1
|
Skóra B, Piechowiak T, Szychowski KA. Interaction Between Aging-Related Elastin-Derived Peptide (VGVAPG) and Sirtuin 2 and its Impact on Functions of Human Neuron Cells in an In Vitro Model. Mol Neurobiol 2025; 62:819-831. [PMID: 38914873 PMCID: PMC11711152 DOI: 10.1007/s12035-024-04298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
Elastin is a stable protein present in many tissues, including brain tissues, and is one of the most long-life proteins with a half-life of approximately 70 years. The peptide with a Val-Gly-Val-Ala-Pro-Gly (VGVAPG) amino acid sequence is released during elastin decay, which correlates with aging-related neurodegeneration. A recent study has shown enhanced protein expression of Sirtuin 2 (SIRT2 - one of the redox homeostatic factors) in aged rodent brains, while the correlation between VGVAPG and SIRT2 has never been evaluated so far. Therefore, the study aimed to determine the impact of the VGVAPG hexapeptide on SIRT2 and neuronal functions in differentiated SH-SY5Y cells at the gene and protein expression levels. The present results showed that VGVAPG caused a 52.69% decrease in the level of reactive oxygen species (ROS), as in the case of neurons treated with AGK2 (Sirtuin 2 inhibitor) after 24h and 48h. Furthermore, a decrease in superoxide dismutase (SOD) activity was observed. The SIRT2 gene expression was found to fluctuate after 6h and 24h as a result of the exposure to the VGVAPG peptide. In turn, a decrease in the PPARγ, P53, SOD2, and CAT mRNA expression was shown in VGVAPG-treated cells. Additionally, an increase in the Sirtuin 2 protein expression was recorded after 24h and 48h in the VGVAPG peptide-treated neurons. Last but not least, the decrease in the level of acetylation of α-tubulin after the hexapeptide treatment was correlated with shortening of neurites, which may indicate the destabilization of the microtubule and ROS-independent induction of neurodegeneration.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225, Rzeszów, Poland.
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Ćwiklinskiej 2, 35-601, Rzeszów, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225, Rzeszów, Poland
| |
Collapse
|
2
|
Suzuki N, Konuma T, Ikegami T, Akashi S. Biophysical insights into the dimer formation of human Sirtuin 2. Protein Sci 2024; 33:e4994. [PMID: 38647411 PMCID: PMC11034489 DOI: 10.1002/pro.4994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Sirtuin 2 (SIRT2) is a class III histone deacetylase that is highly conserved from bacteria to mammals. We prepared and characterized the wild-type (WT) and mutant forms of the histone deacetylase (HDAC) domain of human SIRT2 (hSIRT2) using various biophysical methods and evaluated their deacetylation activity. We found that WT hSIRT2 HDAC (residues 52-357) forms a homodimer in a concentration-dependent manner with a dimer-monomer dissociation constant of 8.3 ± 0.5 μM, which was determined by mass spectrometry. The dimer was disrupted into two monomers by binding to the HDAC inhibitors SirReal1 and SirReal2. We also confirmed dimer formation of hSIRT2 HDAC in living cells using a NanoLuc complementation reporter system. Examination of the relationship between dimer formation and deacetylation activity using several mutants of hSIRT2 HDAC revealed that some non-dimerizing mutants exhibited deacetylation activity for the N-terminal peptide of histone H3, similar to the wild type. The hSIRT2 HDAC mutant Δ292-306, which lacks a SIRT2-specific disordered loop region, was identified to exist as a monomer with slightly reduced deacetylation activity; the X-ray structure of the mutant Δ292-306 was almost identical to that of the WT hSIRT2 HDAC bound to an inhibitor. These results indicate that hSIRT2 HDAC forms a dimer, but this is independent of deacetylation activity. Herein, we discuss insights into the dimer formation of hSIRT2 based on our biophysical experimental results.
Collapse
Affiliation(s)
- Noa Suzuki
- Graduate School of Medical Life Science, Yokohama City UniversityYokohamaKanagawaJapan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City UniversityYokohamaKanagawaJapan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City UniversityYokohamaKanagawaJapan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City UniversityYokohamaKanagawaJapan
| |
Collapse
|
3
|
Sola-Sevilla N, Puerta E. SIRT2 as a potential new therapeutic target for Alzheimer's disease. Neural Regen Res 2024; 19:124-131. [PMID: 37488853 PMCID: PMC10479864 DOI: 10.4103/1673-5374.375315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 04/04/2023] [Indexed: 07/26/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years, bringing a heavy burden to individuals and society due to the lack of an effective treatment. In this context, sirtuin 2, the sirtuin with the highest expression in the brain, has emerged as a potential therapeutic target for neurodegenerative diseases. This review summarizes and discusses the complex roles of sirtuin 2 in different molecular mechanisms involved in Alzheimer's disease such as amyloid and tau pathology, microtubule stability, neuroinflammation, myelin formation, autophagy, and oxidative stress. The role of sirtuin 2 in all these processes highlights its potential implication in the etiology and development of Alzheimer's disease. However, its presence in different cell types and its enormous variety of substrates leads to apparently contradictory conclusions when it comes to understanding its specific functions. Further studies in sirtuin 2 research with selective sirtuin 2 modulators targeting specific sirtuin 2 substrates are necessary to clarify its specific functions under different conditions and to validate it as a novel pharmacological target. This will contribute to the development of new treatment strategies, not only for Alzheimer's disease but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
4
|
Garmendia-Berges M, Sola-Sevilla N, Mera-Delgado MC, Puerta E. Age-Associated Changes of Sirtuin 2 Expression in CNS and the Periphery. BIOLOGY 2023; 12:1476. [PMID: 38132302 PMCID: PMC10741187 DOI: 10.3390/biology12121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Sirtuin 2 (SIRT2), one of the seven members of the sirtuin family, has emerged as a potential regulator of aging and age-related pathologies since several studies have demonstrated that it shows age-related changes in humans and different animal models. A detailed analysis of the relevant works published to date addressing this topic shows that the changes that occur in SIRT2 with aging seem to be opposite in the brain and in the periphery. On the one hand, aging induces an increase in SIRT2 levels in the brain, which supports the notion that its pharmacological inhibition is beneficial in different neurodegenerative diseases. However, on the other hand, in the periphery, SIRT2 levels are reduced with aging while keeping its expression is protective against age-related peripheral inflammation, insulin resistance, and cardiovascular diseases. Thus, systemic administration of any known modulator of this enzyme would have conflicting outcomes. This review summarizes the currently available information on changes in SIRT2 expression in aging and the underlying mechanisms affected, with the aim of providing evidence to determine whether its pharmacological modulation could be an effective and safe pharmacological strategy for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Maider Garmendia-Berges
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
| | - Noemi Sola-Sevilla
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - MCarmen Mera-Delgado
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
| | - Elena Puerta
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
5
|
Akbulut K, Keskin-Aktan A, Abgarmi S, Akbulut H. The role of SIRT2 inhibition on the aging process of brain in male rats. AGING BRAIN 2023; 4:100087. [PMID: 37519449 PMCID: PMC10372168 DOI: 10.1016/j.nbas.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Background Though the exact mechanisms regarding brain aging and its relation to neurodegenerative disorders are not precise, oxidative stress, the key regulators of apoptosis and autophagy, such as bcl-2 and beclin 1, seem to be the potential players in the aging of the cerebral cortex and hippocampus. As a type of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 2 (SIRT2) has been associated to age-related diseases. However, the exact role of SIRT2 in brain aging is not well studied. The objective of the current study was to study the role of SIRT2 inhibition on brain aging through the neuroprotective mechanisms. Methods We tested the effects of AGK-2, a SIRT2 inhibitor, on oxidative stress parameters, apoptosis and autophagy regulators including bcl-2, bax, beclin1 in young and old rats. 24 Wistar albino rats (3 months-old and 22 months-old) were divided into four groups; Young-Control (4% DMSO+PBS), Young-AGK-2 (10 µM/bw, ip), Aged-Control, and Aged-AGK-2. Following the 30 days of drug administration period the rats were sacrificed and the cerebral cortex, hippocampus, and cerebellum were isolated. Total antioxidant status (TAS) and total oxidant status (TOS) were measured as oxidative stress parameters in all three brain regions. SIRT2, bcl-2, and bax protein expression levels were measured by western blot and gene expression level of beclin 1, Atg5, and SIRT2 by real-time PCR. Results The bcl-2, bcl-2/bax ratio, beclin 1, and TAS in the cerebral cortex of the aged group were significantly decreased; however, the TOS, oxidative stress index (OSI), and SIRT2 expression in the cerebral cortex and hippocampus increased. SIRT2 inhibition by AGK-2 reduced TOS and OSI levels in all brain regions and increased bcl-2, bcl-2/bax ratio. In aged animals, AGK-2 also increased the beclin 1 levels in the cortex and hippocampus. Conclusion Our results indicate that SIRT2 has an essential role in brain aging. The inhibition of SIRT2 by AGK-2 may increase cell survival and decrease aging related processes in the cerebral cortex and hippocampus via decreasing oxidative stress, and increasing bcl-2 and beclin 1 expression.
Collapse
Affiliation(s)
- K.G. Akbulut
- Department of Physiology, School of Medicine, Gazi University, Ankara, Turkey
| | - A. Keskin-Aktan
- Department of Physiology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - S.A. Abgarmi
- Department of Basic Oncology, Cancer Research Institute, Ankara University, Ankara, Turkey
- Department of Medical Oncology, School of Medicine, Ankara University Ankara, Turkey
| | - H. Akbulut
- Department of Basic Oncology, Cancer Research Institute, Ankara University, Ankara, Turkey
- Department of Medical Oncology, School of Medicine, Ankara University Ankara, Turkey
| |
Collapse
|
6
|
Lu W, Ji H, Wu D. SIRT2 plays complex roles in neuroinflammation neuroimmunology-associated disorders. Front Immunol 2023; 14:1174180. [PMID: 37215138 PMCID: PMC10196137 DOI: 10.3389/fimmu.2023.1174180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Neuroinflammation and neuroimmunology-associated disorders, including ischemic stroke and neurodegenerative disease, commonly cause severe neurologic function deficits, including bradypragia, hemiplegia, aphasia, and cognitive impairment, and the pathological mechanism is not completely clear. SIRT2, an NAD+-dependent deacetylase predominantly localized in the cytoplasm, was proven to play an important and paradoxical role in regulating ischemic stroke and neurodegenerative disease. This review summarizes the comprehensive mechanism of the crucial pathological functions of SIRT2 in apoptosis, necroptosis, autophagy, neuroinflammation, and immune response. Elaborating on the mechanism by which SIRT2 participates in neuroinflammation and neuroimmunology-associated disorders is beneficial to discover novel effective drugs for diseases, varying from vascular disorders to neurodegenerative diseases.
Collapse
|
7
|
Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M. Shedding light on structure, function and regulation of human sirtuins: a comprehensive review. 3 Biotech 2023; 13:29. [PMID: 36597461 PMCID: PMC9805487 DOI: 10.1007/s13205-022-03455-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023] Open
Abstract
Sirtuins play an important role in signalling pathways associated with various metabolic regulations. They possess mono-ADP-ribosyltransferase or deacylase activity like demalonylase, deacetylase, depalmitoylase, demyristoylase and desuccinylase activity. Sirtuins are histone deacetylases which depends upon nicotinamide adenine dinucleotide (NAD) that deacetylate lysine residues. There are a total of seven human sirtuins that have been identified namely, SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6 and SIRT7. The subcellular location of mammalian sirtuins, SIRT1, SIRT6, and SIRT7 are in the nucleus; SIRT3, SIRT4, and SIRT5 are in mitochondria, and SIRT2 is in cytoplasm. Structurally sirtuins contains a N-terminal, a C-terminal and a Zn+ binding domain. The sirtuin family has been found to be crucial for maintaining lipid and glucose homeostasis, and also for regulating insulin secretion and sensitivity, DNA repair pathways, neurogenesis, inflammation, and ageing. Based on the literature, sirtuins are overexpressed and play an important role in tumorigenicity in various types of cancer such as non-small cell lung cancer, colorectal cancer, etc. In this review, we have discussed about the different types of human sirtuins along with their structural and functional features. We have also discussed about the various natural and synthetic regulators of sirtuin activities like resveratrol. Our overall study shows that the correct regulation of sirtuins can be a good target for preventing and treating various diseases for improving the human lifespan. To investigate the true therapeutic potential of sirtuin proteins and their efficacy in a variety of pathological diseases, a better knowledge of the link between the structure and function of sirtuin proteins would be necessary.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Pragati Mahur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| |
Collapse
|
8
|
Zhu C, Dong X, Wang X, Zheng Y, Qiu J, Peng Y, Xu J, Chai Z, Liu C. Multiple Roles of SIRT2 in Regulating Physiological and Pathological Signal Transduction. Genet Res (Camb) 2022; 2022:9282484. [PMID: 36101744 PMCID: PMC9444453 DOI: 10.1155/2022/9282484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuin 2 (SIRT2), as a member of the sirtuin family, has representative features of evolutionarily highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase activity. In addition, SIRT2, as the only sirtuin protein colocalized with tubulin in the cytoplasm, has its own functions and characteristics. In recent years, studies have increasingly shown that SIRT2 can participate in the regulation of gene expression and regulate signal transduction in the metabolic pathway mainly through its post-translational modification of target genes; thus, SIRT2 has become a key centre in the metabolic pathway and participates in the pathological process of metabolic disorder-related diseases. In this paper, it is discussed that SIRT2 can regulate all aspects of gene expression, including epigenetic modification, replication, transcription and translation, and post-translational modification, which enables SIRT2 to participate in energy metabolism in life activities, and it is clarified that SIRT2 is involved in metabolic process-specific signal transduction mechanisms. Therefore, SIRT2 can be involved in metabolic disorder-related inflammation and oxidative stress, thereby triggering the occurrence of metabolic disorder-related diseases, such as neurodegenerative diseases, tumours, diabetes, and cardiovascular diseases. Currently, although the role of SIRT2 in some diseases is still controversial, given the multiple roles of SIRT2 in regulating physiological and pathological signal transduction, SIRT2 has become a key target for disease treatment. It is believed that with increasing research, the clinical application of SIRT2 will be promoted.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, Shandong, China
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Xue Dong
- Department of Education, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Xiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Yingying Zheng
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Juanjuan Qiu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Yanling Peng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Jiajun Xu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan 250102, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunyan Liu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| |
Collapse
|
9
|
Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ, Perez-Pinzon MA. Sirtuins and cognition: implications for learning and memory in neurological disorders. Front Physiol 2022; 13:908689. [PMID: 35936890 PMCID: PMC9355297 DOI: 10.3389/fphys.2022.908689] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins are an evolutionarily conserved family of regulatory proteins that function in an NAD+ -dependent manner. The mammalian family of sirtuins is composed of seven histone deacetylase and ADP-ribosyltransferase proteins (SIRT1-SIRT7) that are found throughout the different cellular compartments of the cell. Sirtuins in the brain have received considerable attention in cognition due to their role in a plethora of metabolic and age-related diseases and their ability to induce neuroprotection. More recently, sirtuins have been shown to play a role in normal physiological cognitive function, and aberrant sirtuin function is seen in pathological cellular states. Sirtuins are believed to play a role in cognition through enhancing synaptic plasticity, influencing epigenetic regulation, and playing key roles in molecular pathways involved with oxidative stress affecting mitochondrial function. This review aims to discuss recent advances in the understanding of the role of mammalian sirtuins in cognitive function and the therapeutic potential of targeting sirtuins to ameliorate cognitive deficits in neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Perez-Pinzon
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
10
|
Yalçin M, Mundorf A, Thiel F, Amatriain-Fernández S, Kalthoff IS, Beucke JC, Budde H, Garthus-Niegel S, Peterburs J, Relógio A. It's About Time: The Circadian Network as Time-Keeper for Cognitive Functioning, Locomotor Activity and Mental Health. Front Physiol 2022; 13:873237. [PMID: 35547585 PMCID: PMC9081535 DOI: 10.3389/fphys.2022.873237] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
A variety of organisms including mammals have evolved a 24h, self-sustained timekeeping machinery known as the circadian clock (biological clock), which enables to anticipate, respond, and adapt to environmental influences such as the daily light and dark cycles. Proper functioning of the clock plays a pivotal role in the temporal regulation of a wide range of cellular, physiological, and behavioural processes. The disruption of circadian rhythms was found to be associated with the onset and progression of several pathologies including sleep and mental disorders, cancer, and neurodegeneration. Thus, the role of the circadian clock in health and disease, and its clinical applications, have gained increasing attention, but the exact mechanisms underlying temporal regulation require further work and the integration of evidence from different research fields. In this review, we address the current knowledge regarding the functioning of molecular circuits as generators of circadian rhythms and the essential role of circadian synchrony in a healthy organism. In particular, we discuss the role of circadian regulation in the context of behaviour and cognitive functioning, delineating how the loss of this tight interplay is linked to pathological development with a focus on mental disorders and neurodegeneration. We further describe emerging new aspects on the link between the circadian clock and physical exercise-induced cognitive functioning, and its current usage as circadian activator with a positive impact in delaying the progression of certain pathologies including neurodegeneration and brain-related disorders. Finally, we discuss recent epidemiological evidence pointing to an important role of the circadian clock in mental health.
Collapse
Affiliation(s)
- Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Annakarina Mundorf
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Freya Thiel
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sandra Amatriain-Fernández
- Institute for Systems Medicine and Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Ida Schulze Kalthoff
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Jan-Carl Beucke
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henning Budde
- Institute for Systems Medicine and Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Susan Garthus-Niegel
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Jutta Peterburs
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Figarola-Centurión I, Escoto-Delgadillo M, González-Enríquez GV, Gutiérrez-Sevilla JE, Vázquez-Valls E, Torres-Mendoza BM. Sirtuins Modulation: A Promising Strategy for HIV-Associated Neurocognitive Impairments. Int J Mol Sci 2022; 23:643. [PMID: 35054829 PMCID: PMC8775450 DOI: 10.3390/ijms23020643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 02/01/2023] Open
Abstract
HIV-Associated neurocognitive disorder (HAND) is one of the major concerns since it persists in 40% of this population. Nowadays, HAND neuropathogenesis is considered to be caused by the infected cells that cross the brain-blood barrier and produce viral proteins that can be secreted and internalized into neurons leading to disruption of cellular processes. The evidence points to viral proteins such as Tat as the causal agent for neuronal alteration and thus HAND. The hallmarks in Tat-induced neurodegeneration are endoplasmic reticulum stress and mitochondrial dysfunction. Sirtuins (SIRTs) are NAD+-dependent deacetylases involved in mitochondria biogenesis, unfolded protein response, and intrinsic apoptosis pathway. Tat interaction with these deacetylases causes inhibition of SIRT1 and SIRT3. Studies revealed that SIRTs activation promotes neuroprotection in neurodegenerative diseases such Alzheimer's and Parkinson's disease. Therefore, this review focuses on Tat-induced neurotoxicity mechanisms that involve SIRTs as key regulators and their modulation as a therapeutic strategy for tackling HAND and thereby improving the quality of life of people living with HIV.
Collapse
Affiliation(s)
- Izchel Figarola-Centurión
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
| | - Martha Escoto-Delgadillo
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 44600, Mexico
| | - Gracia Viviana González-Enríquez
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Juan Ernesto Gutiérrez-Sevilla
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Microbiología Médica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Eduardo Vázquez-Valls
- Generación de Recursos Profesionales, Investigación y Desarrollo, Secretaria de Salud, Jalisco, Guadalajara 44100, Mexico;
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|
12
|
Xu H, Liu YY, Li LS, Liu YS. Sirtuins at the Crossroads between Mitochondrial Quality Control and Neurodegenerative Diseases: Structure, Regulation, Modifications, and Modulators. Aging Dis 2022; 14:794-824. [PMID: 37191431 DOI: 10.14336/ad.2022.1123] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 04/03/2023] Open
Abstract
Sirtuins (SIRT1-SIRT7), a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, are key regulators of life span and metabolism. In addition to acting as deacetylates, some sirtuins have the properties of deacylase, decrotonylase, adenosine diphosphate (ADP)-ribosyltransferase, lipoamidase, desuccinylase, demalonylase, deglutarylase, and demyristolyase. Mitochondrial dysfunction occurs early on and acts causally in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sirtuins are implicated in the regulation of mitochondrial quality control, which is highly associated with the pathogenesis of neurodegenerative diseases. There is growing evidence indicating that sirtuins are promising and well-documented molecular targets for the treatment of mitochondrial dysfunction and neurodegenerative disorders by regulating mitochondrial quality control, including mitochondrial biogenesis, mitophagy, mitochondrial fission/fusion dynamics, and mitochondrial unfolded protein responses (mtUPR). Therefore, elucidation of the molecular etiology of sirtuin-mediated mitochondrial quality control points to new prospects for the treatment of neurodegenerative diseases. However, the mechanisms underlying sirtuin-mediated mitochondrial quality control remain obscure. In this review, we update and summarize the current understanding of the structure, function, and regulation of sirtuins with an emphasis on the cumulative and putative effects of sirtuins on mitochondrial biology and neurodegenerative diseases, particularly their roles in mitochondrial quality control. In addition, we outline the potential therapeutic applications for neurodegenerative diseases of targeting sirtuin-mediated mitochondrial quality control through exercise training, calorie restriction, and sirtuin modulators in neurodegenerative diseases.
Collapse
|
13
|
Kaitsuka T, Matsushita M, Matsushita N. Regulation of Hypoxic Signaling and Oxidative Stress via the MicroRNA-SIRT2 Axis and Its Relationship with Aging-Related Diseases. Cells 2021; 10:cells10123316. [PMID: 34943825 PMCID: PMC8699081 DOI: 10.3390/cells10123316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
The sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylase and ADP-ribosyl transferases plays key roles in aging, metabolism, stress response, and aging-related diseases. SIRT2 is a unique sirtuin that is expressed in the cytosol and is abundant in neuronal cells. Various microRNAs were recently reported to regulate SIRT2 expression via its 3'-untranslated region (UTR), and single nucleotide polymorphisms in the miRNA-binding sites of SIRT2 3'-UTR were identified in patients with neurodegenerative diseases. The present review highlights recent studies into SIRT2-mediated regulation of the stress response, posttranscriptional regulation of SIRT2 by microRNAs, and the implications of the SIRT2-miRNA axis in aging-related diseases.
Collapse
Affiliation(s)
- Taku Kaitsuka
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan;
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan;
| | - Nobuko Matsushita
- Laboratory of Hygiene and Public Health, Department of Medical Technology, School of Life and Environmental Science, Azabu University, Sagamihara 252-5201, Japan
- Correspondence: ; Tel.: +81-42-769-1937
| |
Collapse
|
14
|
Chamberlain KA, Huang N, Xie Y, LiCausi F, Li S, Li Y, Sheng ZH. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 2021; 109:3456-3472.e8. [PMID: 34506725 PMCID: PMC8571020 DOI: 10.1016/j.neuron.2021.08.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Neurons require mechanisms to maintain ATP homeostasis in axons, which are highly vulnerable to bioenergetic failure. Here, we elucidate a transcellular signaling mechanism by which oligodendrocytes support axonal energy metabolism via transcellular delivery of NAD-dependent deacetylase SIRT2. SIRT2 is undetectable in neurons but enriched in oligodendrocytes and released within exosomes. By deleting sirt2, knocking down SIRT2, or blocking exosome release, we demonstrate that transcellular delivery of SIRT2 is critical for axonal energy enhancement. Mass spectrometry and acetylation analyses indicate that neurons treated with oligodendrocyte-conditioned media from WT, but not sirt2-knockout, mice exhibit strong deacetylation of mitochondrial adenine nucleotide translocases 1 and 2 (ANT1/2). In vivo delivery of SIRT2-filled exosomes into myelinated axons rescues mitochondrial integrity in sirt2-knockout mouse spinal cords. Thus, our study reveals an oligodendrocyte-to-axon delivery of SIRT2, which enhances ATP production by deacetylating mitochondrial proteins, providing a target for boosting axonal bioenergetic metabolism in neurological disorders.
Collapse
Affiliation(s)
- Kelly A Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Francesca LiCausi
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yan Li
- Proteomics Core Facility, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 1B-1014, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
15
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
16
|
Haque ME, Akther M, Azam S, Kim IS, Lin Y, Lee YH, Choi DK. Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson's disease. Br J Pharmacol 2021; 179:23-45. [PMID: 34528272 DOI: 10.1111/bph.15684] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
Lewy bodies that contain aggregated α-synuclein (α-syn) in the dopaminergic (DA) neuron are the main culprit behind neurodegeneration in Parkinson's disease (PD). Besides, mitochondrial dysfunction has a well established and prominent role in the pathogenesis of PD. However, the exact mechanism by which α-syn causes dopaminergic neuronal loss was unclear. Recent evidence suggests that aggregated α-syn localises in the mitochondria and contributes to oxidative stress-mediated apoptosis in neurons. Therefore, the involvement of aggregated α-syn in mitochondrial dysfunction-mediated neuronal loss has made it an emerging drug target for the treatment of PD. However, the exact mechanism by which α-syn permeabilises through the mitochondrial membrane and affects the electron transport chain remains under investigation. In the present study, we describe mitochondria-α-syn interactions and how α-syn aggregation modulates mitochondrial homeostasis in PD pathogenesis. We also discuss recent therapeutic interventions targeting α-syn aggregation that may help researchers to design novel therapeutic treatments for PD.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chung Buk, Republic of Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chung Buk, Republic of Korea.,Department of Bio-analytical Science, University of Science and Technology, Daejeon, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.,Research Headquarters, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea.,Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
17
|
Chen X, Lu W, Wu D. Sirtuin 2 (SIRT2): Confusing Roles in the Pathophysiology of Neurological Disorders. Front Neurosci 2021; 15:614107. [PMID: 34108853 PMCID: PMC8180884 DOI: 10.3389/fnins.2021.614107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/12/2021] [Indexed: 01/05/2023] Open
Abstract
As a type of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 2 (SIRT2) is predominantly found in the cytoplasm of cells in the central nervous system (CNS), suggesting its potential role in neurological disorders. Though SIRT2 is generally acknowledged to accelerate the development of neurological pathologies, it protects the brain from deterioration in certain circumstances. This review summarized the complex roles SIRT2 plays in the pathophysiology of diverse neurological disorders, compared and analyzed the discrete roles of SIRT2 in different conditions, and provided possible explanations for its paradoxical functions. In the future, the rapid growth in SIRT2 research may clarify its impacts on neurological disorders and develop therapeutic strategies targeting this protein.
Collapse
Affiliation(s)
- Xiuqi Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wenmei Lu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Gene variants and expression changes of SIRT1 and SIRT6 in peripheral blood are associated with Parkinson's disease. Sci Rep 2021; 11:10677. [PMID: 34021216 PMCID: PMC8140123 DOI: 10.1038/s41598-021-90059-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by complex interaction between genetic and environmental factors. There is a growing body of evidence of the involvement of sirtuins (SIRTs) in disease pathomechanism. SIRTs are NAD+-dependent histone deacetylases which take part in various cellular functions. However, available data of the relationship between SIRT gene polymorphisms and PD is limited. Our aim was to investigate the possible association of 10 SNPs identified within non-mitochondrial SIRTs, SIRT1, -2 and -6 with the risk of PD in Hungarian population, and to compare the expression level of these SIRTs between healthy controls and PD patients. Our results showed that rs3740051 and rs3818292 of SIRT1 and rs350843, rs350844, rs107251, rs350845 and rs350846 of SIRT6 show weak association with PD risk. On the contrary rs12778366 and rs3758391 of SIRT1 and rs10410544 of SIRT2 did not show association with PD. Moreover, we detected that mRNA level of SIRT1 was down-regulated, and mRNA level of SIRT6 was up-regulated, while SIRT2 mRNA level was not altered in the peripheral blood of PD patients as compared to controls. The difference in both cases was more pronounced when comparing the early-onset PD group to the control cohort. Nevertheless, mRNA level changes did not show any association with the presence of any of the investigated SNPs either in the PD or in the control group. In conclusion, our findings suggest that non-mitochondrial sirtuins, SIRT1 and -6 but not SIRT2 might contribute to the pathogenesis of PD in the Hungarian population both via their altered mRNA levels and via gene alterations identified as specific SNPs.
Collapse
|
19
|
Toker L, Tran GT, Sundaresan J, Tysnes OB, Alves G, Haugarvoll K, Nido GS, Dölle C, Tzoulis C. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson's disease brain. Mol Neurodegener 2021; 16:31. [PMID: 33947435 PMCID: PMC8097820 DOI: 10.1186/s13024-021-00450-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a complex, age-related neurodegenerative disorder of largely unknown etiology. PD is strongly associated with mitochondrial respiratory dysfunction, which can lead to epigenetic dysregulation and specifically altered histone acetylation. Nevertheless, and despite the emerging role of epigenetics in age-related brain disorders, the question of whether aberrant histone acetylation is involved in PD remains unresolved. METHODS We studied fresh-frozen brain tissue from two independent cohorts of individuals with idiopathic PD (n = 28) and neurologically healthy controls (n = 21). We performed comprehensive immunoblotting to identify histone sites with altered acetylation levels in PD, followed by chromatin immunoprecipitation sequencing (ChIP-seq). RNA sequencing data from the same individuals was used to assess the impact of altered histone acetylation on gene expression. RESULTS Immunoblotting analyses revealed increased acetylation at several histone sites in PD, with the most prominent change observed for H3K27, a marker of active promoters and enhancers. ChIP-seq analysis further indicated that H3K27 hyperacetylation in the PD brain is a genome-wide phenomenon with a strong predilection for genes implicated in the disease, including SNCA, PARK7, PRKN and MAPT. Integration of the ChIP-seq with transcriptomic data from the same individuals revealed that the correlation between promoter H3K27 acetylation and gene expression is attenuated in PD patients, suggesting that H3K27 acetylation may be decoupled from transcription in the PD brain. Strikingly, this decoupling was most pronounced among nuclear-encoded mitochondrial genes, corroborating the notion that impaired crosstalk between the nucleus and mitochondria is involved in the pathogenesis of PD. Our findings independently replicated in the two cohorts. CONCLUSIONS Our findings strongly suggest that aberrant histone acetylation and altered transcriptional regulation are involved in the pathophysiology of PD. We demonstrate that PD-associated genes are particularly prone to epigenetic dysregulation and identify novel epigenetic signatures associated with the disease.
Collapse
Affiliation(s)
- Lilah Toker
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Gia T. Tran
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Janani Sundaresan
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Pb 8100, 4068 Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, 4062 Stavanger, Norway
| | - Kristoffer Haugarvoll
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Gonzalo S. Nido
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| |
Collapse
|
20
|
Sola-Sevilla N, Ricobaraza A, Hernandez-Alcoceba R, Aymerich MS, Tordera RM, Puerta E. Understanding the Potential Role of Sirtuin 2 on Aging: Consequences of SIRT2.3 Overexpression in Senescence. Int J Mol Sci 2021; 22:3107. [PMID: 33803627 PMCID: PMC8003096 DOI: 10.3390/ijms22063107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Sirtuin 2 (SIRT2) has been associated to aging and age-related pathologies. Specifically, an age-dependent accumulation of isoform 3 of SIRT2 in the CNS has been demonstrated; however, no study has addressed the behavioral or molecular consequences that this could have on aging. In the present study, we have designed an adeno-associated virus vector (AAV-CAG-Sirt2.3-eGFP) for the overexpression of SIRT2.3 in the hippocampus of 2 month-old SAMR1 and SAMP8 mice. Our results show that the specific overexpression of this isoform does not induce significant behavioral or molecular effects at short or long term in the control strain. Only a tendency towards a worsening in the performance in acquisition phase of the Morris Water Maze was found in SAMP8 mice, together with a significant increase in the pro-inflammatory cytokine Il-1β. These results suggest that the age-related increase of SIRT2.3 found in the brain is not responsible for induction or prevention of senescence. Nevertheless, in combination with other risk factors, it could contribute to the progression of age-related processes. Understanding the specific role of SIRT2 on aging and the underlying molecular mechanisms is essential to design new and more successful therapies for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ana Ricobaraza
- Gene Therapy Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Maria S Aymerich
- Departamento de Bioquímica y Genética, Facultad de Ciencias, Universidad de Navarra, 31008 Pamplona, Spain
- Neuroscience Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Rosa M Tordera
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Elena Puerta
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
21
|
Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Front Pharmacol 2021; 11:585821. [PMID: 33597872 PMCID: PMC7883599 DOI: 10.3389/fphar.2020.585821] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are NAD+ dependent histone deacetylases (HDAC) that play a pivotal role in neuroprotection and cellular senescence. SIRT1-7 are different homologs from sirtuins. They play a prominent role in many aspects of physiology and regulate crucial proteins. Modulation of sirtuins can thus be utilized as a therapeutic target for metabolic disorders. Neurological diseases have distinct clinical manifestations but are mainly age-associated and due to loss of protein homeostasis. Sirtuins mediate several life extension pathways and brain functions that may allow therapeutic intervention for age-related diseases. There is compelling evidence to support the fact that SIRT1 and SIRT2 are shuttled between the nucleus and cytoplasm and perform context-dependent functions in neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In this review, we highlight the regulation of SIRT1 and SIRT2 in various neurological diseases. This study explores the various modulators that regulate the activity of SIRT1 and SIRT2, which may further assist in the treatment of neurodegenerative disease. Moreover, we analyze the structure and function of various small molecules that have potential significance in modulating sirtuins, as well as the technologies that advance the targeted therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Kumari Anuja
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Francisco J. Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
- Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
22
|
Chen HY, Lin CH, Teng SC. Stress-induced p53 drives BAG5 cochaperone expression to control α-synuclein aggregation in Parkinson's disease. Aging (Albany NY) 2020; 12:20702-20727. [PMID: 33085644 PMCID: PMC7655153 DOI: 10.18632/aging.103998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with the pathological hallmark of α-synuclein aggregation. Dysregulation of α-synuclein homeostasis caused by aging, genetic, and environmental factors underlies the pathogenesis of PD. While chaperones are essential for proteostasis, whether modulation of cochaperones may participate in PD formation has not been fully characterized. Here, we assessed the expression of several HSP70- and HSP90-related factors under various stresses and found that BAG5 expression is distinctively elevated in etoposide- or H2O2-treated SH-SY5Y cells. Stress-induced p53 binds to the BAG5 promoter directly to stimulate BAG5. Induced BAG5 binds α-synuclein and HSP70 in both cell cultures and brain lysates from PD patients. Overexpressed BAG5 may result in the loss of its ability to promote HSP70. Importantly, α-synuclein aggregation in SH-SY5Y cells requires BAG5. BAG5 expression is also detected in transgenic SNCA mutant mice and in PD patients. Together, our data reveal stress-induced p53-BAG5-HSP70 regulation that provides a potential therapeutic angle for PD.
Collapse
Affiliation(s)
- Huan-Yun Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Zhang M, Du W, Acklin S, Jin S, Xia F. SIRT2 protects peripheral neurons from cisplatin-induced injury by enhancing nucleotide excision repair. J Clin Invest 2020; 130:2953-2965. [PMID: 32134743 PMCID: PMC7260000 DOI: 10.1172/jci123159] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
Platinum-based chemotherapy-induced peripheral neuropathy is one of the most common causes of dose reduction and discontinuation of life-saving chemotherapy in cancer treatment; it often causes permanent impairment of quality of life in cancer patients. The mechanisms that underlie this neuropathy are not defined, and effective treatment and prevention measures are not available. Here, we demonstrate that SIRT2 protected mice against cisplatin-induced peripheral neuropathy (CIPN). SIRT2 accumulated in the nuclei of dorsal root ganglion sensory neurons and prevented neuronal cell death following cisplatin treatment. Mechanistically, SIRT2, an NAD+-dependent deacetylase, protected neurons from cisplatin cytotoxicity by promoting transcription-coupled nucleotide excision repair (TC-NER) of cisplatin-induced DNA cross-links. Consistent with this mechanism, pharmacological inhibition of NER using spironolactone abolished SIRT2-mediated TC-NER activity in differentiated neuronal cells and protection of neurons from cisplatin-induced cytotoxicity and CIPN in mice. Importantly, SIRT2's protective effects were not evident in lung cancer cells in vitro or in tumors in vivo. Taken together, our results identified SIRT2's function in the NER pathway as a key underlying mechanism of preventing CIPN, warranting future investigation of SIRT2 activation-mediated neuroprotection during platinum-based cancer treatment.
Collapse
|
24
|
Wu Z, Zhang Y, Zhang Y, Zhao P. Sirtuin 2 Inhibition Attenuates Sevoflurane-Induced Learning and Memory Deficits in Developing Rats via Modulating Microglial Activation. Cell Mol Neurobiol 2020; 40:437-446. [PMID: 31713761 PMCID: PMC11449016 DOI: 10.1007/s10571-019-00746-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022]
Abstract
Sevoflurane is a widely used inhalational anesthetic in pediatric medicine that has been reported to have deleterious effects on the developing brain. Strategies to mitigate these detrimental effects are lacking. Sirtuin 2 (SIRT2) is a member of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases involved in a wide range of pathophysiological processes. SIRT2 inhibition has emerged as a promising treatment for an array of neurological disorders. However, the direct effects of SIRT2 on anesthesia-induced damage to the immature brain are unclear. Neonatal rats were exposed to 3% sevoflurane or 30% oxygen for 2 h daily with or without SIRT2 inhibitor AK7 pretreatment from postnatal day 7 (P7) to P9. One cohort of rats were euthanized 6, 12, and/or 24 h after the last gas exposure, and brain tissues were harvested for biochemical analysis and/or immunohistochemical examination. Cognitive functions were evaluated using the open field and Morris water maze tests on P25 and P28-32, respectively. SIRT2 was significantly up-regulated in neonatal rat hippocampus at 6 and 12 h post-anesthesia. Pretreatment with SIRT2 inhibitor AK7 reversed sevoflurane-induced hippocampus-dependent cognitive impairments. Furthermore, AK7 administration mitigated sevoflurane-induced neuroinflammation and microglial activation. Concomitantly, AK7 inhibited pro-inflammatory/M1-related markers and increased anti-inflammatory/M2-related markers in microglia. AK7 might prevent sevoflurane-induced neuroinflammation by switching microglia from the M1 to M2 phenotype. Downregulation of SIRT2 may be a novel therapeutic target for alleviating anesthesia-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yinong Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
25
|
Liu Y, Zhang Y, Zhu K, Chi S, Wang C, Xie A. Emerging Role of Sirtuin 2 in Parkinson's Disease. Front Aging Neurosci 2020; 11:372. [PMID: 31998119 PMCID: PMC6965030 DOI: 10.3389/fnagi.2019.00372] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD), the main risk factor of which is age, is one of the most common neurodegenerative diseases, thus presenting a substantial burden on the health of affected individuals as well as an economic burden. Sirtuin 2 (SIRT2), a subtype in the family of sirtuins, belongs to class III histone deacetylases (HDACs). It is known that SIRT2 levels increase with aging, and a growing body of evidence has been accumulating, showing that the activity of SIRT2 mediates various processes involved in PD pathogenesis, including aggregation of α-synuclein (α-syn), microtubule function, oxidative stress, inflammation, and autophagy. There have been conflicting reports about the role of SIRT2 in PD, in that some studies indicate its potential to induce the death of dopaminergic (DA) neurons, and that inhibition of SIRT2 may, therefore, have protective effects in PD. Other studies suggest a protective role of SIRT2 in the context of neuronal damage. As current treatments for PD are directed at alleviating symptoms and are very limited, a comprehensive understanding of the enzymology of SIRT2 in PD may be essential for developing novel therapeutic agents for the treatment of this disease. This review article will provide an update on our knowledge of the structure, distribution, and biological characteristics of SIRT2, and highlight its role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Konghua Zhu
- Department of Neurology, The Eighth People Hospital of Qingdao City, Qingdao, China
| | - Song Chi
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Tan YJ, Lee YT, Petersen SH, Kaur G, Kono K, Tan SC, Majid AMSA, Oon CE. BZD9L1 sirtuin inhibitor as a potential adjuvant for sensitization of colorectal cancer cells to 5-fluorouracil. Ther Adv Med Oncol 2019; 11:1758835919878977. [PMID: 31632470 PMCID: PMC6767736 DOI: 10.1177/1758835919878977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background: This study aims to investigate the combination effect of a novel sirtuin
inhibitor (BZD9L1) with 5-fluorouracil (5-FU) and to determine its molecular
mechanism of action in colorectal cancer (CRC). Methods: BZD9L1 and 5-FU either as single treatment or in combination were tested
against CRC cells to evaluate synergism in cytotoxicity, senescence and
formation of micronucleus, cell cycle and apoptosis, as well as the
regulation of related molecular players. The effects of combined treatments
at different doses on stress and apoptosis, migration, invasion and cell
death mechanism were evaluated through two-dimensional and three-dimensional
cultures. In vivo studies include investigation on the
combination effects of BZD9L1 and 5-FU on colorectal tumour xenograft growth
and an evaluation of tumour proliferation and apoptosis using
immunohistochemistry. Results: Combination treatments exerted synergistic reduction on cell viability on HCT
116 cells but not on HT-29 cells. Combined treatments reduced survival,
induced cell cycle arrest, apoptosis, senescence and micronucleation in HCT
116 cells through modulation of multiple responsible molecular players and
apoptosis pathways, with no effect in epithelial mesenchymal transition
(EMT). Combination treatments regulated SIRT1 and SIRT2 protein expression
levels differently and changed SIRT2 protein localization. Combined
treatment reduced growth, migration, invasion and viability of HCT 116
spheroids through apoptosis, when compared with the single treatment. In
addition, combined treatment was found to reduce tumour growth in
vivo through reduction of tumour proliferation and necrosis
compared with the vehicle control group. This highlights the potential
therapeutic effects of BZD9L1 and 5-FU towards CRC. Conclusion: This study may pave the way for use of BZD9L1 as an adjuvant to 5-FU in
improving the therapeutic efficacy for the treatment of colorectal
cancer.
Collapse
Affiliation(s)
- Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Sven H Petersen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Koji Kono
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo Choon Tan
- USains Biomics Laboratory Testing Services Sdn. Bhd., Universiti Sains Malaysia, Penang, Malaysia
| | - Amin M S Abdul Majid
- EMAN Testing and Research Laboratories, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800, Malaysia
| |
Collapse
|
27
|
Cacabelos R, Carril JC, Cacabelos N, Kazantsev AG, Vostrov AV, Corzo L, Cacabelos P, Goldgaber D. Sirtuins in Alzheimer's Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. Int J Mol Sci 2019; 20:ijms20051249. [PMID: 30871086 PMCID: PMC6429449 DOI: 10.3390/ijms20051249] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Sirtuins (SIRT1-7) are NAD+-dependent protein deacetylases/ADP ribosyltransferases with important roles in chromatin silencing, cell cycle regulation, cellular differentiation, cellular stress response, metabolism and aging. Sirtuins are components of the epigenetic machinery, which is disturbed in Alzheimer’s disease (AD), contributing to AD pathogenesis. There is an association between the SIRT2-C/T genotype (rs10410544) (50.92%) and AD susceptibility in the APOEε4-negative population (SIRT2-C/C, 34.72%; SIRT2-T/T 14.36%). The integration of SIRT2 and APOE variants in bigenic clusters yields 18 haplotypes. The 5 most frequent bigenic genotypes in AD are 33CT (27.81%), 33CC (21.36%), 34CT (15.29%), 34CC (9.76%) and 33TT (7.18%). There is an accumulation of APOE-3/4 and APOE-4/4 carriers in SIRT2-T/T > SIRT2-C/T > SIRT2-C/C carriers, and also of SIRT2-T/T and SIRT2-C/T carriers in patients who harbor the APOE-4/4 genotype. SIRT2 variants influence biochemical, hematological, metabolic and cardiovascular phenotypes, and modestly affect the pharmacoepigenetic outcome in AD. SIRT2-C/T carriers are the best responders, SIRT2-T/T carriers show an intermediate pattern, and SIRT2-C/C carriers are the worst responders to a multifactorial treatment. In APOE-SIRT2 bigenic clusters, 33CC carriers respond better than 33TT and 34CT carriers, whereas 24CC and 44CC carriers behave as the worst responders. CYP2D6 extensive metabolizers (EM) are the best responders, poor metabolizers (PM) are the worst responders, and ultra-rapid metabolizers (UM) tend to be better responders that intermediate metabolizers (IM). In association with CYP2D6 genophenotypes, SIRT2-C/T-EMs are the best responders. Some Sirtuin modulators might be potential candidates for AD treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Juan C Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Aleksey G Kazantsev
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Alex V Vostrov
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Lola Corzo
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Pablo Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Dmitry Goldgaber
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
28
|
Nguyen P, Shukla S, Liu R, Abbineni G, Smart DK. Sirt2 Regulates Radiation-Induced Injury. Radiat Res 2019; 191:398-412. [PMID: 30835165 DOI: 10.1667/rr15282.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sirtuin 2 (SIRT2) plays a major role in aging, carcinogenesis and neurodegeneration. While it has been shown that SIRT2 is a mediator of stress-induced cell death, the mechanism remains unclear. In this study, we report the role of SIRT2 in mediating radiation-induced cell death and DNA damage using mouse embryonic fibroblasts (MEFs), progenitor cells and tissues from Sirt2 wild-type and genomic knockout mice, and human tumor and primary cell lines as models. The presence of Sirt2 in cells and tissues significantly enhanced the cell's sensitivity to radiation-induced cytotoxicity by delaying the dispersion of radiation-induced γ-H2AX and 53BP1 foci. This enhanced cellular radiosensitivity correlated with reduced expression of pro-survival and DNA repair proteins, and decreased DNA repair capacities involving both homologous repair and non-homologous end joining DNA repair mechanisms compared to those in Sirt2 knockout (KO) and knockdown (KD) phenotypes. Together, these data suggest SIRT2 plays a critical role in mediating the radiation-induced DNA damage response, thus regulating radiation-induced cell death and survival.
Collapse
Affiliation(s)
- Phuongmai Nguyen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sudhanshu Shukla
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryan Liu
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gopal Abbineni
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - DeeDee K Smart
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Sasaki Y. Metabolic aspects of neuronal degeneration: From a NAD + point of view. Neurosci Res 2018; 139:9-20. [PMID: 30006197 DOI: 10.1016/j.neures.2018.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022]
Abstract
Cellular metabolism maintains the life of cells, allowing energy production required for building cellular constituents and maintaining homeostasis under constantly changing external environments. Neuronal cells maintain their structure and function for the entire life of organisms and the loss of neurons, with limited neurogenesis in adults, directly causes loss of complexity in the neuronal networks. The nervous system organizes the neurons by placing cell bodies containing nuclei of similar types of neurons in discrete regions. Accordingly, axons must travel great distances to connect different types of neurons and peripheral organs. The enormous surface area of neurons makes them high-energy demanding to keep their membrane potential. Distal axon survival is dependent on axonal transport that is another energy demanding process. All of these factors make metabolic stress a potential risk factor for neuronal death and neuronal degeneration often associated with metabolic diseases. This review discusses recent findings on metabolic dysregulations under neuronal degeneration and pathways protecting neurons in these conditions.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University in St. Louis, Couch Biomedical Research Building, 4515 McKinley Ave., Saint Louis, MO, 63110, United States
| |
Collapse
|
30
|
Role and Possible Mechanisms of Sirt1 in Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8596903. [PMID: 29643977 PMCID: PMC5831942 DOI: 10.1155/2018/8596903] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
Abstract
Depression is a common, devastating illness. Due to complicated causes and limited treatments, depression is still a major problem that plagues the world. Silent information regulator 1 (Sirt1) is a deacetylase at the consumption of NAD+ and is involved in gene silencing, cell cycle, fat and glucose metabolism, cellular oxidative stress, and senescence. Sirt1 has now become a critical therapeutic target for a number of diseases. Recently, a genetic study has received considerable attention for depression and found that Sirt1 is a potential gene target. In this short review article, we attempt to present an up-to-date knowledge of depression and Sirt1 of the sirtuin family, describe the different effects of Sirt1 on depression, and further discuss possible mechanisms of Sirt1 including glial activation, neurogenesis, circadian control, and potential signaling molecules. Thus, it will open a new avenue for clinical treatment of depression.
Collapse
|