1
|
Samsudeen H, De Varaj SP, Kandasamy K. Unraveling the Therapeutic Potential of Muscle Strengthening Exercises for Reversing Diabetes Mellitus. Curr Diabetes Rev 2025; 21:7-12. [PMID: 38318836 DOI: 10.2174/0115733998275876240125064716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Millions of people worldwide are affected by the serious consequences of diabetes mellitus, which is a major global health concern. We analyze the possibility of muscle- strengthening activities as an appropriate therapeutic strategy for controlling the progression of diabetes mellitus in this comprehensive review. In this review, we explore the molecular processes underlying the glucose uptake in skeletal muscle, revealing how exercise can improve insulin sensitivity and glucose homeostasis. METHODOLOGY Articles published between 2010 and 2023 were analyzed in detail by using bibliographic databases like PubMed, Medline, and Scopus. The most commonly searched terms were "muscle strengthening exercises," "diabetes mellitus," "insulin resistance," "glucose uptake," "skeletal muscle," and even "exercise therapy." The inclusion criteria were randomized controlled trials, observational studies, and systematic reviews. This allowed for the selection of sources that were related to the topic at hand and were reliable. RESULTS This review highlights the benefits of exercise for diabetes mellitus, elucidating the positive effects of acute and regular exercise on glucose uptake in skeletal muscle. It also analyzes the impact of various exercise modalities, including aerobic and resistance exercises, on glucose metabolism in individuals with and without type 2 diabetes. Furthermore, this review examines the effectiveness of combining aerobic and resistance training for optimal diabetes management. CONCLUSION Our analysis reveals promising evidence supporting the role of resistance training in diabetes mellitus reversal. Regular resistance exercise has been shown to improve glycemic control, insulin sensitivity, and muscle function in individuals with type 2 diabetes. Combining aerobic and resistance exercises appears to be more effective than single-mode training in managing blood glucose levels and enhancing overall metabolic health. However, potential contraindications for exercise in diabetes patients, along with barriers to implementing resistance training, warrant careful consideration.
Collapse
Affiliation(s)
- Haajeera Samsudeen
- Department of Pharmacy Practice, J.K.K.Nattraja College of Pharmacy, Kumarapalayam, 638183, India
| | - Shree Pavithra De Varaj
- Department of Pharmacy Practice, J.K.K.Nattraja College of Pharmacy, Kumarapalayam, 638183, India
| | - Krishnaveni Kandasamy
- Department of Pharmacy Practice, Vivekanandha Pharmacy College for Women, Sangagiri, Salem, Kumarapalayam, 638183, India
| |
Collapse
|
2
|
Zheng L, Rao Z, Wu J, Ma X, Jiang Z, Xiao W. Resistance Exercise Improves Glycolipid Metabolism and Mitochondrial Biogenesis in Skeletal Muscle of T2DM Mice via miR-30d-5p/SIRT1/PGC-1α Axis. Int J Mol Sci 2024; 25:12416. [PMID: 39596482 PMCID: PMC11595072 DOI: 10.3390/ijms252212416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Exercise is a recognized non-pharmacological treatment for improving glucose homeostasis in type 2 diabetes (T2DM), with resistance exercise (RE) showing promising results. However, the mechanism of RE improving T2DM has not been clarified. This study aims to investigate the effects of RE on glucose and lipid metabolism, insulin signaling, and mitochondrial function in T2DM mice, with a focus on the regulatory role of miR-30d-5p. Our results confirmed that RE significantly improved fasting blood glucose, IPGTT, and ITT in T2DM mice. Enhanced expression of IRS-1, p-PI3K, and p-Akt indicated improved insulin signaling. RE improved glycolipid metabolism, as well as mitochondrial biogenesis and dynamics in skeletal muscle of T2DM mice. We also found that miR-30d-5p was upregulated in T2DM, and was downregulated after RE. Additionally, in vitro, over-expression of miR-30d-5p significantly increased lipid deposition, and reduced glucose uptake and mitochondrial biogenesis. These observations were reversed after transfection with the miR-30d-5p inhibitor. Mechanistically, miR-30d-5p regulates glycolipid metabolism in skeletal muscle by directly targeting SIRT1, which affects the expression of PGC-1α, thereby influencing mitochondrial function and glycolipid metabolism. Taken together, RE effectively improves glucose and lipid metabolism and mitochondrial function in T2DM mice, partly through regulating the miR-30d-5p/SIRT1/PGC-1α axis. miR-30d-5p could serve as a potential therapeutic target for T2DM management.
Collapse
Affiliation(s)
- Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; (L.Z.); (X.M.); (Z.J.)
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China;
| | - Jiabin Wu
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China;
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaojie Ma
- College of Physical Education, Shanghai University, Shanghai 200444, China; (L.Z.); (X.M.); (Z.J.)
| | - Ziming Jiang
- College of Physical Education, Shanghai University, Shanghai 200444, China; (L.Z.); (X.M.); (Z.J.)
| | - Weihua Xiao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China;
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
3
|
Zhang X, Li H, Chen L, Wu Y, Li Y. NRF2 in age-related musculoskeletal diseases: Role and treatment prospects. Genes Dis 2024; 11:101180. [PMID: 39281838 PMCID: PMC11400624 DOI: 10.1016/j.gendis.2023.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 09/18/2024] Open
Abstract
The NRF2 pathway is a metabolic- and redox-sensitive signaling axis in which the transcription factor controls the expression of a multitude of genes that enable cells to survive environmental stressors, such as oxidative stress, mainly by inducing the expression of cytoprotective genes. Basal NRF2 levels are maintained under normal physiological conditions, but when exposed to oxidative stress, cells activate the NRF2 pathway, which is crucial for supporting cell survival. Recently, the NRF2 pathway has been found to have novel functions in metabolic regulation and interplay with other signaling pathways, offering novel insights into the treatment of various diseases. Numerous studies have shown that targeting its pathway can effectively investigate the development and progression of age-related musculoskeletal diseases, such as sarcopenia, osteoporosis, osteoarthritis, and intervertebral disc degeneration. Appropriate regulation of the NRF2 pathway flux holds promise as a means to improve musculoskeletal function, thereby providing a new avenue for drug treatment of age-related musculoskeletal diseases in clinical settings. The review summarized an overview of the relationship between NRF2 and cellular processes such as oxidative stress, apoptosis, inflammation, mitochondrial dysfunction, ferroptosis, and autophagy, and explores the potential of targeted NRF2 regulation in the treatment of age-related musculoskeletal diseases.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei 430056, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
4
|
Zuo Y, Wang J, Gong Z, Wang Y, Wang Q, Yang X, Liu F, Liu T. Hydrogen Protects Mitochondrial Function by Increasing the Expression of PGC-1α and Ameliorating Myocardial Ischaemia-Reperfusion Injury. J Cell Mol Med 2024; 28:e70236. [PMID: 39601332 PMCID: PMC11600203 DOI: 10.1111/jcmm.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
To investigate the application of H2 to alleviate cardiac ischaemia-reperfusion (I/R) injury in a PGC-1α-dependent manner. A rat in vitro myocardial I/R injury model was used, Western blot was used to detect the expression levels of apoptosis markers (Bax, cleaved caspase-3, Bcl2), inflammatory factors (IL-1β, TNF-α), mitochondrial fission (DRP1, MFF) and mitochondrial fusion (MFN1, MFN2, OPA1). HE staining was used to observe the effect of H2 on the myocardial tissue structure injured by I/R. Transmission electron microscopy (TEM) was used to observe the changes in the mitochondrial structure of myocardial tissue after I/R injury. Real-time quantitative PCR (qPCR) was used to detect the expression of PGC-1α in the myocardial tissue of rats after I/R injury and H2 treatment. H2 increases the expression level of PGC-1α, while the deletion of PGC-1α inhibited the therapeutic effect of H2. H2 can improve the changes of the myocardial tissue and mitochondrial structure caused by I/R injury. H2 treatment effectively inhibited the inflammatory response, and the loss of PGC-1α could inhibit the therapeutic effect of H2. The application of H2 can alleviate myocardial I/R injury, and the loss of PGC-1α weakens the protective effect of H2 on the I/R heart.
Collapse
Affiliation(s)
- Yue Zuo
- Heart CenterThe First Hospital of Tsinghua UniversityBeijingChina
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Jiawei Wang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Zhexuan Gong
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Yulong Wang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Qiang Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Xueyang Yang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Fulin Liu
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Tongtong Liu
- Affiliated Hospital of Hebei UniversityBaodingChina
| |
Collapse
|
5
|
Marino Y, Inferrera F, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Role of mitochondrial dysfunction and biogenesis in fibromyalgia syndrome: Molecular mechanism in central nervous system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167301. [PMID: 38878832 DOI: 10.1016/j.bbadis.2024.167301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 08/18/2024]
Abstract
A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
6
|
Gerosa L, Malvandi AM, Gomarasca M, Verdelli C, Sansoni V, Faraldi M, Ziemann E, Olivieri F, Banfi G, Lombardi G. Murine Myoblasts Exposed to SYUIQ-5 Acquire Senescence Phenotype and Differentiate into Sarcopenic-Like Myotubes, an In Vitro Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae022. [PMID: 38267369 PMCID: PMC10924451 DOI: 10.1093/gerona/glae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 01/26/2024] Open
Abstract
The musculoskeletal system is one of the most affected organs by aging that correlates well with an accumulation of senescent cells as for other multiple age-related pathologies. The molecular mechanisms underpinning muscle impairment because of senescent cells are still elusive. The availability of in vitro model of skeletal muscle senescence is limited and restricted to a small panel of phenotypic features of these senescent cells in vivo. Here, we developed a new in vitro model of senescent C2C12 mouse myoblasts that, when subjected to differentiation, the resulting myotubes showed sarcopenic features. To induce senescence, we used SYUIQ-5, a quindoline derivative molecule inhibitor of telomerase activity, leading to the expression of several senescent hallmarks in treated myoblasts. They had increased levels of p21 protein accordingly with the observed cell cycle arrest. Furthermore, they had enhanced SA-βgalactosidase enzyme activity and phosphorylation of p53 and histone H2AX. SYUIQ-5 senescent myoblasts had impaired differentiation potential and the resulting myotubes showed increased levels of ATROGIN-1 and MURF1, ubiquitin ligases components responsible for protein degradation, and decreased mitochondria content, typical features of sarcopenic muscles. Myotubes differentiated from senescent myoblasts cultures release increased levels of MYOSTATIN that could affect skeletal muscle cell growth. Overall, our data suggest that a greater burden of senescent muscle cells could contribute to sarcopenia. This study presents a well-defined in vitro model of muscle cell senescence useful for deeper investigation in the aging research field to discover new putative therapeutic targets and senescence biomarkers associated with the aged musculoskeletal system.
Collapse
Affiliation(s)
- Laura Gerosa
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Chiara Verdelli
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Martina Faraldi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
7
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
8
|
Si J, Sun L, Qin Y, Peng L, Gong Y, Gao C, Shen W, Li M. Cannabinoids improve mitochondrial function in skeletal muscle of exhaustive exercise training rats by inhibiting mitophagy through the PINK1/PARKIN and BNIP3 pathways. Chem Biol Interact 2024; 389:110855. [PMID: 38182033 DOI: 10.1016/j.cbi.2024.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Cannabidiol (CBD) is a pure natural phytocannabinoid derived from cannabis that has anti-inflammatory, antiapoptotic and antioxidative stress abilities. In recent years, an increasing number of studies have reported the regulatory effect of CBD on skeletal muscle injury induced by exercise, but its mechanism is still unclear. Mitochondria are the main organelles responsible for the energy supply within eukaryotic cells, and their function has been closely linked to cellular health. Moderate exercise improves mitochondrial function, but the excessive exercise has a negative impact on mitochondria. Therefore, we speculate that CBD may promote exercise induced skeletal muscle cell damage by improving mitochondrial function. In this study, by establishing an animal model of exhaustive exercise training in rats, the protective effect of CBD on skeletal muscle mitochondrial structure and function was elaborated, and the possible molecular mechanism was discussed based on transcriptomics. Our results indicate that skeletal muscle mitochondrial structure and function were improved after CBD intervention. GO and KEGG pathway enrichment analysis showed that exhaustive exercise training induced mitochondrial dysfunction in skeletal muscle is associated with excessive autophagy/mitophagy, the signaling pathways involved in FOXO3 and GABARAPL1 may play important roles. After CBD intervention, the protein expression of PINK1, PARKIN and BNIP3 was down-regulated, indicating that CBD may improve the mitochondrial function by inhibiting mitophagy through the PINK1/PARKIN and BNIP3 pathway.
Collapse
Affiliation(s)
- Juncheng Si
- Harbin Sport University, Harbin, 150008, China
| | - Lili Sun
- Harbin Sport University, Harbin, 150008, China
| | - Ying Qin
- Harbin Sport University, Harbin, 150008, China
| | - Lina Peng
- Harbin Sport University, Harbin, 150008, China.
| | | | - Chun Gao
- Harbin Sport University, Harbin, 150008, China
| | - Wenhui Shen
- Harbin Sport University, Harbin, 150008, China
| | - Mengqi Li
- Harbin Sport University, Harbin, 150008, China
| |
Collapse
|
9
|
Iwata K, Ferdousi F, Arai Y, Isoda H. Modulation of mitochondrial activity by sugarcane (Saccharum officinarum L.) top extract and its bioactive polyphenols: a comprehensive transcriptomics analysis in C2C12 myotubes and HepG2 hepatocytes. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:2. [PMID: 38177614 PMCID: PMC10766937 DOI: 10.1007/s13659-023-00423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Age-related mitochondrial dysfunction leads to defects in cellular energy metabolism and oxidative stress defense systems, which can contribute to tissue damage and disease development. Among the key regulators responsible for mitochondrial quality control, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is an important target for mitochondrial dysfunction. We have previously reported that bioactive polyphenols extracted from sugarcane top (ST) ethanol extract (STEE) could activate neuronal energy metabolism and increase astrocyte PGC-1α transcript levels. However, their potential impact on the mitochondria activity in muscle and liver cells has not yet been investigated. To address this gap, our current study examined the effects of STEE and its polyphenols on cultured myotubes and hepatocytes in vitro. Rhodamine 123 assay revealed that the treatment with STEE and its polyphenols resulted in an increase in mitochondrial membrane potential in C2C12 myotubes. Furthermore, a comprehensive examination of gene expression patterns through transcriptome-wide microarray analysis indicated that STEE altered gene expressions related to mitochondrial functions, fatty acid metabolism, inflammatory cytokines, mitogen-activated protein kinase (MAPK) signaling, and cAMP signaling in both C2C12 myotubes and HepG2 hepatocytes. Additionally, protein-protein interaction analysis identified the PGC-1α interactive-transcription factors-targeted regulatory network of the genes regulated by STEE, and the quantitative polymerase chain reaction results confirmed that STEE and its polyphenols upregulated the transcript levels of PGC-1α in both C2C12 and HepG2 cells. These findings collectively suggest the potential beneficial effects of STEE on muscle and liver tissues and offer novel insights into the potential nutraceutical applications of this material.
Collapse
Affiliation(s)
- Kengo Iwata
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Nippo Co., Ltd., Daito, Osaka, 574-0062, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
10
|
Chen X, Ji Y, Liu R, Zhu X, Wang K, Yang X, Liu B, Gao Z, Huang Y, Shen Y, Liu H, Sun H. Mitochondrial dysfunction: roles in skeletal muscle atrophy. J Transl Med 2023; 21:503. [PMID: 37495991 PMCID: PMC10373380 DOI: 10.1186/s12967-023-04369-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xucheng Zhu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Nantong, Jiangsu, 226600, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants (Basel) 2023; 12:antiox12051075. [PMID: 37237941 DOI: 10.3390/antiox12051075] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria play a major role in ROS production and defense during their life cycle. The transcriptional activator PGC-1α is a key player in the homeostasis of energy metabolism and is therefore closely linked to mitochondrial function. PGC-1α responds to environmental and intracellular conditions and is regulated by SIRT1/3, TFAM, and AMPK, which are also important regulators of mitochondrial biogenesis and function. In this review, we highlight the functions and regulatory mechanisms of PGC-1α within this framework, with a focus on its involvement in the mitochondrial lifecycle and ROS metabolism. As an example, we show the role of PGC-1α in ROS scavenging under inflammatory conditions. Interestingly, PGC-1α and the stress response factor NF-κB, which regulates the immune response, are reciprocally regulated. During inflammation, NF-κB reduces PGC-1α expression and activity. Low PGC-1α activity leads to the downregulation of antioxidant target genes resulting in oxidative stress. Additionally, low PGC-1α levels and concomitant oxidative stress promote NF-κB activity, which exacerbates the inflammatory response.
Collapse
Affiliation(s)
- Othman Abu Shelbayeh
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Tasnim Arroum
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
- Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Silke Morris
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| |
Collapse
|
12
|
Resistance training prevents dynamics and mitochondrial respiratory dysfunction in vastus lateralis muscle of ovariectomized rats. Exp Gerontol 2023; 173:112081. [PMID: 36608776 DOI: 10.1016/j.exger.2023.112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
To investigate whether ovariectomy affects mitochondrial respiratory function, gene expression of the biogenesis markers and mitochondrial dynamics of the vastus lateralis muscle, female Wistar rats divided into ovariectomized (OVX) and intact (INT) groups were kept sedentary (SED) or submitted to resistance training (RT) performed for thirteen weeks on a vertical ladder in which animals climbed with a workload apparatus. RT sessions were performed with four climbs with 65, 85, 95, and 100 % of the rat's previous maximum workload. Mitochondrial Respiratory Function data were obtained by High-resolution respirometry. Gene expression of FIS1, MFN1 and PGC1-α was evaluated by real-time PCR. There was a decrease on oxidative phosphorylation capacity in OVX-SED compared to other groups. Trained groups presented increase on oxidative phosphorylation capacity when compared to sedentary groups. For respiratory control ratio (RCR), OVX-SED presented lower values when compared to INT-SED and to trained groups. Trained groups presented RCR values higher compared to INT-SED. Exercise increased the values of FIS1, MFN1 and PGC1-α expression compared to OVX-SED. Our results demonstrated that in the absence of ovarian hormones, there is a great decrease in oxidative phosphorylation and electron transfer system capacities of sedentary animals. RT was able to increase the expression of genes related to mitochondrial dynamics markers, reversing the condition determined by ovariectomy.
Collapse
|
13
|
Pirani H, Bakhtiari A, Amiri B, Salehi OR. Beneficial Mitochondrial Biogenesis in Gastrocnemius Muscle Promoted by High-Intensity Interval Training in Elderly Female Rats. CELL JOURNAL 2023; 25:11-16. [PMID: 36680479 PMCID: PMC9868433 DOI: 10.22074/cellj.2022.557565.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Exercise can attenuate mitochondrial dysfunction caused by aging. Our study aimed to compare 12 weeks of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on the expression of mitochondria proteins [e.g., AMP-activated protein kinase (AMPK), Estrogen-related receptor alpha (ERRα), p38 mitogen-activated protein kinase (P38MAPK), and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α)] in gastrocnemius muscle of old female rats. MATERIALS AND METHODS In this experimental study, thirty six old female Wistar rats (18-month-old and 270-310 g) were divided into three groups: i. HIIT, ii. MICT, and iii. Control group (C). The HIIT protocol was performed for 12 weeks with 16-28 minutes (2 minutes training with 85-90% VO2max in high intensity and 2 minutes training with 45-75% VO2max low intensity). The MICT was performed for 30-60 minutes with the intensity of 65-70% VO2max. The gastrocnemius muscle expression of AMPK, ERRα, P38MAPK, and PGC1α proteins were determined by Western blotting. RESULTS The expression of AMPK (P=0.004), P38MAPK (P=0.003), PGC-1α (P=0.028), and ERRα (P=0.006) in HIIT was higher than C group. AMPK (P=0.03), P38MAPK (P=0.032), PGC-1α (P=0.015), and ERRα (P=0.028) in MICT was higher than the C group. Also expression of AMPK (P=0.008), P38MAPK (P=0.009), PGC-1α (P=0.020) and ERRα (P=0.014) in MICT was higher than MICT group. CONCLUSION It seems that exercise training has beneficial effects on mitochondrial biogenesis, but the HIIT training method is more effective than MICT in improving mitochondrial function in aging.
Collapse
Affiliation(s)
- Hossein Pirani
- Department of Basic Sciences, Chabahar Maritime University, Chabahar, Iran,P.O.Box: 997175649Department of Basic SciencesChabahar Maritime UniversityChabaharIran
| | - Ali Bakhtiari
- Department of Physical Education and Sport Sciences of Tehran University, Tehran, Iran
| | - Bahareh Amiri
- Department of Physical Education and Sport Sciences, University of Kurdistan, Sanandaj, Iran
| | - Omid Reza Salehi
- Department of Physical Education and Sport Sciences, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
14
|
Kurawaka M, Sasaki N, Yamazaki Y, Shimura F. Near-Physiological Concentrations of Extracellular Pyruvate Stimulated Glucose Utilization along with Triglyceride Accumulation and Mitochondrial Activity in HepG2 Cells. J Nutr Sci Vitaminol (Tokyo) 2023; 69:314-325. [PMID: 37940572 DOI: 10.3177/jnsv.69.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Pyruvate, a key intermediate in energy and nutrient metabolism, probably plays important roles in these regulations. In previous reports using cell lines, extracellular pyruvate of supraphysiological concentrations inhibited the glucose uptake by myotubes while being stimulated by adipocytes. As the effect of pyruvate on the glucose utilization is unclear in cultured hepatocytes. We have investigated the effects of extracellular pyruvate on the glucose utilization and the subsequent metabolic changes using the cell line HepG2. In a 24 h culture, pyruvate enhanced the glucose consumption more potently than 1 μM insulin, and this enhancement was detectable at a near-physiological concentrations of ≤1 mM. For metabolic changes following glucose consumption, the conversion ratio of glucose and pyruvate to extracellular lactate was approximately 1.0 without extracellular pyruvate. The addition of pyruvate decreased the conversion ratio to approximately 0.7, indicating that the glycolytic reaction switched from being an anaerobic to a partially aerobic feature. Consistent with this finding, pyruvate increased the accumulation of intracellular triglycerides which are produced through substrate supply from the mitochondria. Furthermore, pyruvate stimulated mitochondria activity as evidenced by increases in ATP content, mitochondrial DNA copy number, enhanced mitochondria-specific functional imaging and oxygen consumption. Interestingly, 1 mM pyruvate increased oxygen consumption immediately after addition. In this study, we found that near-physiological concentrations of extracellular pyruvate exerted various changes in metabolic events, including glucose influx, lactate conversion rations, TG accumulation, and mitochondrial activity in HepG2 cells.
Collapse
Affiliation(s)
- Misaki Kurawaka
- Department of Food and Nutritional Sciences, Graduate School of Human Life Sciences, Jumonji University Graduate School
| | - Naho Sasaki
- Department of Health and Nutrition, Faculty of Human Life, Jumonji University
| | - Yuko Yamazaki
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University
| | - Fumio Shimura
- Department of Food and Nutritional Sciences, Graduate School of Human Life Sciences, Jumonji University Graduate School
| |
Collapse
|
15
|
Masingue M, Rucheton B, Bris C, Romero NB, Procaccio V, Eymard B. Highly asymmetrical distribution of muscle wasting correlates to the heteroplasmy in a patient carrying a large-scale mitochondrial DNA deletion: a novel pathophysiological mechanism for explaining asymmetry in mitochondrial myopathies. Neuromuscul Disord 2022; 32:923-930. [PMID: 36428163 DOI: 10.1016/j.nmd.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Mitochondrial diseases are a heterogeneous group of pathologies, caused by missense mutations, sporadic large-scale deletions of mitochondrial DNA (mtDNA) or mutations of nuclear maintenance genes. We report the case of a patient in whom extended muscle pathology, biochemical and genetic mtDNA analyses have proven to be essential to elucidate a unique asymmetrical myopathic presentation. From the age of 34 years on, the patient has presented with oculomotor disorders, right facial peripheral palsy and predominantly left upper limb muscle weakness and atrophy. By contrast, he displayed no motor weakness on the right hemi-body, and no sensory symptoms, cerebellar syndrome, hypoacusis, or parkinsonism. Cardiac function was normal. CK levels were elevated (671 UI/L). Electroneuromyography (ENMG) and muscle MRI showed diffuse myogenic alterations, more pronounced on the left side muscles. Biopsy of the left deltoid muscle showed multiple mitochondrial defects, whereas in the right deltoid, mitochondrial defects were much less marked. Extended mitochondrial biochemical and molecular workup revealed a unique mtDNA deletion, with a 63.4% heteroplasmy load in the left deltoid, versus 8.1% in the right one. This case demonstrates that, in mitochondrial myopathies, heteroplasmy levels may drastically vary for the same type of muscle, rising the hypothesis of a new pathophysiological mechanism explaining asymmetry in hereditary myopathies.
Collapse
Affiliation(s)
- M Masingue
- Reference Center for Neuromuscular Disorders Nord/Est/Ile de France, Neuromuscular Morphology Unit, Institut de Myologie, CHU Pitié-Salpêtrière, APHP, Paris, France.
| | - B Rucheton
- UF de Biochimie des maladies neurométaboliques et neurodégénératives, Service de Biochimie Métabolique, AP-HP, Paris, France
| | - C Bris
- Department of Genetics, Angers Hospital, Angers, France; Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - N B Romero
- Reference Center for Neuromuscular Disorders Nord/Est/Ile de France, Neuromuscular Morphology Unit, Institut de Myologie, CHU Pitié-Salpêtrière, APHP, Paris, France; Université Sorbonne, UPMC Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, CHU Pitié-Salpêtrière, Paris, France
| | - V Procaccio
- Department of Genetics, Angers Hospital, Angers, France; Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - B Eymard
- Reference Center for Neuromuscular Disorders Nord/Est/Ile de France, Neuromuscular Morphology Unit, Institut de Myologie, CHU Pitié-Salpêtrière, APHP, Paris, France.
| |
Collapse
|
16
|
Zha W, Sun Y, Gong W, Li L, Kim W, Li H. Ginseng and ginsenosides: Therapeutic potential for sarcopenia. Biomed Pharmacother 2022; 156:113876. [DOI: 10.1016/j.biopha.2022.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
17
|
Cho J, Johnson BD, Watt KD, Niven AS, Yeo D, Kim CH. Exercise training attenuates pulmonary inflammation and mitochondrial dysfunction in a mouse model of high-fat high-carbohydrate-induced NAFLD. BMC Med 2022; 20:429. [PMID: 36348343 PMCID: PMC9644617 DOI: 10.1186/s12916-022-02629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) can lead to pulmonary dysfunction that is associated with pulmonary inflammation. Moreover, little is known regarding the therapeutic role of exercise training on pulmonary pathophysiology in NAFLD. The present study aimed to investigate the effect of exercise training on high-fat high-carbohydrate (HFHC)-induced pulmonary dysfunction in C57BL/6 mice. METHODS Male C57BL/6 mice (N = 40) were fed a standard Chow (n = 20) or an HFHC (n = 20) diet for 15 weeks. After 8 weeks of dietary treatment, they were further assigned to 4 subgroups for the remaining 7 weeks: Chow (n = 10), Chow plus exercise (Chow+EX, n = 10), HFHC (n = 10), or HFHC plus exercise (HFHC+EX, n = 10). Both Chow+EX and HFHC+EX mice were subjected to treadmill running. RESULTS Chronic exposure to the HFHC diet resulted in obesity with hepatic steatosis, impaired glucose tolerance, and elevated liver enzymes. The HFHC significantly increased fibrotic area (p < 0.001), increased the mRNA expression of TNF-α (4.1-fold, p < 0.001), IL-1β (5.0-fold, p < 0.001), col1a1 (8.1-fold, p < 0.001), and Timp1 (6.0-fold, p < 0.001) in the lung tissue. In addition, the HFHC significantly altered mitochondrial function (p < 0.05) along with decreased Mfn1 protein levels (1.8-fold, p < 0.01) and increased Fis1 protein levels (1.9-fold, p < 0.001). However, aerobic exercise training significantly attenuated these pathophysiologies in the lungs in terms of ameliorating inflammatory and fibrogenic effects by enhancing mitochondrial function in lung tissue (p < 0.001). CONCLUSIONS The current findings suggest that exercise training has a beneficial effect against pulmonary abnormalities in HFHC-induced NAFLD through improved mitochondrial function.
Collapse
Affiliation(s)
- Jinkyung Cho
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.,Department of Sport Science, Korea Institute of Sport Science, Seoul, Republic of Korea
| | - Bruce D Johnson
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Kymberly D Watt
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alexander S Niven
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dongwook Yeo
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Chul-Ho Kim
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Triolo M, Bhattacharya D, Hood DA. Denervation induces mitochondrial decline and exacerbates lysosome dysfunction in middle-aged mice. Aging (Albany NY) 2022; 14:8900-8913. [PMID: 36342767 PMCID: PMC9740366 DOI: 10.18632/aging.204365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
With age, skeletal muscle undergoes a progressive decline in size and quality. Imbalanced mitochondrial turnover and the resultant dysfunction contribute to these phenotypic alterations. Motor neuron denervation (Den) is a contributor to the etiology of muscle atrophy associated with age. Further, aged muscle exhibits reduced plasticity to both enhanced and suppressed contractile activity. It remains unclear when the onset of this blunted response occurs, and how middle-aged muscle adapts to denervation. The purpose of this study was to compare mitochondrial turnover pathways in young (Y, ~5months) and middle-aged (MA, ~15months) mice, and determine the influence of Den. Transgenic mt-Keima mice were subjected to 1,3 or 7 days of Den. Muscle mass, mitochondrial content, and PGC-1α protein were not different between Y and MA mice. However, indications of enhanced mitochondrial fission and mitophagy were evident in MA muscle which were supported by a greater abundance of lysosome proteins. Den resulted in muscle atrophy and reductions in mitochondrial protein content by 7-days. These changes occurred concomitant with modest decreases in PGC-1α protein, but without further elevations in mitophagy. Although both autophagosomal and lysosomal proteins were elevated, evidence of lysosome dysfunction was present following Den in MA mice. These data suggest that increases in fission drive an acceleration of mitophagy in muscle of MA mice to preserve mitochondrial quality. Den exacerbates the aging phenotype by reducing biogenesis in the absence of a change in mitophagy, perhaps limited by lysosomal capacity, leading to an accumulation of dysfunctional mitochondria with an age-related loss of neuromuscular innervation.
Collapse
Affiliation(s)
- Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, Ontario M3J 1P3, Canada,School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | - Debasmita Bhattacharya
- Muscle Health Research Centre, York University, Toronto, Ontario M3J 1P3, Canada,School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, Ontario M3J 1P3, Canada,School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
19
|
Seymour F, Carmichael J, Taylor C, Parrish C, Cook G. Immune senescence in multiple myeloma-a role for mitochondrial dysfunction? Leukemia 2022; 36:2368-2373. [PMID: 35879358 DOI: 10.1038/s41375-022-01653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Age-related immune dysfunction is primarily mediated by immunosenescence which results in ineffective clearance of infective pathogens, poor vaccine responses and increased susceptibility to multi-morbidities. Immunosenescence-related immunometabolic abnormalities are associated with accelerated aging, an inflammatory immune response (inflammaging) and ultimately frailty syndromes. In addition, several conditions can accelerate the development of immunosenescence, including cancer. This is a bi-directional interaction since inflammaging may create a permissive environment for tumour development. Multiple myeloma (MM) is a mature B-cell malignancy that presents in the older population. MM exemplifies the interaction of age- (Host Response Biology; HRB) and disease-related immunological dysfunction, contributing to the development of a frailty syndrome which impairs the therapeutic impact of recent advances in treatment strategies. Understanding the mechanisms by which accelerated immunological aging is induced and the ways in which a tumour such as MM influences this process is key to overcoming therapeutic barriers. A link between cellular mitochondrial dysfunction and the acquisition of an abnormal immune phenotype has recently been described and has widespread physiological consequence beyond the impact on the immune system. Here we outline our current understanding of normal immune aging, describe the mechanism of immunometabolic dysfunction in accelerating this process, and propose the role these processes are playing in the pathogenesis of MM.
Collapse
Affiliation(s)
- Frances Seymour
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK.
| | - Jonathan Carmichael
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- NIHR (Leeds) Medtech & In vitro Diagnostic Cooperative, Leeds, UK
| | - Claire Taylor
- Experimental Haematology, Leeds Institute of Medical Research, University of Leeds UK, Leeds, UK
| | - Christopher Parrish
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trial Research, University of Leeds UK, Leeds, UK
| | - Gordon Cook
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- NIHR (Leeds) Medtech & In vitro Diagnostic Cooperative, Leeds, UK
- Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trial Research, University of Leeds UK, Leeds, UK
| |
Collapse
|
20
|
Gu X, Wang W, Yang Y, Lei Y, Liu D, Wang X, Wu T. The Effect of Metabolites on Mitochondrial Functions in the Pathogenesis of Skeletal Muscle Aging. Clin Interv Aging 2022; 17:1275-1295. [PMID: 36033236 PMCID: PMC9416380 DOI: 10.2147/cia.s376668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related systemic disease characterized by skeletal muscle aging that generally severely affects the quality of life of elderly patients. Metabolomics analysis is a powerful tool for qualitatively and quantitatively characterizing the small molecule metabolomics of various biological matrices in order to clarify all key scientific problems concerning cell metabolism. The discovery of optimal therapy requires a thorough understanding of the cellular metabolic mechanism of skeletal muscle aging. In this review, the relationship between skeletal muscle mitochondria, amino acid, vitamin, lipid, adipokines, intestinal microbiota and vascular microenvironment has been separately reviewed from the perspective of metabolomics, and a new therapeutic direction has been suggested.
Collapse
Affiliation(s)
- Xuchao Gu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yijing Yang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Dehua Liu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
21
|
Hughes DC, Baehr LM, Waddell DS, Sharples AP, Bodine SC. Ubiquitin Ligases in Longevity and Aging Skeletal Muscle. Int J Mol Sci 2022; 23:7602. [PMID: 35886949 PMCID: PMC9315556 DOI: 10.3390/ijms23147602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
The development and prevalence of diseases associated with aging presents a global health burden on society. One hallmark of aging is the loss of proteostasis which is caused in part by alterations to the ubiquitin-proteasome system (UPS) and lysosome-autophagy system leading to impaired function and maintenance of mass in tissues such as skeletal muscle. In the instance of skeletal muscle, the impairment of function occurs early in the aging process and is dependent on proteostatic mechanisms. The UPS plays a pivotal role in degradation of misfolded and aggregated proteins. For the purpose of this review, we will discuss the role of the UPS system in the context of age-related loss of muscle mass and function. We highlight the significant role that E3 ubiquitin ligases play in the turnover of key components (e.g., mitochondria and neuromuscular junction) essential to skeletal muscle function and the influence of aging. In addition, we will briefly discuss the contribution of the UPS system to lifespan. By understanding the UPS system as part of the proteostasis network in age-related diseases and disorders such as sarcopenia, new discoveries can be made and new interventions can be developed which will preserve muscle function and maintain quality of life with advancing age.
Collapse
Affiliation(s)
- David C. Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - Leslie M. Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - David S. Waddell
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA;
| | - Adam P. Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), 0863 Oslo, Norway;
| | - Sue C. Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| |
Collapse
|
22
|
Triolo M, Oliveira AN, Kumari R, Hood DA. The influence of age, sex, and exercise on autophagy, mitophagy, and lysosome biogenesis in skeletal muscle. Skelet Muscle 2022; 12:13. [PMID: 35690879 PMCID: PMC9188089 DOI: 10.1186/s13395-022-00296-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/15/2022] [Indexed: 12/25/2022] Open
Abstract
Background Aging decreases skeletal muscle mass and quality. Maintenance of healthy muscle is regulated by a balance between protein and organellar synthesis and their degradation. The autophagy-lysosome system is responsible for the selective degradation of protein aggregates and organelles, such as mitochondria (i.e., mitophagy). Little data exist on the independent and combined influence of age, biological sex, and exercise on the autophagy system and lysosome biogenesis. The purpose of this study was to characterize sex differences in autophagy and lysosome biogenesis in young and aged muscle and to determine if acute exercise influences these processes. Methods Young (4–6 months) and aged (22–24 months) male and female mice were assigned to a sedentary or an acute exercise group. Mitochondrial content, the autophagy-lysosome system, and mitophagy were measured via protein analysis. A TFEB-promoter-construct was utilized to examine Tfeb transcription, and nuclear-cytosolic fractions allowed us to examine TFEB localization in sedentary and exercised muscle with age and sex. Results Our results indicate that female mice, both young and old, had more mitochondrial protein than age-matched males. However, mitochondria in the muscle of females had a reduced respiratory capacity. Mitochondrial content was only reduced with age in the male cohort. Young female mice had a greater abundance of autophagy, mitophagy, and lysosome proteins than young males; however, increases were evident with age irrespective of sex. Young sedentary female mice had indices of greater autophagosomal turnover than male counterparts. Exhaustive exercise was able to stimulate autophagic clearance solely in young male mice. Similarly, nuclear TFEB protein was enhanced to a greater extent in young male, compared to young female mice following exercise, but no changes were observed in aged mice. Finally, TFEB-promoter activity was upregulated following exercise in both young and aged muscle. Conclusions The present study demonstrates that biological sex influences mitochondrial homeostasis, the autophagy-lysosome system, and mitophagy in skeletal muscle with age. Furthermore, our data suggest that young male mice have a more profound ability to activate these processes with exercise than in the other groups. Ultimately, this may contribute to a greater remodeling of muscle in response to exercise training in males.
Collapse
Affiliation(s)
- Matthew Triolo
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada.,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Ashley N Oliveira
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada.,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Rita Kumari
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada.,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada
| | - David A Hood
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada. .,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
23
|
Jiang D, Liu C, Chen Y, Xing X, Zheng D. Whole body vibration activates AMPK/CPT1 signaling pathway of skeletal muscle in young and aging mice based on metabolomics study. Endocr J 2022; 69:585-596. [PMID: 34955464 DOI: 10.1507/endocrj.ej21-0343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Whole-body vibration (WBV) can improve skeletal muscle function in aging mice, but whether the effect on young and aging skeletal muscle is consistent has not been studied. We selected C57BL/6J mouse models, which were divided into young control group (YC), young vibration group (YV), aging control group (AC) and aging vibration group (AV). After 12 weeks of WBV, we found that compared with the YC group, the pathways of linoleic acid metabolism, biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism, and arginine and proline metabolism improved significantly in the YV group. Compared with the AC group, the pathways of arachidonic acid metabolism, alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, pentose and glucuronate interconversions and pentose phosphate pathway improved significantly in the AV group. Furthermore, we found that WBV decreased triglyceride (TG), total cholesterol (TC), and free fatty acid (FFA) levels in aging mice, improved mitochondrial membrane potential, and increased the expression of phosphorylated activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and carnitine palmitoyl transferase 1B (CPT1B) in the skeletal muscle of young and aging mice. Our study revealed that WBV mainly improved lipid metabolism and amino acid metabolism pathways of skeletal muscle in young mice and mainly improved lipid metabolism and glucose metabolism pathways of skeletal muscle in aging mice. WBV can activate the AMPK/CPT1 signaling pathway and improve mitochondrial function in skeletal muscle in both young and aging mice.
Collapse
Affiliation(s)
- Dingwen Jiang
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ye Chen
- School of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, Liaoning, China
| | - Xuejiao Xing
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Danmeng Zheng
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
24
|
Li G, Jin B, Fan Z. Mechanisms Involved in Gut Microbiota Regulation of Skeletal Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2151191. [PMID: 35633886 PMCID: PMC9132697 DOI: 10.1155/2022/2151191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is one of the largest organs in the body and is essential for maintaining quality of life. Loss of skeletal muscle mass and function can lead to a range of adverse consequences. The gut microbiota can interact with skeletal muscle by regulating a variety of processes that affect host physiology, including inflammatory immunity, protein anabolism, energy, lipids, neuromuscular connectivity, oxidative stress, mitochondrial function, and endocrine and insulin resistance. It is proposed that the gut microbiota plays a role in the direction of skeletal muscle mass and work. Even though the notion of the gut microbiota-muscle axis (gut-muscle axis) has been postulated, its causal link is still unknown. The impact of the gut microbiota on skeletal muscle function and quality is described in detail in this review.
Collapse
Affiliation(s)
- Guangyao Li
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Christoffersen BØ, Sanchez‐Delgado G, John LM, Ryan DH, Raun K, Ravussin E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity (Silver Spring) 2022; 30:841-857. [PMID: 35333444 PMCID: PMC9310705 DOI: 10.1002/oby.23374] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
New appetite-regulating antiobesity treatments such as semaglutide and agents under investigation such as tirzepatide show promise in achieving weight loss of 15% or more. Energy expenditure, fat oxidation, and lean mass preservation are important determinants of weight loss and weight-loss maintenance beyond appetite regulation. This review discusses prior failures in clinical development of weight-loss drugs targeting energy expenditure and explores novel strategies for targeting energy expenditure: mitochondrial proton leak, uncoupling, dynamics, and biogenesis; futile calcium and substrate cycling; leptin for weight maintenance; increased sympathetic nervous system activity; and browning of white fat. Relevant targets for preserving lean mass are also reviewed: growth hormone, activin type II receptor inhibition, and urocortin 2 and 3. We endorse moderate modulation of energy expenditure and preservation of lean mass in combination with efficient appetite reduction as a means of obtaining a significant, safe, and long-lasting weight loss. Furthermore, we suggest that the regulatory guidelines should be revisited to focus more on the quality of weight loss and its maintenance rather than the absolute weight loss. Commitment to this research focus both from a scientific and from a regulatory point of view could signal the beginning of the next era in obesity therapies.
Collapse
Affiliation(s)
| | | | - Linu Mary John
- Global Obesity and Liver Disease ResearchGlobal Drug DiscoveryNovo Nordisk A/SMåløvDenmark
| | - Donna H. Ryan
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Kirsten Raun
- Global Obesity and Liver Disease ResearchGlobal Drug DiscoveryNovo Nordisk A/SMåløvDenmark
| | - Eric Ravussin
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
26
|
Mahatme S, K V, Kumar N, Rao V, Kovela RK, Sinha MK. Impact of high-intensity interval training on cardio-metabolic health outcomes and mitochondrial function in older adults: a review. Med Pharm Rep 2022; 95:115-130. [PMID: 35721039 PMCID: PMC9176307 DOI: 10.15386/mpr-2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022] Open
Abstract
Exercise being a potent stimulator of mitochondrial biogenesis, there is a need to investigate the effects of high-intensity interval training (HIIT) among older adults. This review explores and summarizes the impact of HIIT on mitochondria and various cardio-metabolic health outcomes among older adults, healthy and with comorbid conditions. Electronic databases were scrutinized for literature using permutations of keywords related to (i) Elderly population (ii) HIIT (iii) Mitochondria, cell organelles, and (iv) cardio-metabolic health outcomes. Twenty-one studies that met the inclusion criteria are included in this review. HIIT is an innovative therapeutic modality in preserving mitochondrial quality with age and serves to be a viable, safe, and beneficial exercise alternative in both ill and healthy older adults.
Collapse
Affiliation(s)
- Simran Mahatme
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaishali K
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of higher Education, Manipal, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of higher Education, Manipal, Karnataka, India
| | - Rakesh Krishna Kovela
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi (Meghe), Wardha, Maharashtra India
| | - Mukesh Kumar Sinha
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
27
|
Brown PJ. Evidence for a Geroscience Approach to Late Life Depression: Bioenergetics and the Frail-Depressed. Am J Geriatr Psychiatry 2022; 30:338-341. [PMID: 34879973 DOI: 10.1016/j.jagp.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Patrick J Brown
- New York State Psychiatric Institute (PJB), Columbia University College of Physicians and Surgeons, New York, NY.
| |
Collapse
|
28
|
Nrf2 Deficiency Attenuates Testosterone Efficiency in Ameliorating Mitochondrial Function of the Substantia Nigra in Aged Male Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3644318. [PMID: 35222795 PMCID: PMC8881137 DOI: 10.1155/2022/3644318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Reduced testosterone level is a common feature of aging in men. Aging, as a risk factor for several neurodegenerative disorders, shows declined mitochondrial function and downregulated mitochondrial biogenesis and mitochondrial dynamics. Mitochondrial biogenesis and mitochondrial dynamics are crucial in maintaining proper mitochondrial function. Supplementation with testosterone is conducive to improving mitochondrial function of males during aging. Nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of redox homeostasis, is involved in the ameliorative effects of testosterone supplementation upon aging. To explore Nrf2 role in the effects of testosterone supplementation on mitochondrial function during aging, we studied the efficiency of testosterone supplementation in improving mitochondrial function of Nrf2 knockout- (KO-) aged male mice by analyzing the changes of mitochondrial biogenesis and mitochondrial dynamics. It was found that wild-type- (WT-) aged male mice showed low mitochondrial function and expression levels of PGC-1α, NRF-1\NRF-2, and TFAM regulating mitochondrial biogenesis, as well as Drp1, Mfn1, and OPA1 controlling mitochondrial dynamics in the substantia nigra (SN). Nrf2 KO aggravated the defects above in SN of aged male mice. Testosterone supplementation to WT-aged male mice significantly ameliorated mitochondrial function and upregulated mitochondrial biogenesis and mitochondrial dynamics, which were not shown in Nrf2 KO-aged male mice due to Nrf2 deficiency. Testosterone deficiency by gonadectomy (GDX) decreased mitochondrial function, downregulated mitochondrial biogenesis, and altered mitochondrial dynamics balance in young male mice. Supplementation with testosterone to Nrf2 KO-GDX mice only ameliorated the alterations above but did not reverse them to sham level. Nrf2 deficiency attenuated testosterone efficiency in ameliorating mitochondrial function in the SN of aged male mice through mitochondrial biogenesis and mitochondrial dynamics to some extent. Activation of Nrf2 might contribute to testosterone-upregulating mitochondrial biogenesis and mitochondrial dynamics in the SN during aging to produce efficient mitochondria for ATP production.
Collapse
|
29
|
Sligar J, Debruin DA, Saner NJ, Philp AM, Philp A. The importance of mitochondrial quality control for maintaining skeletal muscle function across healthspan. Am J Physiol Cell Physiol 2022; 322:C461-C467. [PMID: 35108118 DOI: 10.1152/ajpcell.00388.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the principal energy-producing organelles of the cell, mitochondria support numerous biological processes related to metabolism, growth and regeneration in skeletal muscle. Deterioration in skeletal muscle functional capacity with age is thought to be driven in part by a reduction in skeletal muscle oxidative capacity and reduced fatigue resistance. Underlying this maladaptive response is the development of mitochondrial dysfunction caused by alterations in mitochondrial quality control (MQC), a term encompassing processes of mitochondrial synthesis (biogenesis), remodelling (dynamics) and degradation (mitophagy). Knowledge regarding the role and regulation of MQC in skeletal muscle and the influence of ageing in this process have rapidly advanced in the last decade. Given the emerging link between ageing and MQC, therapeutic approaches to manipulate MQC to prevent mitochondrial dysfuntion during ageing hold tremendous therapeutic potential.
Collapse
Affiliation(s)
- James Sligar
- Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Medical School, UNSW Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Danielle A Debruin
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Sunshine Hospital, St Albans, Australia.,Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nicholas J Saner
- Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Ashleigh M Philp
- Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Medical School, UNSW Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Medical School, UNSW Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Impact of exercise training on muscle mitochondria modifications in older adults: a systematic review of randomized controlled trials. Aging Clin Exp Res 2022; 34:1495-1510. [PMID: 35079977 DOI: 10.1007/s40520-021-02073-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous evidence showed that cellular aging is a multifactorial process that is associated with decline in mitochondrial function. Physical exercise has been proposed as an effective and safe therapeutical intervention to improve the mitochondria network in the adult myocytes. AIMS The aim of this systematic review of randomized controlled trials (RCTs) was to assess the exercise-induced muscle mitochondria modifications in older adults, underlining the differences related to different exercise modalities. METHODS On November 28th, 2021, five databases (PubMed, Scopus, Web of Science, Cochrane, and PEDro) were systematically searched for RCTs to include articles with: healthy older people as participants; physical exercise (endurance training (ET), resistance training (RT), and combined training (CT)) as intervention; other different exercise modalities or physical inactivity as comparator; mitochondrial modifications (quality, density and dynamics, oxidative, and antioxidant capacity) as outcomes. The quality assessment was performed according to the PEDro scale; the bias risk was evaluated by Cochrane risk-of-bias assessment tool. RESULTS Out of 2940 records, 6 studies were included (2 assessing ET, 2 RT, 1 CT, and 1 both ET and RT). Taken together, 164 elderly subjects were included in the present systematic review. Significant positive effects were reported in terms of mitochondrial quality, density, dynamics, oxidative and antioxidant capacity, even though with different degrees according to the exercise type. The quality assessment reported one good-quality study, whereas the other five studies had a fair quality. DISCUSSION The overall low quality of the studies on this topic indicate that further research is needed. CONCLUSION RT seems to be the most studied physical exercise modality improving mitochondrial density and dynamics, while ET have been related to mitochondrial antioxidant capacity improvements. However, these exercise-induced specific effects should be better explored in older people.
Collapse
|
31
|
From the Bench to the Bedside: Branched Amino Acid and Micronutrient Strategies to Improve Mitochondrial Dysfunction Leading to Sarcopenia. Nutrients 2022; 14:nu14030483. [PMID: 35276842 PMCID: PMC8838610 DOI: 10.3390/nu14030483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
With extended life expectancy, the older population is constantly increasing, and consequently, so too is the prevalence of age-related disorders. Sarcopenia, the pathological age-related loss of muscle mass and function; and malnutrition, the imbalance in nutrient intake and resultant energy production, are both commonly occurring conditions in old adults. Altered nutrition plays a crucial role in the onset of sarcopenia, and both these disorders are associated with detrimental consequences for patients (e.g., frailty, morbidity, and mortality) and society (e.g., healthcare costs). Importantly, sarcopenia and malnutrition also share critical molecular alterations, such as mitochondrial dysfunction, increased oxidative stress, and a chronic state of low grade and sterile inflammation, defined as inflammageing. Given the connection between malnutrition and sarcopenia, nutritional interventions capable of affecting mitochondrial health and correcting inflammageing are emerging as possible strategies to target sarcopenia. Here, we discuss mitochondrial dysfunction, oxidative stress, and inflammageing as key features leading to sarcopenia. Moreover, we examine the effects of some branched amino acids, omega-3 PUFA, and selected micronutrients on these pathways, and their potential role in modulating sarcopenia, warranting further clinical investigation.
Collapse
|
32
|
Nijholt KT, Sánchez-Aguilera PI, Voorrips SN, de Boer RA, Westenbrink BD. Exercise: a molecular tool to boost muscle growth and mitochondrial performance in heart failure? Eur J Heart Fail 2021; 24:287-298. [PMID: 34957643 PMCID: PMC9302125 DOI: 10.1002/ejhf.2407] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Impaired exercise capacity is the key symptom of heart failure (HF) and is associated with reduced quality of life and higher mortality rates. Unfortunately, current therapies, although generally lifesaving, have only small or marginal effects on exercise capacity. Specific strategies to alleviate exercise intolerance may improve quality of life, while possibly improving prognosis as well. There is overwhelming evidence that physical exercise improves performance in cardiac and skeletal muscles in health and disease. Unravelling the mechanistic underpinnings of exercise‐induced improvements in muscle function could provide targets that will allow us to boost exercise performance in HF. With the current review we discuss: (i) recently discovered signalling pathways that govern physiological muscle growth as well as mitochondrial quality control mechanisms that underlie metabolic adaptations to exercise; (ii) the mechanistic underpinnings of exercise intolerance in HF and the benefits of exercise in HF patients on molecular, functional and prognostic levels; and (iii) potential molecular therapeutics to improve exercise performance in HF. We propose that novel molecular therapies to boost adaptive muscle growth and mitochondrial quality control in HF should always be combined with some form of exercise training.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Pablo I Sánchez-Aguilera
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne N Voorrips
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
The active grandparent hypothesis: Physical activity and the evolution of extended human healthspans and lifespans. Proc Natl Acad Sci U S A 2021; 118:2107621118. [PMID: 34810239 DOI: 10.1073/pnas.2107621118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The proximate mechanisms by which physical activity (PA) slows senescence and decreases morbidity and mortality have been extensively documented. However, we lack an ultimate, evolutionary explanation for why lifelong PA, particularly during middle and older age, promotes health. As the growing worldwide epidemic of physical inactivity accelerates the prevalence of noncommunicable diseases among aging populations, integrating evolutionary and biomedical perspectives can foster new insights into how and why lifelong PA helps preserve health and extend lifespans. Building on previous life-history research, we assess the evidence that humans were selected not just to live several decades after they cease reproducing but also to be moderately physically active during those postreproductive years. We next review the longstanding hypothesis that PA promotes health by allocating energy away from potentially harmful overinvestments in fat storage and reproductive tissues and propose the novel hypothesis that PA also stimulates energy allocation toward repair and maintenance processes. We hypothesize that selection in humans for lifelong PA, including during postreproductive years to provision offspring, promoted selection for both energy allocation pathways which synergistically slow senescence and reduce vulnerability to many forms of chronic diseases. As a result, extended human healthspans and lifespans are both a cause and an effect of habitual PA, helping explain why lack of lifelong PA in humans can increase disease risk and reduce longevity.
Collapse
|
34
|
Effects of high-intensity interval training on mitochondrial supercomplex assembly and biogenesis, mitophagy, and the AMP-activated protein kinase pathway in the soleus muscle of aged female rats. Exp Gerontol 2021; 158:111648. [PMID: 34861356 DOI: 10.1016/j.exger.2021.111648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Exercise helps improve mitochondrial function to combat sarcopenia. Certain parts of the mitochondrial respiratory chain complex can form a higher-order structure called "supercomplex" to reduce the production of reactive oxygen species and improve muscle mass. The effect of exercise on the assembly of the mitochondrial supercomplex is still unclear. The aim of this study was to investigate the effects of long-term high-intensity interval training (HIIT) on mitochondrial biogenesis, mitophagy, and mitochondrial supercomplexes (mitoSCs) assembly in aging soleus muscle. METHODS Female Sprague-Dawley rats (n = 36) were randomly divided into four groups: young sedentary (Y-SED, 8 months old, n = 12), old sedentary (O-SED, 26 months old, n = 12), moderate-intensity continuous training (MICT, from 18 to 26 months old, n = 12), and HIIT (from 18 to 26 months old, n = 12). Rats in the MICT and HIIT groups were subjected to an 8-month training program. Real-time fluorescent quantitative polymerase chain reaction was used to measure the expression of the antioxidative factors, inflammatory factors, and mitochondrial fusion- and division-related genes. Western blotting was used to detect the expression of mitochondrial biogenesis and mitophagy markers and AMP-activated protein kinase (AMPK) pathway proteins. Enzyme-linked immunosorbent assays were used to determine serum irisin contents. Blue native polyacrylamide gel electrophoresis was used to assess the formation of mitochondrial supercomplexes. RESULTS Compared with the Y-SED group, the soleus muscle and mitochondria in the O-SED group showed reduced expression of mitophagy- and mitochondrial biogenesis-related proteins. In the HIIT group, the expression of autophagy-related proteins in the soleus muscle and mitochondria was significantly increased compared with that in the MICT group. Serum irisin and mitochondrial fusion protein levels significantly decreased with age. Superoxide dismutase 2 protein levels and AMPK pathway protein expression were significantly increased in the HIIT group compared with those in the other groups. Additionally, the expression levels of mitoSCs and the mRNA levels of interleukin-15 and optical atrophy 1 increased in the HIIT group compared with that in the MICT group. CONCLUSION Compared with MICT, HIIT activated the AMPK pathway to upregulate mitochondrial biogenesis- and mitophagy-related proteins, and promote the assembly and formation of mitoSCs to improve the mitochondrial function of aging soleus muscles.
Collapse
|
35
|
Yeo D, Zhang T, Liu T, Zhang Y, Kang C, Ji LL. Protective Effects of Extra Virgin Olive Oil and Exercise Training on Rat Skeletal Muscle against High-fat Diet Feeding. J Nutr Biochem 2021; 100:108902. [PMID: 34748920 DOI: 10.1016/j.jnutbio.2021.108902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
Abstract
A diet high in saturated fat leads to skeletal muscle deteriorations including insulin resistance, mitochondrial dysfunction and muscle fiber atrophy. Consumption of long-chain polyunsaturated fatty acids and exercise have shown promise in ameliorating high-fat diet (HFD)-induced oxidative stress and inflammation. However, the impact of extra virgin olive oil (EVOO) on mitochondrial homeostasis in muscle is largely unknown. This study aimed to investigate whether 12 weeks of EVOO feeding alone and in conjunction with endurance training could protect against metabolic and mitochondrial dysfunction rat muscle with HFD. Female Sprague-Dawley rats were divided into 4 groups fed a control diet (C), HFD, EVOO diet, and EVOO diet with training (EVOO+T). Mitochondrial enzyme activity and protein content decreased with HFD compared to C, but were restored with EVOO and EVOO+T. EVOO+T elevated muscle cytochrome c and PGC-1α levels. HFD increased muscle proteolytic markers and protein ubiquitination, whereas these effects were not seen in EVOO and EVOO+T. HFD suppressed mitochondrial fusion protein level while increasing fission protein levels, but were restored with EVOO and EVOO+T. Mitophagy marker PINK1 content decreased with HFD, but was unchanged in EVOO and EVOO+T. EVOO+T upregulated autophagy markers, along with decreased phosphorylated/dephosphorylated FoxO3 ratio. Antioxidants enzyme levels were upregulated by EVOO and EVOO+T, and EVOO+T reduced HFD-induced lipid peroxidation. In conclusion, HFD impaired muscle oxidative capacity, promoted protein ubiquitination and mitochondrial fission, and upregulated autophagy markers. Replacement of HFD with EVOO corrected the observed adverse effects, while exercise training in conjunction with EVOO provided additional protection to the muscle.
Collapse
Affiliation(s)
- Dongwook Yeo
- The Laboratory of Physiological Hygiene and Exercise Science, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Tianou Zhang
- Laboratory of Exercise and Sports Nutrition, Department of Kinesiology, The University of Texas at San Antonio, TX 78249, USA
| | - Tao Liu
- College of Physical Education, Jimei University, Xiamen 361021 China
| | - Yuzi Zhang
- The University of Texas Health Science Center at Houston, School of Public Health, Austin Campus, Austin, TX 78701 USA
| | - Chounghun Kang
- Department of Physical Education, Inha University, Incheon 22212, South Korea
| | - Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
36
|
Roberts FL, Markby GR. New Insights into Molecular Mechanisms Mediating Adaptation to Exercise; A Review Focusing on Mitochondrial Biogenesis, Mitochondrial Function, Mitophagy and Autophagy. Cells 2021; 10:cells10102639. [PMID: 34685618 PMCID: PMC8533934 DOI: 10.3390/cells10102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise itself is fundamental for good health, and when practiced regularly confers a myriad of metabolic benefits in a range of tissues. These benefits are mediated by a range of adaptive responses in a coordinated, multi-organ manner. The continued understanding of the molecular mechanisms of action which confer beneficial effects of exercise on the body will identify more specific pathways which can be manipulated by therapeutic intervention in order to prevent or treat various metabolism-associated diseases. This is particularly important as exercise is not an available option to all and so novel methods must be identified to confer the beneficial effects of exercise in a therapeutic manner. This review will focus on key emerging molecular mechanisms of mitochondrial biogenesis, autophagy and mitophagy in selected, highly metabolic tissues, describing their regulation and contribution to beneficial adaptations to exercise.
Collapse
|
37
|
Redox Signaling and Sarcopenia: Searching for the Primary Suspect. Int J Mol Sci 2021; 22:ijms22169045. [PMID: 34445751 PMCID: PMC8396474 DOI: 10.3390/ijms22169045] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, derives from multiple etiological mechanisms. Accumulative research suggests that reactive oxygen species (ROS) generation plays a critical role in the development of this pathophysiological disorder. In this communication, we review the various signaling pathways that control muscle metabolic and functional integrity such as protein turnover, cell death and regeneration, inflammation, organismic damage, and metabolic functions. Although no single pathway can be identified as the most crucial factor that causes sarcopenia, age-associated dysregulation of redox signaling appears to underlie many deteriorations at physiological, subcellular, and molecular levels. Furthermore, discord of mitochondrial homeostasis with aging affects most observed problems and requires our attention. The search for the primary suspect of the fundamental mechanism for sarcopenia will likely take more intense research for the secret of this health hazard to the elderly to be unlocked.
Collapse
|
38
|
Connell NJ, Grevendonk L, Fealy CE, Moonen-Kornips E, Bruls YMH, Schrauwen-Hinderling VB, de Vogel J, Hageman R, Geurts J, Zapata-Perez R, Houtkooper RH, Havekes B, Hoeks J, Schrauwen P. NAD+-Precursor Supplementation With L-Tryptophan, Nicotinic Acid, and Nicotinamide Does Not Affect Mitochondrial Function or Skeletal Muscle Function in Physically Compromised Older Adults. J Nutr 2021; 151:2917-2931. [PMID: 34191033 PMCID: PMC8485915 DOI: 10.1093/jn/nxab193] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Boosting NAD+ via supplementation with niacin equivalents has been proposed as a potential modality capable of promoting healthy aging and negating age-dependent declines of skeletal muscle mass and function. OBJECTIVES We investigated the efficacy of NAD+-precursor supplementation (tryptophan, nicotinic acid, and nicotinamide) on skeletal muscle mitochondrial function in physically compromised older adults. METHODS A randomized, double-blind, controlled trial was conducted in 14 (female/male: 4/10) community-dwelling, older adults with impaired physical function [age, 72.9 ± 4.0 years; BMI, 25.2 ± 2.3 kg/m2]. Participants were supplemented with 207.5 mg niacin equivalents/day [intervention (INT)] and a control product (CON) that did not contain niacin equivalents, each for 32 days. The primary outcomes tested were mitochondrial oxidative capacity and exercise efficiency, analyzed by means of paired Student's t-tests. Secondary outcomes, such as NAD+ concentrations, were analyzed accordingly. RESULTS Following supplementation, skeletal muscle NAD+ concentrations [7.5 ± 1.9 compared with 7.9 ± 1.6 AU, respectively] in INT compared with CON conditions were not significantly different compared to the control condition, whereas skeletal muscle methyl-nicotinamide levels were significantly higher under NAD+-precursor supplementation [INT, 0.098 ± 0.063 compared with CON, 0.025 ± 0.014; P = 0.001], suggesting an increased NAD+ metabolism. Conversely, neither ADP-stimulated [INT, 82.1 ± 19.0 compared with CON, 84.0 ± 19.2; P = 0.716] nor maximally uncoupled mitochondrial respiration [INT, 103.4 ± 30.7 compared with CON, 108.7 ± 33.4; P = 0.495] improved under NAD+-precursor supplementation, nor did net exercise efficiency during the submaximal cycling test [INT, 20.2 ± 2.77 compared with CON, 20.8 ± 2.88; P = 0.342]. CONCLUSIONS Our findings are consistent with previous findings on NAD+ efficacy in humans, and we show in community-dwelling, older adults with impaired physical function that NAD+-precursor supplementation through L-tryptophan, nicotinic acid, and nicotinamide does not improve mitochondrial or skeletal muscle function. This study was registered at clinicaltrials.gov as NCT03310034.
Collapse
Affiliation(s)
- N J Connell
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - L Grevendonk
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - C E Fealy
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - E Moonen-Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Y M H Bruls
- Department of Radiology and Nuclear Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - V B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands,Department of Radiology and Nuclear Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J de Vogel
- Danone Nutricia Research, Utrecht, The Netherlands
| | - R Hageman
- Danone Nutricia Research, Utrecht, The Netherlands
| | - J Geurts
- Friesland Campina, Amersfoort, The Netherlands
| | - R Zapata-Perez
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - R H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - B Havekes
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands,Department of Internal Medicine, Division of Endocrinology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
39
|
Liu S, Yu C, Xie L, Niu Y, Fu L. Aerobic Exercise Improves Mitochondrial Function in Sarcopenia Mice Through Sestrin2 in an AMPKα2-Dependent Manner. J Gerontol A Biol Sci Med Sci 2021; 76:1161-1168. [PMID: 33512470 DOI: 10.1093/gerona/glab029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, contributes to high morbidity and mortality in the older population. Regular exercise is necessary to avoid the initiation and progression of sarcopenia, in which the underlying molecular mechanism is still not clear. Our data revealed that the outcomes induced by sarcopenia, including muscle mass and strength loss, decreased cross-sectional area of gastrocnemius fiber, chronic inflammation, and increased dysfunctional mitochondria, were reversed by regulation exercise. Knockout or silencing of Sestrin2 (Sesn2) resulted in imbalanced mitochondrial fusion and fission, mitochondrial biogenesis, and mitophagy damage in vivo and in vitro, which was attenuated by aerobic exercise or overexpression of Sesn2. Moreover, we found that the effects of Sesn2 on mitochondrial function are dependent on AMP-activated protein kinase α2 (AMPKα2). This study indicates that aerobic exercise alleviates the negative effects resulting from sarcopenia via the Sesn2/AMPKα2 pathway and provides new insights into the molecular mechanism by which the Sesn2/AMPKα2 signaling axis mediates the beneficial impact of exercise on sarcopenia.
Collapse
Affiliation(s)
- Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, China
| | - Chunxia Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, China
| | - Lingjian Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, China.,Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, China
| |
Collapse
|
40
|
Driscoll RK, Krasniewski LK, Cockey SG, Yang JH, Piao Y, Lehrmann E, Zhang Y, Michel M, Noh JH, Cui CY, Gorospe M. GRSF1 deficiency in skeletal muscle reduces endurance in aged mice. Aging (Albany NY) 2021; 13:14557-14570. [PMID: 34078750 PMCID: PMC8221292 DOI: 10.18632/aging.203151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
GRSF1 is a mitochondrial RNA-binding protein important for maintaining mitochondrial function. We found that GRSF1 is highly expressed in cultured skeletal myoblasts differentiating into myotubes. To understand the physiological function of GRSF1 in vivo, we generated mice in which GRSF1 was specifically ablated in skeletal muscle. The conditional knockout mice (Grsf1cKO) appeared normal until 7-9 months of age. Importantly, however, a reduction of muscle endurance compared to wild-type controls was observed in 16- to 18-month old Grsf1cKO mice. Transcriptomic analysis revealed more than 200 mRNAs differentially expressed in Grsf1cKO muscle at this age. Notably, mRNAs encoding proteins involved in mitochondrial function, inflammation, and ion transport, including Mgarp, Cxcl10, Nfkb2, and Sln mRNAs, were significantly elevated in aged Grsf1cKO muscle. Our findings suggest that GRSF1 deficiency exacerbates the functional decline of aged skeletal muscle, likely through multiple downstream effector proteins.
Collapse
Affiliation(s)
- Riley K. Driscoll
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Linda K. Krasniewski
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Samuel G. Cockey
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marc Michel
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
41
|
Haxhi J, Thompson PD. Rationale for the use of metformin and exercise to counteract statin-associated side effects. Int J Clin Pract 2021; 75:e13900. [PMID: 33277775 DOI: 10.1111/ijcp.13900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Statins are the most widely prescribed drugs for lowering low-density lipoprotein cholesterol (LDL-C) and reducing cardiovascular morbidity and mortality. They are usually well-tolerated, but have two main safety concerns: statin-associated muscle symptoms (SAMS) and new-onset type 2 diabetes (NOD). METHODS A PubMed search was carried out using the following key words were used: statins, statin-associated muscle symptoms, statin myalgia, statin-associated diabetes, metformin and statins, exercise and statins. RESULTS Mitochondrial damage and muscle atrophy are likely the central mechanisms producing SAMS, whereas decreased glucose transport, fatty acid oxidation and insulin secretion are likely involved in the development of NOD. Metformin and exercise training share many pathways that could potentially contrast SAMS and NOD. Clinical evidence also supports the combination of statins with metformin and exercise. CONCLUSION This combination appears attractive both from a clinical and an economical viewpoint, since all three therapies are highly cost-effective and their combination could result in diabetes and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Jonida Haxhi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Division of Cardiology, Hartford Hospital, Hartford, CT, USA
| | - Paul D Thompson
- Division of Cardiology, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
42
|
Triolo M, Hood DA. Manifestations of Age on Autophagy, Mitophagy and Lysosomes in Skeletal Muscle. Cells 2021; 10:cells10051054. [PMID: 33946883 PMCID: PMC8146406 DOI: 10.3390/cells10051054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Sarcopenia is the loss of both muscle mass and function with age. Although the molecular underpinnings of sarcopenia are not fully understood, numerous pathways are implicated, including autophagy, in which defective cargo is selectively identified and degraded at the lysosome. The specific tagging and degradation of mitochondria is termed mitophagy, a process important for the maintenance of an organelle pool that functions efficiently in energy production and with relatively low reactive oxygen species production. Emerging data, yet insufficient, have implicated various steps in this pathway as potential contributors to the aging muscle atrophy phenotype. Included in this is the lysosome, the end-stage organelle possessing a host of proteolytic and degradative enzymes, and a function devoted to the hydrolysis and breakdown of defective molecular complexes and organelles. This review provides a summary of our current understanding of how the autophagy-lysosome system is regulated in aging muscle, highlighting specific areas where knowledge gaps exist. Characterization of the autophagy pathway with a particular focus on the lysosome will undoubtedly pave the way for the development of novel therapeutic strategies to combat age-related muscle loss.
Collapse
Affiliation(s)
- Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +(416)-736-2100 (ext. 66640)
| |
Collapse
|
43
|
Sorriento D, Di Vaia E, Iaccarino G. Physical Exercise: A Novel Tool to Protect Mitochondrial Health. Front Physiol 2021; 12:660068. [PMID: 33986694 PMCID: PMC8110831 DOI: 10.3389/fphys.2021.660068] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a crucial contributor to heart diseases. Alterations in energetic metabolism affect crucial homeostatic processes, such asATP production, the generation of reactive oxygen species, and the release of pro-apoptotic factors, associated with metabolic abnormalities. In response to energetic deficiency, the cardiomyocytes activate the Mitochondrial Quality Control (MQC), a critical process in maintaining mitochondrial health. This process is compromised in cardiovascular diseases depending on the pathology's severity and represents, therefore, a potential therapeutic target. Several potential targeting molecules within this process have been identified in the last years, and therapeutic strategies have been proposed to ameliorate mitochondria monitoring and function. In this context, physical exercise is considered a non-pharmacological strategy to protect mitochondrial health. Physical exercise regulates MQC allowing the repair/elimination of damaged mitochondria and synthesizing new ones, thus recovering the metabolic state. In this review, we will deal with the effect of physical exercise on cardiac mitochondrial function tracing its ability to modulate specific steps in MQC both in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- CIRIAPA Interdepartmental Center for Research on Arterial Hypertension and Associated Conditions, Federico II University of Naples, Naples, Italy
| | - Eugenio Di Vaia
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- CIRIAPA Interdepartmental Center for Research on Arterial Hypertension and Associated Conditions, Federico II University of Naples, Naples, Italy
| |
Collapse
|
44
|
Zhao J, Huang Y, Yu X. A Narrative Review of Gut-Muscle Axis and Sarcopenia: The Potential Role of Gut Microbiota. Int J Gen Med 2021; 14:1263-1273. [PMID: 33880058 PMCID: PMC8053521 DOI: 10.2147/ijgm.s301141] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a multifactorial disease related to aging, chronic inflammation, insufficient nutrition, and physical inactivity. Previous studies have suggested that there is a relationship between sarcopenia and gut microbiota,namely, the gut-muscle axis. The present review highlights that the gut microbiota can affect muscle mass and muscle function from inflammation and immunity,substance and energy metabolism, endocrine and insulin sensitivity, etc., directly or indirectly establishing a connection with sarcopenia, thereby realizing the “gut-muscle axis”.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Yiqin Huang
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Xiaofeng Yu
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Damal Villivalam S, Ebert SM, Lim HW, Kim J, You D, Jung BC, Palacios HH, Tcheau T, Adams CM, Kang S. A necessary role of DNMT3A in endurance exercise by suppressing ALDH1L1-mediated oxidative stress. EMBO J 2021; 40:e106491. [PMID: 33847380 DOI: 10.15252/embj.2020106491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/25/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Exercise can alter the skeletal muscle DNA methylome, yet little is known about the role of the DNA methylation machinery in exercise capacity. Here, we show that DNMT3A expression in oxidative red muscle increases greatly following a bout of endurance exercise. Muscle-specific Dnmt3a knockout mice have reduced tolerance to endurance exercise, accompanied by reduction in oxidative capacity and mitochondrial respiration. Moreover, Dnmt3a-deficient muscle overproduces reactive oxygen species (ROS), the major contributors to muscle dysfunction. Mechanistically, we show that DNMT3A suppresses the Aldh1l1 transcription by binding to its promoter region, altering its epigenetic profile. Forced expression of ALDH1L1 elevates NADPH levels, which results in overproduction of ROS by the action of NADPH oxidase complex, ultimately resulting in mitochondrial defects in myotubes. Thus, inhibition of ALDH1L1 pathway can rescue oxidative stress and mitochondrial dysfunction from Dnmt3a deficiency in myotubes. Finally, we show that in vivo knockdown of Aldh1l1 largely rescues exercise intolerance in Dnmt3a-deficient mice. Together, we establish that DNMT3A in skeletal muscle plays a pivotal role in endurance exercise by controlling intracellular oxidative stress.
Collapse
Affiliation(s)
- Sneha Damal Villivalam
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Scott M Ebert
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Emmyon, Inc., Coralville, IA, USA
| | - Hee Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics & Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Jinse Kim
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Byung Chul Jung
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Hector H Palacios
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Tabitha Tcheau
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Christopher M Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Emmyon, Inc., Coralville, IA, USA.,Iowa City Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
46
|
Jorquera G, Russell J, Monsalves-Álvarez M, Cruz G, Valladares-Ide D, Basualto-Alarcón C, Barrientos G, Estrada M, Llanos P. NLRP3 Inflammasome: Potential Role in Obesity Related Low-Grade Inflammation and Insulin Resistance in Skeletal Muscle. Int J Mol Sci 2021; 22:ijms22063254. [PMID: 33806797 PMCID: PMC8005007 DOI: 10.3390/ijms22063254] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Among multiple mechanisms, low-grade inflammation is critical for the development of insulin resistance as a feature of type 2 diabetes. The nucleotide-binding oligomerization domain-like receptor family (NOD-like) pyrin domain containing 3 (NLRP3) inflammasome has been linked to the development of insulin resistance in various tissues; however, its role in the development of insulin resistance in the skeletal muscle has not been explored in depth. Currently, there is limited evidence that supports the pathological role of NLRP3 inflammasome activation in glucose handling in the skeletal muscle of obese individuals. Here, we have centered our focus on insulin signaling in skeletal muscle, which is the main site of postprandial glucose disposal in humans. We discuss the current evidence showing that the NLRP3 inflammasome disturbs glucose homeostasis. We also review how NLRP3-associated interleukin and its gasdermin D-mediated efflux could affect insulin-dependent intracellular pathways. Finally, we address pharmacological NLRP3 inhibitors that may have a therapeutical use in obesity-related metabolic alterations.
Collapse
Affiliation(s)
- Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.J.); (G.C.)
| | - Javier Russell
- Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad Autónoma de Chile, Santiago 8900000, Chile;
| | - Matías Monsalves-Álvarez
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile; (M.M.-Á.); (D.V.-I.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.J.); (G.C.)
| | - Denisse Valladares-Ide
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile; (M.M.-Á.); (D.V.-I.)
| | - Carla Basualto-Alarcón
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile;
- Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Genaro Barrientos
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (G.B.); (M.E.)
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Manuel Estrada
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (G.B.); (M.E.)
| | - Paola Llanos
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago 8380544, Chile
- Correspondence: ; Tel.: +56-229-781-727
| |
Collapse
|
47
|
Gautam S, Kumar U, Kumar M, Rana D, Dada R. Yoga improves mitochondrial health and reduces severity of autoimmune inflammatory arthritis: A randomized controlled trial. Mitochondrion 2021; 58:147-159. [PMID: 33741520 DOI: 10.1016/j.mito.2021.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oxidative stress (OS) and mitochondrial alterations have been implicated in the pathogenesis of rheumatoid arthritis (RA). Various environmental triggers like air pollutants, smoking, unhealthy social habits and sedentary lifestyle induce OS, which may compromise mitochondrial integrity. This trial was designed to explore the effect of 8-weeks yoga practice on mitochondrial health and disease severity in an active RA group compared with a usual-care control group. METHODS A total of 70 subjects were randomized into two groups: yoga group and non-yoga group. Mitochondrial health was assessed by calculation of mitochondrial DNA copy number (mtDNA-CN), OS markers, mitochondrial activity, mitochondrial membrane potential (ΔΨm), circadian rhythm markers and transcripts associated with mitochondrial integrity: AMPK, TIMP-1, KLOTHO, SIRT-1, and TFAM. Parameters of disease activity and disability quotient were also assessed by disease activity score - erythrocyte sedimentation rate (DAS28-ESR) and health assessment questionnaire-disability index (HAQ-DI), respectively. RESULTS In yoga group, there was a significant upregulation of mtDNA-CN, mitochondrial activity markers, ΔΨm, and transcripts that maintain mitochondrial integrity after 8-weeks of yoga. There was optimization of OS markers, and circadian rhythm markers post 8-weeks practice of yoga. Yoga group participants showed significant improvements in DAS28-ESR (p < 0.05) and HAQ-DI (p < 0.05) over the non-yoga group. CONCLUSION Adoption of yoga by RA patients holds the key to enhance mitochondrial health, improve circadian rhythm markers, OS marker regulation, upregulation of transcripts that maintain mitochondrial integrity, reduce disease activity and its associated consequences on health outcome and hence can be beneficial as an adjunct therapy.
Collapse
Affiliation(s)
- Surabhi Gautam
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Deeksha Rana
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
48
|
Wang L, Yu C, Pei W, Geng M, Zhang Y, Li Z, Liang F, Tan F, Du H, Gao J. The lysosomal membrane protein Sidt2 is a vital regulator of mitochondrial quality control in skeletal muscle. FASEB J 2021; 35:e21223. [PMID: 33715196 DOI: 10.1096/fj.202000424r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023]
Abstract
The role of Sidt2 in the process of glucose and lipid metabolism has been recently reported. However, whether Sidt2 is involved in the metabolic regulation in skeletal muscle remains unknown. In this study, for the first time, using skeletal muscle-selective Sidt2 knockout mice, we found that Sidt2 was vital for the quality control of mitochondria in mouse skeletal muscle. These mice showed significantly reduced muscle tolerance and structurally abnormal mitochondria. Deletion of the Sidt2 gene resulted in decreased expression of mitochondrial fusion protein 2 (Mfn2) and Dynamin-related protein 1 (Drp1), as well as peroxisome proliferator-activated receptor γ coactivator-1 (PGC1-α). In addition, the clearance of damaged mitochondria in skeletal muscle was inhibited upon Sidt2 deletion, which was caused by blockade of autophagy flow. Mechanistically, the fusion of autophagosomes and lysosomes was compromised in Sidt2 knockout skeletal muscle cells. In summary, the deletion of the Sidt2 gene not only interfered with the quality control of mitochondria, but also inhibited the clearance of mitochondria and caused the accumulation of a large number of damaged mitochondria, ultimately leading to the abnormal structure and function of skeletal muscle.
Collapse
Affiliation(s)
- Lizhuo Wang
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China.,Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China.,Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, PR China
| | - Cui Yu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, PR China
| | - Mengya Geng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China.,Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China
| | - Yao Zhang
- Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, PR China.,Anhui Province Key Laboratory of Biological Macro-molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, PR China
| | - Zihui Li
- School of Clinical Medicine, Wannan Medical College, Wuhu, PR China
| | - Feiteng Liang
- School of Clinical Medicine, Wannan Medical College, Wuhu, PR China
| | - Fengbiao Tan
- Anhui Province Key Laboratory of Biological Macro-molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, PR China
| | - Hui Du
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China.,Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China
| | - Jialin Gao
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China.,Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China.,Anhui Province Key Laboratory of Biological Macro-molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, PR China
| |
Collapse
|
49
|
Zhu H, Toan S, Mui D, Zhou H. Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol (Oxf) 2021; 231:e13590. [PMID: 33270362 DOI: 10.1111/apha.13590] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. As mitochondrial dysfunction critically contributes to the pathogenesis of MI, intensive research is focused on the development of therapeutic strategies targeting mitochondrial homeostasis. Mitochondria possess a quality control system which maintains and restores their structure and function by regulating mitochondrial fission, fusion, biogenesis, degradation and death. In response to slight damage such as transient hypoxia or mild oxidative stress, mitochondrial metabolism shifts from oxidative phosphorylation to glycolysis, in order to reduce oxygen consumption and maintain ATP output. Mitochondrial dynamics are also activated to modify mitochondrial shape and structure, in order to meet cardiomyocyte energy requirements through augmenting or reducing mitochondrial mass. When damaged mitochondria cannot be repaired, poorly structured mitochondria will be degraded through mitophagy, a process which is often accompanied by mitochondrial biogenesis. Once the insult is severe enough to induce lethal damage in the mitochondria and the cell, mitochondrial death pathway activation is an inevitable consequence, and the cardiomyocyte apoptosis or necrosis program will be initiated to remove damaged cells. Mitochondrial quality surveillance is a hierarchical system preserving mitochondrial function and defending cardiomyocytes against stress. A failure of this system has been regarded as one of the potential pathologies underlying MI. In this review, we discuss the recent findings focusing on the role of mitochondrial quality surveillance in MI, and highlight the available therapeutic approaches targeting mitochondrial quality surveillance during MI.
Collapse
Affiliation(s)
- Hang Zhu
- Department of Cardiology Chinese PLA General HospitalMedical School of Chinese PLA Beijing China
| | - Sam Toan
- Department of Chemical Engineering University of Minnesota‐Duluth Duluth MN USA
| | - David Mui
- Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Hao Zhou
- Department of Cardiology Chinese PLA General HospitalMedical School of Chinese PLA Beijing China
| |
Collapse
|
50
|
Abstract
Thirty-five years ago, Sies and colleagues insightfully described the universal phenomenon that the generation of reactive oxygen species could modify macromolecules in living organisms, resulting in a wide range of measurable damage. They used the term "oxidative stress" to define the loss of the balance between oxidants and antioxidants in favor of the former. After decades of research, it became increasingly clear that cells are not simply passive receivers of oxidative modification but can act dynamically to resist and adapt to oxidants. Furthermore, many redox-sensitive pathways have been identified wherein certain oxidants (mainly hydrogen peroxide and nitric oxide) are used as messenger molecules to transduce the signals required for these adaptations. Since the turn of the century, redox signaling has developed into a vibrant multidisciplinary field of biology. To reflect the evolution of the study in this field, the definition of oxidative stress is postulated to define a state in which the pro-oxidative processes overwhelm cellular antioxidant defense due to the disruption of redox signaling and adaptation.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Dongwook Yeo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|