPs in oral drug delivery and provides some recommendations to the use of NPs in the drug industry.
Collapse
Affiliation(s)
- Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Parvez S, Yadagiri G, Arora K, Javaid A, Kushwaha AK, Singh OP, Sundar S, Mudavath SL. Coalition of Biological Agent (Melatonin) With Chemotherapeutic Agent (Amphotericin B) for Combating Visceral Leishmaniasis via Oral Administration of Modified Solid Lipid Nanoparticles. ACS Biomater Sci Eng 2021. [PMID: 34463477 DOI: 10.1021/acsbiomaterials.1c00859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, 2-hydroxypropyl-β-cyclodextrin (HPβCD) grafted solid lipid nanoparticle (SLN)-based bioconjugate was synthesized and used for administering a combination of melatonin (Mel) and amphotericin B (AmB) orally for effective visceral leishmaniasis (VL) treatment. The formulations (HPCD-Mel-AmB SLN) were synthesized by the emulsion solvent evaporation method. HPCD-Mel-AmB SLN showed a high loading capacity and a high entrapment efficiency of AmB (% DL = 9.0 ± 0.55 and % EE = 87.9 ± 0.57) and Mel (% DL = 7.5 ± 0.51 and % EE = 63 ± 6.24). The cumulative percent release of AmB and Mel was 66.10 and 73.06%, respectively, up to 72 h. Time-dependent cellular uptake was noticed for HPCD-Mel-AmB SLN for 4 h. Further, HPCD-Mel-AmB SLN did not show any toxic effects on J774A.1 macrophages and Swiss albino mice. HPCD-Mel-AmB SLN (10 mg/kg ×5 days, p.o.) has significantly diminished (98.89%) the intracellular parasite load in liver tissues of L. donovani-infected BALB/c mice, subsequently highlighting the role of melatonin toward an effective strategy in combating leishmanial infection. Therefore, these results indicated that administration of HPCD-Mel-AmB SLN improve the therapeutic index of the first-line drug in addition to the introduction of biological agent and would be a promising therapeutic candidate for effective VL therapy. In the present study, the objective is to test the efficacy of the chemotherapeutic approach in combination with a biological immunomodulatory agent against leishmanial infection using in vitro and in vivo studies. This information suggests that melatonin could be an efficacious and potent antileishmanial agent.
Collapse
Affiliation(s)
- Shabi Parvez
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Habitat Centre, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Habitat Centre, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Kanika Arora
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Habitat Centre, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Aaqib Javaid
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Habitat Centre, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Anurag Kumar Kushwaha
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.,Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Habitat Centre, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
39
|
Gupta N, Yadav V, Patel R. A brief review of the essential role of nanovehicles for improving the therapeutic efficacy of pharmacological agents against tumours. Curr Drug Deliv 2021; 19:301-316. [PMID: 34391379 DOI: 10.2174/1567201818666210813144105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the leading cause of death globally. There are several differences between cancer cells and normal cells. From all the therapies, chemotherapy is the most prominent therapy to treat cancer. However, the conventional drug delivery that is used to deliver poorly aqueous soluble chemotherapeutic agents has several obstacles such as whole-body distribution, rapid excretion, degradation before reaching the infected site, side effects, etc. Nanoformulation of these aqueous insoluble agents is the emerging delivery system for targeted and increasing solubility. Among all the three methods (physical, chemical and biological) chemical and biological methods are mostly used for the synthesis of nanovehicles (NVs) of different sizes, shapes and dimensions. A passive targeting delivery system in which NVs supports the pharmacological agents (drugs/genes) is a good way for resolving the obstacles with a conventional delivery system. It enhances the therapeutic efficacy of pharmacological agents (drugs/genes). These NVs have several specific characters like small size, large surface area to volume ratio, surface functionalization, etc. However, this delivery is not able to deliver site-specific delivery of drugs. An active targeting delivery system in which pharmacological agents are loaded on NVs to attack directly on cancer cells and tissues is a superior way for delivering the pharmacological agents compared to a passive targeting delivery system. Various targeting ligands have been investigated and applied for targeting the delivery of drugs such as sugar, vitamin, antibodies, protein, peptides, etc. These targeted ligand supports to guide the NVs accumulated directly on the cancer cells with a higher level of cellular internalization compared to passive targeting and conventional delivery system.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India
| | - Virendra Yadav
- Department of Microbiology, School of Life Sciences, Jaipur National University, Jaipur- 341503, Rajasthan, India
| | - Rakesh Patel
- Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana- 384012, Gujarat, India
| |
Collapse
|
40
|
Gandhi NV, Deokate UA, Angadi SS. Formulation, Optimization and Evaluation of Nanoparticulate Oral Fast Dissolving Film Dosage Form of Nitrendipine. AAPS PharmSciTech 2021; 22:218. [PMID: 34389913 DOI: 10.1208/s12249-021-02100-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
The primary objective of the present research work was to develop nanoparticles incorporating (nanoparticulate) fast dissolving (orodispersible) film evincing enhanced solubility and bioavailability of nitrendipine (NIT). An antisolvent sonoprecipitation method was employed to produce the NIT nanosuspension (NS), which was optimized using the 32 optimal response surface design and then the optimized one was evaluated for various parameters (Gandhi et al., AAPS PharmSciTech 22 (1):1-15, 2021). The NIT nanoparticulate orodispersible film (N-ODF) was prepared utilizing the nanosuspension by the solvent casting method using the Vijay film-forming instrument. The N-ODF was optimized by the 23 full factorial design and was evaluated for several parameters. The optimized NS depicted a particle size of 505.74 ± 15.48 nm with a polydispersity index (PDI) of 0.083 ± 0.006 (Fig. 1b). The NIT nanoparticles showed a striking increment in saturation solubility (26.14 times), when compared with plain NIT (2). The developed NIT N-ODF exhibited thickness (0.148 ± 0.008 mm), folding endurance (280.33 ± 5.51 times), surface pH (6.86 ± 0.05), tensile strength (8.25 ± 0.13 kg/cm2), % elongation (63.5 ± 1.97%), and disintegration time (24.60 ± 1.31 s) to be within the standard intended limit. The in vitro dissolution study unveiled 100.28 ± 2.64% and 100.68 ± 2.50% of NIT release from lyophilized nanocrystals (in 8 min) and N-ODF (in 3.5 min), respectively, whereas the conventional NIT tablet took 30 min to release 99.94 ± 1.57% of NIT (Gandhi et al., AAPS PharmSciTech 22 (1):1-15, 2021). The in vivo pharmacokinetic study in rabbits inferred the achievement of significantly (p < 0.05) higher bioavailability of NIT on release from N-ODF in comparison to the conventional NIT tablet. Thus, the generation of N-ODF can be considered as a propitious move toward improving the efficacy of NIT to treat hypertension and angina pectoris.
Collapse
|
41
|
Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH, Anjum I. Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives. Pharmaceuticals (Basel) 2021; 14:ph14080707. [PMID: 34451803 PMCID: PMC8401281 DOI: 10.3390/ph14080707] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
Healthcare, as a basic human right, has often become the focus of the development of innovative technologies. Technological progress has significantly contributed to the provision of high-quality, on-time, acceptable, and affordable healthcare. Advancements in nanoscience have led to the emergence of a new generation of nanostructures. Each of them has a unique set of properties that account for their astonishing applications. Since its inception, nanotechnology has continuously affected healthcare and has exerted a tremendous influence on its transformation, contributing to better outcomes. In the last two decades, the world has seen nanotechnology taking steps towards its omnipresence and the process has been accelerated by extensive research in various healthcare sectors. The inclusion of nanotechnology and its allied nanocarriers/nanosystems in medicine is known as nanomedicine, a field that has brought about numerous benefits in disease prevention, diagnosis, and treatment. Various nanosystems have been found to be better candidates for theranostic purposes, in contrast to conventional ones. This review paper will shed light on medically significant nanosystems, as well as their applications and limitations in areas such as gene therapy, targeted drug delivery, and in the treatment of cancer and various genetic diseases. Although nanotechnology holds immense potential, it is yet to be exploited. More efforts need to be directed to overcome these limitations and make full use of its potential in order to revolutionize the healthcare sector in near future.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
- Correspondence: ; Tel.: +92-300-6957038
| | - Sara Ishaque
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| | - Hijab Fatima
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| | - Wajiha Farooq
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAe USC1328, Université d’Orléans, 28000 Chartres, France;
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 54000, Pakistan;
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| |
Collapse
|
42
|
Obisesan O, Katata-Seru L, Mufamadi S, Mufhandu H. Applications of Nanoparticles for Herpes Simplex Virus (HSV) and Human Immunodeficiency Virus (HIV) Treatment. J Biomed Nanotechnol 2021; 17:793-808. [PMID: 34082867 DOI: 10.1166/jbn.2021.3074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the growing studies focused on the immunotherapy of hepatocellular carcinoma and proved the preclinical and clinical promises of host antitumor immune response. However, there were still various obstacles in meeting satisfactory clinic need, such as low response rate, primary resistance and secondary resistance to immunotherapy. Tackling these barriers required a deeper understanding of immune underpinnings and a broader understanding of advanced technology. This review described immune microenvironment of liver and HCC which naturally decided the complexity of immunotherapy, and summarized recent immunotherapy focusing on different points. The ever-growing clues indicated that the instant killing of tumor cell and the subsequent relive of immunosuppressive microenvironment were both indis- pensables. The nanotechnology applied in immunotherapy and the combination with intervention technology was also discussed.
Collapse
Affiliation(s)
- Oluwafemi Obisesan
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Lebogang Katata-Seru
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Steven Mufamadi
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Hazel Mufhandu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
43
|
Wang J, Chin D, Poon C, Mancino V, Pham J, Li H, Ho PY, Hallows KR, Chung EJ. Oral delivery of metformin by chitosan nanoparticles for polycystic kidney disease. J Control Release 2021; 329:1198-1209. [PMID: 33127449 PMCID: PMC7904655 DOI: 10.1016/j.jconrel.2020.10.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
Nanoparticle drug delivery has many advantages over small molecule therapeutics, including reducing off-target side effects and increasing drug potency. However, many nanoparticles are administered parenterally, which is challenging for chronic diseases such as polycystic kidney disease (PKD), the most common hereditary disease worldwide in which patients need continuous treatment over decades. To address this clinical need, we present the development of nanoparticles synthesized from chitosan, a widely available polymer chosen for its ability to improve oral bioavailability. Specifically, we optimized the synthesis parameters of chitosan nanoparticles and demonstrate mucoadhesion and permeation across an intestinal barrier model in vitro. Furthermore, when administered orally to mice, ex vivo imaging of rhodamine-loaded chitosan nanoparticles showed significantly higher accumulation in the intestines compared to the free model drug, as well as 1.3 times higher serum area under the curve (AUC), demonstrating controlled release and improved serum delivery over 24 h. To test its utility for chronic diseases such as PKD, we loaded the candidate PKD drug, metformin, into chitosan nanoparticles, and upon oral administration to a PKD murine model (Pkd1fl/fl;Pax8-rtTA;Tet-O cre), a lower cyst burden was observed compared to free metformin, and was well tolerated upon repeated dosages. Blood urea nitrogen (BUN) and creatinine levels were similar to untreated mice, demonstrating kidney and biocompatibility health. Our study builds upon previous chitosan-based drug delivery approaches, and demonstrates a novel, oral nanoformulation for PKD.
Collapse
Affiliation(s)
- Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Deborah Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Li
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pei-Yin Ho
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth R Hallows
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Bridge Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Borcan F, Len A, Dehelean CA, Dudás Z, Ghiulai R, Iftode A, Racoviceanu R, Soica CM. Design and Assessment of a Polyurethane Carrier Used for the Transmembrane Transfer of Acyclovir. NANOMATERIALS 2020; 11:nano11010051. [PMID: 33379150 PMCID: PMC7823466 DOI: 10.3390/nano11010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
THE Herpes simplex viruses (HSV-1, HSV-2) are responsible for a wide variety of conditions, from cutaneous-mucosal to central nervous system (CNS) infections and occasional infections of the visceral organs, some of them with a lethal end. Acyclovir is often used intravenously, orally, or locally to treat herpetic infections but it must be administered with caution to patients with kidney disease and to children of early age. The main objectives of this study were to synthesize and evaluate new polyurethane nanoparticles that might be used as proper transmembrane carriers for acyclovir. Polyurethane particles were obtained by a polyaddition process: a mixture of two aliphatic diisocyanates used as organic phase was added to a mixture of butanediol and polyethylene glycol used as aqueous phase. Two different samples (with and without acyclovir, respectively) were synthesized and characterized by UV-Vis spectra in order to assess the encapsulation efficacy and the release profile, FT-IR, DSC, SEM, and SANS for structural characterization, as well as skin irritation tests. Nearly homogeneous samples with particle sizes between 78 and 91 nm have been prepared and characterized revealing a medium tendency to form clusters and a high resistance to heat up to 300 °C. The release profile of these nanoparticles is characteristic to a drug delivery system with a late discharge of the loaded active agents. Very slight increases in the level of transepidermal water loss and erythema were found in a 15-day evaluation on human skin. The results suggest the synthesis of a non-irritative carrier with a high encapsulation efficacy that can be successfully used for the transmembrane transfer of acyclovir.
Collapse
Affiliation(s)
- Florin Borcan
- Department I, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Adél Len
- Neutron Spectroscopy Department, Centre for Energy Research, H-1121 Budapest, Hungary;
- Faculty of Engineering and Information Technology, University of Pécs, H-7624 Pécs, Hungary
| | - Cristina A. Dehelean
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.D.); (A.I.); (R.R.); (C.M.S.)
| | - Zoltán Dudás
- Neutron Spectroscopy Department, Centre for Energy Research, H-1121 Budapest, Hungary;
- “Coriolan Drăgulescu” Institute of Chemistry, 300223 Timisoara, Romania
- Correspondence: (Z.D.); (R.G.); Tel.: +36-1-392-2222/1849 (Z.D.); +40-723-326-823 (R.G.)
| | - Roxana Ghiulai
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.D.); (A.I.); (R.R.); (C.M.S.)
- Correspondence: (Z.D.); (R.G.); Tel.: +36-1-392-2222/1849 (Z.D.); +40-723-326-823 (R.G.)
| | - Andrada Iftode
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.D.); (A.I.); (R.R.); (C.M.S.)
| | - Roxana Racoviceanu
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.D.); (A.I.); (R.R.); (C.M.S.)
| | - Codruta M. Soica
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.D.); (A.I.); (R.R.); (C.M.S.)
| |
Collapse
|
45
|
Adamczyk-Grochala J, Lewinska A. Nano-Based Theranostic Tools for the Detection and Elimination of Senescent Cells. Cells 2020; 9:E2659. [PMID: 33322013 PMCID: PMC7764355 DOI: 10.3390/cells9122659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The progressive accumulation of apoptosis-resistant and secretory active senescent cells (SCs) in animal and human aged tissues may limit lifespan and healthspan and lead to age-related diseases such as cancer, neurodegenerative disorders, and metabolic syndrome. Thus, SCs are suggested targets in anti-aging therapy. In the last two decades, a number of nanomaterials have gained much attention as innovative tools in theranostic applications due to their unique properties improving target visualization, drug and gene delivery, controlled drug release, effective diagnosis, and successful therapy. Although the healthcare industry has focused on a plethora of applications of nanomaterials, it remains elusive how nanomaterials may modulate cellular senescence, a hallmark of aging. In this review paper, we consider novel nanotechnology-based strategies for healthspan promotion and the prevention of age-related dysfunctions that are based on the delivery of therapeutic compounds capable to preferentially killing SCs (nano-senolytics) and/or modulating a proinflammatory secretome (nano-senomorphics/nano-senostatics). Recent examples of SC-targeted nanomaterials and the mechanisms underlying different aspects of the nanomaterial-mediated senolysis are presented and discussed.
Collapse
Affiliation(s)
- Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Anna Lewinska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
46
|
Racoviceanu R, Trandafirescu C, Voicu M, Ghiulai R, Borcan F, Dehelean C, Watz C, Aigner Z, Ambrus R, Coricovac DE, Cîrcioban D, Mioc A, Szuhanek CA, Şoica C. Solid Polymeric Nanoparticles of Albendazole: Synthesis, Physico-Chemical Characterization and Biological Activity. Molecules 2020; 25:E5130. [PMID: 33158183 PMCID: PMC7663605 DOI: 10.3390/molecules25215130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Albendazole is a benzimidazole derivative with documented antitumor activity and low toxicity to healthy cells. The major disadvantage in terms of clinical use is its low aqueous solubility which limits its bioavailability. Albendazole was incorporated into stable and homogeneous polyurethane structures with the aim of obtaining an improved drug delivery system model. Spectral and thermal analysis was used to investigate the encapsulation process and confirmed the presence of albendazole inside the nanoparticles. The in vitro anticancer properties of albendazole encapsulated in polyurethane structures versus the un-encapsulated compound were tested on two breast cancer cell lines, MCF-7 and MDA-MB-231, in terms of cellular viability and apoptosis induction. The study showed that the encapsulation process enhanced the antitumor activity of albendazole on the MCF-7 and MDA-MB-23 breast cancer lines. The cytotoxic activity manifested in a concentration-dependent manner and was accompanied by changes in cell morphology and nuclear fragmentation.
Collapse
Affiliation(s)
- Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.R.); (C.T.); (C.Ş.)
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.R.); (C.T.); (C.Ş.)
| | - Mirela Voicu
- Department of Pharmacology and Clinical Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.R.); (C.T.); (C.Ş.)
| | - Florin Borcan
- Department of Analytical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (F.B.); (D.C.)
| | - Cristina Dehelean
- Department of Toxicology, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.D.); (D.E.C.)
| | - Claudia Watz
- Department of Pharmaceutical Physics, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Zoltán Aigner
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6th Eotvos Str., 6720 Szeged, Hungary; (Z.A.); (R.A.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6th Eotvos Str., 6720 Szeged, Hungary; (Z.A.); (R.A.)
| | - Dorina Elena Coricovac
- Department of Toxicology, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.D.); (D.E.C.)
| | - Denisa Cîrcioban
- Department of Analytical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (F.B.); (D.C.)
| | - Alexandra Mioc
- Department of Anatomy, Physiology and Physiopathology, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Camelia Alexandrina Szuhanek
- Department of Orthodontics, Victor Babeș University of Medicine and Pharmacy, 9th Revolutiei din 1989 Bvd, 300041 Timisoara, Romania;
| | - Codruţa Şoica
- Department of Pharmaceutical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.R.); (C.T.); (C.Ş.)
| |
Collapse
|
47
|
Bile acid transporter-mediated oral drug delivery. J Control Release 2020; 327:100-116. [PMID: 32711025 DOI: 10.1016/j.jconrel.2020.07.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized in the liver, stored in the gallbladder, and secreted into the duodenum at meals. Apical sodium-dependent bile acid transporter (ASBT), an ileal Na+-dependent transporter, plays the leading role of bile acid absorption into enterocytes, where bile acids are delivered to basolateral side by ileal bile acid binding protein (IBABP) and then released by organic solute transporter OSTα/β. The absorbed bile acids are delivered to the liver via portal vein. In this process called "enterohepatic recycling", only 5% of the bile acid pool (~3 g in human) is excreted in feces, indicating the large recycling capacity and high transport efficacy of ASBT-mediated absorption. Therefore, bile acid transporter-mediated oral drug delivery has been regarded as a feasible and potential strategy to improve the oral bioavailability. This review introduces the key factors in enterohepatic recycling, especially the mechanism of bile acid uptake by ASBT, and the development of bile acid-based oral drug delivery for ASBT-targeting, including bile acid-based prodrugs, bile acid/drug electrostatic complexation and bile acid-containing nanocarriers. Furthermore, the specific transport pathways of bile acid in enterocytes are described and the recent finding of lymphatic delivery of bile acid-containing nanocarriers is discussed.
Collapse
|
48
|
Prabhu DS, Rajeswari VD. PPAR-Gamma as putative gene target involved in Butein mediated anti-diabetic effect. Mol Biol Rep 2020; 47:5273-5283. [PMID: 32642916 DOI: 10.1007/s11033-020-05605-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/20/2020] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder caused due to varied genetic and lifestyle factors. The search for a potential natural compound to enhance the treatment of diabetes is the need of the hour. Butein, a flavonoid, found sufficiently in Faba bean, is said to possess an anti-diabetic property. In-silico analysis, Butein is predicted as a potential anti-diabetic compound, due to its regulatory action on PPAR-Gamma. Based on this evidence, the Butein's anti-diabetic action is studied in diabetic induced rat models. The drug property of Butein is studied through in-silico analysis to determine the metabolic properties. In animal models, the biochemical analysis, histopathological and gene expression against PPAR-Gamma were studied comparatively. Butein being a hydrophobic compound, the bioavailability is said to be minimum. Hence, Butein formulation was made using biopolymer Chitosan for the synergistic anti-diabetic action. The Butein Chitosan formulation was optimized and characterized using analytical techniques. Further, the anti-diabetic activity of Butein and Butein Chitosan formulation was studied in diabetic induced rats. The obtained in-silico analysis results showed that Butein is the most favorable drug. Apparently, in the rat model, Butein and Butein Chitosan formulation effectively controlled the blood glucose levels without any side effects. The histopathological observations of the tissue samples showed nontoxic activity. Additionally, the gene expression analysis predicted the possible mechanism of anti-diabetic action exhibited through the down regulation of PPAR-Gamma. Whereas, the Butein Chitosan formulation failed, to show synergetic anti-diabetic activity as expected. This study is vital in introducing Butein as a safe anti-diabetic compound, which can be used in the treatment of T2DM.
Collapse
Affiliation(s)
- D Sathya Prabhu
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, 632 014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
49
|
Chen S, Ren Y, Duan P. Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling. Biomed Pharmacother 2020; 129:110371. [PMID: 32563984 DOI: 10.1016/j.biopha.2020.110371] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer still remains a leading cause of cancer mortality in the world. Obatoclax mesylate (OM), a B cell chronic lymphocytic leukemia/lymphoma 2 (Bcl-2) family antagonist, is a potential antitumor drug. However, its poor aqueous solubility restricts its clinical application. Although these inherent defects, nanotechnology can be used to improve the solubility and tumor target of OM, promoting its antitumor efficiency. In the present study, the poly(lactic-coglycolic acid) (PLGA) was used and combined with red blood-cell membrane (RBCm) to explore if OM-loaded RBCm nanoparticles could improve the antitumor efficacy of OM for the treatment of lung cancer with relatively lower side effects compared with the free OM. The good physicochemical stability of the prepared RBCm-OM/PLGA nanoparticles was confirmed, and the optimal size of 153 nm was screened out, along with sustained drug release behavior. We found that RBCm-OM/PLGA nanoparticles effectively reduced the proliferation of lung cancer cells. Additionally, RBCm-OM/PLGA nanoparticles considerably induced apoptosis in lung cancer cells by reducing Bcl-2 expression levels, accompanied with the improved Cyto-c releases in cytoplasm and Caspase-3 activation. Mitochondrial membrane potential was also obviously impaired in lung cancer cells incubated with RBCm-OM/PLGA nanoparticles. Compared with free OM, RBCm-OM/PLGA nanoparticles could greatly prolong the drug circulation time in vivo and upgraded the drug concentration accumulated in tumor tissue. Furthermore, RBCm-OM/PLGA nanoparticles exerted stronger antitumor efficacy in vivo against lung cancer progression with superior safety. Therefore, RBCm-OM/PLGA nanoparticles provided new potential for lung cancer therapy with the improved safety and therapeutic effect.
Collapse
Affiliation(s)
- Song Chen
- Department of Radiology, XD Group Hospital, Xi'an City, Shaanxi Province, 710077, China
| | - Yujie Ren
- Department of CT Room, Dongying People's Hospital, Dongying City, Shandong Province, 257091, China
| | - Peng Duan
- Department of Oncology, The Third People's Hospital of Qingdao, Qingdao City, Shandong Province, 266041, China.
| |
Collapse
|
50
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|