1
|
da Silva SEB, da Silva Moura JA, Branco Júnior JF, de Moraes Gomes PAT, de Paula SKS, Viana DCF, de Freitas Ramalho EAV, de Melo Gomes JV, Pereira MC, da Rocha Pitta MG, da Rocha Pitta I, da Rocha Pitta MG. Synthesis and In vitro and In silico Anti-inflammatory Activity of New Thiazolidinedione-quinoline Derivatives. Curr Top Med Chem 2024; 24:1264-1277. [PMID: 38523516 DOI: 10.2174/0115680266295582240318060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Inflammation is a series of complex defense-related reactions. The inflammation cascade produces various pro-inflammatory mediators. Unregulated production of these pro-inflammatory mediators can lead to a wide range of diseases, including rheumatoid arthritis, sepsis, and inflammatory bowel disease. In the literature, the anti-inflammatory action of quinoline and thiazolidinedione nuclei are well established, alone, and associated with other nuclei. The synthesis of hybrid molecules is a strategy for obtaining more efficient molecules due to the union of pharmacophoric nuclei known to be related to pharmacological activity. OBJECTIVES Based on this, this work presents the synthesis of thiazolidinedione-quinoline molecular hybrids and their involvement in the modulation of cytokines involved in the inflammatory reaction cascade. METHODS After synthesis and characterization, the compounds were submitted to cell viability test (MTT), ELISA IFN-γ and TNF-α, adipogenic differentiation, and molecular docking assay with PPARy and COX-2 targets. RESULTS LPSF/ZKD2 and LPSF/ZKD7 showed a significant decrease in the concentration of IFN- γ and TNF-α, with a dose-dependent behavior. LPSF/ZKD4 at a concentration of 50 μM significantly reduced IL-6 expression. LPSF/ZKD4 demonstrates lipid accumulation with significant differences between the untreated and negative control groups, indicating a relevant agonist action on the PPARγ receptor. Molecular docking showed that all synthesized compounds have good affinity with PPARγ e COX-2, with binding energy close to -10,000 Kcal/mol. CONCLUSION These results demonstrate that the synthesis of quinoline-thiazolidinedione hybrids may be a useful strategy for obtaining promising candidates for new anti-inflammatory agents.
Collapse
Affiliation(s)
- Sandra Elizabeth Barbosa da Silva
- Federal University of Pernambuco, Laboratory of Design and Drug Synthesis - LPSF, Recife, PE, Brazil
- Federal University of Pernambuco, Keizo Asami Institute - iLIKA, Recife, PE, Brazil
| | - José Arion da Silva Moura
- Federal University of Pernambuco, Laboratory of Design and Drug Synthesis - LPSF, Recife, PE, Brazil
| | | | | | | | | | | | - João Victor de Melo Gomes
- Federal University of Pernambuco, Laboratory of Design and Drug Synthesis - LPSF, Recife, PE, Brazil
| | - Michelly Cristiny Pereira
- Federal University of Pernambuco, Laboratory of Design and Drug Synthesis - LPSF, Recife, PE, Brazil
- Federal University of Pernambuco, Laboratory of Immunomodulation and New Therapeutic Approaches - LINAT, Recife, PE, Brazil
| | | | - Ivan da Rocha Pitta
- Federal University of Pernambuco, Laboratory of Design and Drug Synthesis - LPSF, Recife, PE, Brazil
| | | |
Collapse
|
2
|
Singh G, Kumar R, D S D, Chaudhary M, Kaur C, Khurrana N. Thiazolidinedione as a Promising Medicinal Scaffold for the Treatment of Type 2 Diabetes. Curr Diabetes Rev 2024; 20:e201023222411. [PMID: 37867272 DOI: 10.2174/0115733998254798231005095627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Thiazolidinediones, also known as glitazones, are considered as biologically active scaffold and a well-established class of anti-diabetic agents for the treatment of type 2 diabetes mellitus. Thiazolidinediones act by reducing insulin resistance through elevated peripheral glucose disposal and glucose production. These molecules activate peroxisome proliferated activated receptor (PPARγ), one of the sub-types of PPARs, and a diverse group of its hybrid have also shown numerous therapeutic activities along with antidiabetic activity. OBJECTIVE The objective of this review was to collect and summarize the research related to the medicinal potential, structure-activity relationship and safety aspects of thiazolidinedione analogues designed and investigated in type 2 diabetes during the last two decades. METHODS The mentioned objective was achieved by collecting and reviewing the research manuscripts, review articles, and patents from PubMed, Science Direct, Embase, google scholar and journals related to the topic from different publishers like Wiley, Springer, Elsevier, Taylor and Francis, Indian and International government patent sites etc. Results: The thiazolidinedione scaffold has been a focus of research in the design and synthesis of novel derivatives for the management of type 2 diabetes, specifically in the case of insulin resistance. The complications like fluid retention, idiosyncratic hepatotoxicity, weight gain and congestive heart failure in the case of trosiglitazone, and pioglitazone have restricted their use. The newer analogues have been synthesized by different research groups to attain better efficacy and less side effects. CONCLUSION Thus, the potential of thiazolidinediones in terms of their chemical evolution, action on nuclear receptors, aldose reductase and free fatty acid receptor 1 is well established. The newer TZD analogues with better safety profiles and tolerability will soon be available in the market for common use without further delay.
Collapse
Affiliation(s)
- Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Desna D S
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Navneet Khurrana
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| |
Collapse
|
3
|
Gupta S, Baweja GS, Singh S, Irani M, Singh R, Asati V. Integrated fragment-based drug design and virtual screening techniques for exploring the antidiabetic potential of thiazolidine-2,4-diones: Design, synthesis and in vivo studies. Eur J Med Chem 2023; 261:115826. [PMID: 37793328 DOI: 10.1016/j.ejmech.2023.115826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Diabetes mellitus is a metabolic disorder characterized by elevated blood sugar levels and related complications. This study focuses on harnessing and integrating fragment-based drug design and virtual screening techniques to explore the antidiabetic potential of newly synthesized thiazolidine-2,4-dione derivatives. The research involves the design of novel variations of thiazolidine-2,4-dione compounds by Fragment-Based Drug Design. The screening process involves pharmacophore based virtual screening through docking algorithms, and the identification of newly twelve top-scoring compounds. The molecular docking analysis revealed that compounds SP4e, SP4f showed highest docking scores of -9.082 and -10.345. The binding free energies of the compounds SP4e, SP4f and pioglitazone was found to be -19.9, -16.1 and -13 respectively, calculated using the Prime MM/GBSA approach. The molecular dynamic study validates the docking results. Furthermore, In the Swiss albino mice model, both SP4e and SP4f exhibited significant hypoglycaemic effects, comparable to the reference drug pioglitazone. Furthermore, these compounds demonstrated favorable effects on the lipid profile, reducing total cholesterol, triglycerides, and LDL levels while increasing HDL levels. In mice tissue, the disease control group showed PPAR-γ expression of 4.200 ± 0.24, while compound SP4f displayed higher activation at 7.84 ± 0.431 compared to compound SP4e with an activation of 7.68 ± 0.65. In zebrafish model, SP4e and SP4f showed significant reductions in blood glucose levels and lipid peroxidation, along with increased glutathione levels and catalase activity. These findings highlighted the potential of SP4e and SP4f as antidiabetic agents, warranting further exploration for therapeutic applications. The in vitro study was performed in HEK-2 cell line, the pioglitazone group demonstrated PPAR-γ expression of EC50 = 575.2, while compound SP4f exhibited enhanced activation at EC50 = 739.0 in contrast to compound SP4e activation of EC50 = 826.7.
Collapse
Affiliation(s)
- Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Gurkaran Singh Baweja
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Mehdi Irani
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
4
|
Aryan, Babu B, Divakar S, Gowramma B, Jupudi S, Chand J, Malakar Kumar V. Rational design of thiazolidine-4-one-gallic acid hybrid derivatives as selective partial PPARγ modulators: an in-silico approach for type 2 diabetes treatment. J Biomol Struct Dyn 2023:1-15. [PMID: 37997952 DOI: 10.1080/07391102.2023.2283161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Type 2 diabetes mellitus is a bipolar metabolic disorder characterized by abnormalities in insulin production from β-cells and insulin resistance. Thiazolidinediones are potent anti-diabetic agents that act through the modulation of the peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor. However, their full agonistic activity leads to severe side effects by stabilizing Helix12 through strong hydrogen bonding with the TYR473 residue. Partial and selective PPARγ modulators (GW0072, GQ16, VSP-51, MRL-20, MBX-213, INT131) have demonstrated superior results compared to full agonists without causing adverse effects, as reported in existing data. To address this uncertainty and advance therapeutic options, we identified and designed a novel class of compounds (A1-A23) based on a hybrid structure combining phenolic and Thiazolidine-4-one's moieties. Our rational drug design strategy incorporated structural-activity relationship principle, and validated the docking studies through calculated the root mean square deviation. Additionally, we conducted molecular docking, binding energy, molecular dynamics simulations, and post-molecular dynamics calculations to evaluate the dynamics behavior between the ligands and protein. The selected ligands demonstrated highly favorable docking scores and binding energies, comparable to the co-crystal (rosiglitazone) such as A12 (-13.9 kcal/mol and -86.2 kcal/mol), A1 (-11.1 kcal/mol and -79.5 kcal/mol), A13 (-11.3 kcal/mol and -91.4 kcal/mol), and the co-crystal itself (-9.8 kcal/mol and -76 kcal/mol), respectively. Finally, the MD revealed that, the selected ligands were equally contributed for stabilization of Helix12 and β-sheets. It was concluded, the designed ligands (A12, A1, and A13) exhibited weaker hydrogen-bond interactions with specific residue TYR473 which partially modulated the PPARγ protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aryan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - B Babu
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - S Divakar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - B Gowramma
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Jagdish Chand
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Vishnu Malakar Kumar
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
5
|
Najmi A, Alam MS, Thangavel N, Taha MME, Meraya AM, Albratty M, Alhazmi HA, Ahsan W, Haque A, Azam F. Synthesis, molecular docking, and in vivo antidiabetic evaluation of new benzylidene-2,4-thiazolidinediones as partial PPAR-γ agonists. Sci Rep 2023; 13:19869. [PMID: 37963936 PMCID: PMC10645977 DOI: 10.1038/s41598-023-47157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) partial agonists or antagonists, also termed as selective PPAR-γ modulators, are more beneficial than full agonists because they can avoid the adverse effects associated with PPAR-γ full agonists, such as weight gain and congestive heart disorders, while retaining the antidiabetic efficiency. In this study, we designed and synthesized new benzylidene-thiazolidine-2,4-diones while keeping the acidic thiazolidinedione (TZD) ring at the center, which is in contrast with the typical pharmacophore of PPAR-γ agonists. Five compounds (5a-e) were designed and synthesized in moderate to good yields and were characterized using spectral techniques. The in vivo antidiabetic efficacy of the synthesized compounds was assessed on streptozotocin-induced diabetic mice using standard protocols, and their effect on weight gain was also studied. Molecular docking and molecular dynamics (MD) simulation studies were performed to investigate the binding interactions of the title compounds with the PPAR-γ receptor and to establish their binding mechanism. Antidiabetic activity results revealed that compounds 5d and 5e possess promising antidiabetic activity comparable with the standard drug rosiglitazone. No compound showed considerable effect on the body weight of animals after 21 days of administration, and the findings showed statistical difference (p < 0.05 to p < 0.0001) among the diabetic control and standard drug rosiglitazone groups. In molecular docking study, compounds 5c and 5d exhibited higher binding energies (- 10.1 and - 10.0 kcal/mol, respectively) than the native ligand, non-thiazolidinedione PPAR-γ partial agonist (nTZDpa) (- 9.8 kcal/mol). MD simulation further authenticated the stability of compound 5c-PPAR-γ complex over the 150 ns duration. The RMSD, RMSF, rGyr, SASA, and binding interactions of compound 5c-PPAR-γ complex were comparable to those of native ligand nTZDpa-PPAR-γ complex, suggesting that the title compounds have the potential to be developed as partial PPAR-γ agonists.
Collapse
Affiliation(s)
- Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia.
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Manal M E Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
- Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Anzarul Haque
- Department of Pharmaceutics, Buraydah College of Dentistry and Pharmacy, P.O Box 31717, Buraydah, Al-Qassim, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
6
|
Koshatwar M, Acharya S, Prasad R, Lohakare T, Wanjari M, Taksande AB. Exploring the Potential of Antidiabetic Agents as Therapeutic Approaches for Alzheimer's and Parkinson's Diseases: A Comprehensive Review. Cureus 2023; 15:e44763. [PMID: 37809189 PMCID: PMC10556988 DOI: 10.7759/cureus.44763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Alzheimer's and Parkinson's are two prevalent neurodegenerative disorders with significant societal and healthcare burdens. The search for effective therapeutic approaches to combat these diseases has led to growing interest in exploring the potential of antidiabetic agents. This comprehensive review aims to provide a detailed overview of the current literature on using antidiabetic agents as therapeutic interventions for Alzheimer's and Parkinson's diseases. We discuss the underlying pathological mechanisms of these neurodegenerative diseases, including protein misfolding, inflammation, oxidative stress, and mitochondrial dysfunction. We then delve into the potential mechanisms by which antidiabetic agents may exert neuroprotective effects, including regulation of glucose metabolism and insulin signaling, anti-inflammatory effects, modulation of oxidative stress, and improvement of mitochondrial function and bioenergetics. We highlight in vitro, animal, and clinical studies that support the potential benefits of antidiabetic agents in reducing disease pathology and improving clinical outcomes. However, we also acknowledge these agents' limitations, variability in treatment response, and potential side effects. Furthermore, we explore emerging therapeutic targets and novel approaches, such as glucagon-like peptide-1 receptor (GLP-1R) agonists, insulin sensitizer drugs, neuroinflammation-targeted therapies, and precision medicine approaches. The review concludes by emphasizing the need for further research, including large-scale clinical trials, to validate the efficacy and safety of antidiabetic agents in treating Alzheimer's and Parkinson's disease. The collaboration between researchers, clinicians, and pharmaceutical companies is essential in advancing the field and effectively treating patients affected by these debilitating neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahima Koshatwar
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswee Lohakare
- Department of Child Health Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Avinash B Taksande
- Department of Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Daryagasht M, Moosavi M, Khorsandi L, Azadnasab R, Khodayar MJ. Hepatoprotective and anti-hyperglycemic effects of ferulic acid in arsenic-exposed mice. Food Chem Toxicol 2023:113924. [PMID: 37393015 DOI: 10.1016/j.fct.2023.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Arsenic is a toxic metalloid that increases the risk of hepatotoxicity and hyperglycemia. The objective of the present study was to assess the effect of ferulic acid (FA) in mitigating glucose intolerance and hepatotoxicity caused by sodium arsenite (SA). A total of six groups including control, FA 100 mg/kg, SA 10 mg/kg, and groups that received different doses of FA (10, 30, and 100 mg/kg), respectively just before SA (10 mg/kg) for 28 days were examined. Fasting blood sugar (FBS) and glucose tolerance tests were conducted on the 29th day. On day 30, mice were sacrificed and blood and tissues (liver and pancreas) were collected for further investigations. FA reduced FBS and improved glucose intolerance. Liver function and histopathological studies confirmed that FA preserved the structure of the liver in groups received SA. Furthermore, FA increased antioxidant defense and decreased lipid peroxidation and tumor necrosis factor-alpha level in SA-treated mice. FA, at the doses of 30 and 100 mg/kg, prevented the decrease in the expression of PPAR-γ and GLUT2 proteins in the liver of mice exposed to SA. In conclusion, FA prevented SA-induced glucose intolerance and hepatotoxicity by reducing oxidative stress, inflammation, and hepatic overexpression of PPAR-γ and GLUT2 proteins.
Collapse
Affiliation(s)
- Mahdi Daryagasht
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Moosavi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azadnasab
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Tshiluka NR, Bvumbi MV, Mnyakeni-Moleele SS. Synthesis, Cytotoxicity and In Vitro α-Glucosidase Inhibition of New N-Substituted Glitazone and Rhodanine Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s106816202302022x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Ma C, Liu D, Hao H, Wu X. Identification of the DPP-IV Inhibitory Peptides from Donkey Blood and Regulatory Effect on the Gut Microbiota of Type 2 Diabetic Mice. Foods 2022; 11:foods11142148. [PMID: 35885395 PMCID: PMC9316604 DOI: 10.3390/foods11142148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
After being treated with protease K, peptides extracted from donkey blood were separated, identified, and characterized. The results showed that Sephadex G-25 medium purified with MW < 3 kDa had the highest dipeptidyl peptidase IV (DPP-IV) inhibition capacity. Three-hundred-and-thirty-four peptides were identified with UPLC−MS/MS. Peptide Ranker and molecular docking analysis were used to screen active peptides, and 16 peptides were finalized out of the 334. The results showed that the lowest binding energy between P7(YPWTQ) and DPP-IV was −9.1, and the second-lowest binding energy between P1(VDPENFRLL) and DPP-IV was −8.7. The active peptides(MW < 3 kDa) could cause a reduction in the fasting blood glucose levels of type 2 diabetic mice, improve glucose tolerance, and facilitate healing of the damaged structure of diabetic murine liver and pancreas. Meanwhile, the peptides were found to ameliorate the diabetic murine intestinal micro-ecological environment to a certain extent.
Collapse
|
10
|
Daily Intraperitoneal Administration of Rosiglitazone Does Not Improve Lung Function or Alveolarization in Preterm Rabbits Exposed to Hyperoxia. Pharmaceutics 2022; 14:pharmaceutics14071507. [PMID: 35890402 PMCID: PMC9320886 DOI: 10.3390/pharmaceutics14071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Thiazolidinediones (TZDs) are potent PPARγ agonists that have been shown to attenuate alveolar simplification after prolonged hyperoxia in term rodent models of bronchopulmonary dysplasia. However, the pulmonary outcomes of postnatal TZDs have not been investigated in preterm animal models. Here, we first investigated the PPARγ selectivity, epithelial permeability, and lung tissue binding of three types of TZDs in vitro (rosiglitazone (RGZ), pioglitazone, and DRF-2546), followed by an in vivo study in preterm rabbits exposed to hyperoxia (95% oxygen) to investigate the pharmacokinetics and the pulmonary outcomes of daily RGZ administration. In addition, blood lipids and a comparative lung proteomics analysis were also performed on Day 7. All TZDs showed high epithelial permeability through Caco-2 monolayers and high plasma and lung tissue binding; however, RGZ showed the highest affinity for PPARγ. The pharmacokinetic profiling of RGZ (1 mg/kg) revealed an equivalent biodistribution after either intratracheal or intraperitoneal administration, with detectable levels in lungs and plasma after 24 h. However, daily RGZ doses of 1 mg/kg did not improve lung function in preterm rabbits exposed to hyperoxia, and daily 10 mg/kg doses were even associated with a significant lung function worsening, which could be partially explained by the upregulation of lung inflammation and lipid metabolism pathways revealed by the proteomic analysis. Notably, daily postnatal RGZ produced an aberrant modulation of serum lipids, particularly in rabbit pups treated with the 10 mg/kg dose. In conclusion, daily postnatal RGZ did not improve lung function and caused dyslipidemia in preterm rabbits exposed to hyperoxia.
Collapse
|
11
|
Qaoud MT, Almasri I, Önkol T. Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. Turk J Pharm Sci 2022; 19:353-370. [PMID: 35775494 DOI: 10.4274/tjps.galenos.2021.70105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Thiazolidinedione (TZD), a class of drugs that are mainly used to control type 2 diabetes mellitus (T2DM), acts fundamentally as a ligand of peroxisome proliferator-activated receptors (PPARs). Besides activating pathways responsible for glycemic control by enhancing insulin sensitivity and lipid homeostasis, activating PPARs leads to exciting other pathways related to bone formation, inflammation, and cell proliferation. Unfortunately, this diverse effect of activating several pathways may show in some studies adverse health outcomes as osteological, hepatic, cardiovascular, and carcinogenic effects. Thus, a silver demand is present to find and develop new active and potent antiglycemic drugs for treating T2DM. To achieve this goal, the structure of TZD for research is considered a leading structure domain. This review will guide future research in the design of novel TZD derivatives by highlighting the general modifications conducted on the structure component of TZD scaffold affecting their potency, binding efficacy, and selectivity for the control of T2DM.
Collapse
Affiliation(s)
- Mohammed T Qaoud
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Türkiye
| | - Ihab Almasri
- Al-Azhar University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Pharmacognosy, Gaza Strip, Palestine
| | - Tijen Önkol
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Türkiye.,We commemorate late Prof. Dr. Tijen Önkol with mercy and respect on this occasion. IEO, BK, SAE (The Editorial Board)
| |
Collapse
|
12
|
Osorio-Conles Ó, Olbeyra R, Moizé V, Ibarzabal A, Giró O, Viaplana J, Jiménez A, Vidal J, de Hollanda A. Positive Effects of a Mediterranean Diet Supplemented with Almonds on Female Adipose Tissue Biology in Severe Obesity. Nutrients 2022; 14:nu14132617. [PMID: 35807797 PMCID: PMC9267991 DOI: 10.3390/nu14132617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that weight-loss-independent Mediterranean diet benefits on cardiometabolic health and diabetes prevention may be mediated, at least in part, through the modulation of white adipose tissue (WAT) biology. This study aimed to evaluate the short-term effects of a dietary intervention based on the Mediterranean diet supplemented with almonds (MDSA) on the main features of obesity-associated WAT dysfunction. A total of 38 women with obesity were randomly assigned to a 3-month intervention with MDSA versus continuation of their usual dietary pattern. Subcutaneous (SAT) and visceral adipose tissue (VAT) biopsies were obtained before and after the dietary intervention, and at the end of the study period, respectively. MDSA favored the abundance of small adipocytes in WAT. In SAT, the expression of angiogenesis genes increased after MDSA intervention. In VAT, the expression of genes implicated in adipogenesis, angiogenesis, autophagy and fatty acid usage was upregulated. In addition, a higher immunofluorescence staining for PPARG, CD31+ cells and M2-like macrophages and increased ADRB1 and UCP2 protein contents were found compared to controls. Changes in WAT correlated with a significant reduction in circulating inflammatory markers and LDL-cholesterol levels. These results support a protective effect of a Mediterranean diet supplemented with almonds on obesity-related WAT dysfunction.
Collapse
Affiliation(s)
- Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Romina Olbeyra
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Violeta Moizé
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Oriol Giró
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Judith Viaplana
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Amanda Jiménez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Josep Vidal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (J.V.); (A.d.H.); Tel.: +34-93-227-20-12 (J.V.); +34-93-227-98-46 (A.d.H.); Fax: +34-93-227-55-89 (J.V. & A.d.H.)
| | - Ana de Hollanda
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (J.V.); (A.d.H.); Tel.: +34-93-227-20-12 (J.V.); +34-93-227-98-46 (A.d.H.); Fax: +34-93-227-55-89 (J.V. & A.d.H.)
| |
Collapse
|
13
|
Nedosugova LV, Markina YV, Bochkareva LA, Kuzina IA, Petunina NA, Yudina IY, Kirichenko TV. Inflammatory Mechanisms of Diabetes and Its Vascular Complications. Biomedicines 2022; 10:biomedicines10051168. [PMID: 35625904 PMCID: PMC9138517 DOI: 10.3390/biomedicines10051168] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The main cause of death in patients with type 2 DM is cardiovascular complications resulting from the progression of atherosclerosis. The pathophysiology of the association between diabetes and its vascular complications is complex and multifactorial and closely related to the toxic effects of hyperglycemia that causes increased generation of reactive oxygen species and promotes the secretion of pro-inflammatory cytokines. Subsequent oxidative stress and inflammation are major factors of the progression of type 2 DM and its vascular complications. Data on the pathogenesis of the development of type 2 DM and associated cardiovascular diseases, in particular atherosclerosis, open up broad prospects for the further development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Lyudmila V. Nedosugova
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Yuliya V. Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Leyla A. Bochkareva
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina A. Kuzina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Nina A. Petunina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina Y. Yudina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Tatiana V. Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Correspondence:
| |
Collapse
|
14
|
Estrada-Soto S, Cerón-Romero L, Navarrete-Vázquez G, Rosales-Ortega E, Gómez-Zamudio JH, Cruz M, Villalobos-Molina R. PPARα/γ, adiponectin and GLUT4 overexpression induced by moronic acid methyl ester influenced on glucose and triglycerides levels of experimental diabetic mice. Can J Physiol Pharmacol 2021; 100:295-305. [PMID: 34757855 DOI: 10.1139/cjpp-2021-0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current study aimed to determine the antidiabetic and antidyslipidemic activities of moronic acid methyl ester (1) by in vivo, in vitro, in silico and molecular biology studies. Compound 1 was evaluated to establish its dose-dependent antidiabetic and antihyperglycemic (50 mg/kg) activities, in diabetic and normoglycemic male CD1 mice, respectively. Also, compound 1 was subjected to a sub-acute study (50 mg/kg/day for eight days) to determine blood biochemical profiles and the expression of PTP-1B, GLUT4, PPAR-α, PPAR-γ, adiponectin, IL-1β, and MCP1 in adipose tissue of animals after treatment. Different doses in acute administration of 1 decreased glycemia (p < 0.05), compared with vehicle, showing greater effectiveness in the range 50-160 mg/kg. Also, the oral glucose tolerance test (OGTT) showed that 1 induced a significant antihyperglycemic action by opposing the hyperglycemic peak (p < 0.05). Moreover, 1 subacute administration decrease glucose and triglycerides levels after treatment (p < 0.05); while the expression of PPAR-α and γ, adiponectin and GLUT4 displayed an increase (p< 0.05) compared with the diabetic control group. In conclusion, compound 1 showed antihyperglycemic, antidiabetic and antidyslipidemic effects in normal and diabetic mice, probably due to insulin sensitization through increase mRNA expression of GLUT4, PPAR-α, PPAR-γ and adiponectin genes.
Collapse
Affiliation(s)
- Samuel Estrada-Soto
- Universidad Autónoma del Estado de Morelos, 27783, Cuernavaca, MOR, Mexico, 62209;
| | - Litzia Cerón-Romero
- Universidad Juárez Autónoma de Tabasco, 27836, División Académica de Ciencias Básicas, Villahermosa, Mexico;
| | | | | | - Jaime H Gómez-Zamudio
- Instituto Mexicano del Seguro Social, Unidad de Investigación Medica en Bioquímica, Distrito Federal, DISTRITO FEDERAL, Mexico;
| | - Miguel Cruz
- Instituto Mexicano del Seguro Social, CMN Siglo XXI, Unidad de Investigación Médica en Bioquímica, Cd. de Mexico, Distrito Federal, Mexico;
| | | |
Collapse
|
15
|
Zhang Y, Yang Y, Ding L, Wang Z, Xiao Y, Xiao W. Emerging Applications of Metabolomics to Assess the Efficacy of Traditional Chinese Medicines for Treating Type 2 Diabetes Mellitus. Front Pharmacol 2021; 12:735410. [PMID: 34603052 PMCID: PMC8486080 DOI: 10.3389/fphar.2021.735410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a common and complex disease that can exacerbate the complications related to cardiovascular disease, and this is especially true for type 2 diabetes mellitus (T2DM). In addition to the standard pharmacological therapies, T2DM has also been treated with nonconventional regimens such as traditional Chinese medicine (TCM), e.g., herbal medicines and TCM prescriptions, although the mechanisms underlying the therapeutic benefits remain unclear. In this regard, many studies have used metabolomics technology to elucidate the basis for the efficacy of TCM for T2DM. Metabolomics has recently attracted much attention with regard to drug discovery and pharmacologically relevant natural products. In this review, we summarize the application of metabolomics to the assessment of TCM efficacy for treating T2DM. Increasing evidence suggests that the metabolic profile of an individual patient may reflect a specific type of T2DM syndrome, which may provide a new perspective for disease diagnosis. In addition, TCM has proved effective for countering the metabolic disorders related to T2DM, and this may constitute the basis for TCM efficacy. Therefore, further determining how TCM contributes to the reversal of metabolic disorders, such as using network pharmacology or by assessing the contribution of host–gut microbiota interactions, will also provide researchers with new potential targets for pharmacologic-based therapies.
Collapse
Affiliation(s)
- Yumeng Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbo Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Lili Ding
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xiao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| |
Collapse
|
16
|
Sun J, Liu HY, Zhang YH, Fang ZY, Lv PC. Design, synthesis and bioactivity evaluation of thiazolidinedione derivatives as partial agonists targeting PPARγ. Bioorg Chem 2021; 116:105342. [PMID: 34536928 DOI: 10.1016/j.bioorg.2021.105342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Thiazolidinedione (TZD) is a novel peroxides proliferator activated receptor γ (PPARγ) agonist with many side effects. Herein, we developed a series of novel TZD analogues as partial agonists targeting PPARγ. The study of anti-hyperglycemic activity and anti-inflammatory activity enabled us to identify a novel compound, 4 g, which quickly recover the blood glucose of mice at the concentration of 100 mg/kg, and show similar anti-inflammatory activity to ibuprofen at the concentration of 20 mg/kg. The competitive binding assay confirmed direct binding of 4 g to the LBD of PPARγ with IC50 being 1790 nM, and dose-dependently increased the transcriptional activity of PPARγ. Besides, through computer-aided drug design software simulation docking, it was found that compound 4 g showed the best binding ability to target protein PPARγ. Furthermore, because of the introduction of benzene containing group at N3 position, the stability of H12 in the active pocket is reduced and the stability of H3 and β-fold is increased, showing the characteristics of some PPARγ agonists, based on the docking model analysis. Together, these results suggest that 4 g is a promising PPARγ agonist that deserves further investigation.
Collapse
Affiliation(s)
- Juan Sun
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, People's Republic of China
| | - Han-Yu Liu
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, People's Republic of China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yi-Heng Zhang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, People's Republic of China
| | - Ze-Yu Fang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, People's Republic of China
| | - Peng-Cheng Lv
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
17
|
Szałabska-Rąpała K, Borymska W, Kaczmarczyk-Sedlak I. Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities-A Review. Int J Mol Sci 2021; 22:10050. [PMID: 34576213 PMCID: PMC8467064 DOI: 10.3390/ijms221810050] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disease characterized by disturbances in carbohydrate, protein, and lipid metabolism, often accompanied by oxidative stress. Diabetes treatment is a complicated process in which, in addition to the standard pharmacological action, it is necessary to append a comprehensive approach. Introducing the aspect of non-pharmacological treatment of diabetes allows one to alleviate its many adverse complications. Therefore, it seems important to look for substances that, when included in the daily diet, can improve diabetic parameters. Magnolol, a polyphenolic compound found in magnolia bark, is known for its health-promoting activities and multidirectional beneficial effects on the body. Accordingly, the goal of this review is to systematize the available scientific literature on its beneficial effects on type 2 diabetes and its complications. Taking the above into consideration, the article collects data on the favorable effects of magnolol on parameters related to glycemia, lipid metabolism, or oxidative stress in the course of diabetes. After careful analysis of many scientific articles, it can be concluded that this lignan is a promising agent supporting the conventional therapies with antidiabetic drugs in order to manage diabetes and diabetes-related diseases.
Collapse
Affiliation(s)
- Katarzyna Szałabska-Rąpała
- Doctoral School of the Medical University of Silesia in Katowice, Discipline of Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.B.); (I.K.-S.)
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.B.); (I.K.-S.)
| |
Collapse
|
18
|
Nuwormegbe S, Park NY, Kim SW. Lobeglitazone attenuates fibrosis in corneal fibroblasts by interrupting TGF-beta-mediated Smad signaling. Graefes Arch Clin Exp Ophthalmol 2021; 260:149-162. [PMID: 34468828 DOI: 10.1007/s00417-021-05370-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Transforming growth factor beta 1 (TGF-β1) is an important cytokine released after ocular surface injury to promote wound healing. However, its persistence at the injury site triggers a fibrotic response that leads to corneal scarring and opacity. Thiazolidinediones (TZDs) are synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) ligands used to regulate glucose and lipid metabolism in the management of type 2 diabetes. Studies have also showed TZDs have antifibrotic effect. In this study, we investigated the antifibrotic effect of the TZD lobeglitazone on TGF-β1-induced fibrosis in corneal fibroblasts. METHODS Human primary corneal fibroblasts were cultivated and treated with TGF-β1 (5 ng/mL) to induce fibrosis, with or without pre-treatments with different concentrations of lobeglitazone. Myofibroblast differentiation and extracellular matrix (ECM) protein expression was evaluated by western blotting, immunofluorescence, real-time PCR, and collagen gel contraction assay. The effect of lobeglitazone on TGF-β1-induced reactive oxygen species (ROS) generation was evaluated by DCFDA-cellular ROS detection assay kit. Signaling proteins were evaluated by western blotting to determine the mechanism underlying the antifibrotic effect. RESULTS Our results showed lobeglitazone attenuated TGF-β1-induced ECM synthesis and myofibroblast differentiation of corneal fibroblasts. This antifibrotic effect appeared to be independent of PPAR signaling and rather due to the inhibition of the TGF-β1-induced Smad signaling. Lobeglitazone also blocked TGF-β1-induced ROS generation and nicotinamide adenine dinucleotide phosphate oxidase (Nox) 4 transcription. CONCLUSION These findings indicate that lobeglitazone may be a promising therapeutic agent for corneal scarring. KEY MESSAGES.
Collapse
Affiliation(s)
- Selikem Nuwormegbe
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Na-Young Park
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Sun Woong Kim
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea.
| |
Collapse
|
19
|
P P, Justin A, Ananda Kumar TD, Chinaswamy M, Kumar BRP. Glitazones Activate PGC-1α Signaling via PPAR-γ: A Promising Strategy for Antiparkinsonism Therapeutics. ACS Chem Neurosci 2021; 12:2261-2272. [PMID: 34125534 DOI: 10.1021/acschemneuro.1c00085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding various aspects of Parkinson's disease (PD) by researchers could lead to a better understanding of the disease and provide treatment alternatives that could significantly improve the quality of life of patients suffering from neurodegenerative disorders. Significant progress has been made in recent years toward this goal, but there is yet no available treatment with confirmed neuroprotective effects. Recent studies have shown the potential of PPARγ agonists, which are the ligand activated transcriptional factor of the nuclear hormone superfamily, as therapeutic targets for various neurodegenerative disorders. The activation of central PGC-1α mediates the potential role against neurogenerative diseases like PD, Huntington's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Further understanding the mechanism of neurodegeneration and the role of glitazones in the activation of PGC-1α signaling could lead to a novel therapeutic interventions against PD. Keeping this aspect in focus, the present review highlights the pathogenic mechanism of PD and the role of glitazones in the activation of PGC-1α via PPARγ for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Prabitha P
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570 015, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu 643 001, India
| | - T. Durai Ananda Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570 015, India
| | - Mithuna Chinaswamy
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570 015, India
| | - B. R. Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570 015, India
| |
Collapse
|
20
|
Long N, Le Gresley A, Wren SP. Thiazolidinediones: An In-Depth Study of Their Synthesis and Application to Medicinal Chemistry in the Treatment of Diabetes Mellitus. ChemMedChem 2021; 16:1716-1735. [PMID: 33844475 PMCID: PMC8251912 DOI: 10.1002/cmdc.202100177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 12/25/2022]
Abstract
2,4-Thiazolidinedione (TZD) is a privileged and highly utilised scaffold for the development of pharmaceutically active compounds. This sulfur-containing heterocycle is a versatile pharmacophore that confers a diverse range of pharmacological activities. TZD has been shown to exhibit biological action towards a vast range of targets interesting to medicinal chemists. In this review, we attempt to provide insight into both the historical conventional and the use of novel methodologies to synthesise the TZD core framework. Further to this, synthetic procedures utilised to substitute the TZD molecule at the activated methylene C5 and N3 position are reviewed. Finally, research into developing clinical agents, which act as modulators of peroxisome proliferator-activated receptors gamma (PPARγ), protein tyrosine phosphatase 1B (PTP1B) and aldose reductase 2 (ALR2), are discussed. These are the three most targeted receptors for the treatment of diabetes mellitus (DM).
Collapse
Affiliation(s)
- Nathan Long
- Department of Chemical & Pharmaceutical SciencesFaculty of ScienceEngineering & ComputingKingston University LondonPenrhyn RoadSurreyKT1 2EEUK
| | - Adam Le Gresley
- Department of Chemical & Pharmaceutical SciencesFaculty of ScienceEngineering & ComputingKingston University LondonPenrhyn RoadSurreyKT1 2EEUK
| | - Stephen P. Wren
- Department of Chemical & Pharmaceutical SciencesFaculty of ScienceEngineering & ComputingKingston University LondonPenrhyn RoadSurreyKT1 2EEUK
| |
Collapse
|
21
|
Mueller SL, Chrysanthopoulos PK, Halili MA, Hepburn C, Nebl T, Supuran CT, Nocentini A, Peat TS, Poulsen SA. The Glitazone Class of Drugs as Carbonic Anhydrase Inhibitors-A Spin-Off Discovery from Fragment Screening. Molecules 2021; 26:3010. [PMID: 34070212 PMCID: PMC8158703 DOI: 10.3390/molecules26103010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
The approved drugs that target carbonic anhydrases (CA, EC 4.2.1.1), a family of zinc metalloenzymes, comprise almost exclusively of primary sulfonamides (R-SO2NH2) as the zinc binding chemotype. New clinical applications for CA inhibitors, particularly for hard-to-treat cancers, has driven a growing interest in the development of novel CA inhibitors. We recently discovered that the thiazolidinedione heterocycle, where the ring nitrogen carries no substituent, is a new zinc binding group and an alternate CA inhibitor chemotype. This heterocycle is curiously also a substructure of the glitazone class of drugs used in the treatment options for type 2 diabetes. Herein, we investigate and characterise three glitazone drugs (troglitazone 11, rosiglitazone 12 and pioglitazone 13) for binding to CA using native mass spectrometry, protein X-ray crystallography and hydrogen-deuterium exchange (HDX) mass spectrometry, followed by CA enzyme inhibition studies. The glitazone drugs all displayed appreciable binding to and inhibition of CA isozymes. Given that thiazolidinediones are not credited as a zinc binding group nor known as CA inhibitors, our findings indicate that CA may be an off-target of these compounds when used clinically. Furthermore, thiazolidinediones may represent a new opportunity for the development of novel CA inhibitors as future drugs.
Collapse
Affiliation(s)
- Sarah L. Mueller
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Panagiotis K. Chrysanthopoulos
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Caryn Hepburn
- Waters Australia Pty Ltd., Rydalmere, NSW 2116, Australia;
| | - Tom Nebl
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università Degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (A.N.)
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università Degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (A.N.)
| | - Thomas S. Peat
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
22
|
Therapeutic effects of an aspalathin-rich green rooibos extract, pioglitazone and atorvastatin combination therapy in diabetic db/db mice. PLoS One 2021; 16:e0251069. [PMID: 33983968 PMCID: PMC8118332 DOI: 10.1371/journal.pone.0251069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Oral therapeutics used to treat type 2 diabetes and cardiovascular disease often fail to prevent the progression of disease and their comorbidities. Rooibos (Aspalathus linearis), an endemic South African plant used as an herbal tea, has demonstrated positive effects on glycemia and hypercholesterolemia. However, the treatment efficacy of rooibos extract in combination with conventional hypoglycemic and hypolipidemic medications on blood glucose and lipid profiles has not been established. This study aimed to investigate the effects of combining an aspalathin-rich green rooibos extract (Afriplex GRT™) with pioglitazone and atorvastatin, on blood glucose and lipid levels in obese diabetic (db/db) mice. Six-week-old male db/db mice and their nondiabetic lean littermate controls (db+) were divided into 8 experimental groups (n = 6/group). Db/db mice were treated daily either with pioglitazone (25 mg/kg), atorvastatin (80 mg/kg) and GRT (100 mg/kg), a combination of either drug with GRT or a combination of GRT-pioglitazone and atorvastatin for 5 weeks. Untreated vehicle controls were given dimethyl sulfoxide (0.1%) and phosphate buffered saline solution. At termination, serum and liver tissue were collected for lipid and gene expression analysis. Treatment with GRT, pioglitazone and atorvastatin combination effectively lowered fasting plasma glucose (FPG) levels in db/db mice (p = 0.02), whilst increasing body weight, liver weight, and reducing retroperitoneal fat weight. Atorvastatin monotherapy was effective at reducing cholesterol (from 4.00 ± 0.12 to 2.93 ± 0.13, p = 0.0003), LDL-C (from 0.58 ± 0.04 to 0.50 ± 0.00, p = 0.04), HDL-C (from 2.86 ± 0.05 to 2.50 ± 0.04, p = 0.0003) and TG (from 2.77 ± 0.50 to 1.48 ± 0.23, p = 0.04), compared to the untreated diabetic control. The hypotriglyceridemic effect of atorvastatin was enhanced when used in combination with both GRT and pioglitazone. The addition of pioglitazone to GRT significantly lowered FPG and TG. In db/db mice, Apoa1 was significantly downregulated in the liver, whilst Pparγ was significantly upregulated compared to their db+ counterparts. GRT monotherapy downregulated Apoa1 expression (p = 0.02). Atorvastatin combined with GRT significantly downregulated mRNA expression of Apoa1 (p = 0.03), whilst upregulating the expression of Pparγ (p = 0.03), Pparα (p = 0.002), Srebp1 (p = 0.002), and Fasn (p = 0.04). The GRT-pioglitazone-atorvastatin combination therapy downregulated Apoa1 (p = 0.006), whilst upregulating Fasn (p = 0.005), Pparα (p = 0.041), and Srebp1 (p = 0.03). Natural products can improve the efficacy of current drugs to prevent diabetes-associated complications. GRT in combination with pioglitazone enhanced the reduction of FPG, whilst the addition of atorvastatin to the combination, significantly lowered triglyceride levels. However, when GRT was used in combination with atorvastatin only cholesterol levels were affected. Although these results confirm both glucose- and lipoprotein-lowering biological effects of GRT in combination with pioglitazone and atorvastatin, increased expression of genes involved in lipogenesis, cholesterol, and fatty acid transport, β-oxidation, and synthesis and storage of fatty acids, may exacerbate the hepatotoxic effects of atorvastatin.
Collapse
|
23
|
Paul S, Saha D, Bk B. Mitochondrial Dysfunction and Mitophagy Closely Cooperate in Neurological Deficits Associated with Alzheimer's Disease and Type 2 Diabetes. Mol Neurobiol 2021; 58:3677-3691. [PMID: 33797062 DOI: 10.1007/s12035-021-02365-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are known to be correlated in terms of their epidemiology, histopathology, and molecular and biochemical characteristics. The prevalence of T2D leading to AD is approximately 50-70%. Moreover, AD is often considered type III diabetes because of the common risk factors. Uncontrolled T2D may affect the brain, leading to memory and learning deficits in patients. In addition, metabolic disorders and impaired oxidative phosphorylation in AD and T2D patients suggest that mitochondrial dysfunction is involved in both diseases. The dysregulation of pathways involved in maintaining mitochondrial dynamics, biogenesis and mitophagy are responsible for exacerbating the impact of hyperglycemia on the brain and neurodegeneration under T2D conditions. The first section of this review describes the recent views on mitochondrial dysfunction that connect these two disease conditions, as the pathways are observed to overlap. The second section of the review highlights the importance of different mitochondrial miRNAs (mitomiRs) involved in the regulation of mitochondrial dynamics and their association with the pathogenesis of T2D and AD. Therefore, targeting mitochondrial biogenesis and mitophagy pathways, along with the use of mitomiRs, could be a potent therapeutic strategy for T2D-related AD. The last section of the review highlights the known drugs targeting mitochondrial function for the treatment of both disease conditions.
Collapse
Affiliation(s)
- Sangita Paul
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debarpita Saha
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Binukumar Bk
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Derangula M, Panati K, Narala VR. Biochanin A Ameliorates Ovalbumin-induced Airway Inflammation through Peroxisome Proliferator-Activated Receptor-Gamma in a Mouse Model. Endocr Metab Immune Disord Drug Targets 2021; 21:145-155. [PMID: 32359341 DOI: 10.2174/1871530320666200503051609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/09/2020] [Accepted: 04/01/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Asthma is an inflammatory airway disease affecting most of the population in the world. The current medication for asthma relieves airway inflammation but it has serious adverse effects. Biochanin A (BCA), a phytoestrogen, is an active component present in red clover, alfalfa, soy having anti-oxidant and anti-inflammatory properties. BCA was identified as a natural activator of peroxisome proliferator-activated receptor-gamma (PPARγ). METHODS The study aims to evaluate the effects of BCA in ovalbumin (OVA)-induced murine model of asthma and to study the role of PPARγ. RESULTS We found that BCA administration reduced the severity of murine allergic asthma as evidenced histologically, and measurement of allergen-specific IgE levels in serum as well as in BAL fluid. BCA also reversed the elevated levels of inflammatory cytokines, cell infiltration, protein leakage into the airways and expression of hemoxygenase-1 in OVA-induced lungs. Further, we confirmed that BCA mediated inhibitory effects are mediated through PPARγ as assessed by treatment with PPARγ antagonist GW9662. CONCLUSION Our results suggest that BCA is efficacious in a preclinical model of asthma and may have the potential for the treatment of asthma in humans.
Collapse
Affiliation(s)
- Madhavi Derangula
- Department of Zoology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa, Andhra Pradesh, India
| | - Venkata R Narala
- Department of Zoology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| |
Collapse
|
25
|
Ahsan W. The Journey of Thiazolidinediones as Modulators of PPARs for the Management of Diabetes: A Current Perspective. Curr Pharm Des 2020; 25:2540-2554. [PMID: 31333088 DOI: 10.2174/1381612825666190716094852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 01/06/2023]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) also known as glitazone receptors are a family of receptors that regulate the expression of genes and have an essential role in carbohydrate, lipid and protein metabolism apart from other functions. PPARs come in 3 sub-types: PPAR-α, PPAR-β/δ and PPAR-γ - with PPAR-γ having 2 isoforms - γ1 and γ2. Upon activation, the PPARs regulate the transcription of various genes involved in lipid and glucose metabolism, adipocyte differentiation, increasing insulin sensitivity, prevention of oxidative stress and to a certain extent, modulation of immune responses via macrophages that have been implicated in the pathogenesis of insulin resistance. Hence, PPARs are an attractive molecular target for designing new anti-diabetic drugs. This has led to a boost in the research efforts directed towards designing of PPAR ligands - particularly ones that can selectively and specifically activate one or more of the PPAR subtypes. Though, PPAR- γ full agonists such as Thiazolidinediones (TZDs) are well established agents for dyslipidemia and type 2 diabetes mellitus (T2D), the side effect profile associated with TZDs has potentiated an imminent need to come up with newer agents that act through this pathway. Several newer derivatives having TZD scaffold have been designed using structure based drug designing technique and computational tools and tested for their PPAR binding affinity and efficacy in combating T2D and some have shown promising activities. This review would focus on the role of PPARs in the management of T2D; recently reported TZD derivatives which acted as agonists of PPAR- γ and its subtypes and are potentially useful in the new drug discovery for the disease.
Collapse
Affiliation(s)
- Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| |
Collapse
|
26
|
Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2020; 12:nu12041066. [PMID: 32290535 PMCID: PMC7230471 DOI: 10.3390/nu12041066] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance (IR), defined as an attenuated biological response to circulating insulin, is a fundamental defect in obesity and type 2 diabetes (T2D), and is also linked to a wide spectrum of pathological conditions, such as non-alcoholic fatty liver disease (NAFLD), cognitive impairment, endothelial dysfunction, chronic kidney disease (CKD), polycystic ovary syndrome (PCOS), and some endocrine tumors, including breast cancer. In obesity, the unbalanced production of pro- and anti-inflammatory adipocytokines can lead to the development of IR and its related metabolic complications, which are potentially reversible through weight-loss programs. The Mediterranean diet (MedDiet), characterized by high consumption of extra-virgin olive oil (EVOO), nuts, red wine, vegetables and other polyphenol-rich elements, has proved to be associated with greater improvement of IR in obese individuals, when compared to other nutritional interventions. Also, recent studies in either experimental animal models or in humans, have shown encouraging results for insulin-sensitizing nutritional supplements derived from MedDiet food sources in the modulation of pathognomonic traits of certain IR-related conditions, including polyunsaturated fatty acids from olive oil and seeds, anthocyanins from purple vegetables and fruits, resveratrol from grapes, and the EVOO-derived, oleacein. Although the pharmacological properties and clinical uses of these functional nutrients are still under investigation, the molecular mechanism(s) underlying the metabolic benefits appear to be compound-specific and, in some cases, point to a role in gene expression through an involvement of the nuclear high-mobility group A1 (HMGA1) protein.
Collapse
|
27
|
Jiang H, Zhou XE, Shi J, Zhou Z, Zhao G, Zhang X, Sun Y, Suino-Powell K, Ma L, Gao H, Yu X, Li J, Li J, Melcher K, Xu HE, Yi W. Identification and structural insight of an effective PPARγ modulator with improved therapeutic index for anti-diabetic drug discovery. Chem Sci 2020; 11:2260-2268. [PMID: 32190280 PMCID: PMC7059199 DOI: 10.1039/c9sc05487a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/20/2020] [Indexed: 01/09/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a key regulator of glucose homeostasis and lipid metabolism, and an important target for the development of modern anti-diabetic drugs. However, current PPARγ-targeting anti-diabetic drugs such as classical thiazolidinediones (TZDs) are associated with undesirable side effects. To address this concern, we here describe the structure-based design, synthesis, identification and detailed in vitro and in vivo characterization of a novel, decanoic acid (DA)-based and selective PPARγ modulator (SPPARγM), VSP-77, especially (S)-VSP-77, as the potential "hit" for the development of improved and safer anti-diabetic therapeutics. We have also determined the co-crystal structure of the PPARγ ligand-binding domain (LBD) in complex with two molecules of (S)-VSP-77, which reveal a previously undisclosed allosteric binding mode. Overall, these findings not only demonstrate the therapeutic advantage of (S)-VSP-77 over current TZD drugs and representative partial agonist INT131, but also provide a rational basis for the development of future SPPARγMs as safe and highly efficacious anti-diabetic drugs.
Collapse
Affiliation(s)
- Haowen Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China . .,National Center for Drug Screening , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . ;
| | - X Edward Zhou
- Structural Biology Program , Center for Cancer and Cell Biology , Van Andel Research Institute , Grand Rapids , Michigan 49503 , USA
| | - Jingjing Shi
- VARI/SIMM Center , Center for Structure and Function of Drug Targets , CAS-Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China .
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China .
| | - Guanguan Zhao
- VARI/SIMM Center , Center for Structure and Function of Drug Targets , CAS-Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China .
| | - Xinwen Zhang
- National Center for Drug Screening , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . ;
| | - Yili Sun
- National Center for Drug Screening , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . ;
| | - Kelly Suino-Powell
- Structural Biology Program , Center for Cancer and Cell Biology , Van Andel Research Institute , Grand Rapids , Michigan 49503 , USA
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China .
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China .
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China .
| | - Jia Li
- National Center for Drug Screening , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . ;
| | - Jingya Li
- National Center for Drug Screening , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . ;
| | - Karsten Melcher
- Structural Biology Program , Center for Cancer and Cell Biology , Van Andel Research Institute , Grand Rapids , Michigan 49503 , USA
| | - H Eric Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China . .,VARI/SIMM Center , Center for Structure and Function of Drug Targets , CAS-Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China . .,Structural Biology Program , Center for Cancer and Cell Biology , Van Andel Research Institute , Grand Rapids , Michigan 49503 , USA
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology , State Key Laboratory of Respiratory Disease , School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China . .,VARI/SIMM Center , Center for Structure and Function of Drug Targets , CAS-Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China .
| |
Collapse
|
28
|
Ginsenoside Rb1 as an Anti-Diabetic Agent and Its Underlying Mechanism Analysis. Cells 2019; 8:cells8030204. [PMID: 30823412 PMCID: PMC6468558 DOI: 10.3390/cells8030204] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Panax ginseng and Panax notoginseng, two well-known medical plants with economic value, have a long history of use for managing various diseases in Asian countries. Accumulating clinical and experimental evidence suggests that notoginsenosides and ginsenosides, which are the major bioactive components of the plants, have a variety of beneficial effects on several types of disease, including metabolic, vascular, and central nervous system disease. Considerable attention has been focused on ginsenoside Rb1 derived from their common ownership as an anti-diabetic agent that can attenuate insulin resistance and various complications. Particularly, in vitro and in vivo models have suggested that ginsenoside Rb1 exerts various pharmacological effects on metabolic disorders, including attenuation of glycemia, hypertension, and hyperlipidemia, which depend on the modulation of oxidative stress, inflammatory response, autophagy, and anti-apoptosis effects. Regulation of these pathophysiological mechanisms can improve blood glucose and insulin resistance and protect against macrovascular/microvascular related complications. This review summarizes the pharmacological effects and mechanisms of action of ginsenoside Rb1 in the management of diabetes or diabetic complications. Moreover, a multi-target effect and mechanism analysis of its antidiabetic actions were performed to provide a theoretical basis for further pharmacological studies and new drug development for clinical treatment of type 2 diabetes. In conclusion, ginsenoside Rb1 exerts significant anti-obesity, anti-hyperglycemic, and anti-diabetic effects by regulating the effects of glycolipid metabolism and improving insulin and leptin sensitivities. All of these findings suggest ginsenoside Rb1 exerts protective effects on diabetes and diabetic complications by the regulation of mitochondrial energy metabolism, improving insulin resistance and alleviating the occurrence complications, which should be further explored. Hence, ginsenoside Rb1 may be developed as a potential anti-obesity, anti-hyperglycemic, and anti-diabetic agent with multi-target effects.
Collapse
|
29
|
Kong Y, Gao Y, Lan D, Zhang Y, Zhan R, Liu M, Zhu Z, Zeng G, Huang Q. Trans-repression of NFκB pathway mediated by PPARγ improves vascular endothelium insulin resistance. J Cell Mol Med 2018; 23:216-226. [PMID: 30398029 PMCID: PMC6307800 DOI: 10.1111/jcmm.13913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Previous study has shown that thiazolidinediones (TZDs) improved endothelium insulin resistance (IR) induced by high glucose concentration (HG)/hyperglycaemia through a PPARγ‐dependent‐NFκB trans‐repression mechanism. However, it is unclear, whether changes in PPARγ expression affect the endothelium IR and what the underlying mechanism is. In the present study, we aimed to address this issue. HG‐treated human umbilical vascular endothelial cells (HUVEC) were transfected by either PPARγ‐overexpressing (Ad‐PPARγ) or PPARγ‐shRNA‐containing (Ad‐PPARγ‐shRNA) adenoviral vectors. Likewise, the rats fed by high‐fat diet (HFD) were infected by intravenous administration of Ad‐PPARγ or Ad‐PPARγ‐shRNA. The levels of nitric oxide (NO), endothelin‐1 (ET‐1) and cytokines (TNFα, IL‐6, sICAM‐1 and sVCAM‐1) and the expression levels of PPARγ, eNOS, AKT, p‐AKT, IKKα/β and p‐IKKα/β and IκBα were examined; and the interaction between PPARγ and NFκB‐P65 as well as vascular function were evaluated. Our present results showed that overexpression of PPARγ notably increased the levels of NO, eNOS, p‐AKT and IκBα as well as the interaction of PPARγ and NFκB‐P65, and decreased the levels of ET‐1, p‐IKKα/β, TNFα, IL‐6, sICAM‐1 and sVCAM‐1. In contrast, down‐expression of PPARγ displayed the opposite effects. The results demonstrate that the overexpression of PPARγ improves while the down‐expression worsens the endothelium IR via a PPARγ‐mediated NFκB trans‐repression dependent manner. The findings suggest PPARγ is a potential therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Ying Kong
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Gao
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Dongyi Lan
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Zhang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Rixin Zhan
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Meiqi Liu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Zhouan Zhu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Porskjær Christensen L, Bahij El-Houri R. Development of an In Vitro Screening Platform for the Identification of Partial PPARγ Agonists as a Source for Antidiabetic Lead Compounds. Molecules 2018; 23:molecules23102431. [PMID: 30248999 PMCID: PMC6222920 DOI: 10.3390/molecules23102431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 01/02/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder where insulin-sensitive tissues show reduced sensitivity towards insulin and a decreased glucose uptake (GU), which leads to hyperglycaemia. Peroxisome proliferator-activated receptor (PPAR)γ plays an important role in lipid and glucose homeostasis and is one of the targets in the discovery of drugs against T2D. Activation of PPARγ by agonists leads to a conformational change in the ligand-binding domain, a process that alters the transcription of several target genes involved in glucose and lipid metabolism. Depending on the ligands, they can induce different sets of genes that depends of their recruitment of coactivators. The activation of PPARγ by full agonists such as the thiazolidinediones leads to improved insulin sensitivity but also to severe side effects probably due to their behavior as full agonists. Partial PPARγ agonists are compounds with diminished agonist efficacy compared to full agonist that may exhibit the same antidiabetic effect as full agonists without inducing the same magnitude of side effects. In this review, we describe a screening platform for the identification of partial PPARγ agonists from plant extracts that could be promising lead compounds for the development of antidiabetic drugs. The screening platform includes a series of in vitro bioassays, such as GU in adipocytes, PPARγ-mediated transactivation, adipocyte differentiation and gene expression as well as in silico docking for partial PPARγ agonism.
Collapse
Affiliation(s)
- Lars Porskjær Christensen
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Rime Bahij El-Houri
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
31
|
Sawant RL, Wadekar JB, Kharat SB, Makasare HS. Targeting PPAR-γ to design and synthesize antidiabetic thiazolidines. EXCLI JOURNAL 2018; 17:598-607. [PMID: 30108464 PMCID: PMC6088216 DOI: 10.17179/excli2018-1325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
A series of thiazolidine derivatives were designed by docking into PPAR-γ active site. The structure of target was obtained from the protein data bank (PDB ID P37231). A library of 200 molecules was prepared on random basis. Molecular docking studies were performed using VLife MDS 4.3 software. After molecular docking studies, the 4-substituted-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid N-[4-(2,4-dioxo-thiazolidin-5-ylidenemethyl)-phenyl]-hydrazides (4a-4h) were selected for synthesis. The progress of reaction and purity of the synthesized compounds were monitored by TLC and melting point. Structures of title compounds were confirmed by elemental analysis, IR, 1H NMR and mass spectral data. The antidiabetic activity of title compounds was performed using the Wistar rats by alloxan-induced method. The compounds have shown antidiabetic activity comparable with the standard drug pioglitazone. These findings suggest that potent antidiabetics can be generated by substituting nonpolar, electron withdrawing substituents at the fourth position of pyrimidine skeleton and hydrogen bond acceptor at the nitrogen of the thiazolidine nucleus, to inhibit peroxisome proliferator-activated receptor-γ.
Collapse
Affiliation(s)
- Ramesh L Sawant
- Department of Pharmaceutical Chemistry and PG studies, Dr. Vithalrao Vikhe Patil Foundation's College of Pharmacy, Savitribai Phule Pune University, Ahmednagar- 414111, India
| | - Jyoti B Wadekar
- Department of Pharmacognosy, Dr. Vithalrao Vikhe Patil Foundation's College of Pharmacy, Savitribai Phule Pune University, Ahmednagar- 414111, India
| | - Santosh B Kharat
- Department of Pharmaceutical Chemistry and PG studies, Dr. Vithalrao Vikhe Patil Foundation's College of Pharmacy, Savitribai Phule Pune University, Ahmednagar- 414111, India
| | - Hitakshi S Makasare
- Department of Pharmaceutical Chemistry, VIVA Institute of Pharmacy, University of Mumbai, Palghar- 401303, India
| |
Collapse
|
32
|
Goutzourelas N, Orfanou M, Charizanis I, Leon G, Spandidos DA, Kouretas D. GSH levels affect weight loss in individuals with metabolic syndrome and obesity following dietary therapy. Exp Ther Med 2018; 16:635-642. [PMID: 30116319 PMCID: PMC6090313 DOI: 10.3892/etm.2018.6204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
This study examined the effects of redox status markers on metabolic syndrome (MetS) and obesity before and after dietary intervention and exercise for weight loss. A total of 103 adults suffering from MetS and obesity participated in this study and followed a personalized diet plan for 6 months. Body weight, body fat (BF) percentage (BF%), respiratory quotient (RQ) and the redox status markers, reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and protein carbonyls (CARB), were measured twice in each individual, before and after intervention. Dietary intervention resulted in weight loss, a reduction in BF% and a decrease in RQ. The GSH levels were significantly decreased following intervention, while the levels of TBARS and CARB were not affected. Based on the initial GSH levels, the patients were divided into 2 groups as follows: The high GSH group (GSH, >3.5 µmol/g Hb) and the low GSH group (GSH <3.5 µmol/g Hb). Greater weight and BF loss were observed in patients with high GSH levels. It was observed that patients with MetS and obesity with high GSH values responded better to the dietary therapy, exhibiting more significant changes in weight and BF%. This finding underscores the importance of identifying redox status markers, particularly GSH, in obese patients with MetS. Knowing the levels of GSH may aid in developing a better design of an individualized dietary plan for individuals who wish to lose weight.
Collapse
Affiliation(s)
- Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece.,Eatwalk IKE, 15124 Athens, Greece
| | | | | | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, 71409 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
33
|
Robinson GA, Waddington KE, Pineda-Torra I, Jury EC. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function. Front Immunol 2017; 8:1636. [PMID: 29225604 PMCID: PMC5705553 DOI: 10.3389/fimmu.2017.01636] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/09/2017] [Indexed: 01/10/2023] Open
Abstract
It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.
Collapse
Affiliation(s)
- George A. Robinson
- Centre of Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Kirsty E. Waddington
- Centre of Rheumatology, Division of Medicine, University College London, London, United Kingdom
- Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Ines Pineda-Torra
- Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth C. Jury
- Centre of Rheumatology, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
34
|
Villa-Pérez P, Cueto M, Díaz-Marrero AR, Lobatón CD, Moreno A, Perdomo G, Cózar-Castellano I. Leptolide Improves Insulin Resistance in Diet-Induced Obese Mice. Mar Drugs 2017; 15:md15090289. [PMID: 28914811 PMCID: PMC5618428 DOI: 10.3390/md15090289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes (T2DM) is a complex disease linked to pancreatic beta-cell failure and insulin resistance. Current antidiabetic treatment regimens for T2DM include insulin sensitizers and insulin secretagogues. We have previously demonstrated that leptolide, a member of the furanocembranolides family, promotes pancreatic beta-cell proliferation in mice. Considering the beneficial effects of leptolide in diabetic mice, in this study, we aimed to address the capability of leptolide to improve insulin resistance associated with the pathology of obesity. To this end, we tested the hypothesis that leptolide should protect against fatty acid-induced insulin resistance in hepatocytes. In a time-dependent manner, leptolide (0.1 µM) augmented insulin-stimulated phosphorylation of protein kinase B (PKB) by two-fold above vehicle-treated HepG2 cells. In addition, leptolide (0.1 µM) counteracted palmitate-induced insulin resistance by augmenting by four-fold insulin-stimulated phosphorylation of PKB in HepG2 cells. In vivo, acute intraperitoneal administration of leptolide (0.1 mg/kg and 1 mg/kg) improved glucose tolerance and insulin sensitivity in lean mice. Likewise, prolonged leptolide treatment (0.1 mg/kg) in diet-induced obese mice improved insulin sensitivity. These effects were paralleled with an ~50% increased of insulin-stimulated phosphorylation of PKB in liver and skeletal muscle and reduced circulating pro-inflammatory cytokines in obese mice. We concluded that leptolide significantly improves insulin sensitivity in vitro and in obese mice, suggesting that leptolide may be another potential treatment for T2DM.
Collapse
Affiliation(s)
- Pablo Villa-Pérez
- Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, Valladolid 47005, Spain.
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (CSIC), La Laguna 38206, Spain.
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bioorgánica "A. González", University of La Laguna, La Laguna 38206, Spain.
| | - Carmen D Lobatón
- Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, Valladolid 47005, Spain.
| | - Alfredo Moreno
- Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, Valladolid 47005, Spain.
| | - Germán Perdomo
- School of Nursery, University of Burgos, Burgos 09001, Spain.
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, Valladolid 47005, Spain.
| |
Collapse
|