1
|
Rostami M, Farahani P, Esmaelian S, Bahman Z, Fadel Hussein A, A Alrikabi H, Hosseini Hooshiar M, Yasamineh S. The Role of Dental-derived Stem Cell-based Therapy and Their Derived Extracellular Vesicles in Post-COVID-19 Syndrome-induced Tissue Damage. Stem Cell Rev Rep 2024; 20:2062-2103. [PMID: 39150646 DOI: 10.1007/s12015-024-10770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Long coronavirus disease 2019 (COVID-19) is linked to an increased risk of post-acute sequelae affecting the pulmonary and extrapulmonary organ systems. Up to 20% of COVID-19 patients may proceed to a more serious form, such as severe pneumonia, acute respiratory distress syndrome (ARDS), or pulmonary fibrosis. Still, the majority of patients may only have mild, self-limiting sickness. Of particular concern is the possibility of parenchymal fibrosis and lung dysfunction in long-term COVID-19 patients. Furthermore, it has been observed that up to 43% of individuals hospitalized with COVID-19 also had acute renal injury (AKI). Care for kidney, brain, lung, cardiovascular, liver, ocular, and tissue injuries should be included in post-acute COVID-19 treatment. As a powerful immunomodulatory tool in regenerative medicine, dental stem cells (DSCs) have drawn much interest. Numerous immune cells and cytokines are involved in the excessive inflammatory response, which also has a significant effect on tissue regeneration. A unique reservoir of stem cells (SCs) for treating acute lung injury (ALI), liver damage, neurological diseases, cardiovascular issues, and renal damage may be found in tooth tissue, according to much research. Moreover, a growing corpus of in vivo research is connecting DSC-derived extracellular vesicles (DSC-EVs), which are essential paracrine effectors, to the beneficial effects of DSCs. DSC-EVs, which contain bioactive components and therapeutic potential in certain disorders, have been shown as potentially effective therapies for tissue damage after COVID-19. Consequently, we explore the properties of DSCs in this work. Next, we'll look at how SARS-CoV-2 affects tissue damage. Lastly, we have looked at the use of DSCs and DSC-EVs in managing COVID-19 and chronic tissue damage, such as injury to the heart, brain, lung, and other tissues.
Collapse
Affiliation(s)
- Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Farahani
- Doctor of Dental Surgery, Faculty of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Zahra Bahman
- Faculty of dentistry, Belarusian state medical university, Minsk, Belarus
| | | | - Hareth A Alrikabi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
2
|
E L, Shan Y, Luo Y, Feng L, Dai Y, Gao M, Lv Y, Zhang C, Liu H, Wen N, Zhang R. Insulin promotes the bone formation capability of human dental pulp stem cells through attenuating the IIS/PI3K/AKT/mTOR pathway axis. Stem Cell Res Ther 2024; 15:227. [PMID: 39075596 PMCID: PMC11287875 DOI: 10.1186/s13287-024-03843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Insulin has been known to regulate bone metabolism, yet its specific molecular mechanisms during the proliferation and osteogenic differentiation of dental pulp stem cells (DPSCs) remain poorly understood. This study aimed to explore the effects of insulin on the bone formation capability of human DPSCs and to elucidate the underlying mechanisms. METHODS Cell proliferation was assessed using a CCK-8 assay. Cell phenotype was analyzed by flow cytometry. Colony-forming unit-fibroblast ability and multilineage differentiation potential were evaluated using Toluidine blue, Oil red O, Alizarin red, and Alcian blue staining. Gene and protein expressions were quantified by real-time quantitative polymerase chain reaction and Western blotting, respectively. Bone metabolism and biochemical markers were analyzed using electrochemical luminescence and chemical colorimetry. Cell adhesion and growth on nano-hydroxyapatite/collagen (nHAC) were observed with a scanning electron microscope. Bone regeneration was assessed using micro-CT, fluorescent labeling, immunohistochemical and hematoxylin and eosin staining. RESULTS Insulin enhanced the proliferation of human DPSCs as well as promoted mineralized matrix formation in a concentration-dependent manner. 10- 6 M insulin significantly up-regulated osteogenic differentiation-related genes and proteins markedly increased the secretion of bone metabolism and biochemical markers, and obviously stimulated mineralized matrix formation. However, it also significantly inhibited the expression of genes and proteins of receptors and receptor substrates associated with insulin/insulin-like growth factor-1 signaling (IIS) pathway, obviously reduced the expression of the phosphorylated PI3K and the ratios of the phosphorylated PI3K/total PI3K, and notably increased the expression of the total PI3K, phosphorylated AKT, total AKT and mTOR. The inhibitor LY294002 attenuated the responsiveness of 10- 6 M insulin to IIS/PI3K/AKT/mTOR pathway axis, suppressing the promoting effect of insulin on cell proliferation, osteogenic differentiation and bone formation. Implantation of 10- 6 M insulin treated DPSCs into the backs of severe combined immunodeficient mice and the rabbit jawbone defects resulted in enhanced bone formation. CONCLUSIONS Insulin induces insulin resistance in human DPSCs and effectively promotes their proliferation, osteogenic differentiation and bone formation capability through gradually inducing the down-regulation of IIS/PI3K/AKT/mTOR pathway axis under insulin resistant states.
Collapse
Affiliation(s)
- Lingling E
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanbo Shan
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuxi Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Feng
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yawen Dai
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mingzhu Gao
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Lv
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chaoran Zhang
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongchen Liu
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ning Wen
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Rong Zhang
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Poblano-Pérez LI, Castro-Manrreza ME, González-Alva P, Fajardo-Orduña GR, Montesinos JJ. Mesenchymal Stromal Cells Derived from Dental Tissues: Immunomodulatory Properties and Clinical Potential. Int J Mol Sci 2024; 25:1986. [PMID: 38396665 PMCID: PMC10888494 DOI: 10.3390/ijms25041986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells located in different areas of the human body. The oral cavity is considered a potential source of MSCs because they have been identified in several dental tissues (D-MSCs). Clinical trials in which cells from these sources were used have shown that they are effective and safe as treatments for tissue regeneration. Importantly, immunoregulatory capacity has been observed in all of these populations; however, this function may vary among the different types of MSCs. Since this property is of clinical interest for cell therapy protocols, it is relevant to analyze the differences in immunoregulatory capacity, as well as the mechanisms used by each type of MSC. Interestingly, D-MSCs are the most suitable source for regenerating mineralized tissues in the oral region. Furthermore, the clinical potential of D-MSCs is supported due to their adequate capacity for proliferation, migration, and differentiation. There is also evidence for their potential application in protocols against autoimmune diseases and other inflammatory conditions due to their immunosuppressive capacity. Therefore, in this review, the immunoregulatory mechanisms identified at the preclinical level in combination with the different types of MSCs found in dental tissues are described, in addition to a description of the clinical trials in which MSCs from these sources have been applied.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Marta Elena Castro-Manrreza
- Immunology and Stem Cells Laboratory, FES Zaragoza, National Autonomous University of Mexico (UNAM), Mexico City 09230, Mexico;
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Guadalupe R. Fajardo-Orduña
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| |
Collapse
|
4
|
Cao C, Maska B, Malik MA, Tagett R, Kaigler D. Immunomodulatory differences between mesenchymal stem cells from different oral tissues. Heliyon 2024; 10:e23317. [PMID: 38192855 PMCID: PMC10771986 DOI: 10.1016/j.heliyon.2023.e23317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have recently been identified as having potentially therapeutic immunomodulatory properties. MSCs isolated from different oral tissues have similar morphology and immunophenotypes, however, direct comparisons of their gene expression and immunomodulatory properties have not been conducted. We isolated alveolar bone-derived MSCs (aBMSCs), dental pulp stem cells (DPSCs) and gingiva-derived MSCs (GMSCs) from the same patients and compared their immunophenotypes and transcriptomes. Additionally, we compared their production of soluble immunomodulatory cytokines as well as their immunoregulatory properties in coculture with THP-1 human monocytic cells. RNA sequencing revealed distinct gene expression in DPSCs while aBMSCs and GMSCs had less differentially expressed genes. DPSCs also had significantly less secretion of osteopontin compared to aBMSCs and GMSCs. Finally, DPSCs did not exhibit an immunosuppresive effect on THP-1 cells to the same degree as aBMSCs and GMSCs. These findings demonstrate that MSCs from different oral tissues have distinct transcriptomes and immunoregulatory properties.
Collapse
Affiliation(s)
- Chen Cao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Bartosz Maska
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Malika A. Malik
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Tagett
- Bioinformatics Core, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
E L, Lu R, Zheng Y, Zhang L, Ma X, Lv Y, Gao M, Zhang S, Wang L, Liu H, Zhang R. Effect of Insulin on Bone Formation Ability of Rat Alveolar Bone Marrow Mesenchymal Stem Cells. Stem Cells Dev 2023; 32:652-666. [PMID: 37282516 DOI: 10.1089/scd.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The alveolar bone marrow mesenchymal stem cells (ABM-MSCs) play an important role in oral bone healing and regeneration. Insulin is considered to improve impaired oral bones due to local factors, systemic factors and pathological conditions. However, the effect of insulin on bone formation ability of ABM-MSCs still needs to be elucidated. The aim of this study was to determine the responsiveness of rat ABM-MSCs to insulin and to explore the underlying mechanism. We found that insulin promoted ABM-MSCs proliferation in a concentration-dependent manner, in which 10-6 M insulin exerted the most significant effect. 10-6 M insulin significantly promoted the type I collagen (COL-1) synthesis, alkaline phosphatase (ALP) activity, osteocalcin (OCN) expression, and mineralized matrix formation in ABM-MSCs, significantly enhanced the gene and protein expressions of intracellular COL-1, ALP, and OCN. Acute insulin stimulation significantly promoted insulin receptor (IR) phosphorylation, IR substrate-1 (IRS-1) protein expression, and mammalian target of rapamycin (mTOR) phosphorylation, but chronic insulin stimulation decreased these values, while inhibitor NT219 could attenuate these responses. When seeded on β-tricalcium phosphate (β-TCP), ABM-MSCs adhered and grew well, during the 28-day culture period, ABM-MSCs+β-TCP +10-6 M insulin group showed significantly higher extracellular total COL-1 amino-terminus prolongation peptide content, ALP activity, OCN secretion, and Ca and P concentration. When implanted subcutaneously in severe combined immunodeficient mice for 1 month, the ABM-MSCs+β-TCP +10-6 M insulin group obtained the most bone formation and blood vessels. These results showed that insulin promoted the proliferation and osteogenic differentiation of ABM-MSCs in vitro, and enhance osteogenesis and angiogenesis of ABM-MSCs in vivo. Inhibition studies demonstrated that the insulin-induced osteogenic differentiation of ABM-MSCs was dependent of insulin/mTOR signaling. It suggests that insulin has a direct anabolic effect on ABM-MSCs.
Collapse
Affiliation(s)
- Lingling E
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rongjian Lu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Zheng
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Li Zhang
- Traditional Chinese Medicine Physiotherapy Department, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| | - Xiaocao Ma
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Lv
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mingzhu Gao
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli Zhang
- The Second Department of Naval Recuperation, First District of Recuperation, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| | - Limei Wang
- Reception Office, First District of Recuperation, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| | - Hongchen Liu
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rong Zhang
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
- The Second Department of Naval Recuperation, First District of Recuperation, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| |
Collapse
|
6
|
Kolliopoulos V, Polanek M, Xu H, Harley B. Inflammatory Licensed hMSCs Exhibit Enhanced Immunomodulatory Capacity in a Biomaterial Mediated Manner. ACS Biomater Sci Eng 2023; 9:4916-4928. [PMID: 37390452 PMCID: PMC10600978 DOI: 10.1021/acsbiomaterials.3c00290] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Craniomaxillofacial (CMF) bone injuries represent particularly challenging environments for regenerative healing due to their large sizes, irregular and unique defect shapes, angiogenic requirements, and mechanical stabilization needs. These defects also exhibit a heightened inflammatory environment that can complicate the healing process. This study investigates the influence of the initial inflammatory stance of human mesenchymal stem cells (hMSCs) on key osteogenic, angiogenic, and immunomodulatory criteria when cultured in a class of mineralized collagen scaffolds under development for CMF bone repair. We previously showed that changes in scaffold pore anisotropy and glycosaminoglycan content can significantly alter the regenerative activity of both MSCs and macrophages. While MSCs are known to adopt an immunomodulatory phenotype in response to inflammatory stimuli, here, we define the nature and persistence of MSC osteogenic, angiogenic, and immunomodulatory phenotypes in a 3D mineralized collagen environment, and further, whether changes to scaffold architecture and organic composition can blunt or accentuate this response as a function of inflammatory licensing. Notably, we found that a one-time licensing treatment of MSCs induced higher immunomodulatory potential compared to basal MSCs as observed by sustained immunomodulatory gene expression throughout the first 7 days as well as an increase in immunomodulatory cytokine (PGE2 and IL-6) expression throughout a 21-day culture period. Further, heparin scaffolds facilitated higher osteogenic cytokine secretion but lower immunomodulatory cytokine secretion compared to chondroitin-6-sulfate scaffolds. Anisotropic scaffolds facilitated higher secretion of both osteogenic protein OPG and immunomodulatory cytokines (PGE2 and IL-6) compared to isotropic scaffolds. These results highlight the importance of scaffold properties on the sustained kinetics of cell response to an inflammatory stimulus. The development of a biomaterial scaffold capable of interfacing with hMSCs to facilitate both immunomodulatory and osteogenic responses is an essential next step to determining the quality and kinetics of craniofacial bone repair.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Maxwell Polanek
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Hui Xu
- Tumor Engineering and Phenotyping (TEP) Shared Resource, Cancer Center at Illinois University of Illinois Urbana-Champaign, 405 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Brendan Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Wang Y, Zhang X, Mei S, Li Y, Khan AA, Guan S, Li X. Determination of critical-sized defect of mandible in a rabbit model: Micro-computed tomography, and histological evaluation. Heliyon 2023; 9:e18047. [PMID: 37539284 PMCID: PMC10393617 DOI: 10.1016/j.heliyon.2023.e18047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Objective To evaluate a rabbit model of mandibular box-shaped defects created through an intraoral approach and determine the minimum size defect that would not spontaneously heal during the rabbit's natural life (or critical-sized defect, CSD). Methods Forty-five 6-month-old rabbits were randomly divided into five defect size groups (nine each). Mandibular box-shaped defects of different sizes (4, 5, 6, 8, and 10 mm) were created in each hemimandible, with the same width and depth (3 and 2 mm, respectively). Four, 8, and 12 weeks post-surgery, three animals per group were euthanized. New bone formation was assessed using micro-computed tomography (MCT) and histomorphometric analyses. Results Box-shaped defects were successfully created in the buccal region between the incisor area and the anterior part of the mental foramen in rabbit mandibles. Twelve weeks post-surgery, MCT analysis showed that the defects in the 4, 5, and 6 mm groups were filled with new bone, while those in the 8 and 10 mm groups remained underfilled. Quantitative analysis revealed that the bone mass recovery percentage in the 8 and 10 mm groups was significantly lower than that in the other groups (p < 0.05). There was no significant difference in the bone mass recovery percentage between the 8 and 10 mm groups (p > 0.05). Histomorphometric analysis indicated that the area of new bone formation in the 8 and 10 mm groups was significantly lower than that in the remaining groups (p < 0.05). There was no significant difference in the new bone area between the 8 and 10 mm groups (p > 0.05). Conclusions The dimensions of box-shaped CSD created in the rabbit mandible through an intraoral approach were 8 mm × 3 mm × 2 mm. This model may provide a clinically relevant base for future tissue engineering efforts in the mandible.
Collapse
|
8
|
Mofarrah M, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Zarghami N. Potential application of inorganic nano-materials in modulation of macrophage function: Possible application in bone tissue engineering. Heliyon 2023; 9:e16309. [PMID: 37292328 PMCID: PMC10245018 DOI: 10.1016/j.heliyon.2023.e16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Nanomaterials indicate unique physicochemical properties for drug delivery in osteogenesis. Benefiting from high surface area grades, high volume ratio, ease of functionalization by biological targeting moieties, and small size empower nanomaterials to pass through biological barriers for efficient targeting. Inorganic nanomaterials for bone regeneration include inorganic synthetic polymers, ceramic nanoparticles, metallic nanoparticles, and magnetic nanoparticles. These nanoparticles can effectively modulate macrophage polarization and function, as one of the leading players in osteogenesis. Bone healing procedures in close cooperation with the immune system. Inflammation is one of the leading triggers of the bone fracture healing barrier. Macrophages commence anti-inflammatory signaling along with revascularization in the damaged site to promote the formation of a soft callus, bone mineralization, and bone remodeling. In this review, we will discuss the role of macrophages in bone hemostasis and regeneration. Furthermore, we will summarize the influence of the various inorganic nanoparticles on macrophage polarization and function in the benefit of osteogenesis.
Collapse
Affiliation(s)
- Mohsen Mofarrah
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
9
|
Alarcón-Apablaza J, Prieto R, Rojas M, Fuentes R. Potential of Oral Cavity Stem Cells for Bone Regeneration: A Scoping Review. Cells 2023; 12:1392. [PMID: 37408226 DOI: 10.3390/cells12101392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Bone loss is a common problem that ranges from small defects to large defects after trauma, surgery, or congenital malformations. The oral cavity is a rich source of mesenchymal stromal cells (MSCs). Researchers have documented their isolation and studied their osteogenic potential. Therefore, the objective of this review was to analyze and compare the potential of MSCs from the oral cavity for use in bone regeneration. METHODS A scoping review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The databases reviewed were PubMed, SCOPUS, Scientific Electronic Library Online (SciELO), and Web of Science. Studies using stem cells from the oral cavity to promote bone regeneration were included. RESULTS A total of 726 studies were found, of which 27 were selected. The MSCs used to repair bone defects were (I) dental pulp stem cells of permanent teeth, (II) stem cells derived from inflamed dental pulp, (III) stem cells from exfoliated deciduous teeth, (IV) periodontal ligament stem cells, (V) cultured autogenous periosteal cells, (VI) buccal fat pad-derived cells, and (VII) autologous bone-derived mesenchymal stem cells. Stem cells associate with scaffolds to facilitate insertion into the bone defect and to enhance bone regeneration. The biological risk and morbidity of the MSC-grafted site were minimal. Successful bone formation after MSC grafting has been shown for small defects with stem cells from the periodontal ligament and dental pulp as well as larger defects with stem cells from the periosteum, bone, and buccal fat pad. CONCLUSIONS Stem cells of maxillofacial origin are a promising alternative to treat small and large craniofacial bone defects; however, an additional scaffold complement is required for stem cell delivery.
Collapse
Affiliation(s)
- Josefa Alarcón-Apablaza
- Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Ruth Prieto
- Department of Pediatrics and Pediatric Surgery, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Mariana Rojas
- Comparative Embryology Laboratory, Program of Anatomy and Developmental Biology, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile
| | - Ramón Fuentes
- Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile
- Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
10
|
Gulati K, Ding C, Guo T, Guo H, Yu H, Liu Y. Craniofacial therapy: advanced local therapies from nano-engineered titanium implants to treat craniofacial conditions. Int J Oral Sci 2023; 15:15. [PMID: 36977679 PMCID: PMC10050545 DOI: 10.1038/s41368-023-00220-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Nano-engineering-based tissue regeneration and local therapeutic delivery strategies show significant potential to reduce the health and economic burden associated with craniofacial defects, including traumas and tumours. Critical to the success of such nano-engineered non-resorbable craniofacial implants include load-bearing functioning and survival in complex local trauma conditions. Further, race to invade between multiple cells and pathogens is an important criterion that dictates the fate of the implant. In this pioneering review, we compare the therapeutic efficacy of nano-engineered titanium-based craniofacial implants towards maximised local therapy addressing bone formation/resorption, soft-tissue integration, bacterial infection and cancers/tumours. We present the various strategies to engineer titanium-based craniofacial implants in the macro-, micro- and nano-scales, using topographical, chemical, electrochemical, biological and therapeutic modifications. A particular focus is electrochemically anodised titanium implants with controlled nanotopographies that enable tailored and enhanced bioactivity and local therapeutic release. Next, we review the clinical translation challenges associated with such implants. This review will inform the readers of the latest developments and challenges related to therapeutic nano-engineered craniofacial implants.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD, Australia
| | - Chengye Ding
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Tianqi Guo
- The University of Queensland, School of Dentistry, Herston, QLD, Australia
| | - Houzuo Guo
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huajie Yu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
11
|
Dewey MJ, Collins AJ, Tiffany A, Barnhouse VR, Lu C, Kolliopoulos V, Mutreja I, Hickok NJ, Harley BAC. Evaluation of bacterial attachment on mineralized collagen scaffolds and addition of manuka honey to increase mesenchymal stem cell osteogenesis. Biomaterials 2023; 294:122015. [PMID: 36701999 PMCID: PMC9928779 DOI: 10.1016/j.biomaterials.2023.122015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
The design of biomaterials to regenerate bone is likely to increasingly require modifications that reduce bacterial attachment and biofilm formation as infection during wound regeneration can significantly impede tissue repair and typically requires surgical intervention to restart the healing process. Further, much research on infection prevention in bone biomaterials has focused on modeling of non-resorbable metal alloy materials, whereas an expanding direction of bone regeneration has focused on development of bioresorbable materials. This represents a need for the prevention and understanding of infection in resorbable biomaterials. Here, we investigate the ability of a mineralized collagen biomaterial to natively resist infection and examine how the addition of manuka honey, previously identified as an antimicrobial agent, affects gram positive and negative bacterial colonization and mesenchymal stem cell osteogenesis and vasculature formation. We incorporate manuka honey into these scaffolds via either direct fabrication into the scaffold microarchitecture or via soaking the scaffold in a solution of manuka honey after fabrication. Direct incorporation results in a change in the surface characteristics and porosity of mineralized collagen scaffolds. Soaking scaffolds in honey concentrations higher than 10% had significant negative effects on mesenchymal stem cell metabolic activity. Soaking or incorporating 5% honey had no impact on endothelial cell tube formation. Although solutions of 5% honey reduced metabolic activity of mesenchymal stem cells, MSC-seeded scaffolds displayed increased calcium and phosphorous mineral formation, osteoprotegerin release, and alkaline phosphatase activity. Bacteria cultured on mineralized collagen scaffolds demonstrated surfaces covered in bacteria and no method of preventing infection, and using 10 times the minimal inhibitory concentration of antibiotics did not completely kill bacteria within the mineralized collagen scaffolds, indicating bioresorbable scaffold materials may act to shield bacteria from antibiotics. The addition of 5% manuka honey to scaffolds was not sufficient to prevent P. aeruginosa attachment or consistently reduce the activity of methicillin resistant staphylococcus aureus, and concentrations above 7% manuka honey are likely necessary to impact MRSA. Together, our results suggest bioresorbable scaffolds may create an environment conducive to bacterial growth, and potential trade-offs exist for the incorporation of low levels of honey in scaffolds to increase osteogenic potential of osteoprogenitors while high-levels of honey may be sufficient to reduce gram positive or negative bacteria activity but at the cost of reduced osteogenesis.
Collapse
Affiliation(s)
- Marley J Dewey
- Dept. of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alan J Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleczandria Tiffany
- Dept. of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Victoria R Barnhouse
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Crislyn Lu
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Vasiliki Kolliopoulos
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Isha Mutreja
- Department of Restorative Science, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Noreen J Hickok
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brendan A C Harley
- Dept. of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Dept. of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs. Acta Biomater 2023; 156:190-201. [PMID: 36155098 DOI: 10.1016/j.actbio.2022.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Three Dimensional (3D) bioprinting is one of the most recent additive manufacturing technologies and enables the direct incorporation of cells within a highly porous 3D-bioprinted construct. While the field has mainly focused on developing methods for enhancing printing resolution and shape fidelity, little is understood about the biological impact of bioprinting on cells. To address this shortcoming, this study investigated the in vitro and in vivo response of human osteoblasts subsequent to bioprinting using gelatin methacryloyl (GelMA) as the hydrogel precursor. First, bioprinted and two-dimensional (2D) cultured osteoblasts were compared, demonstrating that the 3D microenvironment from bioprinting enhanced bone-related gene expression. Second, differentiation regimens of 2-week osteogenic pre-induction in 2D before bioprinting and/or 3-week post-printing osteogenic differentiation were assessed for their capacity to increase the bioprinted construct's biofunctionality towards bone regeneration. The combination of pre-and post-induction regimens showed superior osteogenic gene expression and mineralisation in vitro. Moreover, a rat calvarial model using microtomography and histology demonstrated bone regeneration potential for the pre-and post-differentiation procedure. This study shows the positive impact of bioprinting on cells for osteogenic differentiation and the increased in vivo osteogenic potential of bioprinted constructs via a pre-induction method. STATEMENT OF SIGNIFICANCE: 3D bioprinting, one of the most recent technologies for tissue engineering has mostly focussed on developing methods for enhancing printing properties, little is understood on the biological impact of bioprinting and /or subsequent in vitro maturation methods on cells. Therefore, we addressed these fundamental questions by investigating osteoblast gene expression in bioprinted construct and assessed the efficacy of several induction regimen towards osteogenic differentiation in vitro and in vivo. Osteogenic induction of cells prior to seeding in scaffolds used in conventional tissue engineering applications has been demonstrated to increase the osteogenic potential of the resulting construct. However, to the best of our knowledge, pre-induction methods have not been investigated in 3D bioprinting.
Collapse
|
13
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
14
|
Song W, Bo X, Ma X, Hou K, Li D, Geng W, Zeng J. Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e650-e659. [PMID: 35691558 DOI: 10.1016/j.jormas.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
|
15
|
Mesenchymal Stem Cells Based Treatment in Dental Medicine: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031662. [PMID: 35163584 PMCID: PMC8836082 DOI: 10.3390/ijms23031662] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Application of mesenchymal stem cells (MSC) in regenerative therapeutic procedures is becoming an increasingly important topic in medicine. Since the first isolation of dental tissue-derived MSC, there has been an intense investigation on the characteristics and potentials of these cells in regenerative dentistry. Their multidifferentiation potential, self-renewal capacity, and easy accessibility give them a key role in stem cell-based therapy. So far, several different dental stem cell types have been discovered and their potential usage is found in most of the major dental medicine branches. These cells are also researched in multiple fields of medicine for the treatment of degenerative and inflammatory diseases. In this review, we summarized dental MSC sources and analyzed their treatment modalities with particular emphasis on temporomandibular joint osteoarthritis (TMJ OA).
Collapse
|
16
|
Timing of orthodontic tooth movement in bone defects repaired with synthetic scaffolds: A scoping review of animal studies. Arch Oral Biol 2021; 132:105278. [PMID: 34634537 DOI: 10.1016/j.archoralbio.2021.105278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The optimal timing of orthodontic tooth movement (OTM) could allow earlier tooth movements across alveolar bone defects while minimizing the adverse effects. The objective of this scoping systematic review was therefore designed to review pre-clinical animal studies on the ideal protocol for the timing of orthodontic traction across alveolar defects augmented with synthetic scaffolds. DESIGN Following the PRISMA-ScR guidelines, three electronic databases were searched (Pubmed, Scopus and Web of Science). RESULTS A total of twelve studies were included in the final review that reported on small-animal (rats, guinea pigs, rabbits) and large-animal (dogs and goats) models. Based on the grafting biomaterials, eight papers used cell-free scaffolds, four articles utilised cell-based scaffolds. The timing protocol for the initiation of OTM employed in the studies ranged from immediate to 6 months after surgical grafting. Only four studies included autologous bone graft (gold standard) as positive control. Most papers reported positive results with regards to the rate of OTM and bone augmentation effects while only a few reported side effects such as root resorptions. Overall, the included articles showed a massive heterogeneity in terms of the animal bone defect model characteristics, scaffold materials, study designs, parameters of OTM and methods of analysis. CONCLUSION Since there was inadequate evidence to identify the optimal protocol of OTM, optimization of animal bone defect models and outcome measurements is needed to improve the translational ability of future studies.
Collapse
|
17
|
Dziedzic DSM, Mogharbel BF, Irioda AC, Stricker PEF, Perussolo MC, Franco CRC, Chang HW, Abdelwahid E, de Carvalho KAT. Adipose-Derived Stromal Cells and Mineralized Extracellular Matrix Delivery by a Human Decellularized Amniotic Membrane in Periodontal Tissue Engineering. MEMBRANES 2021; 11:membranes11080606. [PMID: 34436369 PMCID: PMC8401540 DOI: 10.3390/membranes11080606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Periodontitis is a prevalent disease characterized by the loss of periodontal supporting tissues, bone, periodontal ligament, and cementum. The application of a bone tissue engineering strategy with Decellularized Human Amniotic Membrane (DAM) with adipose-derived stromal cells (ASCs) has shown to be convenient and valuable. This study aims to investigate the treatments of a rat periodontal furcation defect model with DAM, ASCs, and a mineralized extracellular matrix (ECM). Rat ASCs were expanded, cultivated on DAM, and with a bone differentiation medium for four weeks, deposited ECM on DAM. Periodontal healing for four weeks was evaluated by micro-computed tomography and histological analysis after treatments with DAM, ASCs, and ECM and compared to untreated defects on five consecutive horizontal levels, from gingival to apical. The results demonstrate that DAM preserves its structure during cultivation and healing periods, supporting cell attachment, permeation, bone deposition on DAM, and periodontal regeneration. DAM and DAM+ASCs enhance bone healing compared to the control on the gingival level. In conclusion, DAM with ASC or without cells and the ECM ensures bone tissue healing. The membrane supported neovascularization and promoted osteoconduction.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Maiara Carolina Perussolo
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | | | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Eltyeb Abdelwahid
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
- Correspondence: ; Tel.: +55-41-3310-1719
| |
Collapse
|
18
|
Yazdanian M, Rahmani A, Tahmasebi E, Tebyanian H, Yazdanian A, Mosaddad SA. Current and Advanced Nanomaterials in Dentistry as Regeneration Agents: An Update. Mini Rev Med Chem 2021; 21:899-918. [PMID: 33234102 DOI: 10.2174/1389557520666201124143449] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
In modern dentistry, nanomaterials have strengthened their foothold among tissue engineering strategies for treating bone and dental defects due to a variety of reasons, including trauma and tumors. Besides their finest physiochemical features, the biomimetic characteristics of nanomaterials promote cell growth and stimulate tissue regeneration. The single units of these chemical substances are small-sized particles, usually between 1 to 100 nm, in an unbound state. This unbound state allows particles to constitute aggregates with one or more external dimensions and provide a high surface area. Nanomaterials have brought advances in regenerative dentistry from the laboratory to clinical practice. They are particularly used for creating novel biomimetic nanostructures for cell regeneration, targeted treatment, diagnostics, imaging, and the production of dental materials. In regenerative dentistry, nanostructured matrices and scaffolds help control cell differentiation better. Nanomaterials recapitulate the natural dental architecture and structure and form functional tissues better compared to the conventional autologous and allogenic tissues or alloplastic materials. The reason is that novel nanostructures provide an improved platform for supporting and regulating cell proliferation, differentiation, and migration. In restorative dentistry, nanomaterials are widely used in constructing nanocomposite resins, bonding agents, endodontic sealants, coating materials, and bioceramics. They are also used for making daily dental hygiene products such as mouth rinses. The present article classifies nanostructures and nanocarriers in addition to reviewing their design and applications for bone and dental regeneration.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Aghil Rahmani
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Dewey MJ, Kolliopoulos V, Ngo MT, Harley BAC. Glycosaminoglycan content of a mineralized collagen scaffold promotes mesenchymal stem cell secretion of factors to modulate angiogenesis and monocyte differentiation. MATERIALIA 2021; 18:101149. [PMID: 34368658 PMCID: PMC8336934 DOI: 10.1016/j.mtla.2021.101149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Effective design of biomaterials to aid regenerative repair of craniomaxillofacial (CMF) bone defects requires approaches that modulate the complex interplay between exogenously added progenitor cells and cells in the wound microenvironment, such as osteoblasts, osteoclasts, endothelial cells, and immune cells. We are exploring the role of the glycosaminoglycan (GAG) content in a class of mineralized collagen scaffolds recently shown to promote osteogenesis and healing of craniofacial bone defects. We previously showed that incorporating chondroitin-6-sulfate or heparin improved mineral deposition by seeded human mesenchymal stem cells (hMSCs). Here, we examine the effect of varying scaffold GAG content on hMSC behavior, and their ability to modulate osteoclastogenesis, vasculogenesis, and the immune response. We report the role of hMSC-conditioned media produced in scaffolds containing chondroitin-6-sulfate (CS6), chondroitin-4-sulfate (CS4), or heparin (Heparin) GAGs on endothelial tube formation and monocyte differentiation. Notably, endogenous production by hMSCs within Heparin scaffolds most significantly inhibits osteoclastogenesis via secreted osteoprotegerin (OPG), while the secretome generated by CS6 scaffolds reduced pro-inflammatory immune response and increased endothelial tube formation. All conditioned media down-regulated many pro- and anti-inflammatory cytokines, such as IL6, IL-1β, and CCL18 and CCL17 respectively. Together, these findings demonstrate that modifying mineralized collagen scaffold GAG content can both directly (hMSC activity) and indirectly (production of secreted factors) influence overall osteogenic potential and mineral biosynthesis as well as angiogenic potential and monocyte differentiation towards osteoclastic and macrophage lineages. Scaffold GAG content is therefore a powerful stimulus to modulate reciprocal signaling between multiple cell populations within the bone healing microenvironment.
Collapse
Affiliation(s)
- Marley J Dewey
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vasiliki Kolliopoulos
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mai T Ngo
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A C Harley
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
20
|
E LL, Zhang R, Li CJ, Zhang S, Ma XC, Xiao R, Liu HC. Effects of rhBMP-2 on Bone Formation Capacity of Rat Dental Stem/Progenitor Cells from Dental Follicle and Alveolar Bone Marrow. Stem Cells Dev 2021; 30:441-457. [PMID: 33798004 DOI: 10.1089/scd.2020.0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dental stem/progenitor cells are a promising cell sources for alveolar bone (AB) regeneration because of their same embryonic origin and superior osteogenic potential. However, their molecular processes during osteogenic differentiation remain unclear. The objective of this study was to identify the responsiveness of dental follicle cells (DFCs) and AB marrow-derived mesenchymal stem cells (ABM-MSCs) to recombinant human bone morphogenetic protein-2 (rhBMP-2). These cells expressed vimentin and MSC markers and did not express cytokeratin and hematopoietic stem cell markers and showed multilineage differentiation potential under specific culture conditions. DFCs exhibited higher proliferation and colony-forming unit-fibroblast efficiency than ABM-MSCs; rhBMP-2 induced DFCs to differentiate toward a cementoblast/osteoblast phenotype and ABM-MSCs to differentiate only toward a osteoblast phenotype; and rhBMP-2-induced DFCs exhibited higher osteogenic differentiation potential than ABM-MSCs. These cells adhered, grew, and produced extracellular matrix on nanohydroxyapatite/collagen/poly(l-lactide) (nHAC/PLA). During a 14-day culture on nHAC/PLA, the extracellular alkaline phosphatase (ALP) activity of DFCs decreased gradually and that of ABM-MSCs increased gradually; rhBMP-2 enhanced their extracellular ALP activity, intracellular osteocalcin (OCN), and osteopontin (OPN) protein expression; and DFCs exhibited higher extracellular ALP activity and intracellular OCN protein expression than ABM-MSCs. When implanted subcutaneously in severe combined immunodeficient mice for 3 months, DFCs+nHAC/PLA+rhBMP-2 obtained higher percentage of bone formation area, OCN, and cementum attachment protein expression and lower OPN expression than ABM-MSCs+nHAC/PLA+rhBMP-2. These results showed that DFCs possessed superior proliferation and osteogenic differentiation potential in vitro, and formed higher quantity and quality bones in vivo. It suggested that DFCs might exhibit a more sensitive responsiveness to rhBMP-2, so that DFCs enter a relatively mature stage of osteogenic differentiation earlier than ABM-MSCs after rhBMP-2 induction. The findings imply that these dental stem/progenitor cells are alternative sources for AB engineering in regenerative medicine, and developing dental tissue may provide better source for stem/progenitor cells.
Collapse
Affiliation(s)
- Ling-Ling E
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rong Zhang
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chuan-Jie Li
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuo Zhang
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Cao Ma
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui Xiao
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong-Chen Liu
- Institute of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Zeinali R, del Valle LJ, Torras J, Puiggalí J. Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). Int J Mol Sci 2021; 22:ijms22073504. [PMID: 33800709 PMCID: PMC8036748 DOI: 10.3390/ijms22073504] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Porous biodegradable scaffolds provide a physical substrate for cells allowing them to attach, proliferate and guide the formation of new tissues. A variety of techniques have been developed to fabricate tissue engineering (TE) scaffolds, among them the most relevant is the thermally-induced phase separation (TIPS). This technique has been widely used in recent years to fabricate three-dimensional (3D) TE scaffolds. Low production cost, simple experimental procedure and easy processability together with the capability to produce highly porous scaffolds with controllable architecture justify the popularity of TIPS. This paper provides a general overview of the TIPS methodology applied for the preparation of 3D porous TE scaffolds. The recent advances in the fabrication of porous scaffolds through this technique, in terms of technology and material selection, have been reviewed. In addition, how properties can be effectively modified to serve as ideal substrates for specific target cells has been specifically addressed. Additionally, examples are offered with respect to changes of TIPS procedure parameters, the combination of TIPS with other techniques and innovations in polymer or filler selection.
Collapse
Affiliation(s)
- Reza Zeinali
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
- Correspondence: (R.Z.); (J.P.); Tel.: +34-93-401-1620 (R.Z.); +34-93-401-5649 (J.P.)
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
| | - Joan Torras
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Correspondence: (R.Z.); (J.P.); Tel.: +34-93-401-1620 (R.Z.); +34-93-401-5649 (J.P.)
| |
Collapse
|
22
|
Efficacy of chitinase-3-like protein 1 as an in vivo bone formation predictable marker of maxillary/mandibular bone marrow stromal cells. Regen Ther 2021; 18:38-50. [PMID: 33869686 PMCID: PMC8027134 DOI: 10.1016/j.reth.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Maxillary/mandibular bone marrow stromal cells (MBMSCs) are a useful cell source for bone regeneration in the oral and maxillofacial region. To further ensure the clinical application of MBMSCs in bone regenerative therapy, it is important to determine the bone formation capacity of MBMSCs before transplantation. The aim of this study is to identify the molecular marker that determines the in vivo bone formation capacity of MBMSCs. Methods The cell growth, cell surface antigens, in vitro and in vivo bone formation capacity of MBMSCs were examined. The amount of chitinase-3-like protein 1 (CHI3L1) secreted into the conditioned medium was quantified. The effects of CHI3L1 on the cell growth and osteogenic differentiation potential of MBMSCs and on the cell growth and migration of vascular endothelial cells and fibroblasts were examined. Results The cell growth, and in vitro and in vivo bone formation capacity of the cells treated with different conditions were observed. MBMSCs that secreted a large amount of CHI3L1 into the conditioned medium tended to have low in vivo bone formation capacity, whereas MBMSCs that secreted a small amount of CHI3L1 had greater in vivo bone formation capacity. CHI3L1 promoted the migration of vascular endothelial cells, and the cell growth and migration of fibroblasts. Conclusion Our study indicates that the in vitro osteogenic differentiation capacity of MBMSCs and the in vivo bone formation capacities of MBMSCs were not necessarily correlated. The transplantation of high CHI3L1 secretory MBMSCs may suppress bone formation by inducing fibrosis at the site. These results suggest that the CHI3L1 secretion levels from MBMSCs may be used as a predictable marker of bone formation capacity in vivo. In vitro and in vivo bone formation capacities of MBMSCs were not correlated. MBMSCs with high CHI3L1 secretion tended to have low in vivo bone formation. MBMSCs with low CHI3L1 secretion tended to have high in vivo bone formation. CHI3L1 can be in vivo bone formation capacity predictable marker of MBMSCs.
Collapse
Key Words
- ALP, Alkaline phosphatase
- BMSC, bone marrow-derived stem cell
- Bone formation capacity
- CHI3L1, chitinase-3-like protein 1
- Chitinase-3-like protein 1
- FBS, fetal bovine serum
- HUVEC, human umbilical vein endothelial cells
- Jaw bone marrow stromal cells
- MBMSC, maxillary/mandibular bone marrow stromal cells
- MSCs, mesenchymal stem cells
- Migration
- NHDF, normal human dermal fibroblasts
- α-MEM, alpha modified Eagle's minimum essential medium
- β-TCP, beta-tricalcium phosphate
Collapse
|
23
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
24
|
Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1669. [PMID: 33090719 DOI: 10.1002/wnan.1669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Using bioactive nanomaterials in clinical treatment has been widely aroused. Nanomaterials provide substantial improvements in the prevention and treatment of oral and maxillofacial diseases. This review aims to discuss new progresses in nanomaterials applied to oral and maxillofacial tissue regeneration and disease treatment, focusing on the use of nanomaterials in improving the quality of oral and maxillofacial healthcare, and discuss the perspectives of research in this arena. Details are provided on the tissue regeneration, wound healing, angiogenesis, remineralization, antitumor, and antibacterial regulation properties of nanomaterials including polymers, micelles, dendrimers, liposomes, nanocapsules, nanoparticles and nanostructured scaffolds, etc. Clinical applications of nanomaterials as nanocomposites, dental implants, mouthwashes, biomimetic dental materials, and factors that may interact with nanomaterials behaviors and bioactivities in oral cavity are addressed as well. In the last section, the clinical safety concerns of their usage as dental materials are updated, and the key knowledge gaps for future research with some recommendation are discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hangqi Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
25
|
Kandalam U, Kawai T, Ravindran G, Brockman R, Romero J, Munro M, Ortiz J, Heidari A, Thomas R, Kuriakose S, Naglieri C, Ejtemai S, Kaltman SI. Predifferentiated Gingival Stem Cell-Induced Bone Regeneration in Rat Alveolar Bone Defect Model. Tissue Eng Part A 2020; 27:424-436. [PMID: 32729362 PMCID: PMC8098763 DOI: 10.1089/ten.tea.2020.0052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cleft alveolus, a common birth defect of the maxillary bone, affects one in 700 live births every year. This defect is traditionally restored by autogenous bone grafts or allografts, which may possibly cause complications. Cell-based therapies using the mesenchymal stem cells (MSCs) derived from human gingiva (gingiva-derived mesenchymal stem cells [GMSCs]) is attracting the research interest due to their highly proliferative and multilineage differentiation capacity. Undifferentiated GMSCs expressed high level of MSC-distinctive surface antigens, including CD73, CD105, CD90, and CD166. Importantly, GMSCs induced with osteogenic medium for a week increased the surface markers of osteogenic phenotypes, such as CD10, CD92, and CD140b, indicating their osteogenic potential. The objective of this study was to assess the bone regenerative efficacy of predifferentiated GMSCs (dGMSCs) toward an osteogenic lineage in combination with a self-assembling hydrogel scaffold PuraMatrix™ (PM) and/or bone morphogenetic protein 2 (BMP2), on a rodent model of maxillary alveolar bone defect. A critical size maxillary alveolar defect of 7 mm × 1 mm × 1 mm was surgically created in athymic nude rats. The defect was filled with either PM/BMP2 or PM/dGMSCs or the combination of three (PM/dGMSCs/BMP2) and the bone regeneration was evaluated at 4 and 8 weeks postsurgery. New bone formation was evaluated by microcomputed tomography and histology using Hematoxylin and Eosin staining. The results demonstrated the absence of spontaneous bone healing, either at 4 or 8 weeks postsurgery in the defect group. However, the PM/dGMSCs/BMP2 group showed significant enhancement in bone regeneration at 4 and 8 weeks postsurgery, compared with the transplantation of individual material/cells alone. Apart from developing the smallest critical size defect, results showed that PM/dGMSCs/BMP2 could serve as a promising option for the regeneration of bone in the cranio/maxillofacial region in humans.
Collapse
Affiliation(s)
- Umadevi Kandalam
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Toshihisa Kawai
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Geeta Ravindran
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ross Brockman
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Oral and Maxillofacial, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Jorge Romero
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Matthew Munro
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Julian Ortiz
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Alireza Heidari
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ron Thomas
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sajish Kuriakose
- Department of Oral Medicine and Oral Surgery and College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Christopher Naglieri
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Shaileen Ejtemai
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Steven I Kaltman
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Oral and Maxillofacial Surgery, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
26
|
Dental Tissue-Derived Human Mesenchymal Stem Cells and Their Potential in Therapeutic Application. Stem Cells Int 2020; 2020:8864572. [PMID: 32952572 PMCID: PMC7482010 DOI: 10.1155/2020/8864572] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells, which exhibit plastic adherence, express specific cell surface marker spectrum, and have multi-lineage differentiation potential. These cells can be obtained from multiple tissues. Dental tissue-derived hMSCs (dental MSCs) possess the ability to give rise to mesodermal lineage (osteocytes, adipocytes, and chondrocytes), ectodermal lineage (neurocytes), and endodermal lineages (hepatocytes). Dental MSCs were first isolated from dental pulp of the extracted third molar and till now they have been purified from various dental tissues, including pulp tissue of permanent teeth and exfoliated deciduous teeth, apical papilla, periodontal ligament, gingiva, dental follicle, tooth germ, and alveolar bone. Dental MSCs are not only easily accessible but are also expandable in vitro with relative genomic stability for a long period of time. Moreover, dental MSCs have exhibited immunomodulatory properties by secreting cytokines. Easy accessibility, multi-lineage differentiation potential, and immunomodulatory effects make dental MSCs distinct from the other hMSCs and an effective tool in stem cell-based therapy. Several preclinical studies and clinical trials have been performed using dental MSCs in the treatment of multiple ailments, ranging from dental diseases to nondental diseases. The present review has summarized dental MSC sources, multi-lineage differentiation capacities, immunomodulatory features, its potential in the treatment of diseases, and its application in both preclinical studies and clinical trials. The regenerative therapeutic strategies in dental medicine have also been discussed.
Collapse
|
27
|
Systemic and Local Biocompatibility Assessment of Graphene Composite Dental Materials in Experimental Mandibular Bone Defect. MATERIALS 2020; 13:ma13112511. [PMID: 32486437 PMCID: PMC7321491 DOI: 10.3390/ma13112511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022]
Abstract
The main objective of this research is to demonstrate the biocompatibility of two experimental graphene dental materials by in vitro and in vivo tests for applications in dentistry. The novel graphene dental materials, including one restorative composite and one dental cement, were subjected to cytotoxicity and implantation tests by using a rat model of a non-critical mandibular defect. In vitro cytotoxicity induced by materials on human dental follicle stem cells (restorative composite) and dysplastic oral keratinocytes (dental cement) was investigated at 37 °C for 24 h. After in vivo implantation, at 7 weeks, bone samples were harvested and subjected to histological investigations. The plasma biochemistry, oxidative stress, and sub-chronic organ toxicity analysis were also performed. The resulting cytotoxicity tests confirm that the materials had no toxic effects against dental cells after 24 h. Following graphene dental materials implantation, the animals did not present any symptoms of acute toxicity or local inflammation. No alterations were detected in relative organ weights and in correlation with hepatic and renal histological findings. The materials' lack of systemic organ toxicity was confirmed. The outcomes of our study provided further evidence on the graphene dental materials' ability for bone regeneration and biocompatibility.
Collapse
|
28
|
Dewey MJ, Nosatov AV, Subedi K, Harley B. Anisotropic mineralized collagen scaffolds accelerate osteogenic response in a glycosaminoglycan-dependent fashion. RSC Adv 2020; 10:15629-15641. [PMID: 32655857 PMCID: PMC7351350 DOI: 10.1039/d0ra01336f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regeneration of critically-sized craniofacial bone defects requires a template to promote cell activity and bone remodeling. However, induced regeneration becomes more challenging with increasing defect size. Methods of repair using allografts and autografts have inconsistent results, attributed to age-related regenerative capabilities of bone. We are developing a mineralized collagen scaffold to promote craniomaxillofacial bone regeneration as an alternative to repair. Here, we hypothesize modifying the pore anisotropy and glycosaminoglycan content of the scaffold will improve cell migration, viability, and subsequent bone formation. Using anisotropic and isotropic scaffold variants, we test the role of pore orientation on human mesenchymal stem cell (MSC) activity. We subsequently explore the role of glycosaminoglycan content, notably chondroitin-6-sulfate, chondroitin-4-sulfate, and heparin sulfate on mineralization. We find that while short term MSC migration and activity was not affected by pore orientation, increased bone mineral synthesis was observed in anisotropic scaffolds. Further, while scaffold glycosaminoglycan content did not impact cell viability, heparin sulfate and chondroitin-6-sulfate containing variants increased mineral formation at the late stage of in vitro culture, respectively. Overall, these findings show scaffold microstructural and proteoglycan modifications represent a powerful tool to improve MSC osteogenic activity. Mineralized collagen scaffolds were modified to include anisotropic pore architecture and one of three glycosaminoglycans in order to improve bone mineral formation in vitro.![]()
Collapse
Affiliation(s)
| | | | | | - Brendan Harley
- Dept. of Materials Science and Engineering, USA.,School of Chemical Sciences, USA.,Dept. Chemical and Biomolecular Engineering, USA.,Dept. of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory 600 S. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|
29
|
Cao C, Tarlé S, Kaigler D. Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells. Stem Cell Res Ther 2020; 11:102. [PMID: 32138791 PMCID: PMC7059346 DOI: 10.1186/s13287-020-01605-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/22/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recently, mesenchymal stem cells (MSCs) have been shown to have immunomodulatory properties which hold promise for their clinical use to treat inflammatory conditions. Relative to bone marrow-derived MSCs (BMSCs), which are typically isolated from the iliac crest, we have recently demonstrated that MSCs can be predictably isolated from the alveolar bone (aBMSCs) by less invasive means. As such, the aim of this study was to characterize the immunomodulatory properties of aBMSCs relative to BMSCs. Methods aBMSCs isolated from the human alveolar bone and BMSCs isolated from the human bone marrow of the iliac crest were cultured in the same conditions. Cytokine arrays and enzyme-linked immunosorbent assays (ELISA) of a conditioned medium were used to evaluate differences in the secretion of cytokines. In different functional assays, aBMSCs and BMSCs were cocultured with different types of immune cells including THP-1 monocytes, macrophages, and peripheral blood mononuclear cells (PBMCs) to evaluate their effects on important immune cell functions including proliferation, differentiation, and activation. Results The protein arrays identified interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 to be the major cytokines secreted by aBMSCs and BMSCs. ELISA determined that aBMSCs secreted 268.64 ± 46.96 pg/mL of IL-6 and 196.14 ± 97.31 pg/mL of MCP-1 per microgram of DNA, while BMSCs secreted 774.86 ± 414.29 pg/mL of IL-6 and 856.37 ± 433.03 pg/mL of MCP-1 per microgram of DNA. The results of the coculture studies showed that aBMSCs exhibited immunosuppressive effects on monocyte activation and T cell activation and proliferation similar to BMSCs. Both aBMSCs and BMSCs drove macrophages into an anti-inflammatory phenotype with increased phagocytic ability. Taken together, these data suggest that aBMSCs have potent immunomodulatory properties comparable to those of BMSCs. Conclusions The findings of this study have important implications for the development of immunomodulatory stem cell therapies aimed to treat inflammatory conditions using aBMSCs, a more feasible tissue source of MSCs.
Collapse
Affiliation(s)
- Chen Cao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA
| | - Susan Tarlé
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, College of Engineering, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Awadeen MA, Al-Belasy FA, Ameen LE, Helal ME, Grawish ME. Early therapeutic effect of platelet-rich fibrin combined with allogeneic bone marrow-derived stem cells on rats' critical-sized mandibular defects. World J Stem Cells 2020; 12:55-69. [PMID: 32110275 PMCID: PMC7031757 DOI: 10.4252/wjsc.v12.i1.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide. These defects generally result from severe trauma or resection of a whole large tumour. Autologous bone grafts are the current gold standard for the reconstruction of such defects. However, due to increased patient morbidity and the need for a second operative site, other lines of treatment should be introduced. To find alternative unconventional therapies to manage such defects, bone tissue engineering using a combination of suitable bioactive factors, cells, and biocompatible scaffolds offers a promising new approach for bone regeneration.
AIM To evaluate the healing capacity of platelet-rich fibrin (PRF) membranes seeded with allogeneic mesenchymal bone marrow-derived stem cells (BMSCs) on critically sized mandibular defects in a rat model.
METHODS Sixty-three Sprague Dawley rats were subjected to bilateral bone defects of critical size in the mandibles created by a 5-mm diameter trephine bur. Rats were allocated to three equal groups of 21 rats each. Group I bone defects were irrigated with normal saline and designed as negative controls. Defects of group II were grafted with PRF membranes and served as positive controls, while defects of group III were grafted with PRF membranes seeded with allogeneic BMSCs. Seven rats from each group were killed at 1, 2 and 4 wk. The mandibles were dissected and prepared for routine haematoxylin and eosin (HE) staining, Masson's trichrome staining and CD68 immunohistochemical staining.
RESULTS Four weeks postoperatively, the percentage area of newly formed bone was significantly higher in group III (0.88 ± 0.02) than in groups I (0.02 ± 0.00) and II (0.60 ± 0.02). The amount of granulation tissue formation was lower in group III (0.12 ± 0.02) than in groups I (0.20 ± 0.02) and II (0.40 ± 0.02). The number of inflammatory cells was lower in group III (0.29 ± 0.03) than in groups I (4.82 ± 0.08) and II (3.09 ± 0.07).
CONCLUSION Bone regenerative quality of critically sized mandibular bone defects in rats was better promoted by PRF membranes seeded with BMSCs than with PRF membranes alone.
Collapse
Affiliation(s)
- Muhammad A Awadeen
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Fouad A Al-Belasy
- Department of Oral Surgery and Anesthesia, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Laila E Ameen
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Mohamad E Helal
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
31
|
Funda G, Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D, Del Fabbro M. Nanotechnology Scaffolds for Alveolar Bone Regeneration. MATERIALS 2020; 13:ma13010201. [PMID: 31947750 PMCID: PMC6982209 DOI: 10.3390/ma13010201] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
In oral biology, tissue engineering aims at regenerating functional tissues through a series of key events that occur during alveolar/periodontal tissue formation and growth, by means of scaffolds that deliver signaling molecules and cells. Due to their excellent physicochemical properties and biomimetic features, nanomaterials are attractive alternatives offering many advantages for stimulating cell growth and promoting tissue regeneration through tissue engineering. The main aim of this article was to review the currently available literature to provide an overview of the different nano-scale scaffolds as key factors of tissue engineering for alveolar bone regeneration procedures. In this narrative review, PubMed, Medline, Scopus and Cochrane electronic databases were searched using key words like “tissue engineering”, “regenerative medicine”, “alveolar bone defects”, “alveolar bone regeneration”, “nanomaterials”, “scaffolds”, “nanospheres” and “nanofibrous scaffolds”. No limitation regarding language, publication date and study design was set. Hand-searching of the reference list of identified articles was also undertaken. The aim of this article was to give a brief introduction to review the role of different nanoscaffolds for bone regeneration and the main focus was set to underline their role for alveolar bone regeneration procedures.
Collapse
Affiliation(s)
- Goker Funda
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milan, Italy; (S.T.); (G.A.B.); (M.D.F.)
- Correspondence: ; Tel.: +39-02-5031-9950
| | - Silvio Taschieri
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milan, Italy; (S.T.); (G.A.B.); (M.D.F.)
- IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi, 4, 20161 Milano MI, Italy;
| | - Giannì Aldo Bruno
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milan, Italy; (S.T.); (G.A.B.); (M.D.F.)
- Dental and Maxillo-Facial Surgery Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico di Milano, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Emma Grecchi
- Dental and Maxillo-Facial Surgery Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico di Milano, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Savadori Paolo
- IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi, 4, 20161 Milano MI, Italy;
| | - Donati Girolamo
- ASST Fatebenefratelli Sacco Hospital, Dentistry Department, Via Giovanni Battista Grassi, 74, 20157 Milan, Italy;
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milan, Italy; (S.T.); (G.A.B.); (M.D.F.)
- IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi, 4, 20161 Milano MI, Italy;
| |
Collapse
|
32
|
Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int 2019; 2019:9159605. [PMID: 31636679 PMCID: PMC6766151 DOI: 10.1155/2019/9159605] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Dental follicle cells (DFCs) are a group of mesenchymal progenitor cells surrounding the tooth germ, responsible for cementum, periodontal ligament, and alveolar bone formation in tooth development. Cascades of signaling pathways and transcriptional factors in DFCs are involved in directing tooth eruption and tooth root morphogenesis. Substantial researches have been made to decipher multiple aspects of DFCs, including multilineage differentiation, senescence, and immunomodulatory ability. DFCs were proved to be multipotent progenitors with decent amplification, immunosuppressed and acquisition ability. They are able to differentiate into osteoblasts/cementoblasts, adipocytes, neuron-like cells, and so forth. The excellent properties of DFCs facilitated clinical application, as exemplified by bone tissue engineering, tooth root regeneration, and periodontium regeneration. Except for the oral and maxillofacial regeneration, DFCs were also expected to be applied in other tissues such as spinal cord defects (SCD), cardiomyocyte destruction. This article reviewed roles of DFCs in tooth development, their properties, and clinical application potentials, thus providing a novel guidance for tissue engineering.
Collapse
|
33
|
Rahman MS, Rana MM, Spitzhorn LS, Akhtar N, Hasan MZ, Choudhury N, Fehm T, Czernuszka JT, Adjaye J, Asaduzzaman SM. Fabrication of biocompatible porous scaffolds based on hydroxyapatite/collagen/chitosan composite for restoration of defected maxillofacial mandible bone. Prog Biomater 2019; 8:137-154. [PMID: 31144260 PMCID: PMC6825626 DOI: 10.1007/s40204-019-0113-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Fabrication of scaffolds from biomaterials for restoration of defected mandible bone has attained increased attention due to limited accessibility of natural bone for grafting. Hydroxyapatite (Ha), collagen type 1 (Col1) and chitosan (Cs) are widely used biomaterials which could be fabricated as a scaffold to overcome the paucity of bone substitutes. Here, rabbit Col1, shrimp Cs and bovine Ha were extracted and characterized with respect to physicochemical properties. Following the biocompatibility, degradability and cytotoxicity tests for Ha, Col1 and Cs a hydroxyapatite/collagen/chitosan (Ha·Col1·Cs) scaffold was fabricated using thermally induced phase separation technique. This scaffold was cross-linked with (1) either glutaraldehyde (GTA), (2) de-hydrothermal treatment (DTH), (3) irradiation (IR) and (4) 2-hydroxyethyl methacrylate (HEMA), resulting in four independent types (Ha·Col1·Cs-GTA, Ha·Col1·Cs-IR, Ha·Col1·Cs-DTH and Ha·Col1·Cs-HEMA). The developed composite scaffolds were porous with 3D interconnected fiber microstructure. However, Ha·Col1·Cs-IR and Ha·Col1·Cs-GTA showed better hydrophilicity and biodegradability. All four scaffolds showed desirable blood biocompatibility without cytotoxicity for brine shrimp. In vitro studies in the presence of human amniotic fluid-derived mesenchymal stem cells revealed that Ha·Col1·Cs-IR and Ha·Col1·Cs-DHT scaffolds were non-cytotoxic and compatible for cell attachment, growth and mineralization. Further, grafting of Ha·Col1·Cs-IR and Ha·Col1·Cs-DHT was performed in a surgically created non-load-bearing rabbit maxillofacial mandible defect model. Histological and radiological observations indicated the restoration of defected bone. Ha·Col1·Cs-IR and Ha·Col1·Cs-DHT could be used as an alternative treatment in bone defects and may contribute to further development of scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Md Masud Rana
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, 1349, Dhaka, Bangladesh
| | - Lucas-Sebastian Spitzhorn
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Naznin Akhtar
- School of Medicine, Geelong Waurn Ponds Campus, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Md Zahid Hasan
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, 1349, Dhaka, Bangladesh
| | | | - Tanja Fehm
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Jan T Czernuszka
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Sikder M Asaduzzaman
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, 1349, Dhaka, Bangladesh.
| |
Collapse
|
34
|
Histological Analysis of Bone Repair in Mandibular Body Osteotomy Using Internal Fixation System in Three Different Gaps without Bone Graft in an Animal Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8043510. [PMID: 31428646 PMCID: PMC6681602 DOI: 10.1155/2019/8043510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/20/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
Abstract
The aim was to analyze histologically the bone repair in a mandibular osteotomy model with different gaps between the segments. Nine male rabbits who underwent osteotomies on the mandibular body were fixed with a 1.5 system plate and no bone graft; group 1 (2 mm gap between segments), group 2 (5 mm gap between segments), and group 3 (8 mm gap between segments) were included. After 8 weeks they were euthanized and the sample was processed for histological analysis. Group 1 showed advanced bone repair with cartilaginous tissue and cancellous bone, showing osteoblasts and type III collagenous fibers. In group 2, a more delayed ossification was observed, with an extensive area of peripheral ossifying cartilage and chondrocytes in greater number at the center of the defect; group 3 showed no evidence of ossification with fibrous tissue, a very low level of chondrocytes, and some bone sequestrate. We can conclude that, in this animal model, 2 or 5 mm gap in the osteotomy could be repaired as bone when fixation is used. The size of the gap is an important factor for the use of bone grafts considering endochondral ossification. This model can be used for graft analysis and related technologies.
Collapse
|
35
|
Wang L, Xu L, Peng C, Teng G, Wang Y, Xie X, Wu D. The effect of bone marrow mesenchymal stem cell and nano-hydroxyapatite/collagen I/poly-L-lactic acid scaffold implantation on the treatment of avascular necrosis of the femoral head in rabbits. Exp Ther Med 2019; 18:2021-2028. [PMID: 31452701 PMCID: PMC6704490 DOI: 10.3892/etm.2019.7800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/20/2019] [Indexed: 11/06/2022] Open
Abstract
For avascular necrosis of the femoral head (ANFH), repair and regeneration are difficult because of the edema and high pressure caused by continuous ischemia and hypoxia. Core decompression (CD) is a classic method for treating early ANFH before the collapse of the femoral head; however, its effect is still controversial. To improve the therapeutic effect of CD on ANFH, a novel tissue-engineered bone (TEB) was constructed by combining bone marrow mesenchymal stem cells (BMSCs) with nano-hydroxyapatite/collagen I/poly-L-lactic acid (nHAC/PLA) scaffolds and implanting the TEB into the bone tunnel of CD. Cell attachment was observed by scanning electron microscopy and hematoxylin and eosin staining. The authors' previous studies confirmed that nHAC/PLA is an excellent scaffold material with favorable biocompatibility and no cytotoxicity. A total of 24 New Zealand rabbits with ANFH were randomly divided into three groups, as follows: Group A (n=8), pure CD; group B (n=8), CD+nHAC/PLA; and group C (n=8), CD+BMSCs-nHAC/PLA. The favorable effect of BMSCs-nHAC/PLA on angiogenesis and bone formation in necrotic areas was further evaluated via radiographic and histological analyses. Computerized tomography (CT) scanning and H&E staining showed more capillaries and new osteoid tissue in group C compared with in groups B and A. Micro-CT showed that the new bone coverage rate and implanted material degradation degree were each increased in group C compared with in group B. These results indicate that BMSCs-nHAC/PLA scaffolds may improve the curative effect of CD and provide a strategy for treating ANFH.
Collapse
Affiliation(s)
- Le Wang
- Department of Spinal Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Leixin Xu
- Department of Orthopedics, The Fourth People's Hospital, Heze, Shandong 274100, P.R. China
| | - Changliang Peng
- Department of Spinal Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guoxin Teng
- Department of Pathology, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yu Wang
- Department of Radiology, Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, Shandong 250012, P.R. China
| | - Xiaoshuai Xie
- Department of Kidney Transplantation, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dongjin Wu
- Department of Spinal Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
36
|
3D Culture of Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) Could Improve Bone Regeneration in 3D-Printed Porous Ti6Al4V Scaffolds. Stem Cells Int 2018; 2018:2074021. [PMID: 30254680 PMCID: PMC6145055 DOI: 10.1155/2018/2074021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
Mandibular bone defect reconstruction is an urgent challenge due to the requirements for daily eating and facial aesthetics. Three-dimensional- (3D-) printed titanium (Ti) scaffolds could provide patient-specific implants for bone defects. Appropriate load-bearing properties are also required during bone reconstruction, which makes them potential candidates for mandibular bone defect reconstruction implants. However, in clinical practice, the insufficient osteogenesis of the scaffolds needs to be further improved. In this study, we first encapsulated bone marrow-derived mesenchymal stem cells (BMSCs) into Matrigel. Subsequently, the BMSC-containing Matrigels were infiltrated into porous Ti6Al4V scaffolds. The Matrigels in the scaffolds provided a 3D culture environment for the BMSCs, which was important for osteoblast differentiation and new bone formation. Our results showed that rats with a full thickness of critical mandibular defects treated with Matrigel-infiltrated Ti6Al4V scaffolds exhibited better new bone formation than rats with local BMSC injection or Matrigel-treated defects. Our data suggest that Matrigel is able to create a more favorable 3D microenvironment for BMSCs, and Matrigel containing infiltrated BMSCs may be a promising method for enhancing the bone formation properties of 3D-printed Ti6Al4V scaffolds. We suggest that this approach provides an opportunity to further improve the efficiency of stem cell therapy for the treatment of mandibular bone defects.
Collapse
|
37
|
Wang X, Zhang G, Qi F, Cheng Y, Lu X, Wang L, Zhao J, Zhao B. Enhanced bone regeneration using an insulin-loaded nano-hydroxyapatite/collagen/PLGA composite scaffold. Int J Nanomedicine 2017; 13:117-127. [PMID: 29317820 PMCID: PMC5743129 DOI: 10.2147/ijn.s150818] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insulin is widely considered as a classical hormone and drug in maintaining energy and glucose homeostasis. Recently, insulin has been increasingly recognized as an indispensable factor for osteogenesis and bone turnover, but its applications in bone regeneration have been restricted because of the short periods of activity and uncontrolled release. In this study, we incorporated insulin-loaded poly lactic-co-glycolic-acid (PLGA) nanospheres into nano-hydroxyapatite/collagen (nHAC) scaffolds and investigated the bioactivity of the composite scaffolds in vitro and in vivo. Bioactive insulin was successfully released from the nanospheres within the scaffold, and the release kinetics of insulin could be efficiently controlled by uniform-sized nanospheres. The physical characterizations of the composite scaffolds demonstrated that incorporation of nanospheres in nHAC scaffolds using this method did not significantly change the porosity, pore diameters, and compressive strengths of nHAC. In vitro, the insulin-loaded nHAC/PLGA composite scaffolds possessed favorable biological function for bone marrow mesenchymal stem cells adhesion and proliferation, as well as the differentiation into osteoblasts. In vivo, the optimized bone regenerative capability of this composite scaffold was confirmed in rabbit mandible critical size defects. These results demonstrated successful development of a functional insulin-PLGA-nHAC composite scaffold that enhances the bone regeneration capability of nHAC.
Collapse
Affiliation(s)
- Xing Wang
- Shanxi Medical University Stomatological Hospital, Taiyuan
| | - Guilan Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Yongfeng Cheng
- Shanxi Medical University Stomatological Hospital, Taiyuan
| | - Xuguang Lu
- Shanxi Medical University Stomatological Hospital, Taiyuan
| | - Lu Wang
- Shanxi Medical University Stomatological Hospital, Taiyuan
| | - Jing Zhao
- Shanxi Medical University Stomatological Hospital, Taiyuan
| | - Bin Zhao
- Shanxi Medical University Stomatological Hospital, Taiyuan
| |
Collapse
|
38
|
Three-dimensional macroporous materials for tissue engineering of craniofacial bone. Br J Oral Maxillofac Surg 2017; 55:875-891. [PMID: 29056355 DOI: 10.1016/j.bjoms.2017.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022]
Abstract
Repair of critical-size defects caused by trauma, removal of a tumour, or congenital abnormalities is a challenge in the craniomaxillofacial region because of the limitations associated with treatment. We have reviewed research papers and updated information relevant to the various types of macroporous scaffolds. We have included papers on several biomaterials and their use in various craniofacial defects such as mandibular, calvarial, and others, as well as the latest technological developments such as 3-dimensional printed scaffolds. We selected all papers about scaffolds, stem cells, and growth factors for review. Initial selection was by review of titles and abstracts, and the full texts of potentially suitable articles were then assessed. Methods of tissue engineering for repair of critical-size defects in the craniofacial bones seem to be viable options for surgical treatment in the future. Macroporous scaffolds with interconnected pores are of great value in regeneration of bone in the craniofacial region. In recent years, various natural or synthetic materials, or both, have been developed, on which macroporous scaffolds can be based. In this review we present a review on the various types of three-dimensional macroporous scaffolds that have been developed in recent years, and evaluate their potential for regeneration of craniofacial bone.
Collapse
|
39
|
Li G, Zhou T, Lin S, Shi S, Lin Y. Nanomaterials for Craniofacial and Dental Tissue Engineering. J Dent Res 2017; 96:725-732. [PMID: 28463533 DOI: 10.1177/0022034517706678] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- G. Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - T. Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - S. Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - S. Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Y. Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
40
|
Wang X, Wu X, Xing H, Zhang G, Shi Q, E L, Liu N, Yang T, Wang D, Qi F, Wang L, Liu H. Porous Nanohydroxyapatite/Collagen Scaffolds Loading Insulin PLGA Particles for Restoration of Critical Size Bone Defect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11380-11391. [PMID: 28256126 DOI: 10.1021/acsami.6b13566] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Insulin is considered to be a classical central regulator of energy homeostasis. Recently, the effect of insulin on bone has gained a lot of attention, but little attention has been paid to the application in bone tissue engineering. In this study, porous nanohydroxyapatite/collagen (nHAC) scaffolds incorporating poly lactic-co-glycolic acid (PLGA) particles were successfully developed as an insulin delivery platform for bone regeneration. Bioactive insulin was successfully released from the PLGA particles within the scaffold, and the size of the particles as well as the release kinetics of the insulin could be efficiently controlled through Shirasu porous glass premix membrane emulsification technology. It was indicated that the nHAC/PLGA composite scaffolds possessed favorable mechanical and structural properties for cell adhesion and proliferation, as well as the differentiation into osteoblasts. It was also demonstrated that the nHAC/PLGA scaffolds implanted into a rabbit critical-size mandible defect possessed tissue compatibility and higher bone restoration capacity compared with the defects that were filled with or without nHAC scaffolds. Furthermore, the in vivo results showed that the nHAC/PLGA scaffolds which incorporated insulin-loaded microspheres with a size of 1.61 μm significantly accelerated bone healing compared with two other composite scaffolds. Our study indicated that the local insulin released at the optimal time could substantially and reproducibly improve bone repair.
Collapse
Affiliation(s)
- Xing Wang
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
- Hospital of Stomatology, Shanxi Medical University , Taiyuan, 030001, China
| | - Xia Wu
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Helin Xing
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Guilan Zhang
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Quan Shi
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Lingling E
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Na Liu
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Tingyuan Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, 100190, China
| | - Dongsheng Wang
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Feng Qi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, 100190, China
| | - Lianyan Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, 100190, China
| | - Hongchen Liu
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| |
Collapse
|