1
|
Larios-Serrato V, Valdez-Salazar HA, Torres J, Camorlinga M, Piña-Sánchez P, Minauro F, Ruiz-Tachiquín ME. Analysis of biopsies of gastric cancer, intestinal and diffuse, and non-atrophic gastritis: an overview of loss of heterozygosity in Mexican patients. PeerJ 2025; 13:e18928. [PMID: 40028213 PMCID: PMC11869887 DOI: 10.7717/peerj.18928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
This study analyzed the loss of heterozygosity (LOH) effect on gastric cancer (GC) tumor samples from 21 Mexican patients, including diffuse (DGC) and intestinal (IGC) subtypes, as well as non-atrophic gastritis (NAG, control). Whole-genome high-density arrays were performed, and LOH regions were identified among the tissue samples. The differences in affected chromosomes were established among groups, with chromosomes 6 and 8 primarily affected in DGC and chromosomes 3, 16, and 17 in IGC. Functional pathway analysis revealed involvement in cancer-associated processes, such as signal transduction, immune response, and cellular metabolism. Five LOH-genes (IRAK1, IKBKG, PAK3, TKTL1, PRPS1) shared between GC and NAG suggest an early role in carcinogenesis. Specific genes were highlighted for Hallmarks of Cancer NAG-related genes (PTPRJ and NDUFS) were linked to cell proliferation and growth; IGC genes (GNAI2, RHOA, MAPKAPK3, MST1R) to genomic instability, metastasis, and arrest of cell death; and DGC genes to energy metabolism and immune evasion. These findings emphasize the role of LOH in GC pathogenesis and underscore the need for further research to understand LOH-affected genes and their diagnostic or evolution potential in cancer management. Portions of this text were previously published as part of a preprint (https://www.medrxiv.org/content/10.1101/2024.07.29.24311063v1).
Collapse
Affiliation(s)
- Violeta Larios-Serrato
- Laboratorio de Biotecnología y Bioinformática Genómica/Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Hilda A. Valdez-Salazar
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias/Unidad Médica de Alta Especialidad-Hospital de Pediatría ‘Dr. Silvestre Frenk Freund’/Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias/Unidad Médica de Alta Especialidad-Hospital de Pediatría ‘Dr. Silvestre Frenk Freund’/Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Margarita Camorlinga
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias/Unidad Médica de Alta Especialidad-Hospital de Pediatría ‘Dr. Silvestre Frenk Freund’/Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Patricia Piña-Sánchez
- Unidad de Investigación Médica en Enfermedades Oncológicas/Unidad Médica de Alta Especialidad-Hospital de Oncología/Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Fernando Minauro
- Unidad de Investigación Médica en Genética Humana/Unidad Médica de Alta Especialidad-Hospital de Pediatría ‘Dr. Silvestre Frenk Freund’/Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Martha-Eugenia Ruiz-Tachiquín
- Unidad de Investigación Médica en Enfermedades Oncológicas/Unidad Médica de Alta Especialidad-Hospital de Oncología/Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| |
Collapse
|
2
|
Liu B, Liu Y, Li S, Chen P, Zhang J, Feng L. Depletion of placental brain-derived neurotrophic factor (BDNF) is attributed to premature ovarian insufficiency (POI) in mice offspring. J Ovarian Res 2024; 17:141. [PMID: 38982490 PMCID: PMC11232340 DOI: 10.1186/s13048-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Premature ovarian insufficiency (POI) is one of the causes of female infertility. Unexplained POI is increasingly affecting women in their reproductive years. However, the etiology of POI is diverse and remains elusive. We and others have shown that brain-derived neurotrophic factor (BDNF) plays an important role in adult ovarian function. Here, we report on a novel role of BDNF in the Developmental Origins of POI. METHODS Placental BDNF knockout mice were created using CRISPR/CAS9. Homozygous knockout (cKO(HO)) mice didn't survive, while heterozygous knockout (cKO(HE)) mice did. BDNF reduction in cKO(HE) mice was confirmed via immunohistochemistry and Western blots. Ovaries were collected from cKO(HE) mice at various ages, analyzing ovarian metrics, FSH expression, and litter sizes. In one-month-old mice, oocyte numbers were assessed using super-ovulation, and oocyte gene expression was analyzed with smart RNAseq. Ovaries of P7 mice were studied with SEM, and gene expression was confirmed with RT-qPCR. Alkaline phosphatase staining at E11.5 and immunofluorescence for cyclinD1 assessed germ cell number and cell proliferation. RESULTS cKO(HE) mice had decreased ovarian function and litter size in adulthood. They were insensitive to ovulation induction drugs manifested by lower oocyte release after superovulation in one-month-old cKO(HE) mice. The transcriptome and SEM results indicate that mitochondria-mediated cell death or aging might occur in cKO(HE) ovaries. Decreased placental BDNF led to diminished primordial germ cell proliferation at E11.5 and ovarian reserve which may underlie POI in adulthood. CONCLUSION The current results showed decreased placental BDNF diminished primordial germ cell proliferation in female fetuses during pregnancy and POI in adulthood. Our findings can provide insights into understanding the underlying mechanisms of POI.
Collapse
Affiliation(s)
- Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Reproduction, School of Medicine, Xinhua Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pingping Chen
- Department of Reproduction, School of Medicine, Xinhua Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Liping Feng
- Department of Obstetrics and Gynaecology, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Ji X, Yang X, Gu X, Chu L, Sun S, Sun J, Song P, Mu Q, Wang Y, Sun X, Su D, Su T, Hou S, Lu Y, Ma C, Liu M, Zhang T, Zhang W, Liu Y, Wan Q. CUL3 induces mitochondrial dysfunction via MRPL12 ubiquitination in renal tubular epithelial cells. FEBS J 2023; 290:5340-5352. [PMID: 37526061 DOI: 10.1111/febs.16919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease worldwide and the strongest predictor of mortality in patients with diabetes. Despite its significance, the pathological mechanism underlying the onset and progression of DKD remains incompletely understood. In this study, we have shown that mitochondrial ribosomal protein L12 (MRPL12) plays a significant role in DKD by modulating mitochondrial function. We demonstrated that MRPL12 was mainly ubiquitinated at K150 in renal tubular epithelial cells. We have found that Cullin3 (CUL3), an E3 ubiquitin ligase, directly interacts with MRPL12 and induces the K63-linked ubiquitination of MRPL12, resulting in mitochondrial biosynthesis dysfunction. Moreover, under high-glucose (HG) conditions in renal tubular epithelial cells, we observed up-regulation of CUL3 expression, significant increase in CUL3-mediated ubiquitination of MRPL12 and dysregulation of mitochondrial biosynthesis. Notably, CUL3 knockdown stabilised the MRPL12 protein and protected mitochondrial biosynthesis under HG conditions. Our findings provide novel insight into how CUL3 affects mitochondrial biosynthesis in renal tubular epithelial cells through MRPL12 ubiquitination and suggest a potential therapeutic strategy for DKD in the future.
Collapse
Affiliation(s)
- Xingzhao Ji
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoli Yang
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
| | - Xia Gu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lingju Chu
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shengnan Sun
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jian Sun
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Peng Song
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Mu
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Wang
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoming Sun
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dun Su
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tong Su
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
| | - Shaoshuai Hou
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Lu
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
| | - Chen Ma
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mingqiang Liu
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyi Zhang
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weiying Zhang
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Liu
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Wan
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Mottaghi-Dastjerdi N, Ghorbani A, Montazeri H, Guzzi PH. A systems biology approach to pathogenesis of gastric cancer: gene network modeling and pathway analysis. BMC Gastroenterol 2023; 23:248. [PMID: 37482618 PMCID: PMC10364406 DOI: 10.1186/s12876-023-02891-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks among the most common malignancies worldwide. This study aimed to find critical genes/pathways in GC pathogenesis. METHODS Gene interactions were analyzed, and the protein-protein interaction network was drawn. Then enrichment analysis of the hub genes was performed and network cluster analysis and promoter analysis of the hub genes were done. Age/sex analysis was done on the identified genes. RESULTS Eleven hub genes in GC were identified in the current study (ATP5A1, ATP5B, ATP5D, MT-ATP8, COX7A2, COX6C, ND4, ND6, NDUFS3, RPL8, and RPS16), mostly involved in mitochondrial functions. There was no report on the ATP5D, ND6, NDUFS3, RPL8, and RPS16 in GC. Our results showed that the most affected processes in GC are the metabolic processes, and the oxidative phosphorylation pathway was considerably enriched which showed the significance of mitochondria in GC pathogenesis. Most of the affected pathways in GC were also involved in neurodegenerative diseases. Promoter analysis showed that negative regulation of signal transduction might play an important role in GC pathogenesis. In the analysis of the basal expression pattern of the selected genes whose basal expression presented a change during the age, we found that a change in age may be an indicator of changes in disease insurgence and/or progression at different ages. CONCLUSIONS These results might open up new insights into GC pathogenesis. The identified genes might be novel diagnostic/prognostic biomarkers or potential therapeutic targets for GC. This work, being based on bioinformatics analysis act as a hypothesis generator that requires further clinical validation.
Collapse
Affiliation(s)
- Negar Mottaghi-Dastjerdi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Hamed Montazeri
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Yang J, Jin F, Li H, Shen Y, Shi W, Wang L, Zhong L, Wu G, Wu Q, Li Y. Identification of mitochondrial respiratory chain signature for predicting prognosis and immunotherapy response in stomach adenocarcinoma. Cancer Cell Int 2023; 23:69. [PMID: 37062830 PMCID: PMC10105960 DOI: 10.1186/s12935-023-02913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
Stomach adenocarcinoma (STAD) is the third leading cause of cancer-related deaths and the fifth most prevalent malignancy worldwide. Mitochondrial respiratory chain complexes play a crucial role in STAD pathogenesis. However, how mitochondrial respiratory chain complex genes (MRCCGs) affect the prognosis and tumor microenvironment in STAD remains unclear. In this study, we systematically analyzed genetic alterations and copy number variations of different expression densities of MRCCGs, based on 806 samples from two independent STAD cohorts. Then we employed the unsupervised clustering method to classify the samples into three expression patterns based on the prognostic MRCCG expressions, and found that they were involved in different biological pathways and correlated with the clinicopathological characteristics, immune cell infiltration, and prognosis of STAD. Subsequently, we conducted a univariate Cox regression analysis to identify the prognostic value of 1175 subtype-related differentially expressed genes (DEGs) and screened out 555 prognostic-related genes. Principal component analysis was performed and developed the MG score system to quantify MRCCG patterns of STAD. The prognostic significance of MG Score was validated in three cohorts. The low MG score group, characterized by increased microsatellite instability-high (MSI-H), tumor mutation burden (TMB), PD-L1 expression, had a better prognosis. Interestingly, we demonstrated MRCCG patterns score could predict the sensitivity to ferroptosis inducing therapy. Our comprehensive analysis of MRCCGs in STAD demonstrated their potential roles in the tumor-immune-stromal microenvironment, clinicopathological features, and prognosis. Our findings highlight that MRCCGs may provide a new understanding of immunotherapy strategies for gastric cancer and provide a new perspective on the development of personalized immune therapeutic strategies for patients with STAD.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory Medicine Center, Department of Laboratory Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Feifan Jin
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Laboratory Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Weilin Shi
- Department of Medicine, Taizhou Luqiao District Second People's Hospital, Taizhou, Zhejiang, 318058, China
| | - Lina Wang
- Department of Medicine, Taizhou Luqiao District Second People's Hospital, Taizhou, Zhejiang, 318058, China
| | - Lei Zhong
- Department of Clinical Laboratory, Tongxiang Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, 314599, China
| | - Gongqiang Wu
- Department of Hematology, Dongyang People's Hospital, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang, Zhejiang, 322100, China.
| | - Qiaoliang Wu
- Department of Hematology, Jiashan first people's Hospital, Jiaxing, Zhejiang, 314199, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
6
|
Vidali S, Feichtinger RG, Emberger M, Brunner SM, Gaisbauer S, Blatt T, Smiles WJ, Kreutzer C, Weise JM, Kofler B. Ageing is associated with a reduction in markers of mitochondrial energy metabolism in the human epidermis. Exp Dermatol 2023. [PMID: 36851889 DOI: 10.1111/exd.14778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
The decline of mitochondrial function throughout the lifespan is directly linked to the development of ageing phenotypes of the skin. Here, we assessed alterations in markers of epidermal mitochondrial energy metabolism as a function of skin age. Human skin samples from distinct anatomical regions were obtained during routine dermatological surgery from 21 young (27.6 ± 1.71 year) and 22 old (76.2 ± 1.73 year) donors. Sections of skin samples were analysed by immunohistochemistry for mitochondrial subunits of each electron transport chain complex (I-V)/oxidative phosphorylation (OXPHOS), as well as proteins serving as a marker of mitochondrial mass (VDAC1) and the regulation of DNA transcription (TFAM). Staining intensities of ATP5F1A (comprising complex V) and TFAM in the epidermis of older subjects were significantly decreased compared with younger donors. Moreover, these effects were independent of UV exposure of the stained skin section. Overall, we demonstrate that ageing is associated with reduced protein levels of complex V of the mitochondrial respiratory chain and TFAM. These alterations may impair essential mitochondrial functions, exacerbating the cutaneous ageing process.
Collapse
Affiliation(s)
- Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Susanne Maria Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Stefanie Gaisbauer
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Thomas Blatt
- Research & Development, Beiersdorf AG, Hamburg, Germany
| | - William J Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Christina Kreutzer
- Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria.,Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
| | - Julia M Weise
- Research & Development, Beiersdorf AG, Hamburg, Germany
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Huang Y, Wang J, Liu F, Wang C, Xiao Z, Zhou W. Liuwei Dihuang formula ameliorates chronic stress-induced emotional and cognitive impairments in mice by elevating hippocampal O-GlcNAc modification. Front Neurosci 2023; 17:1134176. [PMID: 37152609 PMCID: PMC10157057 DOI: 10.3389/fnins.2023.1134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
A substantial body of evidence has indicated that intracerebral O-linked N-acetyl-β-D-glucosamine (O-GlcNAc), a generalized post-translational modification, was emerging as an effective regulator of stress-induced emotional and cognitive impairments. Our previous studies showed that the Liuwei Dihuang formula (LW) significantly improved the emotional and cognitive dysfunctions in various types of stress mouse models. In the current study, we sought to determine the effects of LW on intracerebral O-GlcNAc levels in chronic unpredictable mild stress (CUMS) mice. The dynamic behavioral tests showed that anxiety- and depression-like behaviors and object recognition memory of CUMS mice were improved in a dose-dependent manner after LW treatment. Moreover, linear discriminate analysis (LEfSe) of genera abundance revealed a significant difference in microbiome among the study groups. LW showed a great impact on the relative abundance of these gut microbiota in CUMS mice and reinstated them to control mouse levels. We found that LW potentially altered the Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis process, and the abundance of O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT) in CUMS mice, which was inferred using PICRUSt analysis. We further verified advantageous changes in hippocampal O-GlcNAc modification of CUMS mice following LW administration, as well as changes in the levels of OGA and OGT. In summary, LW intervention increased the levels of hippocampal O-GlcNAc modification and ameliorated the emotional and cognitive impairments induced by chronic stress in CUMS mice. LW therefore could be considered a potential prophylactic and therapeutic agent for chronic stress.
Collapse
Affiliation(s)
- Yan Huang
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Zhiyong Xiao,
| | - Wenxia Zhou
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- Wenxia Zhou,
| |
Collapse
|
8
|
Mitochondrial Function Differences between Tumor Tissue of Human Metastatic and Premetastatic CRC. BIOLOGY 2022; 11:biology11020293. [PMID: 35205159 PMCID: PMC8869310 DOI: 10.3390/biology11020293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022]
Abstract
Simple Summary Metastasis is an important cause of death from colorectal cancer (CRC). Mitochondria, which are important organelles of cells, play a key role in the metastatic transformation of cancer cells. We aimed to evaluate the adaptations associated with mitochondrial function in tumor tissues from advanced stages of human CRC and whether they could ultimately be used as a therapeutic target in metastatic CRC. We have compared the mitochondrial functionality parameters in tumor tissue samples and the normal adjacent tissue of advanced CRC patients with no radio- or chemotherapy treatment before surgery. Notable differences in mitochondrial functionality were detected between the samples of adjacent tissue versus tumor tissue from metastatic CRC patients. These findings suggest a shift in the mitochondrial function profile occurring in tumor tissue once the metastatic stage has been reached. These changes contribute to promote and maintain the metastatic phenotype, with evidence of mitochondrial function impairment in tumor tissue in the metastatic stage samples. Abstract Most colorectal cancer (CRC) patients die as a consequence of metastasis. Mitochondrial dysfunction could enhance cancer development and metastatic progression. We aimed to evaluate the adaptations associated with mitochondrial function in tumor tissues from stages III and IV of human CRC and whether they could ultimately be used as a therapeutic target in metastatic colorectal cancer (mCRC). We analyzed the protein levels by Western blotting and the enzymatic activities of proteins involved in mitochondrial function, as well as the amount of mitochondrial DNA (mtDNA), by real-time PCR, analyzing samples of non-tumor adjacent tissue and tumor tissue from stages III and IV CRC patients without radio- or chemotherapy treatment prior to surgery. Our data indicate that the tumor tissue of pre-metastatic stage III CRC exhibited an oxidant metabolic profile very similar to the samples of non-tumor adjacent tissue of both stages. Notable differences in the protein expression levels of ATPase, IDH2, LDHA, and SIRT1, as well as mtDNA amount, were detected between the samples of non-tumor adjacent tissue and tumor tissue from metastatic CRC patients. These findings suggest a shift in the oxidative metabolic profile that takes place in the tumor tissue once the metastatic stage has been reached. Tumor tissue oxidative metabolism contributes to promote and maintain the metastatic phenotype, with evidence of mitochondrial function impairment in stage IV tumor tissue.
Collapse
|
9
|
Lai D, Tan L, Zuo X, Liu D, Jiao D, Wan G, Lu C, Shen D, Gu X. Prognostic Ferroptosis-Related lncRNA Signatures Associated With Immunotherapy and Chemotherapy Responses in Patients With Stomach Cancer. Front Genet 2022; 12:798612. [PMID: 35047016 PMCID: PMC8762254 DOI: 10.3389/fgene.2021.798612] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Ferroptosis is associated with the prognosis and therapeutic responses of patients with various cancers. LncRNAs are reported to exhibit antitumor or oncogenic functions. Currently, few studies have assessed the combined effects of ferroptosis and lncRNAs on the prognosis and therapy of stomach cancer. In this study, transcriptomic and clinical data were downloaded from TCGA database, and ferroptosis-related genes were obtained from the FerrDb database. Through correlation analysis, Cox analysis, and the Lasso algorithm, 10 prognostic ferroptosis-related lncRNAs (AC009299.2, AC012020.1, AC092723.2, AC093642.1, AC243829.4, AL121748.1, FLNB-AS1, LINC01614, LINC02485, LINC02728) were screened to construct a prognostic model, which was verified in two test cohorts. Risk scores for patients with stomach cancer were calculated, and patients were divided into two risk groups. The low-risk group, based on the median value, had a longer overall survival time in the KM curve, and a lower proportion of dead patients in the survival distribution curve. Potential mechanisms and possible functions were revealed using GSEA and the ceRNA network. By integrating clinical information, the association between lncRNAs and clinical features was analyzed and several features affecting prognosis were identified. Then, a nomogram was developed to predict survival rates, and its good predictive performance was indicated by a relatively high C-index (0.67118161) and a good match in calibration curves. Next, the association between these lncRNAs and therapy was explored. Patients in the low-risk group had an immune-activating environment, higher immune scores, higher TMB, lower TIDE scores, and higher expression of immune checkpoints, suggesting they might receive a greater benefit from immune checkpoint inhibitor therapy. In addition, a significant difference in the sensitivity to mitomycin. C, cisplatin, and docetaxel, but not etoposide and paclitaxel, was observed. In summary, this model had guiding significance for prognosis and personalized therapy. It helped screen patients with stomach cancer who might benefit from immunotherapy and guided the selection of personalized chemotherapeutic drugs.
Collapse
Affiliation(s)
- Donlin Lai
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lin Tan
- The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Xiaojia Zuo
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - DingSheng Liu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Deyi Jiao
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guoqing Wan
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dongjie Shen
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
10
|
Schneider AM, Özsoy M, Zimmermann FA, Brunner SM, Feichtinger RG, Mayr JA, Kofler B, Neureiter D, Klieser E, Aigner E, Schütz S, Stummer N, Sperl W, Weghuber D. Expression of Oxidative Phosphorylation Complexes and Mitochondrial Mass in Pediatric and Adult Inflammatory Bowel Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9151169. [PMID: 35035669 PMCID: PMC8758306 DOI: 10.1155/2022/9151169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a multifactorial intestinal disorder but its precise etiology remains elusive. As the cells of the intestinal mucosa have high energy demands, mitochondria may play a role in IBD pathogenesis. The present study is aimed at evaluating the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes in IBD. Material and Methods. 286 intestinal biopsy samples from the terminal ileum, ascending colon, and rectum from 124 probands (34 CD, 33 UC, and 57 controls) were stained immunohistochemically for all five OXPHOS complexes and the voltage-dependent anion-selective channel 1 protein (VDAC1 or porin). Expression levels were compared in multivariate models including disease stage (CD and UC compared to controls) and age (pediatric/adult). RESULTS Analysis of the terminal ileum of CD patients revealed a significant reduction of complex II compared to controls, and a trend to lower levels was evident for VDAC1 and the other OXPHOS complexes except complex III. A similar pattern was found in the rectum of UC patients: VDAC1, complex I, complex II, and complex IV were all significantly reduced, and complex III and V showed a trend to lower levels. Reductions were more prominent in older patients compared to pediatric patients and more marked in UC than CD. CONCLUSION A reduced mitochondrial mass is present in UC and CD compared to controls. This is potentially a result of alterations of mitochondrial biogenesis or mitophagy. Reductions were more pronounced in older patients compared to pediatric patients, and more prominent in UC than CD. Complex I and II are more severely compromised than the other OXPHOS complexes. This has potential therapeutic implications, since treatments boosting biogenesis or influencing mitophagy could be beneficial for IBD treatment. Additionally, substances specifically stimulating complex I activity should be tested in IBD treatment.
Collapse
Affiliation(s)
- Anna M. Schneider
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mihriban Özsoy
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Franz A. Zimmermann
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Susanne M. Brunner
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Johannes A. Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Neureiter
- Department of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Eckhard Klieser
- Department of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sebastian Schütz
- Department of Mathematics, Paris Lodron University, Salzburg, Austria
| | - Nathalie Stummer
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
11
|
Aziz F, Chakarobaty A, Liu K, Zhang T, Li X, Du R, Monts J, Xu G, Li Y, Bai R, Dong Z. Gastric tumorigenesis induced by combining Helicobacter pylori infection and chronic alcohol through IL-10 inhibition. Carcinogenesis 2021; 43:126-139. [PMID: 34919670 DOI: 10.1093/carcin/bgab114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection and alcohol intake are independent risk factors in gastric carcinogenesis; however, until now, the combined effect of H. pylori infection and alcohol consumption and the specific mechanism is still problematic. Here, we developed a series of mouse models that progress from chronic gastritis to gastric cancer, induced by infecting H. pylori combined with chronic alcohol consumption and then determining the molecular mechanism of the progression by flow cytometry, Western blotting, qPCR, Mito Traker assay in the gastric cancer and T-cell lines. Interleukin-10 (IL-10) knockout mice was used to determine whether IL-10 deficiency directly contribute to H. pylori and alcohol induced gastric tumorigenesis. Alcohol consumption, together with H. pylori infection, causes gastric cancer; IL-10 downregulation and mitochondrial metabolic dysfunction in CD8 + cells are also involved. IL-10 knockout accelerates tumor development in mice with either H. pylori infection or alcohol induced gastric cancer or both. IL-10 inhibits glucose uptake and glycolysis and promotes oxidative phosphorylation with lactate inhibition. Consequently, in the absence of IL-10 signaling, CD8 + cells accumulate damaged mitochondria in a mouse model of gastric cancer induced with the combination of alcohol plus H. pylori infection, and this results in mitochondrial dysfunction and production of IL-1β. IL-1β promotes H. pylori infection and reduces NKX6.3 gene expression, resulting in increased cancer cell survival and proliferation. Gastric cancer can be induced by combination of Helicobacter pylori infection and chronic alcohol consumption through IL-10 inhibition induced CD8 + cells dysfunction and NKX6.3 suppression.
Collapse
Affiliation(s)
- Faisal Aziz
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450003, P. R. China.,The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | | | - Kangdong Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450003, P. R. China.,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiang Li
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450003, P. R. China.,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Ruijuan Du
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450003, P. R. China.,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Josh Monts
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Gang Xu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, P. R. China
| | - Yonghan Li
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450003, P. R. China
| | - Ruihua Bai
- Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, 450003, P. R. China
| | - Zigang Dong
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450003, P. R. China.,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|
12
|
Vidali S, Gerlini R, Thompson K, Urquhart JE, Meisterknecht J, Aguilar‐Pimentel JA, Amarie OV, Becker L, Breen C, Calzada‐Wack J, Chhabra NF, Cho Y, da Silva‐Buttkus P, Feichtinger RG, Gampe K, Garrett L, Hoefig KP, Hölter SM, Jameson E, Klein‐Rodewald T, Leuchtenberger S, Marschall S, Mayer‐Kuckuk P, Miller G, Oestereicher MA, Pfannes K, Rathkolb B, Rozman J, Sanders C, Spielmann N, Stoeger C, Szibor M, Treise I, Walter JH, Wurst W, Mayr JA, Fuchs H, Gärtner U, Wittig I, Taylor RW, Newman WG, Prokisch H, Gailus‐Durner V, Hrabě de Angelis M. Characterising a homozygous two-exon deletion in UQCRH: comparing human and mouse phenotypes. EMBO Mol Med 2021; 13:e14397. [PMID: 34750991 PMCID: PMC8649870 DOI: 10.15252/emmm.202114397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial disorders are clinically and genetically diverse, with isolated complex III (CIII) deficiency being relatively rare. Here, we describe two affected cousins, presenting with recurrent episodes of severe lactic acidosis, hyperammonaemia, hypoglycaemia and encephalopathy. Genetic investigations in both cases identified a homozygous deletion of exons 2 and 3 of UQCRH, which encodes a structural complex III (CIII) subunit. We generated a mouse model with the equivalent homozygous Uqcrh deletion (Uqcrh-/- ), which also presented with lactic acidosis and hyperammonaemia, but had a more severe, non-episodic phenotype, resulting in failure to thrive and early death. The biochemical phenotypes observed in patient and Uqcrh-/- mouse tissues were remarkably similar, displaying impaired CIII activity, decreased molecular weight of fully assembled holoenzyme and an increase of an unexpected large supercomplex (SXL ), comprising mostly of one complex I (CI) dimer and one CIII dimer. This phenotypic similarity along with lentiviral rescue experiments in patient fibroblasts verifies the pathogenicity of the shared genetic defect, demonstrating that the Uqcrh-/- mouse is a valuable model for future studies of human CIII deficiency.
Collapse
|
13
|
Proteomic Signatures of Diffuse and Intestinal Subtypes of Gastric Cancer. Cancers (Basel) 2021; 13:cancers13235930. [PMID: 34885041 PMCID: PMC8656738 DOI: 10.3390/cancers13235930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of death from cancer globally. Gastric cancer is classified into intestinal, diffuse and indeterminate subtypes based on histology according to the Laurén classification. The intestinal and diffuse subtypes, although different in histology, demographics and outcomes, are still treated in the same fashion. This study was designed to discover proteomic signatures of diffuse and intestinal subtypes. Mass spectrometry-based proteomics using tandem mass tags (TMT)-based multiplexed analysis was used to identify proteins in tumor tissues from patients with diffuse or intestinal gastric cancer with adjacent normal tissue control. A total of 7448 or 4846 proteins were identified from intestinal or diffuse subtype, respectively. This quantitative mass spectrometric analysis defined a proteomic signature of differential expression across the two subtypes, which included gremlin1 (GREM1), bcl-2-associated athanogene 2 (BAG2), olfactomedin 4 (OLFM4), thyroid hormone receptor interacting protein 6 (TRIP6) and melanoma-associated antigen 9 (MAGE-A9) proteins. Although GREM1, BAG2, OLFM4, TRIP6 and MAGE-A9 have all been previously implicated in tumor progression and metastasis, they have not been linked to intestinal or diffuse subtypes of gastric cancer. Using immunohistochemical labelling of a tissue microarray comprising of 124 cases of gastric cancer, we validated the proteomic signature obtained by mass spectrometry in the discovery cohort. Our findings should help investigate the pathogenesis of these gastric cancer subtypes and potentially lead to strategies for early diagnosis and treatment.
Collapse
|
14
|
Tan YQ, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE, Pandey V. Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim Biophys Acta Rev Cancer 2021; 1876:188534. [PMID: 33794332 DOI: 10.1016/j.bbcan.2021.188534] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria, well recognized as the "powerhouse" of cells, are maternally inherited organelles with bacterial ancestry that play essential roles in a myriad of cellular functions. It has become profoundly evident that mitochondria regulate a wide array of cellular and metabolic functions, including biosynthetic metabolism, cell signaling, redox homeostasis, and cell survival. Correspondingly, defects in normal mitochondrial functioning have been implicated in various human malignancies. Cancer development involves the activation of oncogenes, inactivation of tumor suppressor genes, and impairment of apoptotic programs in cells. Mitochondria have been recognized as the site of key metabolic switches for normal cells to acquire a malignant phenotype. This review outlines the role of mitochondria in human malignancies and highlights potential aspects of mitochondrial metabolism that could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
15
|
Zhang Y, Huo W, Sun L, Wu J, Zhang C, Wang H, Wang B, Wei J, Qu C, Cao H, Jiang X. Targeting miR-148b-5p Inhibits Immunity Microenvironment and Gastric Cancer Progression. Front Immunol 2021; 12:590447. [PMID: 33717068 PMCID: PMC7944991 DOI: 10.3389/fimmu.2021.590447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/13/2021] [Indexed: 12/05/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been discovered to dictate the development of various tumors. However, studies on the roles of miRNAs in the progression of gastric cancer (GC) are still lacking. Methods Herein, by analyzing GC cell lines and patients samples, we observed that miR-148b-5p was significantly downregulated in GC. We also confirmed that miR-148b-5p overexpression significantly inhibited GC cell proliferation and invasion in vitro and in vivo. Results Overexpression of miR-148b-5p not only reprogrammed the metabolic properties of GC but also regulated the immune microenvironment by shifting lymphocyte and myeloid populations. Mechanistically, ATPIF1, an important glycolysis-associated gene, was identified as a direct target of miR-148b-5p and mediated the effect of miR-148b-5p. Notably, the low level of miR-148b-5p was significantly related with poor prognosis of GC patients (P < 0.001). Importantly, the levels of miR-148b-5p significantly changed the sensitivity of GC cells to several anti-cancer drugs (Doxorubicin, P < 0.05, Paclitaxel, P < 0.01, Docetaxel, P < 0.05). Conclusions Targeting miR-148b-5p inhibits immunity microenvironment and gastric cancer progression.
Collapse
Affiliation(s)
- Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Wei Huo
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Lidi Sun
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jie Wu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Chengbin Zhang
- Department of Pathology Oncology, The First Hospital of Jilin University, Changchun, China
| | - Huanhuan Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Chao Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Hongshi Cao
- Department of Nursing, The First Hospital of Jilin University, Changchun, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab 2020; 33:102-121. [PMID: 31399389 PMCID: PMC7056920 DOI: 10.1016/j.molmet.2019.06.026] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cancer is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of standard anticancer therapies. The ketogenic diet, a high-fat, low-carbohydrate diet with adequate amounts of protein, appears to sensitize most cancers to standard treatment by exploiting the reprogramed metabolism of cancer cells, making the diet a promising candidate as an adjuvant cancer therapy. SCOPE OF REVIEW To critically evaluate available preclinical and clinical evidence regarding the ketogenic diet in the context of cancer therapy. Furthermore, we highlight important mechanisms that could explain the potential antitumor effects of the ketogenic diet. MAJOR CONCLUSIONS The ketogenic diet probably creates an unfavorable metabolic environment for cancer cells and thus can be regarded as a promising adjuvant as a patient-specific multifactorial therapy. The majority of preclinical and several clinical studies argue for the use of the ketogenic diet in combination with standard therapies based on its potential to enhance the antitumor effects of classic chemo- and radiotherapy, its overall good safety and tolerability and increase in quality of life. However, to further elucidate the mechanisms of the ketogenic diet as a therapy and evaluate its application in clinical practice, more molecular studies as well as uniformly controlled clinical trials are needed.
Collapse
Affiliation(s)
- Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Julia Tulipan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| |
Collapse
|
17
|
Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG. From old to new - Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol 2020; 98:211-223. [PMID: 31145995 PMCID: PMC7613924 DOI: 10.1016/j.semcdb.2019.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Although we have entered the era of personalized medicine and tailored therapies, drugs that target a large variety of cancers regardless of individual patient differences would be a major advance nonetheless. This review article summarizes current concepts and therapeutic opportunities in the area of targeting aerobic mitochondrial energy metabolism in cancer. Old drugs previously used for diseases other than cancer, such as antibiotics and antidiabetics, have the potential to inhibit the growth of various tumor entities. Many drugs are reported to influence mitochondrial metabolism. However, here we consider only those drugs which predominantly inhibit oxidative phosphorylation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Institute of Human Genetics, Helmholtz Zentrum München, Technical University of Munich, Munich, Germany
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Corresponding author at: Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria. (B. Kofler)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
18
|
Vidali S, Aminzadeh-Gohari S, Vatrinet R, Iommarini L, Porcelli AM, Kofler B, Feichtinger RG. Lithium and Not Acetoacetate Influences the Growth of Cells Treated with Lithium Acetoacetate. Int J Mol Sci 2019; 20:ijms20123104. [PMID: 31242642 PMCID: PMC6628210 DOI: 10.3390/ijms20123104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/21/2019] [Indexed: 01/06/2023] Open
Abstract
The ketogenic diet (KD), a high-fat/low-carbohydrate/adequate-protein diet, has been proposed as a treatment for a variety of diseases, including cancer. KD leads to generation of ketone bodies (KBs), predominantly acetoacetate (AcAc) and 3-hydroxy-butyrate, as a result of fatty acid oxidation. Several studies investigated the antiproliferative effects of lithium acetoacetate (LiAcAc) and sodium 3-hydroxybutyrate on cancer cells in vitro. However, a critical point missed in some studies using LiAcAc is that Li ions have pleiotropic effects on cell growth and cell signaling. Thus, we tested whether Li ions per se contribute to the antiproliferative effects of LiAcAc in vitro. Cell proliferation was analyzed on neuroblastoma, renal cell carcinoma, and human embryonic kidney cell lines. Cells were treated for 5 days with 2.5, 5, and 10 mM LiAcAc and with equimolar concentrations of lithium chloride (LiCl) or sodium chloride (NaCl). LiAcAc affected the growth of all cell lines, either negatively or positively. However, the effects of LiAcAc were always similar to those of LiCl. In contrast, NaCl showed no effects, indicating that the Li ion impacts cell proliferation. As Li ions have significant effects on cell growth, it is important for future studies to include sources of Li ions as a control.
Collapse
Affiliation(s)
- Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Renaud Vatrinet
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy.
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy.
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - René Günther Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
19
|
Reduced Levels of ATP Synthase Subunit ATP5F1A Correlate with Earlier-Onset Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1347174. [PMID: 30538797 PMCID: PMC6261400 DOI: 10.1155/2018/1347174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 12/28/2022]
Abstract
Switching of cellular energy production from oxidative phosphorylation (OXPHOS) to aerobic glycolysis occurs in many types of tumors. However, the significance of energy metabolism for the development of prostate carcinoma is poorly understood. We investigated the expression of OXPHOS complexes in 94 human prostate carcinomas and paired benign tissue using immunohistochemistry. Overall mitochondrial mass was upregulated in carcinomas compared to benign prostate tissue in all Gleason grades. A significant direct correlation between the expression of OXPHOS complexes I, II, and V and the Gleason score was observed. However, 17% of prostate carcinomas and 18% of benign prostate tissues showed isolated or combined deficiency of OXPHOS complexes (one deficiency in 12% of the tumors, combined deficiencies in 5%). Complex I was absent in 9% of the samples, with only parts of the tumor affected. ATP5F1A, a complex V protein, was the most frequently affected subunit, in 10% of tumors and 11% of benign prostate tissues (but not both tissues in any single patient). A possible role of complex V in prostate cancer development is suggested by the significant positive correlation of ATP5F1A levels with earlier-onset prostate cancer (age at diagnosis and at prostatectomy) and free PSA percentage. The relatively high percentage (17%) of prostate carcinomas with regional foci of partial OXPHOS complex deficiencies could have important therapeutic implications.
Collapse
|
20
|
Peng P, Zhou X, Yi G, Chen P, Wang F, Dong W. Identification of a novel gene pairs signature in the prognosis of gastric cancer. Cancer Med 2018; 7:344-350. [PMID: 29282891 PMCID: PMC5806102 DOI: 10.1002/cam4.1303] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
Current prognostic signatures need to be improved in identifying high-risk patients of gastric cancer (GC). Thus, we aimed to develop a reliable prognostic signature that could assess the prognosis risk in GC patients. Two microarray datasets of GSE662254 (n = 300, training set) and GSE15459 (n = 192, test set) were included into analysis. Prognostic genes were screened to construct prognosis-related gene pairs (PRGPs). Then, a penalized Cox proportional hazards regression model identified seven PRGPs, which constructed a prognostic signature and divided patients into high- and low-risk groups according to the signature score. High-risk patients showed a poorer prognosis than low-risk patients in both the training set (hazard ratios [HR]: 6.086, 95% confidence interval [CI]: 4.341-8.533) and test set (1.773 [1.107-2.840]). The PRGPs signature also achieved a higher predictive accuracy (concordance index [C-index]: 0.872, 95% CI: 0.846-0.897) than two existing molecular signatures (0.706 [0.667-0.744] for a 11-gene signature and 0.684 [0.642-0.726] for a 24-lncRNA signature) and TNM stage (0.764 [0.715-0.814]). In conclusion, our study identified a novel gene pairs signature in the prognosis of GC.
Collapse
Affiliation(s)
- Pai‐Lan Peng
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Department of GastroenterologyThe Central Hospital of Enshi Autonomous PrefectureEnshi445000China
| | - Xiang‐Yu Zhou
- Department of GastroenterologyThe Central Hospital of Enshi Autonomous PrefectureEnshi445000China
| | - Guo‐Dong Yi
- Department of GastroenterologyThe Central Hospital of Enshi Autonomous PrefectureEnshi445000China
| | - Peng‐Fei Chen
- Department of GastroenterologyThe Central Hospital of Enshi Autonomous PrefectureEnshi445000China
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Fan Wang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wei‐Guo Dong
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhan430060China
| |
Collapse
|