1
|
Zhang JJ, Guan W, Wang Y, Wang YX, An DQ, Hao ZC, Li MM, Kuang HX, Chen QS, Zhang LL, Liu Y, Yang BY. Tandem mass tag-based proteomics reveals the antiepileptic mechanism of steroidal saponins from Anemarrhena asphodeloides in Kainic acid induced epileptic rat model. Biomed Chromatogr 2024; 38:e5989. [PMID: 39171645 DOI: 10.1002/bmc.5989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Epilepsy (EP) is one of the most common neurological diseases in the world. Anemarrhena asphodeloides Bunge. (AA), as a typical heat-cleaning medicine, has been proven to possess the antiepileptic effect in clinical and experimental studies. Anemarrhena asphodeloides steroidal saponins (AAS) are main components. However, the therapeutic effects and underlying mechanisms of AAS against EP are not been fully elucidated. In this study, 63 steroidal saponins were discovered in AAS by UPLC-Q-TOF/MS analysis. Pharmacological and behavioral analysis demonstrated that AAS could significantly lower the Racine classification and reduce the frequency of generalized spike rhythm the rate of tetanic seizures in kainic acid-induced epileptic rats. Hematoxylin and eosin and Nissl staining-indicated AAS could significantly improve hippocampal injury and neuron loss in epileptic rats. TMT proteomic analysis discovered 26 different expressed proteins (DEPs), which were identified as the rescue proteins. After bioinformatic analysis, Heat Shock Protein 90 Alpha Family Class B Member 1 (Hsp90ab1) and Tyrosine 3-Monooxygenase (Ywhab) were screened as key DEPs and verified by western blotting. AAS could significantly inhibited the up-regulation of Hsp90ab1 and Ywhab in EP rats; these two proteins might be the key targets of AAS in treating EP.
Collapse
Affiliation(s)
- Jian-Jia Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Yue Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Yu-Xuan Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Dong-Qi An
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Zhi-Chao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Meng-Meng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Qing-Shan Chen
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Li-Li Zhang
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| |
Collapse
|
2
|
Cheng H, Liu Y, Xu M, Shi R, Hu L, Ba Y, Wang G. Chemical composition combined with network pharmacology and quality markers analysis for the quality evaluation of Qing-fei-da-yuan granules. ANAL SCI 2024; 40:1593-1609. [PMID: 39048764 DOI: 10.1007/s44211-024-00592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/09/2024] [Indexed: 07/27/2024]
Abstract
Qing-fei-da-yuan granules (QFDYGs) had been proved to be an effective TCM prescription for treating coronavirus disease 2019 (COVID-19), which are composed of a variety of TCMs, and characterized by multiple components, multiple targets and overall regulation. It is meaningful to further study the chemical composition and pharmacology of QFDYGs for quality evaluation. However, due to the complexity of the components of QFDYGs, there are no reliable and simple analytical methods for current quality evaluation. In this work, antipyretic activity assessment of QFDYGs in the LPS-induced New Zealand rabbit model was carried out to verify the efficacy firstly. It was proved that QFDYGs can be used to relieve fever to help preventing or controlling the prevalence of influenza and pneumonia. Subsequently, UHPLC-ESI-QTOF-MS/MS combined with network pharmacology, quality markers and fingerprint analysis were used to establish the quality control condition. The chemical compositions were analyzed by UHPLC-ESI-QTOF-MS/MS, and 79 of them were identified, such as arecoline, mangiferin, paeoniflorin, etc. Then, the network pharmacology strategy based on 45 candidate components (CCs) in conjunction with influenza and pneumonia diseases was employed to screen the potential active ingredients. According to the drug-CCs-genes-diseases (D-CCs-G-D) networks, baicalein, honokiol, baicalin, paeoniflorin, saikosaponin A, glycyrrhizic acid and hesperidin were selected as quality markers. And a method for content determination of the 7 quality markers was established by optimizing extraction methods, chromatographic conditions and methodological verification. Finally, the quality of 15 batches of QFDYGs was evaluated by using the 7 quality markers combined with fingerprints and principal component analysis (PCA). The analyzed results showed that baicalin, paeoniflorin, glycyrrhizic acid and hesperidin were the high content and stable quality markers. QFDYGs were characterized by overall consistency and individual ingredient differences among the 15 batches. Our quality evaluation study will provide reference for the further development and research of QFDYGs.
Collapse
Affiliation(s)
- Huanbo Cheng
- College of Pharmacy, Hubei Engineering Research Center of Chinese Material Medical Processing Technology, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Provincial Key Lab for Quality and Safety of Traditional, Chinese Medicine Health Food, Jing Brand Chizhengtang Pharmaceutical Co., Ltd., Hubei Provincial Traditional Chinese Medicine Formula Granule Engineering Technology Research Center, Huangshi, 435100, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Ying Liu
- Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengling Xu
- Hubei Provincial Key Lab for Quality and Safety of Traditional, Chinese Medicine Health Food, Jing Brand Chizhengtang Pharmaceutical Co., Ltd., Hubei Provincial Traditional Chinese Medicine Formula Granule Engineering Technology Research Center, Huangshi, 435100, China
| | - Ruixue Shi
- Hubei Provincial Key Lab for Quality and Safety of Traditional, Chinese Medicine Health Food, Jing Brand Chizhengtang Pharmaceutical Co., Ltd., Hubei Provincial Traditional Chinese Medicine Formula Granule Engineering Technology Research Center, Huangshi, 435100, China
| | - Lifei Hu
- Hubei Provincial Key Lab for Quality and Safety of Traditional, Chinese Medicine Health Food, Jing Brand Chizhengtang Pharmaceutical Co., Ltd., Hubei Provincial Traditional Chinese Medicine Formula Granule Engineering Technology Research Center, Huangshi, 435100, China
| | - Yuanming Ba
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430060, China.
| | - Guangzhong Wang
- College of Pharmacy, Hubei Engineering Research Center of Chinese Material Medical Processing Technology, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
3
|
Abdelrahman SESAH, El Hawary S, Mohsen E, El Raey MA, Selim HMRM, Hamdan AME, Ghareeb MA, Hamed AA. Bio-fabricated zinc oxide nanoparticles mediated by endophytic fungus Aspergillus sp. SA17 with antimicrobial and anticancer activities: in vitro supported by in silico studies. Front Microbiol 2024; 15:1366614. [PMID: 38803373 PMCID: PMC11128569 DOI: 10.3389/fmicb.2024.1366614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction In recent years, the world's attention has been drawn to antimicrobial resistance (AMR) because to the frightening prospect of growing death rates. Nanomaterials are being investigated due to their potential in a wide range of technical and biological applications. Methods The purpose of this study was to biosynthesis zinc oxide nanoparticles (ZnONPs) using Aspergillus sp. SA17 fungal extract, followed by characterization of the produced nanoparticles (NP) using electron microscopy (TEM and SEM), UV-analysis, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Results and Discussion The HR-TEM revealed spherical nanoparticles with an average size of 7.2 nm, and XRD validated the crystalline nature and crystal structure features of the generated ZnONPs, while the zeta potential was 18.16 mV, indicating that the particles' surfaces are positively charged. The FT-IR was also used to identify the biomolecules involved in the synthesis of ZnONPs. The antibacterial and anticancer properties of both the crude fungal extract and its nano-form against several microbial strains and cancer cell lines were also investigated. Inhibition zone diameters against pathogenic bacteria ranged from 3 to 13 mm, while IC50 values against cancer cell lines ranged from 17.65 to 84.55 M. Additionally, 33 compounds, including flavonoids, phenolic acids, coumarins, organic acids, anthraquinones, and lignans, were discovered through chemical profiling of the extract using UPLC-QTOF-MS/MS. Some molecules, such pomiferin and glabrol, may be useful for antibacterial purposes, according to in silico study, while daidzein 4'-sulfate showed promise as an anti-cancer metabolite.
Collapse
Affiliation(s)
| | - Seham El Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Engy Mohsen
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Cairo, Egypt
| | - Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Centre, Giza, Egypt
| |
Collapse
|
4
|
Zhao M, Xia W, Zhang P, Xie Q, Mu W, Tang L, Liu Z, Han L, Peng D. Ultra-performance liquid chromatography-quadrupole time-of-flight mass combined with UNIFI to study the mechanism of Tao Hong Si Wu Decoction in the treatment of postpartum blood stasis. J Sep Sci 2024; 47:e2300871. [PMID: 38471978 DOI: 10.1002/jssc.202300871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/14/2024]
Abstract
Postpartum hemorrhage can lead to a variety of maternal complications. Tao Hong Si Wu Decoction (THSWD) is a traditional Chinese medicine used for treating gynecological diseases. However, the active ingredients of THSWD and its pharmacological mechanism of treatment for postpartum blood stasis still remained unclear. In this study, 201 components were identified in THSWD ethanol extract using ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry, including 59 terpenoids and volatile oil, 61 Phenylpropanoids, 41 flavonoids, 22 alkaloids, and other 18 components. A total of 45 active compounds were identified in the blood and 33 active compounds were identified in the uterine. Taking the common components into the blood and into the uterus combined with network pharmacology. It was demonstrated that the active compounds can bind to the core target with good affinity through molecular docking. The results of this study will provide a reference for the quality control and pharmacodynamic material base research of THSWD.
Collapse
Affiliation(s)
- Mengdie Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wenwen Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Peiliang Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingqing Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wenyu Mu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Linfeng Tang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhuqing Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Ye Q, Lin B, Xu P, Zhang F, Wang N, Shou D. Yunvjian decoction attenuates lipopolysaccharide-induced periodontitis by suppressing NFκB/NLRP3/IL-1β pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117279. [PMID: 37802377 DOI: 10.1016/j.jep.2023.117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yunvjian decoction (YNJ) is a traditional Chinese herbal prescription that has been used in the clinical treatment of periodontitis. However, the underlying molecular mechanism of YNJ in the periodontitis treatment is not well understood. AIM OF THE STUDY The purpose of this study was to evaluate the therapeutic effects of YNJ against periodontitis and its underlying molecular mechanisms. MATERIALS AND METHODS Orthodontic ligation and lipopolysaccharide (LPS)-induced periodontitis rat model was established. YNJ groups were gavaged with YNJ decoction (5 g/kg/d or 10 g/kg/d) for four months. The rats in positive control group were gavaged with metronidazole (MDZ, 100 mg/kg/d) for four months. The maxilla was scanned by micro-computed tomography. The chemical compositions of YNJ were identified using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The molecular mechanism of YNJ were predicted using network pharmacological analysis and validated using immune-staining and Western blot. RESULTS YNJ treatment decreased the distance between cementoenamel junction and alveolar bone crest on the sagittal slide of the periodontitis rats. Western blot showed YNJ downregulated the protein levels of the bone resorption marker (receptor activator of nuclear factor-κB ligand), while upregulated the levels of the bone formation markers (bone morphogenetic protein 2, runt-related transcription factor 2, alkaline phosphatase, and osteoprotegerin) in alveolar bone of the periodontitis rats. Hematoxylin and eosin, immunohistochemical staining, and Western blot analysis indicated that YNJ attenuated the inflammation and decreased the levels of interleukin-6 and tumor necrosis factor-α in the alveolar bone. In addition, a total of 61 compounds were identified from YNJ. Network pharmacology indicated that the nucleotide binding oligomerization domain-like receptor signaling pathway was the main pathway for YNJ in the treatment of periodontitis. The experiments confirmed that YNJ administration inhibited LPS induced-pyroptosis in alveolar bone through suppressing the phosphorylation of nuclear factor κB, reduced expression of NOD-like receptor family pyrin domain containing 3, and Caspase-1, subsequently suppressing the interleukin-1β secretion. CONCLUSION YNJ is an effective therapeutic strategy for periodontitis and acts by inhibiting pyroptosis and NFκB/NLRP3/IL-1β pathway in alveolar bone.
Collapse
Affiliation(s)
- Qitao Ye
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Fanxuan Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Nani Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Dan Shou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| |
Collapse
|
6
|
Mpofana N, Yalo M, Gqaleni N, Dlova NC, Hussein AA. Analysis of Three Species of Cassipourea Traditionally Used for Hypermelanosis in Selected Provinces in South Africa. Int J Mol Sci 2023; 25:237. [PMID: 38203415 PMCID: PMC10779010 DOI: 10.3390/ijms25010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
There is a growing demand and use of herbal cosmetics for skin purposes due to their perceived safety when applied to the skin. Three Cassipourea species commonly known as "ummemezi" are used interchangeably by women in rural areas of Eastern Cape and KwaZulu-Natal provinces to treat hypermelanosis as well as sun protection. We conducted a phytochemical comparison of three Cassipourea species; Cassipourea flanaganii (Schinz) Alston, Cassipourea gummiflua Tul. verticillata (N.E.Br.) J. Lewis and Cassipourea malosana (Baker) Alston by Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis in negative mode. The results obtained from the LC-MS/MS yielded a total number of twenty-four compounds of different chemical classes, including fatty acids, steroids, di- and tri-terpenoids, flavonoids, phenolic acids, and eighteen among them were tentatively identified. The LC-MS /MS analysis showed that the three studied Cassipourea extracts contain compounds that have anti-tyrosinase activity and consequently. The presence of these compounds, either in synergy or individually, can be attributed to the anti-tyrosinase effect. Although the traditional names of the species are used interchangeably, they are different, however, they possess similar skin-lightening properties. Despite the recent popularity of modern cosmetic products, plants continue to play an important role in the local cosmetics industry in South Africa's Eastern Cape and KwaZulu-Natal community provinces.
Collapse
Affiliation(s)
- Nomakhosi Mpofana
- Nelson R Mandela School of Medicine, Department of Dermatology, University of KwaZulu-Natal, Durban 4000, South Africa; (N.M.); (N.C.D.)
- Department of Somatology, Durban University of Technology, Durban 4000, South Africa
| | - Masande Yalo
- Department of Chemistry, Cape Peninsula University of Technology, Cape Town 8000, South Africa;
| | - Nceba Gqaleni
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban 4000, South Africa;
- Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Ncoza Cordelia Dlova
- Nelson R Mandela School of Medicine, Department of Dermatology, University of KwaZulu-Natal, Durban 4000, South Africa; (N.M.); (N.C.D.)
| | - Ahmed A. Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Cape Town 8000, South Africa;
| |
Collapse
|
7
|
Wang X, Liu H, Shu L, Yao Y, Xu Y, Wei J, Li Y. Rapid identification of chemical constituents in Hugan tablets by ultra-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry. J Sep Sci 2023; 46:e2300302. [PMID: 37568249 DOI: 10.1002/jssc.202300302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Hugan tablet is a Chinese medicine preparation. It is composed of Bupleuri Radix, Artemisiae Scopariae Herba, Isatidis Radix, Schisandrae Chinensis Fructus, Suis Fellis Pulvis, and Vigna radiata L. It has the effects of dispersing stagnated liver qi, strengthening the spleen and eliminating food to be used for the treatment of chronic hepatitis and early cirrhosis. However, the chemical composition of Hugan tablet is complex and not fully understood, which hampers the research in pharmacology. In this study, a reliable method for the rapid analysis and identification of the chemical components in Hugan tablet by their characteristic fragments and neutral losses using ultra-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry was developed. A total of 144 chemical components were tentatively identified, including 57 organic acids, 19 flavonoids, 23 alkaloids, 18 lignans, 7 saponins, and 20 others. These components may be the active ingredients of Hugan tablet. The established method can systematically and rapidly analyze the chemical components in Hugan tablet, which provides a basis for the pharmacodynamic substance study and is meaningful for the quality control of Hugan tablet.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Huiru Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
8
|
Liu C, Cong Z, Wang S, Zhang X, Song H, Xu T, Kong H, Gao P, Liu X. A review of the botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality of Anemarrhena asphodeloides Bunge. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115857. [PMID: 36330891 DOI: 10.1016/j.jep.2022.115857] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizomes of Anemarrhena asphodeloides Bunge., belonging to the family Liliaceae, are named 'Zhi-mu' according to traditional Chinese medicine theory. It is a medicinal plant that has long been used as a tonic agent in various ethnomedicinal systems in East Asia, especially in China, and also for treating arthralgia, hematochezia, tidal fever, night sweats, cough, dry mouth and tongue, hemoptysis, etc. THE ARM OF THE REVIEW: The review aims to provide a systematic overview of botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality control of Anemarrhena asphodeloides and to explore the future therapeutic potential and scientific potential of this plant. MATERIALS AND METHODS A comprehensive literature search was performed on Anemarrhena asphodeloides using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier, SpringerLink, ACS publications, ancient books, Doctoral and master's Theses. Collected data from different sources was comprehensively summarised for botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality control of Anemarrhena asphodeloides. RESULTS A comprehensive analysis of the literature as mentioned above confirmed that the ethnomedical uses of Anemarrhena asphodeloides had a history of thousands of years in eastern Asian countries. Two hundred sixty-nine compounds have been identified from Anemarrhena asphodeloides, including steroidal saponins, flavonoids, phenylpropanoids, alkaloids, steroids, organic acids, polysaccharides, benzophenones and other ingredients. Studies have shown that the extracts and compounds from Anemarrhena asphodeloides have extensive pharmacological activities, such as nervous system activity, antitumour, anti-inflammatory, antidiabetic, antiosteoporotic, antiallergic, antiplatelet aggregation, antimicrobial, antiviral, anti-ageing, hair growth promoting, preventing cell damage, etc. Evaluating the quality and toxicity of Anemarrhena asphodeloides is essential to confirm its safe use in humans. CONCLUSION Anemarrhena asphodeloides is widely used in traditional medicine and have diverse chemical constituents with obvious biological activities. Nevertheless, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity and confirm its safe use.
Collapse
Affiliation(s)
- Congying Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute, Shandong Cancer Hospital and Institute, Jinan, 250117, China
| | - Shengguang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huaying Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tianren Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongwei Kong
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Peng Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaonan Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
9
|
In vivo and in vitro evidence for growth hormone-like bioactivity of Rhizoma Anemarrhenae extract. Biomed Pharmacother 2022; 153:113489. [DOI: 10.1016/j.biopha.2022.113489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
|
10
|
Liu J, Zhao M, Zhang S, Liu J, Zhao C, Wang M. Rapid characterization of the chemical constituents of Wangbi Capsule by UPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wang M, Li H, Gao Y, Li Y, Sun Y, Liu S, Liu Z. A multidimensional strategy to rapidly identify the chemical constituents in Shengxian Decoction by using ultra-performance liquid chromatography coupled with ion mobility spectrometry quadrupole time-of-flight mass spectrometry. J Sep Sci 2022; 45:3115-3127. [PMID: 35808989 DOI: 10.1002/jssc.202200267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
As a well-known traditional Chinese medicine formula, the chemical constituents of Shengxian Decoction still remain unclear due to its complexity. In this study, a multidimensional strategy based on ultra-performance liquid chromatography coupled with ion mobility spectrometry quadrupole time-of-flight mass spectrometry and informatics UNIFI™ platform was applied to achieve rapid and comprehensive identification of the complex composition of Shengxian Decoction. Data-independent acquisition, fast data-directed analysis, and high-definition MSE were used to obtain more and cleaner mass spectrum information. As a result, a total of 120 compounds including 74 saponins, 17 flavonoids,7 cinnamic acid derivatives, 8 triterpenoids and 14 others were identified or tentatively characterized by high-resolution molecular mass, fragment ions, and collision cross-section values. Furthermore, high-definition MSE was used to identify six pairs of co-eluting isomers that could not be detected from conventional data-independent acquisition and data-independent acquisition. This research strategy has a certain potential for the analysis of other Compound formulae and lays the foundation for the study of traditional Chinese medicine efficacy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meiyuan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Hanlin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yang Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yanyi Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yuzhen Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
12
|
Jinbiao L, Xinyue Z, Shenshen Y, Shuo W, Chengcheng L, Bin Y, Yubo L, Ting C. Rapid Identification of Characteristic Chemical Constituents of Panax ginseng, Panax quinquefolius, and Panax japonicus Using UPLC-Q-TOF/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:6463770. [PMID: 35340764 PMCID: PMC8947929 DOI: 10.1155/2022/6463770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Saponins are the main active components in Panax ginseng C. A. Mey. (PG), Panax quinquefolius L. (PQ), and Panax japonicus C. A. Mey. (PJ), which belong to the genus Panax in the Araliaceae family. Because the chemical components in the three species are similar, they are often mixed and misused in functional foods and pharmaceuticals applications. Therefore, it is urgent to establish a method to quickly distinguish among PG, PQ, and PJ. Ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was combined with data postprocessing to identify the main characteristic fragments (CFs) and the related neutral losses (NLs) of protopanaxadiol (PPD), protopanaxatriol (PPT), oleanolic acid (OLE), and ocotillol- (OCO-) type saponins. By comparing the mass spectral data, it was possible to rapidly classify and identify saponins in PG, PQ, and PJ. A total of twenty-three chemical components were identified in the PG samples, twenty-three components were identified in the PQ samples, and twenty-seven components were identified in the PJ samples. Among them, OCO-type saponins were characteristic of PQ and PJ. Ginsenoside Rf, which was absent from PQ, allowed for differentiation between PQ and PJ. The CFs and NLs in the mass spectra of the characteristic components of PG, PQ, and PJ allowed for the rapid classification and identification of these species. Additionally, these results provide technical support for the quality evaluation of Chinese herbal medicine and for constructing a scientific regulatory system.
Collapse
Affiliation(s)
- Liu Jinbiao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhang Xinyue
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo 315010, China
| | - Yang Shenshen
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Wang Shuo
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Liu Chengcheng
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yang Bin
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Li Yubo
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Cai Ting
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo 315010, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, China
| |
Collapse
|
13
|
A strategy for intelligent chemical profiling-guided precise quantitation of multi-components in traditional Chinese medicine formulae-QiangHuoShengShi decoction. J Chromatogr A 2021; 1649:462178. [PMID: 34038783 DOI: 10.1016/j.chroma.2021.462178] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 01/30/2023]
Abstract
Due to the tremendous clinical value, more and more Traditional Chinese Medicines (TCMs) and their formulae are attracted by world's attention. QiangHuoShengShi (QHSS) decoction is one of classic TCM formulae, which is clinically used for treating various rheumatic diseases. However, the phytochemical constituents of QHSS have rarely been reported. A simple, intelligent, and comprehensive strategy was developed to characterize the phytochemical-fingerprint and quantify the chemical-markers for precise quality evaluation of QHSS. Firstly, a new deep-learning assisted mass defect filter (MDF) method was built for rapid and accurate classification of mass spectrum (MS) ions acquired by ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UHPLC-Q-TOF/MS). Subsequently, herb species-specific chemical-category and characteristic identification were used for further characterization of multi-components. As the result, seven major types of compounds in QHSS were intelligently differentiated and 183 phytochemical compounds were tentatively identified. Finally, a sensitive scheduled multiple reaction monitoring (sMRM) detection method was applied to precisely quantify 37 target analytes in QHSS decoction. This integrated strategy would provide an alternative method for chemical-material basis study of more herbal medicine or natural products.
Collapse
|
14
|
Aabideen ZU, Mumtaz MW, Akhtar MT, Mukhtar H, Raza SA, Touqeer T, Saari N. Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum officinale. Molecules 2020; 25:E4935. [PMID: 33114490 PMCID: PMC7663631 DOI: 10.3390/molecules25214935] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management.
Collapse
Affiliation(s)
- Zain Ul Aabideen
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan; (Z.U.A.); (T.T.)
| | | | - Muhammad Tayyab Akhtar
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (M.T.A.); (H.M.)
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (M.T.A.); (H.M.)
| | - Syed Ali Raza
- Department of Chemistry, GC University Lahore, Lahore 54000, Pakistan;
| | - Tooba Touqeer
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan; (Z.U.A.); (T.T.)
| | - Nazamid Saari
- Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
15
|
Avula B, Bae J, Wang Y, Wang M, Osman AG, Smith K, Yuk J, Ali Z, Plumb R, Isaac G, Khan IA. Chemical profiling and characterization of phenolic acids, flavonoids, terpene glycosides from
Vangueria agrestis
using ultra‐high‐performance liquid chromatography/ion mobility quadrupole time‐of‐flight mass spectrometry and metabolomics approach. Biomed Chromatogr 2020; 34:e4840. [DOI: 10.1002/bmc.4840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Bharathi Avula
- National Center for Natural Products Research, School of PharmacyUniversity of Mississippi University MS USA
| | - Ji‐Yeong Bae
- National Center for Natural Products Research, School of PharmacyUniversity of Mississippi University MS USA
| | - Yan‐Hong Wang
- National Center for Natural Products Research, School of PharmacyUniversity of Mississippi University MS USA
| | - Mei Wang
- National Center for Natural Products Research, School of PharmacyUniversity of Mississippi University MS USA
| | - Ahmed Galal Osman
- National Center for Natural Products Research, School of PharmacyUniversity of Mississippi University MS USA
| | - Kerri Smith
- Waters Corporation Milford Massachusetts USA
| | - Jimmy Yuk
- Waters Corporation Milford Massachusetts USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of PharmacyUniversity of Mississippi University MS USA
| | | | | | - Ikhlas A. Khan
- National Center for Natural Products Research, School of PharmacyUniversity of Mississippi University MS USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of PharmacyUniversity of Mississippi University MS USA
| |
Collapse
|
16
|
Tang XY, Gao MX, Xiao HH, Yun WJ, Dai Y, Yao ZH, Wong MS, Yao XS. Simultaneous Quantitative Analysis of Multiple Biotransformation Products of Xian-Ling-Gu-Bao, a Traditional Chinese Medicine Prescription, with Rat Intestinal Microflora by Ultra-Performance Liquid Chromatography Tandem Triple Quadrupole Mass Spectrometry. J Chromatogr Sci 2020; 58:494-503. [PMID: 32236407 DOI: 10.1093/chromsci/bmaa012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 12/11/2019] [Accepted: 02/25/2020] [Indexed: 11/15/2022]
Abstract
Abstract
Xian-Ling-Gu-Bao (XLGB), a famous traditional Chinese medicine prescription consisted of six herbal medicines, was used for prevention and treatment of osteoporosis in China. As an oral formulation, the multiple components contained in XLGB were inevitably biotransformed by the intestinal microflora before absorption via the gastrointestinal tract. However, the dynamic profiles of biotransformation products of XLGB remain unknown. In this paper, a rapid and sensitive ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry method was developed for the simultaneous quantitative analysis of multiple biotransformation products of XLGB with rat intestinal microflora. For 10 selected quantitative compounds, all calibration curves revealed good linearity (r2 > 0.99) within the sampling ranges considered. The whole intra- and inter-day precisions (as relative standard deviation) of all analytes were <13.5%, and the accuracies (as relative error) were in the range from −11.3 to 11.2%. The lower limits of quantification were 20, 10, 5, 20, 2, 2, 2, 5, 2 and 2 ng/mL for sweroside, timosaponin BII, epimedin C, asperosaponin VI, psoralen, isobavachin, icariside II, timosaponin AIII, isobavachalcone and icaritin, respectively. The matrix effects, extraction recoveries and stabilities were all satisfactory. Meanwhile, dynamic profiles of 21 additional biotransformation products were also monitored by their area-time curves. The analytical method was successfully applied to describe dynamic profiles of 31 biotransformation products of XLGB and the recipes with removal of a definite composed herbal medicine (Anemarrhenae Rhizoma or Rehmanniae Radix).
Collapse
Affiliation(s)
- Xi-Yang Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou 510632, China
| | - Meng-Xue Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou 510632, China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Nanshan District, Shenzhen 518057, China
| | - Wei-Jing Yun
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenhe District, Shenyang 110016, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou 510632, China
| | - Zhi-Hong Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou 510632, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Nanshan District, Shenzhen 518057, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou 510632, China
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenhe District, Shenyang 110016, China
| |
Collapse
|
17
|
Metabolite Profiling of Aquilaria malaccensis Leaf Extract Using Liquid Chromatography-Q-TOF-Mass Spectrometry and Investigation of Its Potential Antilipoxygenase Activity In-Vitro. Processes (Basel) 2020. [DOI: 10.3390/pr8020202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Aquilaria malaccensis species of the genus Aquilaria is an abundant source of agarwood resin and many bioactive phytochemicals. Recent data regarding the chemical constituents and biological activities of Aquilaria leaves led us to attempt to qualitatively profile the metabolites of Aquilaria malaccensis leaves from a healthy, noninoculated tree through phytochemical screening, GC-MS, and LC/Q-TOF-MS. The present work is also the first to report the antilipoxygenase activity of A. malaccensis leaves from healthy noninoculated tree and investigate its toxicity on oral mucosal cells. A total of 53 compounds were tentatively identified in the extract, some of which have been described in literature as exhibiting anti-inflammatory activity. A number of compounds were identified for the first time in the extract of A. malaccensis leaf, including quercetin, quercetin-O-hexoside, kaempferol-O-dirhamnoside, isorhamnetin-O-hexoside, syringetin-O-hexoside, myricetin, tetrahydroxyflavanone, hesperetin, sissotrin, and lupeol. The antilipoxygenase assay was used to determine the lipoxygenase (LOX) inhibitory potential of the extract, while a WST-1 assay was conducted to investigate the effect of the extract on oral epithelial cells (OEC). The extract implied moderate anti-LOX activity with IC50 value of 71.6 µg/mL. Meanwhile, the cell viability of OEC ranged between 92.55% (10 µg/mL)–76.06% ± (100 µg/mL) upon treatment, indicating some potential toxicity risks. The results attained encourage future studies of the isolation of bioactive compounds from Aquilaria malaccensis leaves, as well as further investigation on the anti-inflammatory mechanisms and toxicity associated with their use.
Collapse
|
18
|
Simultaneous determination of multiple components in rat plasma and pharmacokinetic studies at a pharmacodynamic dose of Xian-Ling-Gu-Bao capsule by UPLC-MS/MS. J Pharm Biomed Anal 2020; 177:112836. [DOI: 10.1016/j.jpba.2019.112836] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/08/2019] [Accepted: 08/24/2019] [Indexed: 01/08/2023]
|
19
|
Beshel JA, Palacios J, Beshel FN, Nku CO, Owu DU, Nwokocha M, Bórquez J, Simirgiotis MJ, Nwokocha CR. Blood pressure-reducing activity of Gongronema latifolium Benth. (Apocynaeceae) and the identification of its main phytochemicals by UHPLC Q-Orbitrap mass spectrometry. J Basic Clin Physiol Pharmacol 2019; 31:jbcpp-2018-0178. [PMID: 32037779 DOI: 10.1515/jbcpp-2018-0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 06/25/2019] [Indexed: 01/15/2023]
Abstract
Background Gongronema latifolium Benth. (family Apocynaceae) leaves (GL) has interesting medicinal properties. The effects of extracts from G. latifolium on blood pressure (BP) and the possible mechanisms of action were also investigated. Methods The ultrahigh resolution liquid chromatography orbitrap MS analysis was used to identify the phytochemicals present. Normotensive Wistar rats were anesthetized with sodium pentobarbitone (40 mg/kg) intraperitoneally, and the jugular vein was cannulated for infusion of drugs while the carotid artery was cannulated for direct BP measurement. GL extract (5-20 mg) alone or with nifedipine (10 mg/kg), atropine (2 mg/kg), L-NAME (5 mg/kg), methyl blue (3 mg/kg) and propranolol (1 mg/kg) were administered intravenously to Wistar rats and direct BP measurements were carried out. Results Systolic and diastolic BP levels (128/90 mm Hg; MAP 103 ± 3 mm Hg) and heart rates were all significantly (p < 0.01) decreased after GL administration. Raised mean arterial pressure (MAP) and heart rate by atropine, L-NAME and methyl blue were significantly (p < 0.01) reduced after GL administration, while propranolol significantly (p < 0.01) inhibited hypotension caused by GL. Infusion of GL reduced MAP (95 ± 3 mm Hg) comparable with nifedipine (93 ± 2 mm Hg), a calcium channel blocker. The phytochemicals identified were 34 compounds, including oleanolic acid derivatives, flavonoids, antioxidant fatty acids, 2 coumarins and 2 iridoids. Conclusions These results suggest that G. latifolium has hypotensive properties mediated by the synergistic activity of the compounds, probably via the β-adrenergic blockade mechanism.
Collapse
Affiliation(s)
- Justin Atiang Beshel
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Javier Palacios
- Facultad de Ciencias de la Salud, Instituto de EtnoFarmacología (IDE), Universidad Arturo Prat., Iquique, Chile
| | - Favour Nyoh Beshel
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Clement Oshie Nku
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Daniel U Owu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria, Phone: +234 8093243446
| | - Magdalene Nwokocha
- Department of Pathology, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Chukwuemeka R Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| |
Collapse
|
20
|
Wang S, Liu M, Wang W, Li T, Cui M, Sun W, Yang X, Song S. Preparation and Evaluation of mPEG-PLGA Block Copolymer Micelles Loaded with a Sarsasapogenin Derivative. AAPS PharmSciTech 2019; 20:280. [PMID: 31399832 DOI: 10.1208/s12249-019-1491-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Sarsasapogenin derivative 5n (SGD 5n) is a new compound with potent antitumor efficacy, but the low solubility severely affects its absorption and bioavailability. Therefore, the SGD 5n-loaded mPEG-PLGA block copolymer micelles were developed to improve the value of SGD 5n in clinical application. The polymeric micelles were prepared by an organic solvent evaporation method, and the encapsulation efficiency (EE), drug loading (DL), critical micelle concentrations (CMC), morphology, particle size, and zeta potential were determined. The cytotoxicity was examined by the MTT assay, and the cellular uptake study was performed by confocal laser scanning microscopy. A model of tumor-bearing mouse was established to study the antitumor activity in vivo. The results demonstrated that the particle size of the prepared micelle was 124.6 ± 9.6 nm, the encapsulation efficiency was 82.0 ± 2.9%, and the drug loading was 8.3 ± 0.4%. The results of cytotoxicity and cellular uptake demonstrated that the SGD 5n-loaded micelles could efficiently enter tumor cells, and the cellular uptake of SGD 5n presented concentration and time dependence. This study demonstrated that the prepared SGD 5n-loaded polymeric micelles had significant antitumor activity and provided a basis for clinical development of new compound SGD 5n.
Collapse
|
21
|
Shan L, Yang N, Zhao Y, Sheng X, Yang S, Li Y. A rapid classification and identification method applied to the analysis of glycosides in Bupleuri radix
and liquorice by ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci 2018; 41:3791-3805. [DOI: 10.1002/jssc.201800619] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Lanlan Shan
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Na Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Yiwei Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Xue Sheng
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Yubo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| |
Collapse
|
22
|
Isolation and Identification of the Anti-Oxidant Constituents from Loropetalum chinense ( R. Brown) Oliv. Based on UHPLC⁻Q-TOF-MS/MS. Molecules 2018; 23:molecules23071720. [PMID: 30011908 PMCID: PMC6099825 DOI: 10.3390/molecules23071720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to identify the chemical constituents of Loropetalum chinense (R. Brown) Oliv. (LCO) and determine which of these had antioxidant effects. The chemical composition of a 70% ethanol extract of LCO was analyzed systematically using UHPLC–Q-TOF-MS/MS. The chemical components of the 70% ethanol extract of LCO were then separated and purified using macroporous resin and chromatographic techniques. Antioxidant activity was evaluated using a DPPH assay. In total, 100 compounds were identified tentatively, including 42 gallic acid tannins, 49 flavones, and 9 phenolic compounds. Of these, 7 gallium gallate, 4 flavonoid and 8 quinic acid compounds were separated and purified from the 70% ethanol extract of LCO. The compounds identified for the first time in LCO and in the genus Loropetalum were 3,4,5-trimethoxyphenyl-(6′-O-galloyl)-O-β-d-glucopyranoside, protocatechuic acid, ethyl gallate, 5-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, 3,5-O-diocaffeoylquinic acid, 4,5-O-diocaffeoylquinic acid and 3,4-O-diocaffeoylquinic acid. The 50% inhibitory concentration (IC50) values of compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, gallic acid, protocatechuic acid, and ethyl gallate were 1.88, 1.05, 1.18, and 1.05 μg/mL, respectively. Compared with the control group (VC) (2.08 μg/mL), these compounds exhibited stronger anti-oxidation activity. This study offered considerable insight into the chemical composition of LCO, with preliminary identification of the antioxidant ingredients.
Collapse
|