1
|
Corvino A, Caliendo G, Fiorino F, Frecentese F, Valsecchi V, Lombardi G, Anzilotti S, Andreozzi G, Scognamiglio A, Sparaco R, Perissutti E, Severino B, Gargiulo M, Santagada V, Pignataro G. Newly Synthesized Indolylacetic Derivatives Reduce Tumor Necrosis Factor-Mediated Neuroinflammation and Prolong Survival in Amyotrophic Lateral Sclerosis Mice. ACS Pharmacol Transl Sci 2024; 7:1996-2005. [PMID: 39022351 PMCID: PMC11249635 DOI: 10.1021/acsptsci.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
The debilitating neurodegenerative disease known as amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motor neurons (MNs) in the brain, spinal cord, and motor cortex. The ALS neuroinflammatory component is being characterized and includes the overexpression of mediators, such as inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α). Currently, there are no effective treatments for ALS. Indeed, riluzole, an N-methyl-D-aspartate (NMDA) glutamate receptor blocker, and edaravone, a reactive oxygen species (ROS) scavenger, are currently the sole two medications approved for ALS treatment. However, their efficacy in extending life expectancy typically amounts to only a few months. In order to improve the medicaments for the treatment of neurodegenerative diseases, preferably ALS, novel substituted 2-methyl-3-indolylacetic derivatives (compounds II-IV) were developed by combining the essential parts of two small molecules, namely, the opioids containing a 4-piperidinyl ring with indomethacin, previously shown to be efficacious in different experimental models of neuroinflammation. The synthesized compounds were evaluated for their potential capability of slowing down neurodegeneration associated with ALS progression in preclinical models of the disease in vitro and in vivo. Notably, we produced data to demonstrate that the treatment with the newly synthesized compound III: (1) prevented the upregulation of TNF-α observed in BV-2 microglial cells exposed to the toxin lipopolysaccharides (LPS), (2) preserved SHSY-5Y cell survival exposed to β-N-methylamino-l-alanine (L-BMAA) neurotoxin, and (3) mitigated motor symptoms and improved survival rate of SOD1G93A ALS mice. In conclusion, the findings of the present work support the potential of the synthesized indolylacetic derivatives II-IV in ALS treatment. Indeed, in the attempt to realize an association between two active molecules, we assumed that the combination of the indispensable moieties of two small molecules (the opioids containing a 4-piperidinyl ring with the FANS indomethacin) might lead to new medicaments potentially useful for the treatment of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Angela Corvino
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Giuseppe Caliendo
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Ferdinando Fiorino
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Francesco Frecentese
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Valeria Valsecchi
- Division
of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological
Sciences, School of Medicine, “Federico
II” University of Naples, Via S. Pansini 5 ,Naples 80131, Italy
| | - Giovanna Lombardi
- Division
of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological
Sciences, School of Medicine, “Federico
II” University of Naples, Via S. Pansini 5 ,Naples 80131, Italy
| | - Serenella Anzilotti
- Department
of Science and Technology, University of
Sannio, 82100Benevento, Italy
| | - Giorgia Andreozzi
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Antonia Scognamiglio
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Rosa Sparaco
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Elisa Perissutti
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Beatrice Severino
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Michele Gargiulo
- Miuli
Pharma S.r.l., via Circumvallazione, Nola 310 80035, Italy
| | - Vincenzo Santagada
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Giuseppe Pignataro
- Division
of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological
Sciences, School of Medicine, “Federico
II” University of Naples, Via S. Pansini 5 ,Naples 80131, Italy
| |
Collapse
|
2
|
Karagianni K, Dafou D, Xanthopoulos K, Sklaviadis T, Kanata E. RNA editing regulates glutamatergic synapses in the frontal cortex of a molecular subtype of Amyotrophic Lateral Sclerosis. Mol Med 2024; 30:101. [PMID: 38997636 PMCID: PMC11241978 DOI: 10.1186/s10020-024-00863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a highly heterogenous neurodegenerative disorder that primarily affects upper and lower motor neurons, affecting additional cell types and brain regions. Underlying molecular mechanisms are still elusive, in part due to disease heterogeneity. Molecular disease subtyping through integrative analyses including RNA editing profiling is a novel approach for identification of molecular networks involved in pathogenesis. METHODS We aimed to highlight the role of RNA editing in ALS, focusing on the frontal cortex and the prevalent molecular disease subtype (ALS-Ox), previously determined by transcriptomic profile stratification. We established global RNA editing (editome) and gene expression (transcriptome) profiles in control and ALS-Ox cases, utilizing publicly available RNA-seq data (GSE153960) and an in-house analysis pipeline. Functional annotation and pathway analyses identified molecular processes affected by RNA editing alterations. Pearson correlation analyses assessed RNA editing effects on expression. Similar analyses on additional ALS-Ox and control samples (GSE124439) were performed for verification. Targeted re-sequencing and qRT-PCR analysis targeting CACNA1C, were performed using frontal cortex tissue from ALS and control samples (n = 3 samples/group). RESULTS We identified reduced global RNA editing in the frontal cortex of ALS-Ox cases. Differentially edited transcripts are enriched in synapses, particularly in the glutamatergic synapse pathway. Bioinformatic analyses on additional ALS-Ox and control RNA-seq data verified these findings. We identified increased recoding at the Q621R site in the GRIK2 transcript and determined positive correlations between RNA editing and gene expression alterations in ionotropic receptor subunits GRIA2, GRIA3 and the CACNA1C transcript, which encodes the pore forming subunit of a post-synaptic L-type calcium channel. Experimental data verified RNA editing alterations and editing-expression correlation in CACNA1C, highlighting CACNA1C as a target for further study. CONCLUSIONS We provide evidence on the involvement of RNA editing in the frontal cortex of an ALS molecular subtype, highlighting a modulatory role mediated though recoding and gene expression regulation on glutamatergic synapse related transcripts. We report RNA editing effects in disease-related transcripts and validated editing alterations in CACNA1C. Our study provides targets for further functional studies that could shed light in underlying disease mechanisms enabling novel therapeutic approaches.
Collapse
Affiliation(s)
- Korina Karagianni
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001, Thermi, Greece
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eirini Kanata
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
3
|
Geraci J, Bhargava R, Qorri B, Leonchyk P, Cook D, Cook M, Sie F, Pani L. Machine learning hypothesis-generation for patient stratification and target discovery in rare disease: our experience with Open Science in ALS. Front Comput Neurosci 2024; 17:1199736. [PMID: 38260713 PMCID: PMC10801647 DOI: 10.3389/fncom.2023.1199736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Advances in machine learning (ML) methodologies, combined with multidisciplinary collaborations across biological and physical sciences, has the potential to propel drug discovery and development. Open Science fosters this collaboration by releasing datasets and methods into the public space; however, further education and widespread acceptance and adoption of Open Science approaches are necessary to tackle the plethora of known disease states. Motivation In addition to providing much needed insights into potential therapeutic protein targets, we also aim to demonstrate that small patient datasets have the potential to provide insights that usually require many samples (>5,000). There are many such datasets available and novel advancements in ML can provide valuable insights from these patient datasets. Problem statement Using a public dataset made available by patient advocacy group AnswerALS and a multidisciplinary Open Science approach with a systems biology augmented ML technology, we aim to validate previously reported drug targets in ALS and provide novel insights about ALS subpopulations and potential drug targets using a unique combination of ML methods and graph theory. Methodology We use NetraAI to generate hypotheses about specific patient subpopulations, which were then refined and validated through a combination of ML techniques, systems biology methods, and expert input. Results We extracted 8 target classes, each comprising of several genes that shed light into ALS pathophysiology and represent new avenues for treatment. These target classes are broadly categorized as inflammation, epigenetic, heat shock, neuromuscular junction, autophagy, apoptosis, axonal transport, and excitotoxicity. These findings are not mutually exclusive, and instead represent a systematic view of ALS pathophysiology. Based on these findings, we suggest that simultaneous targeting of ALS has the potential to mitigate ALS progression, with the plausibility of maintaining and sustaining an improved quality of life (QoL) for ALS patients. Even further, we identified subpopulations based on disease onset. Conclusion In the spirit of Open Science, this work aims to bridge the knowledge gap in ALS pathophysiology to aid in diagnostic, prognostic, and therapeutic strategies and pave the way for the development of personalized treatments tailored to the individual's needs.
Collapse
Affiliation(s)
- Joseph Geraci
- NetraMark Corp, Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
- Centre for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Arthur C. Clarke Center for Human Imagination, School of Physical Sciences, University of California San Diego, San Diego, CA, United States
| | - Ravi Bhargava
- Department of Biomedical and Molecular Science, Queens University, Kingston, ON, Canada
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | | | | | - Douglas Cook
- NetraMark Corp, Toronto, ON, Canada
- Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Moses Cook
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fanny Sie
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | - Luca Pani
- NetraMark Corp, Toronto, ON, Canada
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Dubowsky M, Theunissen F, Carr JM, Rogers ML. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023; 60:6330-6345. [PMID: 37450244 PMCID: PMC10533598 DOI: 10.1007/s12035-023-03472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
Collapse
Affiliation(s)
- Megan Dubowsky
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jillian M Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Mary-Louise Rogers
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
5
|
Nango H, Tsuruta K, Miyagishi H, Aono Y, Saigusa T, Kosuge Y. Update on the pathological roles of prostaglandin E 2 in neurodegeneration in amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:32. [PMID: 37337289 DOI: 10.1186/s40035-023-00366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
| |
Collapse
|
6
|
Kook MG, Byun MR, Lee SM, Lee MH, Lee DH, Lee HB, Lee EJ, Baek K, Kim S, Kang KS, Choi JW. Anti-apoptotic Splicing Variant of AIMP2 Recover Mutant SOD1-Induced Neuronal Cell Death. Mol Neurobiol 2023; 60:145-159. [PMID: 36242734 DOI: 10.1007/s12035-022-03073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/08/2022] [Indexed: 12/30/2022]
Abstract
Although a couple of studies have reported that mutant superoxide dismutase 1 (SOD1), one of the causative genes of familial amyotrophic lateral, interacts physically with lysyl-tRNA synthetase (KARS1) by a gain of function, there is limited evidence regarding the detailed mechanism about how the interaction leads to neuronal cell death. Our results indicated that the aminoacyl-tRNA synthetase-interacting multi-functional protein 2 (AIMP2) mediated cell death upon the interplay between mutant SOD1 and KARS1 in ALS. Binding of mutant SOD1 with KARS1 led to the release of AIMP2 from its original binding partner KARS1, and the free form of AIMP2 induced TRAF2 degradation followed by TNF-α-induced cell death. We also suggest a therapeutic application that overexpression of DX2, the exon 2-deleted antagonistic splicing variant of AIMP2 (AIMP2-DX2), reduced neuronal cell death in the ALS mouse model. Expression of DX2 suppressed TRAF2 degradation and TNF-α-induced cell death by competing mode of action against full-length AIMP2. Motor neuron differentiated form iPSC showed a resistance in neuronal cell death after DX2 administration. Further, intrathecal administration of DX2-coding adeno-associated virus (AAV) improved locomotive activity and survival in a mutant SOD1-induced ALS mouse model. Taken together, these results indicated that DX2 could prolong life span and delay the ALS symptoms through compensation in neuronal inflammation.
Collapse
Affiliation(s)
- Myung Geun Kook
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Biomedicinal and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soo Min Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Min Hak Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Dae Hoon Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Hyung Been Lee
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Eui-Jin Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Kyunghwa Baek
- Department of Biomedicinal and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.,Generoath Ltd, Seoul, 04168, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kyung-Sun Kang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. .,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea.
| |
Collapse
|
7
|
Role of Nrf2 in aging, Alzheimer's and other neurodegenerative diseases. Ageing Res Rev 2022; 82:101756. [PMID: 36243357 DOI: 10.1016/j.arr.2022.101756] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Nuclear Factor-Erythroid Factor 2 (Nrf2) is an important transcription factor that regulates the expression of large number of genes in healthy and disease states. Nrf2 is made up of 605 amino acids and contains 7 conserved regions known as Nrf2-ECH homology domains. Nrf2 regulates the expression of several key components of oxidative stress, mitochondrial biogenesis, mitophagy, autophagy and mitochondrial function in all organs of the human body, in the peripheral and central nervous systems. Mounting evidence also suggests that altered expression of Nrf2 is largely involved in aging, neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's diseases, Amyotrophic lateral sclerosis, Stroke, Multiple sclerosis and others. The purpose of this article is to detail the essential role of Nrf2 in oxidative stress, antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic/mitophagic degradation, and metabolism in aging and neurodegenerative diseases. This article also highlights the Nrf2 structural and functional activities in healthy and disease states, and also discusses the current status of Nrf2 research and therapeutic strategies to treat aging and neurodegenerative diseases.
Collapse
|
8
|
P2X7 receptor activation mediates superoxide dismutase 1 (SOD1) release from murine NSC-34 motor neurons. Purinergic Signal 2022; 18:451-467. [PMID: 35478453 PMCID: PMC9832181 DOI: 10.1007/s11302-022-09863-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 01/15/2023] Open
Abstract
Mutant superoxide dismutase 1 (SOD1) can be constitutively released from motor neurons and transmitted to naïve motor neurons to promote the progression of amyotrophic lateral sclerosis (ALS). However, the biological impacts of this process and the precise mechanisms of SOD1 release remain to be fully resolved. Using biochemical and fluorescent techniques, this study aimed to determine if P2X7 receptor activation could induce mutant SOD1 release from motor neurons and whether this released SOD1 could be transmitted to motor neurons or microglia to mediate effects associated with neurodegeneration in ALS. Aggregated SOD1G93A, released from murine NSC-34 motor neurons transiently transfected with SOD1G93A, could be transmitted to naïve NSC-34 cells and murine EOC13 microglia to induce endoplasmic reticulum (ER) stress and tumour necrosis factor-alpha (TNFα) release, respectively. Immunoblotting revealed NSC-34 cells expressed P2X7. Extracellular ATP induced cation dye uptake into these cells, which was blocked by the P2X7 antagonist AZ10606120, demonstrating these cells express functional P2X7. Moreover, ATP induced the rapid release of aggregated SOD1G93A from NSC-34 cells transiently transfected with SOD1G93A, a process blocked by AZ10606120 and revealing a role for P2X7 in this process. ATP-induced SOD1G93A release coincided with membrane blebbing. Finally, aggregated SOD1G93A released via P2X7 activation could also be transmitted to NSC-34 and EOC13 cells to induce ER stress and TNFα release, respectively. Collectively, these results identify a novel role for P2X7 in the prion-like propagation of SOD1 in ALS and provide a possible explanation for the therapeutic benefits of P2X7 antagonism previously observed in ALS SOD1G93A mice.
Collapse
|
9
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
10
|
Hsueh SC, Scerba MT, Tweedie D, Lecca D, Kim DS, Baig AM, Kim YK, Hwang I, Kim S, Selman WR, Hoffer BJ, Greig NH. Activity of a Novel Anti-Inflammatory Agent F-3,6'-dithiopomalidomide as a Treatment for Traumatic Brain Injury. Biomedicines 2022; 10:2449. [PMID: 36289711 PMCID: PMC9598880 DOI: 10.3390/biomedicines10102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for several neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). Neuroinflammation is a cause of later secondary cell death following TBI, has the potential to aggravate the initial impact, and provides a therapeutic target, albeit that has failed to translate into clinical trial success. Thalidomide-like compounds have neuroinflammation reduction properties across cellular and animal models of TBI and neurodegenerative disorders. They lower the generation of proinflammatory cytokines, particularly TNF-α which is pivotal in microglial cell activation. Unfortunately, thalidomide-like drugs possess adverse effects in humans before achieving anti-inflammatory drug levels. We developed F-3,6'-dithiopomalidomide (F-3,6'-DP) as a novel thalidomide-like compound to ameliorate inflammation. F-3,6'-DP binds to cereblon but does not efficiently trigger the degradation of the transcription factors (SALL4, Ikaros, and Aiolos) associated with the teratogenic and anti-proliferative responses of thalidomide-like drugs. We utilized a phenotypic drug discovery approach that employed cellular and animal models in the selection and development of F-3,6'-DP. F-3,6'-DP significantly mitigated LPS-induced inflammatory markers in RAW 264.7 cells, and lowered proinflammatory cytokine/chemokine levels in the plasma and brain of rats challenged with systemic LPS. We subsequently examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) in mice, a model of moderate TBI known to induce inflammation. F-3,6'-DP decreased CCI-induced neuroinflammation, neuronal loss, and behavioral deficits when administered after TBI. F-3,6'-DP represents a novel class of thalidomide-like drugs that do not lower classical cereblon-associated transcription factors but retain anti-inflammatory actions and possess efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michael T. Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD 20878, USA
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | | | | | - Sun Kim
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Antioxidant and Neuroprotective Effects of Paeonol against Oxidative Stress and Altered Carrier-Mediated Transport System on NSC-34 Cell Lines. Antioxidants (Basel) 2022; 11:antiox11071392. [PMID: 35883881 PMCID: PMC9311606 DOI: 10.3390/antiox11071392] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Paeonol is a naturally occurring phenolic agent that attenuates neurotoxicity in neurodegenerative diseases. We aimed to investigate the antioxidant and protective effects of paeonol and determine its transport mechanism in wild-type (WT; NSC-34/hSOD1WT) and mutant-type (MT; NSC-34/hSOD1G93A) motor neuron-like amyotrophic lateral sclerosis (ALS) cell lines. Cytotoxicity induced by glutamate, lipopolysaccharides, and H2O2 reduced viability of cell; however, the addition of paeonol improved cell viability against neurotoxicity. The [3H]paeonol uptake was increased in the presence of H2O2 in both cell lines. Paeonol recovered ALS model cell lines by reducing mitochondrial oxidative stress induced by glutamate. The transport of paeonol was time-, concentration-, and pH-dependent in both NSC-34 cell lines. Kinetic parameters showed two transport sites with altered affinity and capacity in the MT cell line compared to the WT cell line. [3H]Paeonol uptake increased in the MT cell line transfected with organic anion transporter1 (Oat1)/Slc22a6 small interfering RNA compared to that in the control. Plasma membrane monoamine transporter (Pmat) was also involved in the uptake of paeonol by ALS model cell lines. Overall, paeonol exhibits neuroprotective activity via a carrier-mediated transport system and may be a beneficial therapy for preventing motor neuronal damage under ALS-like conditions.
Collapse
|
12
|
Jensen BK, McAvoy KJ, Heinsinger NM, Lepore AC, Ilieva H, Haeusler AR, Trotti D, Pasinelli P. Targeting TNFα produced by astrocytes expressing amyotrophic lateral sclerosis-linked mutant fused in sarcoma prevents neurodegeneration and motor dysfunction in mice. Glia 2022; 70:1426-1449. [PMID: 35474517 PMCID: PMC9540310 DOI: 10.1002/glia.24183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
Abstract
Genetic mutations that cause amyotrophic lateral sclerosis (ALS), a progressively lethal motor neuron disease, are commonly found in ubiquitously expressed genes. In addition to direct defects within motor neurons, growing evidence suggests that dysfunction of non-neuronal cells is also an important driver of disease. Previously, we demonstrated that mutations in DNA/RNA binding protein fused in sarcoma (FUS) induce neurotoxic phenotypes in astrocytes in vitro, via activation of the NF-κB pathway and release of pro-inflammatory cytokine TNFα. Here, we developed an intraspinal cord injection model to test whether astrocyte-specific expression of ALS-causative FUSR521G variant (mtFUS) causes neuronal damage in vivo. We show that restricted expression of mtFUS in astrocytes is sufficient to induce death of spinal motor neurons leading to motor deficits through upregulation of TNFα. We further demonstrate that TNFα is a key toxic molecule as expression of mtFUS in TNFα knockout animals does not induce pathogenic changes. Accordingly, in mtFUS-transduced animals, administration of TNFα neutralizing antibodies prevents neurodegeneration and motor dysfunction. Together, these studies strengthen evidence that astrocytes contribute to disease in ALS and establish, for the first time, that FUS-ALS astrocytes induce pathogenic changes to motor neurons in vivo. Our work identifies TNFα as the critical driver of mtFUS-astrocytic toxicity and demonstrates therapeutic success of targeting TNFα to attenuate motor neuron dysfunction and death. Ultimately, through defining and subsequently targeting this toxic mechanism, we provide a viable FUS-ALS specific therapeutic strategy, which may also be applicable to sporadic ALS where FUS activity and cellular localization are frequently perturbed.
Collapse
Affiliation(s)
- Brigid K. Jensen
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Kevin J. McAvoy
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Present address:
Manfredi LaboratoryWeill Cornell Medicine, Cornell UniversityNew YorkNYUSA
| | - Nicolette M. Heinsinger
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Angelo C. Lepore
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Hristelina Ilieva
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Aaron R. Haeusler
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
13
|
Yu W, He J, Cai X, Yu Z, Zou Z, Fan D. Neuroimmune Crosstalk Between the Peripheral and the Central Immune System in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:890958. [PMID: 35592701 PMCID: PMC9110796 DOI: 10.3389/fnagi.2022.890958] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration and death of motor neurons. Systemic neuroinflammation contributes to the pathogenesis of ALS. The proinflammatory milieu depends on the continuous crosstalk between the peripheral immune system (PIS) and central immune system (CIS). Central nervous system (CNS) resident immune cells interact with the peripheral immune cells via immune substances. Dysfunctional CNS barriers, including the blood–brain barrier, and blood–spinal cord barrier, accelerate the inflammatory process, leading to a systemic self-destructive cycle. This review focuses on the crosstalk between PIS and CIS in ALS. Firstly, we briefly introduce the cellular compartments of CIS and PIS, respectively, and update some new understanding of changes specifically occurring in ALS. Then, we will review previous studies on the alterations of the CNS barriers, and discuss their crucial role in the crosstalk in ALS. Finally, we will review the moveable compartments of the crosstalk, including cytokines, chemokines, and peripheral immune cells which were found to infiltrate the CNS, highlighting the interaction between PIS and CIS. This review aims to provide new insights into pathogenic mechanisms and innovative therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Weiyi Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiying Cai
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhou Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan,
| |
Collapse
|
14
|
Zahedipour F, Hosseini SA, Henney NC, Barreto GE, Sahebkar A. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen Res 2022; 17:1675-1684. [PMID: 35017414 PMCID: PMC8820712 DOI: 10.4103/1673-5374.332128] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Inflammatory processes and proinflammatory cytokines have a key role in the cellular processes of neurodegenerative diseases and are linked to the pathogenesis of functional and mental health disorders. Tumor necrosis factor alpha has been reported to play a major role in the central nervous system in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis and many other neurodegenerative diseases. Therefore, a potent proinflammatory/proapoptotic tumor necrosis factor alpha could be a strong candidate for targeted therapy. Plant derivatives have now become promising candidates as therapeutic agents because of their antioxidant and chemical characteristics, and anti-inflammatory features. Recently, phytochemicals including flavonoids, terpenoids, alkaloids, and lignans have generated interest as tumor necrosis factor alpha inhibitor candidates for a number of diseases involving inflammation within the nervous system. In this review, we discuss how phytochemicals as tumor necrosis factor alpha inhibitors are a therapeutic strategy targeting neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology, School of Medicine; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology, School of Medicine; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neil C Henney
- Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - George E Barreto
- Department of Biological Sciences; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Martin LJ, Niedzwiecki MV, Wong M. Chronic Intermittent Mild Whole-Body Hypothermia Is Therapeutic in a Mouse Model of ALS. Cells 2021; 10:320. [PMID: 33557211 PMCID: PMC7913914 DOI: 10.3390/cells10020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes motor neuron degeneration. There are no cures or effective treatments for ALS. Therapeutic hypothermia is effectively used clinically to mitigate mortality in patients with acute acquired brain injury and in surgical settings to minimize secondary brain injury. The efficacy of therapeutic hypothermia in chronic neurodegenerative disorders has not been examined. We tested the hypothesis that mild hypothermia/cold acclimation is therapeutic in a transgenic mouse model of ALS caused by expression of mutated human superoxide dismutase-1 gene. At presymptomatic stages of disease, body temperatures (oral and axial) of mutant male mice were persistently hyperthermic (38-38.5 °C) compared to littermate controls, but at end-stage disease mice were generally hypothermic (36-36.5 °C). Presymptomatic mutant mice (awake-freely moving) were acclimated to systemic mild hypothermia using an environmentally controlled chamber (12 h-on/12-off or 24 h-on/24 h-off) to lower body temperature (1-3 °C). Cooled ALS mice showed a significant delay in disease onset (103-112 days) compared to normothermia mice (80-90 days) and exhibited significant attenuation of functional decline in motor performance. Cooled mice examined at 80 days had reduced motor neuron loss, mitochondrial swelling, and spinal cord inflammation compared to non-cooled mice. Cooling attenuated the loss of heat-shock protein 70, mitochondrial uncoupling protein-3, and sumoylated-1 (SUMO1)-conjugated proteins in skeletal muscle and disengaged the mitochondrial permeability transition pore. Cooled ALS mice had a significant extension of lifespan (148 ± 7 days) compared to normothermic mice (135 ± 4 days). Thus, intermittent systemic mild hypothermia is therapeutic in mouse ALS with protective effects manifested within the CNS and skeletal muscle that target mitochondria.
Collapse
Affiliation(s)
- Lee J. Martin
- Departments of Pathology, Division of Neuropathology, Neuroscience, and Anesthesiology and Critical Medicine and the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (M.V.N.); (M.W.)
| | | | | |
Collapse
|
16
|
Wang Y, Meagher RB, Ambati S, Ma P, Phillips BG. Patients with obstructive sleep apnea have suppressed levels of soluble cytokine receptors involved in neurodegenerative disease, but normal levels with airways therapy. Sleep Breath 2020; 25:1641-1653. [PMID: 33037528 PMCID: PMC8376707 DOI: 10.1007/s11325-020-02205-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/13/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Purpose Obstructive sleep apnea (OSA) results in systemic intermittent hypoxia. By one model, hypoxic stress signaling in OSA patients alters the levels of inflammatory soluble cytokines TNF and IL6, damages the blood brain barrier, and activates microglial targeting of neuronal cell death to increase the risk of neurodegenerative disorders and other diseases. However, it is not yet clear if OSA significantly alters the levels of the soluble isoforms of TNF receptors TNFR1 and TNFR2 and IL6 receptor (IL6R) and co-receptor gp130, which have the potential to modulate TNF and IL6 signaling. Methods Picogram per milliliter levels of the soluble isoforms of these four cytokine receptors were estimated in OSA patients, in OSA patients receiving airways therapy, and in healthy control subjects. Triplicate samples were examined using Bio-Plex fluorescent bead microfluidic technology. The statistical significance of cytokine data was estimated using the nonparametric Wilcoxon rank-sum test. The clustering of these high-dimensional data was visualized using t-distributed stochastic neighbor embedding (t-SNE). Results OSA patients had significant twofold to sevenfold reductions in the soluble serum isoforms of all four cytokine receptors, gp130, IL6R, TNFR1, and TNFR2, as compared with control individuals (p = 1.8 × 10−13 to 4 × 10−8). Relative to untreated OSA patients, airways therapy of OSA patients had significantly higher levels of gp130 (p = 2.8 × 10−13), IL6R (p = 1.1 × 10−9), TNFR1 (p = 2.5 × 10−10), and TNFR2 (p = 5.7 × 10−9), levels indistinguishable from controls (p = 0.29 to 0.95). The data for most airway-treated patients clustered with healthy controls, but the data for a few airway-treated patients clustered with apneic patients. Conclusions Patients with OSA have aberrantly low levels of four soluble cytokine receptors associated with neurodegenerative disease, gp130, IL6R, TNFR1, and TNFR2. Most OSA patients receiving airways therapy have receptor levels indistinguishable from healthy controls, suggesting a chronic intermittent hypoxia may be one of the factors contributing to low receptor levels in untreated OSA patients. Electronic supplementary material The online version of this article (10.1007/s11325-020-02205-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Wang
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Bradley G Phillips
- Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, 30602, USA.,Clinical and Translational Research Unit, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
17
|
Elevated acute phase proteins reflect peripheral inflammation and disease severity in patients with amyotrophic lateral sclerosis. Sci Rep 2020; 10:15295. [PMID: 32943739 PMCID: PMC7499429 DOI: 10.1038/s41598-020-72247-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial, multisystem pro-inflammatory neuromuscular disorder compromising muscle function resulting in death. Neuroinflammation is known to accelerate disease progression and accentuate disease severity, but peripheral inflammatory processes are not well documented. Acute phase proteins (APPs), plasma proteins synthesized in the liver, are increased in response to inflammation. The objective of this study was to provide evidence for peripheral inflammation by examining levels of APPs, and their contribution to disease burden and progression rates. Levels of APPs, including soluble CD14 (sCD14), lipopolysaccharide binding protein (LBP), and C-reactive protein (CRP), were elevated in sera, and correlated positively with increased disease burden and faster progression. sCD14 was also elevated in patients' CSF and urine. After a 3 year follow-up, 72% of the patients with sCD14 levels above the receiver operating characteristics cutoff were deceased whereas only 28% below the cutoff were deceased. Furthermore, disease onset sites were associated with disease progression rates and APP levels. These APPs were not elevated in sera of patients with Alzheimer's Disease, frontotemporal dementia, or Parkinson's Disease. These collective APPs accurately reflect disease burden, progression rates, and survival times, reinforcing the concept of ALS as a disorder with extensive systemic pro-inflammatory responses.
Collapse
|
18
|
CYP1A2 rs762551 polymorphism and risk for amyotrophic lateral sclerosis. Neurol Sci 2020; 42:175-182. [PMID: 32592103 DOI: 10.1007/s10072-020-04535-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Genetic variability is considered to confer susceptibility to amyotrophic lateral sclerosis (ALS). Oxidative stress is a significant contributor to ALS-related neurodegeneration, and it is regulated by cytochromes P450 (CYPs), such as CYP1A2; these are responsible for the oxidative metabolism of both exogenous and endogenous substrates in the brain, subsequently impacting ALS. The function of CYP1A2 is largely affected by genetic variability; however, the impact of CYP1A2 polymorphisms in ALS remains underinvestigated. OBJECTIVE This study aims to examine the possible association of ALS with the CYP1A2 rs762551 polymorphism, which codes for the high inducibility form of the enzyme. METHODS One hundred and fifty-five patients with sporadic ALS and 155 healthy controls were genotyped for the CYP1A2 rs762551. Statistical testing for the association of CYP1A2 rs762551 with risk for ALS was performed using SNPstats. RESULTS The CYP1A2 rs762551 C allele was associated with a decreased risk of ALS development. In the subgroup analysis according to the ALS site of onset, an association between CYP1A2 rs762551 and limb and bulbar onset of ALS was shown. Cox proportional-hazard regression analyses revealed a significant effect of the CYP1A2 rs762551 on the age of onset of ALS. CONCLUSIONS Based on our results, a primarily potential link between the CYP1A2 rs762551 polymorphism and ALS risk could exist.
Collapse
|
19
|
Olesen MN, Wuolikainen A, Nilsson AC, Wirenfeldt M, Forsberg K, Madsen JS, Lillevang ST, Brandslund I, Andersen PM, Asgari N. Inflammatory profiles relate to survival in subtypes of amyotrophic lateral sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e697. [PMID: 32123048 PMCID: PMC7136052 DOI: 10.1212/nxi.0000000000000697] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate inflammatory cytokines in patients with motor neuron disease (MND) evaluating the putative contribution of amyotrophic lateral sclerosis (ALS)-causing gene variants. METHODS This study is a retrospective case series with prospective follow-up (1994-2016) of 248 patients with MND, of whom 164 had ALS who were screened for mutations in the genes for SOD1 and C9orf72. Paired CSF and plasma were collected at the diagnostic evaluation before treatment. A panel of cytokines were measured blindly via digital ELISA on the Simoa platform. RESULTS Time from disease onset to death was longer for patients with ALS-causing SOD1 mutations (mSOD1, n = 24) than those with C9orf72 hexanucleotide repeat expansion (C9orf72HRE) ALS (n = 19; q = 0.001) and other ALS (OALS) (n = 119; q = 0.0008). Patients with OALS had higher CSF tumor necrosis factor alpha (TNF-α) compared with those with C9orf72HRE ALS (q = 0.014). Patients with C9orf72HRE ALS had higher CSF interferon alpha compared with those with OALS and mSOD1 ALS (q = 0.042 and q = 0.042). In patients with ALS, the survival was negatively correlated with plasma interleukin (IL) 10 (hazard ratio [HR] 1.17, 95% CI 1.05-1.30). Plasma TNF-α, IL-10, and TNF-related apoptosis-inducing ligand (TRAIL) (HR 1.01 [1.00-1.02], 1.15 [1.02-1.30], and 1.01 [1.00-1.01], respectively) of patients with OALS, plasma IL-1β (HR 5.90 [1.27-27.5]) of patients with C9orf72HRE ALS, and CSF TRAIL (10.5 [1.12-98.6]) of patients with mSOD1 ALS all correlated negatively with survival. CONCLUSIONS Differences in survival times in ALS subtypes were correlated with cytokine levels, suggesting specific immune responses related to ALS genetic variants.
Collapse
Affiliation(s)
- Mads Nikolaj Olesen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Anna Wuolikainen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Anna Christine Nilsson
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Martin Wirenfeldt
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Karin Forsberg
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Jonna Skov Madsen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Soeren Thue Lillevang
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Ivan Brandslund
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Peter Munch Andersen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Nasrin Asgari
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark.
| |
Collapse
|
20
|
Pocock K, Suresh N, Suradi Y, Dang S, Harvey B, Cao C, Sutherland K, Lin X, Vu TH, Gooch C. An Open-Label, Prospective Study Evaluating the Clinical and Immunological Effects of Higher Dose Granulocyte Colony-Stimulating Factor in ALS. J Clin Neuromuscul Dis 2020; 21:127-134. [PMID: 32073458 DOI: 10.1097/cnd.0000000000000275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE We evaluated the safety and tolerability of higher-dose granulocyte colony-stimulating factor (G-CSF) in patients with amyotrophic lateral sclerosis. In addition, rates of disease progression and serum G-CSF levels and other immunological and hematological markers were measured. METHODS Three patients with advanced amyotrophic lateral sclerosis were treated with G-CSF subcutaneously at 5 μg/kg twice daily for 5 consecutive days monthly for 4-12 months. Patients were monitored for adverse effects, and disease progression was assessed with ALSFRS-R and other measures. RESULTS Patients tolerated higher-dose G-CSF well with no serious adverse events. Adverse effects were mild to moderate with musculoskeletal pain and malaise being most often reported. No significant change in the rate of disease progression was noted for ALSFRS-R or other measures. Bone marrow progenitor cells were rapidly mobilized for a duration of approximately 9 days with transient and variable effect on cytokines. CONCLUSIONS Higher-dose G-CSF was well tolerated in this cohort with no apparent effect on disease progression up to 1 year.
Collapse
Affiliation(s)
- Kristyn Pocock
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Niraja Suresh
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Yazan Suradi
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Samuel Dang
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Brittany Harvey
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL
| | - Kyle Sutherland
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL
| | - Tuan H Vu
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Clifton Gooch
- Department of Neurology, University of South Florida, Tampa, FL; and
| |
Collapse
|
21
|
Sokolov VB, Aksinenko AY, Goreva TV, Epishina TA, Bachurin SO. Modification of biologically active amides and amines with fluorine-containing heterocycles. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2693-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Cárdenas-Tueme M, Montalvo-Martínez L, Maldonado-Ruiz R, Camacho-Morales A, Reséndez-Pérez D. Neurodegenerative Susceptibility During Maternal Nutritional Programing: Are Central and Peripheral Innate Immune Training Relevant? Front Neurosci 2020; 14:13. [PMID: 32116490 PMCID: PMC7010854 DOI: 10.3389/fnins.2020.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Maternal overnutrition modulates body weight, development of metabolic failure and, potentially, neurodegenerative susceptibility in the offspring. Overnutrition sets a chronic pro-inflammatory profile that integrates peripheral and central immune activation nodes, damaging neuronal physiology and survival. Innate immune cells exposed to hypercaloric diets might experience trained immunity. Here, we address the role of maternal overnutrition as a trigger for central and peripheral immune training and its contribution to neurodegeneration and the molecular nodes implicated in the Nod-like receptor protein 3 (NLRP3) inflammasome pathway leading to immune training. We propose that maternal overnutrition leads to peripheral or central immune training that favor neurodegenerative susceptibility in the offspring.
Collapse
Affiliation(s)
- Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Unidad de Neurometabolismo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
23
|
Subedi L, Lee SE, Madiha S, Gaire BP, Jin M, Yumnam S, Kim SY. Phytochemicals against TNFα-Mediated Neuroinflammatory Diseases. Int J Mol Sci 2020; 21:ijms21030764. [PMID: 31991572 PMCID: PMC7037901 DOI: 10.3390/ijms21030764] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a well-known pro-inflammatory cytokine responsible for the modulation of the immune system. TNF-α plays a critical role in almost every type of inflammatory disorder, including central nervous system (CNS) diseases. Although TNF-α is a well-studied component of inflammatory responses, its functioning in diverse cell types is still unclear. TNF-α functions through its two main receptors: tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), also known as p55 and p75, respectively. Normally, the functions of soluble TNF-α-induced TNFR1 activation are reported to be pro-inflammatory and apoptotic. While TNF-α mediated TNFR2 activation has a dual role. Several synthetic drugs used as inhibitors of TNF-α for diverse inflammatory diseases possess serious adverse effects, which make patients and researchers turn their focus toward natural medicines, phytochemicals in particular. Phytochemicals targeting TNF-α can significantly improve disease conditions involving TNF-α with fewer side effects. Here, we reviewed known TNF-α inhibitors, as well as lately studied phytochemicals, with a role in inhibiting TNF-α itself, and TNF-α-mediated signaling in inflammatory diseases focusing mainly on CNS disorders.
Collapse
Affiliation(s)
- Lalita Subedi
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Si Eun Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Syeda Madiha
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan;
| | - Bhakta Prasad Gaire
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Mirim Jin
- College of Medicine and Department of Health Science and Technology, GAIHST, Gachon University #155, Gaebeol-ro, Yeonsu-gu, Incheon 21999, Korea;
| | - Silvia Yumnam
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
- Correspondence: (S.Y.); (S.Y.K.); Tel.: +82-32-820-4931 (S.Y. & S.Y.K.); Fax: +82-32-820-4932 (S.Y. & S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
- Correspondence: (S.Y.); (S.Y.K.); Tel.: +82-32-820-4931 (S.Y. & S.Y.K.); Fax: +82-32-820-4932 (S.Y. & S.Y.K.)
| |
Collapse
|
24
|
Niida-Kawaguchi M, Kakita A, Noguchi N, Kazama M, Masui K, Kato Y, Yamamoto T, Sawada T, Kitagawa K, Watabe K, Shibata N. Soluble iron accumulation induces microglial glutamate release in the spinal cord of sporadic amyotrophic lateral sclerosis. Neuropathology 2019; 40:152-166. [PMID: 31883180 DOI: 10.1111/neup.12632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
Previous studies on sporadic amyotrophic lateral sclerosis (SALS) demonstrated iron accumulation in the spinal cord and increased glutamate concentration in the cerebrospinal fluid. To clarify the relationship between the two phenomena, we first performed quantitative and morphological analyses of substances related to iron and glutamate metabolism using spinal cords obtained at autopsy from 12 SALS patients and 12 age-matched control subjects. Soluble iron content determined by the Ferrozine method as well as ferritin (Ft) and glutaminase C (GLS-C) expression levels on Western blots were significantly higher in the SALS group than in the control group, while ferroportin (FPN) levels on Western blots were significantly reduced in the SALS group as compared to the control group. There was no significant difference in aconitase 1 (ACO1) and tumor necrosis factor-alpha (TNFα)-converting enzyme (TACE) levels on Western blots between the two groups. Immunohistochemically, Ft, ACO1, TACE, TNFα, and GLS-C were proven to be selectively expressed in microglia. Immunoreactivities for FPN and hepcidin were localized in neuronal and glial cells. Based on these observations, it is predicted that soluble iron may stimulate microglial glutamate release. To address this issue, cell culture experiments were carried out on a microglial cell line (BV-2). Treatment of BV-2 cells with ferric ammonium citrate (FAC) brought about significant increases in intracellular soluble iron and Ft expression levels and conditioned medium glutamate and TNFα concentrations. Glutamate concentration was also significantly increased in conditioned media of TNFα-treated BV-2 cells. While the FAC-driven increases in glutamate and TNFα release were completely canceled by pretreatment with ACO1 and TACE inhibitors, respectively, the TNFα-driven increase in glutamate release was completely canceled by GLS-C inhibitor pretreatment. Moreover, treatment of BV-2 cells with hepcidin resulted in a significant reduction in FPN expression levels on Western blots of the intracellular total protein extracts. The present results provide in vivo and in vitro evidence that microglial glutamate release in SALS spinal cords is enhanced by intracellular soluble iron accumulation-induced activation of ACO1 and TACE and by increased extracellular TNFα-stimulated GLS-C upregulation, and suggest a positive feedback mechanism to maintain increased intracellular soluble iron levels, involving TNFα, hepcidin, and FPN.
Collapse
Affiliation(s)
- Motoko Niida-Kawaguchi
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Miku Kazama
- Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenta Masui
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoichiro Kato
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoko Yamamoto
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuo Sawada
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuhiko Watabe
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Mitaka, Japan
| | - Noriyuki Shibata
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
25
|
Moreno-Martinez L, Calvo AC, Muñoz MJ, Osta R. Are Circulating Cytokines Reliable Biomarkers for Amyotrophic Lateral Sclerosis? Int J Mol Sci 2019; 20:ijms20112759. [PMID: 31195629 PMCID: PMC6600567 DOI: 10.3390/ijms20112759] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that has no effective treatment. The lack of any specific biomarker that can help in the diagnosis or prognosis of ALS has made the identification of biomarkers an urgent challenge. Multiple panels have shown alterations in levels of numerous cytokines in ALS, supporting the contribution of neuroinflammation to the progressive motor neuron loss. However, none of them is fully sensitive and specific enough to become a universal biomarker for ALS. This review gathers the numerous circulating cytokines that have been found dysregulated in both ALS animal models and patients. Particularly, it highlights the opposing results found in the literature to date, and points out another potential application of inflammatory cytokines as therapeutic targets.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Ana Cristina Calvo
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - María Jesús Muñoz
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
26
|
Swindell WR, Kruse CPS, List EO, Berryman DE, Kopchick JJ. ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. J Transl Med 2019; 17:170. [PMID: 31118040 PMCID: PMC6530130 DOI: 10.1186/s12967-019-1909-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a debilitating disease with few treatment options. Progress towards new therapies requires validated disease biomarkers, but there is no consensus on which fluid-based measures are most informative. METHODS This study analyzed microarray data derived from blood samples of patients with ALS (n = 396), ALS mimic diseases (n = 75), and healthy controls (n = 645). Goals were to provide in-depth analysis of differentially expressed genes (DEGs), characterize patient-to-patient heterogeneity, and identify candidate biomarkers. RESULTS We identified 752 ALS-increased and 764 ALS-decreased DEGs (FDR < 0.10 with > 10% expression change). Gene expression shifts in ALS blood broadly resembled acute high altitude stress responses. ALS-increased DEGs had high exosome expression, were neutrophil-specific, associated with translation, and overlapped significantly with genes near ALS susceptibility loci (e.g., IFRD1, TBK1, CREB5). ALS-decreased DEGs, in contrast, had low exosome expression, were erythroid lineage-specific, and associated with anemia and blood disorders. Genes encoding neurofilament proteins (NEFH, NEFL) had poor diagnostic accuracy (50-53%). However, support vector machines distinguished ALS patients from ALS mimics and controls with 87% accuracy (sensitivity: 86%, specificity: 87%). Expression profiles were heterogeneous among patients and we identified two subgroups: (i) patients with higher expression of IL6R and myeloid lineage-specific genes and (ii) patients with higher expression of IL23A and lymphoid-specific genes. The gene encoding copper chaperone for superoxide dismutase (CCS) was most strongly associated with survival (HR = 0.77; P = 1.84e-05) and other survival-associated genes were linked to mitochondrial respiration. We identify a 61 gene signature that significantly improves survival prediction when added to Cox proportional hazard models with baseline clinical data (i.e., age at onset, site of onset and sex). Predicted median survival differed 2-fold between patients with favorable and risk-associated gene expression signatures. CONCLUSIONS Peripheral blood analysis informs our understanding of ALS disease mechanisms and genetic association signals. Our findings are consistent with low-grade neutrophilia and hypoxia as ALS phenotypes, with heterogeneity among patients partly driven by differences in myeloid and lymphoid cell abundance. Biomarkers identified in this study require further validation but may provide new tools for research and clinical practice.
Collapse
Affiliation(s)
- William R. Swindell
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, OH 45236 USA
| | - Colin P. S. Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Edward O. List
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| | - Darlene E. Berryman
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| | - John J. Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
27
|
Gómez-Pinedo U, Galán L, Matías-Guiu JA, Pytel V, Moreno T, Guerrero-Sola A, Matías-Guiu J. Notch Signalling in the Hippocampus of Patients With Motor Neuron Disease. Front Neurosci 2019; 13:302. [PMID: 31024234 PMCID: PMC6460507 DOI: 10.3389/fnins.2019.00302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction The Notch signalling pathway regulates neuronal survival. It has some similarities with the APP signalling pathway, and competes with the latter for α- and γ-secretase proteolytic complexes. The objective of this study was to study the Notch signalling pathway in the hippocampi of patients with motor neuron disease. Methods We studied biological material from the autopsies of 12 patients with motor neuron disease and 4 controls. We analysed the molecular markers of the Notch and APP signalling pathways, TDP43, tau, and markers of neurogenesis. Results and Conclusion Low NICD expression suggests Notch signalling pathway inactivation in neurons. Inactivation of the pathway despite increased Notch1 expression is associated with a lack of α-secretase expression. We observed increased β-secretase expression associated with activation of the amyloid cascade of APP, leading to increases in amyloid-β and AICD peptides and decreased levels of Fe65. Inactivation of the Notch signalling pathway is an important factor in decreased neurogenic response in the hippocampi of patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía Galán
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Vanesa Pytel
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.,Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Teresa Moreno
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Guerrero-Sola
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.,Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
28
|
ERCC6L2 rs591486 polymorphism and risk for amyotrophic lateral sclerosis in Greek population. Neurol Sci 2019; 40:1237-1244. [PMID: 30879219 DOI: 10.1007/s10072-019-03825-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Α number of genetic variants have been associated with amyotrophic lateral sclerosis (ALS). A recent study supports that rs591486 across the ERCC6L2 gene and exposure to pesticides seem to have a joint effect on the development of Parkinson's disease, a disease which shares a few common characteristics with ALS. OBJECTIVE To detect a possible contribution of rs591486 ERCC6L2 to ALS. METHODS A total of 155 patients with ALS and 155 healthy controls were included in the study and genotyped for rs591486. Using logistic regression analyses (crude and adjusted for age and sex), rs591486 was tested for association with ALS risk. Subgroup analysis based on ALS site of onset was also performed. Cox regression analysis was applied in order for the effect of ERCC6L2 rs591486 on ALS age of onset to be tested. RESULTS Adjusted analysis showed that ERCC6L2 rs591486 was associated with an increased risk of ALS development, in dominant [odds ratio, OR (95% confidence interval, CI) 2.15 (1.04-4.46), p = 0.037] and over-dominant [OR (95%CI) = 1.91 (1.01-3.60), p = 0.043], modes. Subgroup analysis based on ALS site of onset revealed an association between ERCC6L2 rs591486 and ALS with limb onset. Results for Cox regression analysis indicated that G/A carriers had a lower age of ALS limb onset when compared to G/G carriers. CONCLUSIONS The current study provides preliminary indication for an implication of ERCC6L2 rs591486 in ALS development, as a possible genetic risk factor. These results possibly suggest that oxidative stress may be the main contributor in the pathophysiology of ALS.
Collapse
|
29
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
30
|
Johannesen S, Budeus B, Peters S, Iberl S, Meyer AL, Kammermaier T, Wirkert E, Bruun TH, Samara VC, Schulte-Mattler W, Herr W, Schneider A, Grassinger J, Bogdahn U. Biomarker Supervised G-CSF (Filgrastim) Response in ALS Patients. Front Neurol 2018; 9:971. [PMID: 30534107 PMCID: PMC6275232 DOI: 10.3389/fneur.2018.00971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/29/2018] [Indexed: 01/16/2023] Open
Abstract
Objective: To evaluate safety, tolerability and feasibility of long-term treatment with Granulocyte-colony stimulating factor (G-CSF), a well-known hematopoietic stem cell factor, guided by assessment of mobilized bone marrow derived stem cells and cytokines in the serum of patients with amyotrophic lateral sclerosis (ALS) treated on a named patient basis. Methods: 36 ALS patients were treated with subcutaneous injections of G-CSF on a named patient basis and in an outpatient setting. Drug was dosed by individual application schemes (mean 464 Mio IU/month, range 90-2160 Mio IU/month) over a median of 13.7 months (range from 2.7 to 73.8 months). Safety, tolerability, survival and change in ALSFRS-R were observed. Hematopoietic stem cells were monitored by flow cytometry analysis of circulating CD34+ and CD34+CD38− cells, and peripheral cytokines were assessed by electrochemoluminescence throughout the intervention period. Analysis of immunological and hematological markers was conducted. Results: Long term and individually adapted treatment with G-CSF was well tolerated and safe. G-CSF led to a significant mobilization of hematopoietic stem cells into the peripheral blood. Higher mobilization capacity was associated with prolonged survival. Initial levels of serum cytokines, such as MDC, TNF-beta, IL-7, IL-16, and Tie-2 were significantly associated with survival. Continued application of G-CSF led to persistent alterations in serum cytokines and ongoing measurements revealed the multifaceted effects of G-CSF. Conclusions: G-CSF treatment is feasible and safe for ALS patients. It may exert its beneficial effects through neuroprotective and -regenerative activities, mobilization of hematopoietic stem cells and regulation of pro- and anti-inflammatory cytokines as well as angiogenic factors. These cytokines may serve as prognostic markers when measured at the time of diagnosis. Hematopoietic stem cell numbers and cytokine levels are altered by ongoing G-CSF application and may potentially serve as treatment biomarkers for early monitoring of G-CSF treatment efficacy in ALS in future clinical trials.
Collapse
Affiliation(s)
- Siw Johannesen
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | | | - Sebastian Peters
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Iberl
- Department of Hematology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Anne-Louise Meyer
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Tina Kammermaier
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Eva Wirkert
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Tim-Henrik Bruun
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Verena C Samara
- Stanford Neuroscience Health Center, Palo Alto, CA, United States
| | | | - Wolfgang Herr
- Department of Hematology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Jochen Grassinger
- Department of Hematology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
31
|
Zhang M, Xu L, Yang H. Schisandra chinensis Fructus and Its Active Ingredients as Promising Resources for the Treatment of Neurological Diseases. Int J Mol Sci 2018; 19:ijms19071970. [PMID: 29986408 PMCID: PMC6073455 DOI: 10.3390/ijms19071970] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023] Open
Abstract
Neurological diseases (NDs) are a leading cause of death worldwide and tend to mainly affect people under the age of 50. High rates of premature death and disability caused by NDs undoubtedly constrain societal development. However, effective therapeutic drugs and methods are very limited. Schisandra chinensis Fructus (SCF) is the dry ripe fruit of Schisandra chinensis (Turcz.) Baill, which has been used in traditional Chinese medicine for thousands of years. Recent research has indicated that SCF and its active ingredients show a protective role in NDs, including cerebrovascular diseases, neurodegenerative diseases, or depression. The key neuroprotective mechanisms of SCF and its active ingredients have been demonstrated to include antioxidation, suppression of apoptosis, anti-inflammation, regulation of neurotransmitters, and modulation of brain-derived neurotrophic factor (BDNF) related pathways. This paper summarizes studies of the role of SCF and its active ingredients in protecting against NDs, and highlights them as promising resources for future treatment. Furthermore, novel insights on the future challenges of SCF and its active ingredients are offered.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China.
| | - Liping Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
32
|
Vallée A. [Aerobic glycolysis activation through canonical WNT/β-catenin pathway in ALS]. Med Sci (Paris) 2018; 34:326-330. [PMID: 29658475 DOI: 10.1051/medsci/20183404013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Energy is the major determinant of neuronal viability. We focus our synthesis on the hypothesis of the development of aerobic glycolysis by the stimulation of the canonical WNT/β-catenin pathway in amyotrophic lateral sclerosis (ALS). The stimulation of the canonical WNT/β-catenin pathway induces the activation of aerobic glycolysis, also called Warburg effect, via the stimulation of glycolytic enzymes such as Glut (glucose transporter), PKM2 (pyruvate kinase M2), PDK1 (pyruvate dehydrogenase kinase 1), LDH-A (lactate dehydrogenase A) and MCT-1 (monocarboxylate transporter 1). The aerobic glycolysis consists to a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production than oxidative phosphorylation due to the shunt of the TCA cycle. Dysregulation of cellular energy metabolism promotes cell death and participates to the progression of ALS. Controlling the expression of the canonical WNT/β-catenin signaling pathway is an attractive strategy to regulate aerobic glycolysis initiation and the progression of ALS.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratoire de mathématiques et applications (LMA), UMR CNRS 7348, CHU de Poitiers, Université de Poitiers, 2, rue de la Milèterie, 86021 Poitiers, France
| |
Collapse
|