1
|
Kwok JYY, Auyeung M, Pang SYY, Ho PWL, Yu DSF, Fong DYT, Lin CC, Walker R, Wong SYS, Ho RTH. A randomized controlled trial on the effects and acceptability of individual mindfulness techniques - meditation and yoga - on anxiety and depression in people with Parkinson's disease: a study protocol. BMC Complement Med Ther 2023; 23:241. [PMID: 37461018 PMCID: PMC10351114 DOI: 10.1186/s12906-023-04049-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Between 40 and 50% of patients with Parkinson's disease (PD) experience anxiety and depression, associated with impaired physical function, high care dependency and mortality. Recently, the United States National Institutes of Health has urged the implementation of mindfulness practices in chronic illness care. Most research to date has examined the effects on chronically ill patients of complex interventions using a combination of mindfulness techniques. In PD patients, however, such complex modalities appear to hinder the technique mastery. Hence, the aim of this trial is to investigate the effects and underlying mechanism of individual mindfulness techniques among PD patients, as well as exploring participants' experience in using individual mindfulness techniques as a lifestyle intervention for stress and symptom management. METHODS We will conduct an assessor-blind three-arm randomized waitlist-controlled trial with a descriptive qualitative evaluation. Up to 168 PD patients will be recruited from community settings and out-patient clinics, and randomized to meditation, yoga, or usual care group. Meditation and yoga sessions of 90-minute are held weekly for 8 weeks. Primary outcomes include anxiety and depression. Secondary outcomes include PD-related motor and non-motor symptoms and quality-of-life; and level of mindfulness and biomarkers of stress and inflammatory responses will be measured as mediating variables. All outcome evaluations will be assessed at baseline, 8 weeks, and 24 weeks. Following the intention-to-treat principle, generalized estimating equation models and path analysis will be used to identify the treatment effects and the mediating mechanisms. A subsample of 30 participants from each intervention group will be invited for qualitative interviews. DISCUSSION The study would also generate important insights to enhance the patients' adaptation to debilitating disease. More specifically, symptom management and stress adaptation are highly prioritized healthcare agenda in managing PD. The research evidence will further inform the development of community-based, nurse-led compassionate care models for neurodegenerative conditions, which is complementary to existing health services. TRIAL REGISTRATION WHO Primary Registry - Chinese Clinical Trials Registry number: ChiCTR2100045939; registered on 2021/04/29 ( https://www.chictr.org.cn/showproj.html?proj=125878 ).
Collapse
Affiliation(s)
- Jojo Yan Yan Kwok
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Man Auyeung
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR
| | | | - Philip Wing Lok Ho
- Division of Neurology, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
- The State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Doris Sau Fung Yu
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Daniel Yee Tak Fong
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Chia-chin Lin
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Richard Walker
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Newcastle, UK
- Population Health Sciences Institute, Newcastle University, Newcastle, UK
| | - Samuel Yeung-shan Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- CUHK Thomas Jing Centre for Mindfulness Research and Training, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Rainbow Tin Hung Ho
- Centre on Behavioral Health, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Department of Social Work & Social Administration, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
2
|
Exploring the Paradox of COVID-19 in Neurological Complications with Emphasis on Parkinson’s and Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3012778. [PMID: 36092161 PMCID: PMC9453010 DOI: 10.1155/2022/3012778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronavirus (HCoV) that has created a pandemic situation worldwide as COVID-19. This virus can invade human cells via angiotensin-converting enzyme 2 (ACE2) receptor-based mechanisms, affecting the human respiratory tract. However, several reports of neurological symptoms suggest a neuroinvasive development of coronavirus. SARS-CoV-2 can damage the brain via several routes, along with direct neural cell infection with the coronavirus. The chronic inflammatory reactions surge the brain with proinflammatory elements, damaging the neural cells, causing brain ischemia associated with other health issues. SARS-CoV-2 exhibited neuropsychiatric and neurological manifestations, including cognitive impairment, depression, dizziness, delirium, and disturbed sleep. These symptoms show nervous tissue damage that enhances the occurrence of neurodegenerative disorders and aids dementia. SARS-CoV-2 has been seen in brain necropsy and isolated from the cerebrospinal fluid of COVID-19 patients. The associated inflammatory reaction in some COVID-19 patients has increased proinflammatory cytokines, which have been investigated as a prognostic factor. Therefore, the immunogenic changes observed in Parkinson's and Alzheimer's patients include their pathogenetic role. Inflammatory events have been an important pathophysiological feature of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's. The neuroinflammation observed in AD has exacerbated the Aβ burden and tau hyperphosphorylation. The resident microglia and other immune cells are responsible for the enhanced burden of Aβ and subsequently mediate tau phosphorylation and ultimately disease progression. Similarly, neuroinflammation also plays a key role in the progression of PD. Several studies have demonstrated an interplay between neuroinflammation and pathogenic mechanisms of PD. The dynamic proinflammation stage guides the accumulation of α-synuclein and neurodegenerative progression. Besides, few viruses may have a role as stimulators and generate a cross-autoimmune response for α-synuclein. Hence, neurological complications in patients suffering from COVID-19 cannot be ruled out. In this review article, our primary focus is on discussing the neuroinvasive effect of the SARS-CoV-2 virus, its impact on the blood-brain barrier, and ultimately its impact on the people affected with neurodegenerative disorders such as Parkinson's and Alzheimer's.
Collapse
|
3
|
Tueth LE, Duncan RP. Musculoskeletal pain in Parkinson's disease: a narrative review. Neurodegener Dis Manag 2021; 11:373-385. [PMID: 34410146 PMCID: PMC8515213 DOI: 10.2217/nmt-2021-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
The prevalence of musculoskeletal (MSK) pain in people with Parkinson's disease (PD) is higher than that of age-matched controls. In this review, we outline what is known about MSK pain in PD, focusing on the neck, shoulder, knee, hip and low back. We also compare what is known about MSK pain in PD to what is known in older adults without PD. Finally, we outline areas of for future research related to MSK pain in people with PD.
Collapse
Affiliation(s)
- Lauren Elizabeth Tueth
- Program in Physical Therapy, School of Medicine, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ryan P Duncan
- Program in Physical Therapy, School of Medicine, Washington University in St. Louis, St. Louis, MO 63108, USA
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63108, USA
| |
Collapse
|
4
|
Ferrucci M, Biagioni F, Busceti CL, Vidoni C, Castino R, Isidoro C, Ryskalin L, Frati A, Puglisi-Allegra S, Fornai F. Inhibition of Autophagy In Vivo Extends Methamphetamine Toxicity to Mesencephalic Cell Bodies. Pharmaceuticals (Basel) 2021; 14:ph14101003. [PMID: 34681227 PMCID: PMC8538796 DOI: 10.3390/ph14101003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/21/2023] Open
Abstract
Methamphetamine (METH) is a widely abused psychostimulant and a stress-inducing compound, which leads to neurotoxicity for nigrostriatal dopamine (DA) terminals in rodents and primates including humans. In vitro studies indicate that autophagy is a strong modulator of METH toxicity. In detail, suppressing autophagy increases METH toxicity, while stimulating autophagy prevents METH-induced toxicity in cell cultures. In the present study, the role of autophagy was investigated in vivo. In the whole brain, METH alone destroys meso-striatal DA axon terminals, while fairly sparing DA cell bodies within substantia nigra pars compacta (SNpc). No damage to either cell bodies or axons from ventral tegmental area (VTA) is currently documented. According to the hypothesis that ongoing autophagy prevents METH-induced DA toxicity, we tested whether systemic injection of autophagy inhibitors such as asparagine (ASN, 1000 mg/Kg) or glutamine (GLN, 1000 mg/Kg), may extend METH toxicity to DA cell bodies, both within SNpc and VTA, where autophagy was found to be inhibited. When METH (5 mg/Kg × 4, 2 h apart) was administered to C57Bl/6 mice following ASN or GLN, a frank loss of cell bodies takes place within SNpc and a loss of both axons and cell bodies of VTA neurons is documented. These data indicate that, ongoing autophagy protects DA neurons and determines the refractoriness of cell bodies to METH-induced toxicity.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (M.F.); (L.R.)
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Carla L. Busceti
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Chiara Vidoni
- Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (C.V.); (R.C.); (C.I.)
| | - Roberta Castino
- Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (C.V.); (R.C.); (C.I.)
| | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (C.V.); (R.C.); (C.I.)
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (M.F.); (L.R.)
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135 Rome, Italy
| | - Stefano Puglisi-Allegra
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (M.F.); (L.R.)
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
- Correspondence: or ; Tel.: +39-050-2218601
| |
Collapse
|
5
|
Highlighting Immune System and Stress in Major Depressive Disorder, Parkinson's, and Alzheimer's Diseases, with a Connection with Serotonin. Int J Mol Sci 2021; 22:ijms22168525. [PMID: 34445231 PMCID: PMC8395198 DOI: 10.3390/ijms22168525] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023] Open
Abstract
There is recognition that both stress and immune responses are important factors in a variety of neurological disorders. Moreover, there is an important role of several neurotransmitters that connect these factors to several neurological diseases, with a special focus in this paper on serotonin. Accordingly, it is known that imbalances in stressors can promote a variety of neuropsychiatric or neurodegenerative pathologies. Here, we discuss some facts that link major depressive disorder, Alzheimer’s, and Parkinson’s to the stress and immune responses, as well as the connection between these responses and serotonergic signaling. These are important topics of investigation which may lead to new or better treatments, improving the life quality of patients that suffer from these conditions.
Collapse
|
6
|
Dual Roles of Microglia in the Basal Ganglia in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22083907. [PMID: 33918947 PMCID: PMC8070536 DOI: 10.3390/ijms22083907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing age of the population, the incidence of Parkinson’s disease (PD) has increased exponentially. The development of novel therapeutic interventions requires an understanding of the involvement of senescent brain cells in the pathogenesis of PD. In this review, we highlight the roles played by microglia in the basal ganglia in the pathophysiological processes of PD. In PD, dopaminergic (DAergic) neuronal degeneration in the substantia nigra pars compacta (SNc) activates the microglia, which then promote DAergic neuronal degeneration by releasing potentially neurotoxic factors, including nitric oxide, cytokines, and reactive oxygen species. On the other hand, microglia are also activated in the basal ganglia outputs (the substantia nigra pars reticulata and the globus pallidus) in response to excess glutamate released from hyperactive subthalamic nuclei-derived synapses. The activated microglia then eliminate the hyperactive glutamatergic synapses. Synapse elimination may be the mechanism underlying the compensation that masks the appearance of PD symptoms despite substantial DAergic neuronal loss. Microglial senescence may correlate with their enhanced neurotoxicity in the SNc and the reduced compensatory actions in the basal ganglia outputs. The dual roles of microglia in different basal ganglia regions make it difficult to develop interventions targeting microglia for PD treatment.
Collapse
|
7
|
Song H, Sieurin J, Wirdefeldt K, Pedersen NL, Almqvist C, Larsson H, Valdimarsdóttir UA, Fang F. Association of Stress-Related Disorders With Subsequent Neurodegenerative Diseases. JAMA Neurol 2021; 77:700-709. [PMID: 32150226 DOI: 10.1001/jamaneurol.2020.0117] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Importance Posttraumatic stress disorder (PTSD) has been associated with increased risk for dementia. Less is known, however, about other stress-related disorders and their associations with neurodegenerative diseases. Objective To examine the association between stress-related disorders and risk for neurodegenerative diseases. Design, Setting, and Participants This population-matched and sibling cohort study was conducted in Sweden using data from nationwide health registers, including the Swedish National Patient Register. Individuals who received their first diagnosis of stress-related disorders between January 1, 1987, and December 31, 2008, were identified. Individuals who had a history of neurodegenerative diseases, had conflicting or missing information, had no data on family links, or were aged 40 years or younger at the end of the study were excluded. Individuals with stress-related disorders were compared with the general population in a matched cohort design; they were also compared with their siblings in a sibling cohort. Follow-up commenced from the age of 40 years or 5 years after the diagnosis of stress-related disorders, whichever came later, until the first diagnosis of a neurodegenerative disease, death, emigration, or the end of follow-up (December 31, 2013), whichever occurred first. Data analyses were performed from November 2018 to April 2019. Exposures Diagnosis of stress-related disorders (PTSD, acute stress reaction, adjustment disorder, and other stress reactions). Main Outcomes and Measurements Neurodegenerative diseases were identified through the National Patient Register and classified as primary or vascular. Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis were evaluated separately. Cox proportional hazards regression models were used to estimate hazard ratios (HRs) with 95% CIs after controlling for multiple confounders. Results The population-matched cohort included 61 748 exposed individuals and 595 335 matched unexposed individuals. A total of 44 839 exposed individuals and their 78 482 unaffected full siblings were included in the sibling cohort analysis. The median (interquartile range) age at the start of follow-up was 47 (41-56) years, and 24 323 (39.4%) of the exposed individuals were male. The median (interquartile range) follow-up was 4.7 (2.1-9.8) years. Compared with unexposed individuals, individuals with a stress-related disorder were at an increased risk of neurodegenerative diseases (HR, 1.57; 95% CI, 1.43-1.73). The risk increase was greater for vascular neurodegenerative diseases (HR, 1.80; 95% CI, 1.40-2.31) than for primary neurodegenerative diseases (HR, 1.31; 95% CI, 1.15-1.48). A statistically significant association was found for Alzheimer disease (HR, 1.36; 95% CI, 1.12-1.67) but not Parkinson disease (HR, 1.20; 95% CI, 0.98-1.47) or amyotrophic lateral sclerosis (HR, 1.20; 95% CI, 0.74-1.96). Results from the sibling cohort corroborated results from the population-matched cohort. Conclusions and Relevance This study showed an association between stress-related disorders and an increased risk of neurodegenerative diseases. The relative strength of this association for vascular neurodegenerative diseases suggests a potential cerebrovascular pathway.
Collapse
Affiliation(s)
- Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.,Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Sieurin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Karin Wirdefeldt
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychology, University of Southern California, Los Angeles
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Unnur A Valdimarsdóttir
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Janiri D, Petracca M, Moccia L, Tricoli L, Piano C, Bove F, Imbimbo I, Simonetti A, Di Nicola M, Sani G, Calabresi P, Bentivoglio AR. COVID-19 Pandemic and Psychiatric Symptoms: The Impact on Parkinson's Disease in the Elderly. Front Psychiatry 2020; 11:581144. [PMID: 33329124 PMCID: PMC7728715 DOI: 10.3389/fpsyt.2020.581144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic represents a condition of increased vulnerability and frailty for elderly patients with Parkinson's disease (PD). Social isolation may worsen the burden of the disease and specifically exacerbate psychiatric symptoms, often comorbid with PD. This study aimed at identifying risk/protective factors associated with subjective worsening of psychiatric symptomatology during the COVID-19 outbreak in a sample of individuals with PD aged 65 years or older. Methods: Patients with PD routinely followed at the outpatient clinic of Gemelli University Hospital, Rome, were assessed for subjective worsening of psychiatric symptoms through a dedicated telephone survey, after Italy COVID-19 lockdown. Patients' medical records were reviewed to collect sociodemographic and clinical data, including lifetime psychiatric symptoms and pharmacological treatment. Results: Overall, 134 individuals were assessed and 101 (75.4%) reported lifetime psychiatric symptoms. Among those, 23 (22.8%) presented with subjective worsening of psychiatric symptomatology during the COVID-19 outbreak. In this group, the most frequent symptom was depression (82.6%), followed by insomnia (52.2%). Subjective worsening of neurological symptoms (Wald = 24.03, df = 1, p = 0.001) and lifetime irritability (Wald = 6.35, df = 1, p = 0.020), together with younger age (Wald = 5.06, df = 1, p = 0.038) and female sex (Wald = 9.07 df = 1, p = 0.007), resulted as specific risk factors for ingravescence of psychiatric presentation. Lifetime pre-existing delusions, having received antipsychotics, and not having received mood stabilizer were also associated with subjective worsening of psychiatric symptomatology due to the COVID-19 pandemic. Conclusions: Individuals with PD and lifetime history of psychiatric symptoms may be exposed to increased vulnerability to the stressful effect of COVID-19 outbreak. Interventions aimed at reducing irritability and mood instability might have an indirect effect on the health of patients with PD during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Delfina Janiri
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Psychiatry and Neurology, Sapienza University of Rome, Rome, Italy
| | - Martina Petracca
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lorenzo Moccia
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tricoli
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carla Piano
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Bove
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Alessio Simonetti
- Department of Psychiatry and Neurology, Sapienza University of Rome, Rome, Italy
| | - Marco Di Nicola
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Sani
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Bentivoglio
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
9
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Jackson A, Forsyth CB, Shaikh M, Voigt RM, Engen PA, Ramirez V, Keshavarzian A. Diet in Parkinson's Disease: Critical Role for the Microbiome. Front Neurol 2019; 10:1245. [PMID: 31920905 PMCID: PMC6915094 DOI: 10.3389/fneur.2019.01245] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Parkinson's disease (PD) is the most common movement disorder affecting up to 1% of the population above the age of 60 and 4–5% of those above the age of 85. Little progress has been made on efforts to prevent disease development or halt disease progression. Diet has emerged as a potential factor that may prevent the development or slow the progression of PD. In this review, we discuss evidence for a role for the intestinal microbiome in PD and how diet-associated changes in the microbiome may be a viable approach to prevent or modify disease progression. Methods: We reviewed studies demonstrating that dietary components/foods were related to risk for PD. We reviewed evidence for the dysregulated intestinal microbiome in PD patients including abnormal shifts in the intestinal microbiota composition (i.e., dysbiosis) characterized by a loss of short chain fatty acid (SCFA) bacteria and increased lipopolysaccharide (LPS) bacteria. We also examined several candidate mechanisms by which the microbiota can influence PD including the NLRP3 inflammasome, insulin resistance, mitochondrial function, vagal nerve signaling. Results: The PD-associated microbiome is associated with decreased production of SCFA and increased LPS and it is believed that these changes may contribute to the development or exacerbation of PD. Diet robustly impacts the intestinal microbiome and the Western diet is associated with increased risk for PD whereas the Mediterranean diet (including high intake of dietary fiber) decreases PD risk. Mechanistically this may be the consequence of changes in the relative abundance of SCFA-producing or LPS-containing bacteria in the intestinal microbiome with effects on intestinal barrier function, endotoxemia (i.e., systemic LPS), NLRP3 inflammasome activation, insulin resistance, and mitochondrial dysfunction, and the production of factors such as glucagon like peptide 1 (GLP-1) and brain derived neurotrophic factor (BDNF) as well as intestinal gluconeogenesis. Conclusions: This review summarizes a model of microbiota-gut-brain-axis regulation of neuroinflammation in PD including several new mechanisms. We conclude with the need for clinical trials in PD patients to test this model for beneficial effects of Mediterranean based high fiber diets.
Collapse
Affiliation(s)
- Aeja Jackson
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Christopher B Forsyth
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Maliha Shaikh
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Robin M Voigt
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Phillip A Engen
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Vivian Ramirez
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Ali Keshavarzian
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| |
Collapse
|
11
|
Burwell-Naney K, Wilson SM, Whitlock ST, Puett R. Hybrid Resiliency-Stressor Conceptual Framework for Informing Decision Support Tools and Addressing Environmental Injustice and Health Inequities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1466. [PMID: 31027209 PMCID: PMC6518295 DOI: 10.3390/ijerph16081466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
While structural factors may drive health inequities, certain health-promoting attributes of one's "place" known as salutogens may further moderate the cumulative impacts of exposures to socio-environmental stressors that behave as pathogens. Understanding the synergistic relationship between socio-environmental stressors and resilience factors is a critical component in reducing health inequities; however, the catalyst for this concept relies on community-engaged research approaches to ultimately strengthen resiliency and promote health. Furthermore, this concept has not been fully integrated into environmental justice and cumulative risk assessment screening tools designed to identify geospatial variability in environmental factors that may be associated with health inequities. As a result, we propose a hybrid resiliency-stressor conceptual framework to inform the development of environmental justice and cumulative risk assessment screening tools that can detect environmental inequities and opportunities for resilience in vulnerable populations. We explore the relationship between actual exposures to socio-environmental stressors, perceptions of stressors, and one's physiological and psychological stress response to environmental stimuli, which collectively may perpetuate health inequities by increasing allostatic load and initiating disease onset. This comprehensive framework expands the scope of existing screening tools to inform action-based solutions that rely on community-engaged research efforts to increase resiliency and promote positive health outcomes.
Collapse
Affiliation(s)
- Kristen Burwell-Naney
- Center for Outreach in Alzheimer's, Aging and Community Health, North Carolina A&T State University, 2105 Yanceyville Street, Greensboro, NC 27405, USA.
| | - Sacoby M Wilson
- Maryland Institute for Applied Environmental Health, School of Public Heath, University of Maryland, 255 Valley Drive, College Park, MD 20742, USA.
| | - Siobhan T Whitlock
- Office of Environmental Justice and Sustainability, U.S. Environmental Protection Agency, 61 Forsyth Street SW, Atlanta, GA 30303, USA.
| | - Robin Puett
- Maryland Institute for Applied Environmental Health, School of Public Heath, University of Maryland, 255 Valley Drive, College Park, MD 20742, USA.
| |
Collapse
|
12
|
Functional and behavioral consequences of Parkinson's disease-associated LRRK2-G2019S mutation. Biochem Soc Trans 2018; 46:1697-1705. [PMID: 30514770 DOI: 10.1042/bst20180468] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022]
Abstract
LRRK2 mutation is the most common inherited, autosomal dominant cause of Parkinson's disease (PD) and has also been observed in sporadic cases. Most mutations result in increased LRRK2 kinase activity. LRRK2 is highly expressed in brain regions that receive dense, convergent innervation by dopaminergic and glutamatergic axons, and its levels rise developmentally coincident with glutamatergic synapse formation. The onset and timing of expression suggests strongly that LRRK2 regulates the development, maturation and function of synapses. Several lines of data in mice show that LRRK2-G2019S, the most common LRRK2 mutation, produces an abnormal gain of pathological function that affects synaptic activity, spine morphology, persistent forms of synapse plasticity and behavioral responses to social stress. Effects of the mutation can be detected as early as the second week of postnatal development and can last or have consequences that extend into adulthood and occur in the absence of dopamine loss. These data suggest that the generation of neural circuits that support complex behaviors is modified by LRRK2-G2019S. Whether such alterations impart vulnerability to neurons directly or indirectly, they bring to the forefront the idea that neural circuits within which dopamine neurons eventually degenerate are assembled and utilized in ways that are distinct from circuits that lack this mutation and may contribute to non-motor symptoms observed in humans with PD.
Collapse
|
13
|
Ask TF, Lugo RG, Sütterlin S. The Neuro-Immuno-Senescence Integrative Model (NISIM) on the Negative Association Between Parasympathetic Activity and Cellular Senescence. Front Neurosci 2018; 12:726. [PMID: 30369866 PMCID: PMC6194361 DOI: 10.3389/fnins.2018.00726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
There is evidence that accumulated senescent cells drive age-related pathologies, but the antecedents to the cellular stressors that induce senescence remain poorly understood. Previous research suggests that there is a relationship between shorter telomere length, an antecedent to cellular senescence, and psychological stress. Existing models do not sufficiently account for the specific pathways from which psychological stress regulation is converted into production of reactive oxygen species. We propose the neuro-immuno-senescence integrative model (NISIM) suggesting how vagally mediated heart rate variability (HRV) might be related to cellular senescence. Prefrontally modulated, and vagally mediated cortical influences on the autonomic nervous system, expressed as HRV, affects the immune system by adrenergic stimulation and cholinergic inhibition of cytokine production in macrophages and neutrophils. Previous findings indicate that low HRV is associated with increased production of the pro-inflammatory cytokines IL-6 and TNF-α. IL-6 and TNF-α can activate the NFκB pathway, increasing production of reactive oxygen species that can cause DNA damage. Vagally mediated HRV has been related to an individual's ability to regulate stress, and is lower in people with shorter telomeres. Based on these previous findings, the NISIM suggest that the main pathway from psychological stress to individual differences in oxidative telomere damage originates in the neuroanatomical components that modulate HRV, and culminates in the cytokine-induced activation of NFκB. Accumulated senescent cells in the brain is hypothesized to promote age-related neurodegenerative disease, and previous reports suggest an association between low HRV and onset of Alzheimer's and Parkinson's disease. Accumulating senescent cells in peripheral tissues secreting senescence-associated secretory phenotype factors can alter tissue structure and function which can induce cancer and promote tumor growth and metastasis in old age, and previous research suggested that ability to regulate psychological stress has a negative association with cancer onset. We therefore conclude that the NISIM can account for a large proportion of the individual differences in the psychological stress-related antecedents to cellular senescence, and suggest that it can be useful in providing a dynamic framework for understanding the pathways by which psychological stress induce pathologies in old age.
Collapse
Affiliation(s)
- Torvald F. Ask
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Ricardo G. Lugo
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stefan Sütterlin
- Faculty of Health and Welfare Sciences, Østfold University College, Halden, Norway
- Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Parkinson's Disease-Linked LRRK2-G2019S Mutation Alters Synaptic Plasticity and Promotes Resilience to Chronic Social Stress in Young Adulthood. J Neurosci 2018; 38:9700-9711. [PMID: 30249796 DOI: 10.1523/jneurosci.1457-18.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022] Open
Abstract
The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is a prevalent cause of late-onset Parkinson's disease, producing psychiatric and motor symptoms, including depression, that are indistinguishable from sporadic cases. Here we tested how this mutation impacts depression-related behaviors and associated synaptic responses and plasticity in mice expressing a Lrrk2-G2019S knock-in mutation. Young adult male G2019S knock-in and wild-type mice were subjected to chronic social defeat stress (CSDS), a validated depression model, and other tests of anhedonia, anxiety, and motor learning. We found that G2019S mice were highly resilient to CSDS, failing to exhibit social avoidance compared to wild-type mice, many of which exhibited prominent social avoidance and were thus susceptible to CSDS. In the absence of CSDS, no behavioral differences between genotypes were found. Whole-cell recordings of spiny projection neurons (SPNs) in the nucleus accumbens revealed that glutamatergic synapses in G2019S mice lacked functional calcium-permeable AMPARs, and following CSDS, failed to accumulate inwardly rectifying AMPAR responses characteristic of susceptible mice. Based on this abnormal AMPAR response profile, we asked whether long-term potentiation (LTP) of corticostriatal synaptic strength was affected. We found that both D1 receptor (D1R)- and D2R-SPNs in G2019S mutants were unable to express LTP, with D2R-SPNs abnormally expressing long-term depression following an LTP-induction protocol. Thus, G2019S promotes resilience to chronic social stress in young adulthood, likely reflecting synapses constrained in their ability to undergo experience-dependent plasticity. These unexpected findings may indicate early adaptive coping mechanisms imparted by the G2019S mutation.SIGNIFICANCE STATEMENT The G2019S mutation in LRRK2 causes late-onset Parkinson's disease (PD). LRRK2 is highly expressed in striatal neurons throughout life, but it is unclear how mutant LRRK2 affects striatal neuron function and behaviors in young adulthood. We addressed this question using Lrrk2-G2019S knock-in mice. The data show that young adult G2019S mice were unusually resilient to a depression-like syndrome resulting from chronic social stress. Further, mutant striatal synapses were incapable of forms of synaptic plasticity normally accompanying depression-like behavior and important for supporting the full range of cognitive function. These data suggest that in humans, LRRK2 mutation may affect striatal circuit function in ways that alter normal responses to stress and could be relevant for treatment strategies for non-motor PD symptoms.
Collapse
|
15
|
Futch HS, Croft CL, Truong VQ, Krause EG, Golde TE. Targeting psychologic stress signaling pathways in Alzheimer's disease. Mol Neurodegener 2017; 12:49. [PMID: 28633663 PMCID: PMC5479037 DOI: 10.1186/s13024-017-0190-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent progressive neurodegenerative disease; to date, no AD therapy has proven effective in delaying or preventing the disease course. In the search for novel therapeutic targets in AD, it has been shown that increased chronic psychologic stress is associated with AD risk. Subsequently, biologic pathways underlying psychologic stress have been identified and shown to be able to exacerbate AD relevant pathologies. In this review, we summarize the literature relevant to the association between psychologic stress and AD, focusing on studies investigating the effects of stress paradigms on transgenic mouse models of Amyloid-β (Aβ) and tau pathologies. In recent years, a substantial amount of research has been done investigating a key stress-response mediator, corticotropin-releasing hormone (CRH), and its interactions with AD relevant processes. We highlight attempts to target the CRH signaling pathway as a therapeutic intervention in these transgenic mouse models and discuss how targeting this pathway is a promising avenue for further investigation.
Collapse
Affiliation(s)
- Hunter S. Futch
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Cara L. Croft
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Van Q. Truong
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Eric G. Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Todd E. Golde
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| |
Collapse
|