1
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
2
|
Bathrinarayanan PV, Hallam SM, Grover LM, Vigolo D, Simmons MJH. Microfluidics as a Powerful Tool to Investigate Microvascular Dysfunction in Trauma Conditions: A Review of the State-of-the-Art. Adv Biol (Weinh) 2024; 8:e2400037. [PMID: 39031943 DOI: 10.1002/adbi.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Indexed: 07/22/2024]
Abstract
Skeletal muscle trauma such as fracture or crush injury can result in a life-threatening condition called acute compartment syndrome (ACS), which involves elevated compartmental pressure within a closed osteo-fascial compartment, leading to collapse of the microvasculature and resulting in necrosis of the tissue due to ischemia. Diagnosis of ACS is complex and controversial due to the lack of standardized objective methods, which results in high rates of misdiagnosis/late diagnosis, leading to permanent neuro-muscular damage. ACS pathophysiology is poorly understood at a cellular level due to the lack of physiologically relevant models. In this context, microfluidics organ-on-chip systems (OOCs) provide an exciting opportunity to investigate the cellular mechanisms of microvascular dysfunction that leads to ACS. In this article, the state-of-the-art OOCs designs and strategies used to investigate microvasculature dysfunction mechanisms is reviewed. The differential effects of hemodynamic shear stress on endothelial cell characteristics such as morphology, permeability, and inflammation, all of which are altered during microvascular dysfunction is highlighted. The article then critically reviews the importance of microfluidics to investigate closely related microvascular pathologies that cause ACS. The article concludes by discussing potential biomarkers of ACS with a special emphasis on glycocalyx and providing a future perspective.
Collapse
Affiliation(s)
- P Vasanthi Bathrinarayanan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S M Hallam
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - D Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
3
|
Wang L, Wang J, Xu A, Wei L, Pei M, Shen T, Xian X, Yang K, Fei L, Pan Y, Yang H, Wang X. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology 2024; 22:472. [PMID: 39118155 PMCID: PMC11312222 DOI: 10.1186/s12951-024-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tuwei Shen
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xian Xian
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450099, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China.
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
4
|
Soltani-Fard E, Taghvimi S, Karimi F, Vahedi F, Khatami SH, Behrooj H, Deylami Hayati M, Movahedpour A, Ghasemi H. Urinary biomarkers in diabetic nephropathy. Clin Chim Acta 2024; 561:119762. [PMID: 38844018 DOI: 10.1016/j.cca.2024.119762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Diabetic nephropathy (DN), a significant consequence of diabetes, is associated with adverse cardiovascular and renal disease as well as mortality. Although microalbuminuria is considered the best non-invasive marker for DN, better predictive markers are needed of sufficient sensitivity and specificity to detect disease in general and in early disease specifically. Even prior to appearance of microalbuminuria, urinary biomarkers increase in diabetics and can serve as accurate nephropathy biomarkers even in normoalbuminuria. In this review, a number of novel urine biomarkers including those reflecting kidney damage caused by glomerular/podocyte damage, tubular damage, oxidative stress, inflammation, and intrarenal renin-angiotensin system activation are discussed. Our review also includes emerging biomarkers such as urinary microRNAs. These short noncoding miRNAs regulate gene expression and could be utilized to identify potential novel biomarkers in DN development and progression. .
Collapse
Affiliation(s)
- Elahe Soltani-Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Farzaneh Vahedi
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
5
|
Hassan NH, Saleh D, Abo El-Khair SM, Almasry SM, Ibrahim A. The relation between autophagy modulation by intermittent fasting and aquaporin 2 expression in experimentally induced diabetic nephropathy in albino rat. Tissue Cell 2024; 88:102395. [PMID: 38692159 DOI: 10.1016/j.tice.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Polyuria is an early sign of diabetic nephropathy (DN) that produces dehydration in diabetic patients. This could be caused by alteration of renal aquaporin 2 (AQP2) expression. This study aimed to describe the relation between autophagy modulation via intermittent fasting (IF) and renal AQP2 expression and polyuria in case of DN. We divided the rats into control, DN and IF groups. After 2 and 4 weeks of diabetes induction, blood glucose (BG), serum creatinine (Scr), urine volume, and 24 hours urine protein (UP) were examined. Diabetic nephropathy histopathological index (DNHI) was calculated to evaluate histopathological changes. Immunohistochemistry and real-time PCR were performed to measure the levels of AQP2 and the autophagy marker; LC3 in kidney tissue. DNHI was correlated to the PCR and immunoexpression of AQP2 and LC3. Intermittent fasting significantly decreased the BG, Scr, urine volume, 24 hours UP, and DNHI as compared diabetes. Diabetes significantly elevated the immunoreactivity and mRNA expression levels of AQP2 and LC3 as compared to the control. However, the IF decreased AQP2 and stimulated autophagy in cyclic fashion. Our data revealed significant positive correlations between AQP2 and LC3 at the level of immunoexpression and mRNA at 2nd weeks. Taken together, these data showed that autophagy stimulation didn't regulate AQP2 expression in case of diabetic nephropathy, however IF decreased polyuria through improvement of glycemic state.
Collapse
Affiliation(s)
- Nora Hisham Hassan
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt.
| | - Dalia Saleh
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| | - Salwa M Abo El-Khair
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Shaima M Almasry
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| | - Amira Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
6
|
Li Q, Zhang J, Fang Y, Dai Y, Jia P, Shen Z, Xu S, Ding X, Zhou F. Phosphoproteome Profiling of uEVs Reveals p-AQP2 and p-GSK3β as Potential Markers for Diabetic Nephropathy. Molecules 2023; 28:5605. [PMID: 37513479 PMCID: PMC10383182 DOI: 10.3390/molecules28145605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) contributes to increased morbidity and mortality among patients with diabetes and presents a considerable global health challenge. However, reliable biomarkers of DN have not yet been established. Phosphorylated proteins are crucial for disease progression. However, their diagnostic potential remains unexplored. In this study, we used ultra-high-sensitivity quantitative phosphoproteomics to identify phosphoproteins in urinary extracellular vesicles (uEVs) as potential biomarkers of DN. We detected 233 phosphopeptides within the uEVs, with 47 phosphoproteins exhibiting significant alterations in patients with DN compared to those in patients with diabetes. From these phosphoproteins, we selected phosphorylated aquaporin-2 (p-AQP2[S256]) and phosphorylated glycogen synthase kinase-3β (p-GSK3β[Y216]) for validation, as they were significantly overrepresented in pathway analyses and previously implicated in DN pathogenesis. Both phosphoproteins were successfully confirmed through Phos-tag western blotting in uEVs and immunohistochemistry staining in kidney sections, suggesting that phosphoprotein alterations in uEVs reflect corresponding changes within the kidney and their potential as candidate biomarkers for DN. Our research proposes the utilization of phosphoproteins in uEVs as a liquid biopsy, presenting a highly feasible diagnostic tool for kidney disease.
Collapse
Affiliation(s)
- Qing Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Yan Dai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Sujuan Xu
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Feng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Minister of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Agborbesong E, Bissler J, Li X. Liquid Biopsy at the Frontier of Kidney Diseases: Application of Exosomes in Diagnostics and Therapeutics. Genes (Basel) 2023; 14:1367. [PMID: 37510273 PMCID: PMC10379367 DOI: 10.3390/genes14071367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In the era of precision medicine, liquid biopsy techniques, especially the use of urine analysis, represent a paradigm shift in the identification of biomarkers, with considerable implications for clinical practice in the field of nephrology. In kidney diseases, the use of this non-invasive tool to identify specific and sensitive biomarkers other than plasma creatinine and the glomerular filtration rate is becoming crucial for the diagnosis and assessment of a patient's condition. In recent years, studies have drawn attention to the importance of exosomes for diagnostic and therapeutic purposes in kidney diseases. Exosomes are nano-sized extracellular vesicles with a lipid bilayer structure, composed of a variety of biologically active substances. In the context of kidney diseases, studies have demonstrated that exosomes are valuable carriers of information and are delivery vectors, rendering them appealing candidates as biomarkers and drug delivery vehicles with beneficial therapeutic outcomes for kidney diseases. This review summarizes the applications of exosomes in kidney diseases, emphasizing the current biomarkers of renal diseases identified from urinary exosomes and the therapeutic applications of exosomes with reference to drug delivery and immunomodulation. Finally, we discuss the challenges encountered when using exosomes for therapeutic purposes and how these may affect its clinical applications.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Mishra DD, Sahoo B, Maurya PK, Sharma R, Varughese S, Prasad N, Tiwari S. Therapeutic potential of urine exosomes derived from rats with diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1157194. [PMID: 37251672 PMCID: PMC10213426 DOI: 10.3389/fendo.2023.1157194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Kidney disease is prevalent in diabetes. Urinary exosomes (uE) from animal models and patients with Diabetic nephropathy (DN) showed increased levels of miRs with reno-protective potential. We examined whether urinary loss of such miRs is associated with their reduced renal levels in DN patients. We also tested whether injecting uE can leverage kidney disease in rats. In this study (study-1) we performed microarray profiling of miRNA in uE and renal tissues in DN patients and subjects with diabetes without DN (controls). In study-2, diabetes was induced in Wistar rats by Streptozotocin (i.p. 50 mg/kg of body weight). Urinary exosomes were collected at 6th, 7th and 8th weeks, and injected back into the rats (100ug/biweekly, uE-treated n=7) via tail vein on weeks 9 and 10. Equal volume of vehicle was injected in controls (vehicle, n=7). uE from the human and rat showed the presence of exosome-specific proteins by immunoblotting. Microarray profiling revealed a set of 15 miRs having high levels in the uE, while lower in renal biopsies, from DN, compared to controls (n=5-9/group). Bioinformatic analysis also confirmed the Renoprotective potential of these miRs. Taqman qPCR confirmed the opposite regulation of miR-200c-3p and miR-24-3p in paired uE and renal biopsy samples from DN patients (n=15), relative to non-DN controls. A rise in 28 miRs levels, including miR-200c-3p, miR-24-3p, miR-30a-3p and miR-23a-3p were observed in the uE of DN rats, collected between 6th-8th weeks, relative to baseline (before diabetes induction). uE- treated DN rats had significantly reduced urine albumin-to-creatinine ratio, attenuated renal pathology, and lower miR-24-3p target fibrotic/inflammatory genes (TGF-beta, and Collagen IV), relative to vehicle treated DN rats. In uE treated rats, the renal expression of miR-24-3p, miR-30a-3p, let-7a-5p and miR-23a-3p was increased, relative to vehicle control. Patients with diabetic nephropathy had reduced renal levels, while higher uE abundance of miRs with reno-protective potential. Reverting the urinary loss of miRs by injecting uE attenuated renal pathology in diabetic rats.
Collapse
Affiliation(s)
- Deendayal Das Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Biswajit Sahoo
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pramod Kumar Maurya
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rajni Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
9
|
Xu F, Xia C, Dou L, Huang X. Knowledge mapping of exosomes in metabolic diseases: a bibliometric analysis (2007-2022). Front Endocrinol (Lausanne) 2023; 14:1176430. [PMID: 37223047 PMCID: PMC10200891 DOI: 10.3389/fendo.2023.1176430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Background Research on exosomes in metabolic diseases has been gaining attention, but a comprehensive and objective report on the current state of research is lacking. This study aimed to conduct a bibliometric analysis of publications on "exosomes in metabolic diseases" to analyze the current status and trends of research using visualization methods. Methods The web of science core collection was searched for publications on exosomes in metabolic diseases from 2007 to 2022. Three software packages, VOSviewer, CiteSpace, and R package "bibliometrix" were used for the bibliometric analysis. Results A total of 532 papers were analyzed, authored by 29,705 researchers from 46 countries/regions and 923 institutions, published in 310 academic journals. The number of publications related to exosomes in metabolic diseases is gradually increasing. China and the United States were the most productive countries, while Ciber Centro de Investigacion Biomedica en Red was the most active institution. The International Journal of Molecular Sciences published the most relevant studies, and Plos One received the most citations. Khalyfa, Abdelnaby published the most papers and Thery, C was the most cited. The ten most co-cited references were considered as the knowledge base. After analysis, the most common keywords were microRNAs, biomarkers, insulin resistance, expression, and obesity. Applying basic research related on exosomes in metabolic diseases to clinical diagnosis and treatment is a research hotspot and trend. Conclusion This study provides a comprehensive summary of research trends and developments in exosomes in metabolic diseases through bibliometrics. The information points out the research frontiers and hot directions in recent years and will provide a reference for researchers in this field.
Collapse
Affiliation(s)
- Fangzhi Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Chenxi Xia
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| |
Collapse
|
10
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
11
|
Liu J, Duan G, Yang W, Zhang S, Liu F, Peng Y, Sun L, Liu Y, Xiao L. Identification of transcription factors related to diabetic tubulointerstitial injury. J Transl Med 2023; 21:228. [PMID: 36978091 PMCID: PMC10053902 DOI: 10.1186/s12967-023-04069-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a main cause of chronic renal failure. Despite decades of extensive study, the molecular mechanisms underlying diabetic tubulointerstitial injury remain unclear. We aim to identify key transcription factor genes involved in diabetic tubulointerstitial injury. METHODS A microarray dataset (GSE30122) from Gene Expression Omnibus (GEO) was downloaded. A total of 38 transcription factor genes based on 166 differentially expressed genes (DEGs) were identified by UCSC_TFBS. RESULTS The regulatory network showed connections between the top 10 transcription factors and their target DEGs. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of targeted DEGs indicated that extracellular space, extracellular exosome, cell surface and complement and coagulation cascades were most significantly enriched. Utilizing Nephroseq v5 online platform, the mRNA expression pattern analysis of transcription factor genes demonstrated that mRNA expression of CDC5, CEBPA, FAC1, HFH1, IRF1, NFE2 and TGIF1 increased in renal tubulointerstitium of DN patients compared with normal controls while that of CEBPB and FOXO4 decreased in renal tubulointerstitium of DN patients compared with normal controls. Correlation analysis between mRNA expression of transcription factor genes in renal tubulointerstitium and clinical features showed that AP1, BACH1, CDC5, FAC1, FOXD1, FOXJ2, FOXO1, FOXO4, HFH1, IRF1, POU3F2, SOX5, SOX9, RSRFC4, S8 and TGIF1 may be related to diabetic tubulointerstitial injury. CONCLUSIONS (1) CDC5, FAC1, FOXO4, HFH1, IRF1 and TGIF1 may be key transcription factor genes. (2)Transcription factors involved in diabetic tubulointerstitial injury may become prospective targets for diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Jialu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Guangzhong Duan
- Hunan Communication Polytechnic, Changsha, 410132, Hunan, China
| | - Wenxia Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shumin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Qiu Z, Jiang T, Li Y, Wang W, Yang B. Aquaporins in Urinary System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:155-177. [PMID: 36717493 DOI: 10.1007/978-981-19-7415-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There are at least eight aquaporins (AQPs) expressed in the kidney. Including AQP1 expressed in proximal tubules, thin descending limb of Henle and vasa recta; AQP2, AQP3, AQP4, AQP5, and AQP6 expressed in collecting ducts; AQP7 expressed in proximal tubules; AQP8 expressed in proximal tubules and collecting ducts; and AQP11 expressed in the endoplasmic reticulum of proximal tubular epithelial cells. Over years, researchers have constructed different AQP knockout mice and explored the effect of AQP knockout on kidney function. Thus, the roles of AQPs in renal physiology are revealed, providing very useful information for addressing fundamental questions about transepithelial water transport and the mechanism of near isoosmolar fluid reabsorption. This chapter introduces the localization and function of AQPs in the kidney and their roles in different kidney diseases to reveal the prospects of AQPs in further basic and clinical studies.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tao Jiang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
13
|
Thongboonkerd V, Kanlaya R. The divergent roles of exosomes in kidney diseases: Pathogenesis, diagnostics, prognostics and therapeutics. Int J Biochem Cell Biol 2022; 149:106262. [PMID: 35787447 DOI: 10.1016/j.biocel.2022.106262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Exosomes are the self-packed nanoscale vesicles (nanovesicles) derived from late endosomes and released from the cells to the extracellular milieu. Exosomal biogenesis is based on endosomal pathway to form the nanovesicles surrounded by membrane originated from plasma membranes of the parental cells. During biogenesis, exosomes selectively encapsulate an array of biomolecules (proteins, nucleic acids, lipids, metabolites, etc.), thereby conveying diverse messages for cell-cell communications. Once released, these exosomal contents trigger signaling and trafficking that play roles in cell growth, development, immune responses, homeostasis, remodeling, etc. Recent advances in exosomal research have provided a wealth of useful information that enhances our knowledge on the roles for exosomes in pathogenic mechanisms of human diseases involving a wide variety of organ systems. In the kidney, exosomes play divergent roles, ranging from pathogenesis to therapeutics, based on their original sources and type of interventions. Herein, we summarize and update the current knowledge on the divergent roles of exosomes involving the pathogenesis, diagnostics, prognostics, and therapeutics in various groups of kidney diseases, including acute kidney injury, immune-mediated kidney diseases (e.g., IgA nephropathy, lupus nephritis, membranous nephropathy, focal segmental glomerulosclerosis), chronic kidney disease (caused by diabetic nephropathy and others), renal cell carcinoma, nephrolithiasis, kidney transplantation and related complications, and polycystic kidney disease. Finally, the future perspectives on research in this area are discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
14
|
Urinary extracellular vesicles and micro-RNA as markers of acute kidney injury after cardiac surgery. Sci Rep 2022; 12:10402. [PMID: 35729178 PMCID: PMC9213448 DOI: 10.1038/s41598-022-13849-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
We hypothesised that measuring changes in urinary levels of EV and miR will predict the onset of acute kidney injury in cardiac surgery patients. The study was performed in the cohort of the REVAKI-2 trial. Urine samples were collected before and 24 h after the procedure from 94 cardiac surgery patients. Urinary particle concentrations and size distribution were assessed using NanoSight. EV derivation and levels were measured using flow cytometry. Samples from 10 selected patients were sequenced, and verification was performed with advanced TaqMan assays in samples from all patients. Urinary particle concentrations significantly increased in patients with AKI after surgery, with the percentage of EV positive for CD105 and β1-integrin also increasing. Pre-surgery podocalyxin-positive EV were significantly lower in patients with AKI. Their levels correlated with the severity of the injury. Pre-operative miR-125a-5p was expressed at lower levels in urine from patients with AKI when adjusted for urinary creatinine. Levels of miR-10a-5p were lower after surgery in AKI patients and its levels correlated with the severity of the injury. Pre-operative levels of podocalyxin EVs, urinary particle concentrations and miR-125a-5p had moderate AKI predictive value and, in a logistic model together with ICU lactate levels, offered good (AUC = 82%) AKI prediction.
Collapse
|
15
|
Li X, Yang L. Urinary exosomes: Emerging therapy delivery tools and biomarkers for urinary system diseases. Biomed Pharmacother 2022; 150:113055. [PMID: 35658226 DOI: 10.1016/j.biopha.2022.113055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Urinary exosomes (UE) are small circular membranous vesicles with a lipid bilayer with a diameter of 40-160 nm secreted by epithelial cells of the kidney and genitourinary system, which can reflect the physiological and functional status of secretory cells. Protein and RNA in exosomes can be used as markers for diseases diagnosis. Urine specimens are available and non-invasive. The protein and RNA in UE are more stable than the soluble protein and RNA in urine, which have broad application prospects in the diagnosis of urinary system diseases. This article reviews the recent advances in the application of protein or RNA in UE as markers to the diagnosis of urinary system diseases.
Collapse
Affiliation(s)
- Xin Li
- Departments of Infectious Disease, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Application of exosomes in the diagnosis and treatment of pancreatic diseases. Stem Cell Res Ther 2022; 13:153. [PMID: 35395948 PMCID: PMC8994331 DOI: 10.1186/s13287-022-02826-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic diseases, a serious threat to human health, have garnered considerable research interest, as they are associated with a high mortality rate. However, owing to the uncertain etiology and complex pathophysiology, the treatment of pancreatic diseases is a challenge for clinicians and researchers. Exosomes, carriers of intercellular communication signals, play an important role in the diagnosis and treatment of pancreatic diseases. Exosomes are involved in multiple stages of pancreatic disease development, including apoptosis, immune regulation, angiogenesis, cell migration, and cell proliferation. Thus, extensive alterations in the quantity and variety of exosomes may be indicative of abnormal biological behaviors of pancreatic cells. This phenomenon could be exploited for the development of exosomes as a new biomarker or target of new treatment strategies. Several studies have demonstrated the diagnostic and therapeutic effects of exosomes in cancer and inflammatory pancreatic diseases. Herein, we introduce the roles of exosomes in the diagnosis and treatment of pancreatic diseases and discuss directions for future research and perspectives of their applications.
Collapse
|
17
|
Chan MJ, Chen YC, Fan PC, Lee CC, Kou G, Chang CH. Predictive Value of Urinary Aquaporin 2 for Acute Kidney Injury in Patients with Acute Decompensated Heart Failure. Biomedicines 2022; 10:biomedicines10030613. [PMID: 35327416 PMCID: PMC8945460 DOI: 10.3390/biomedicines10030613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Acute kidney injury (AKI) is frequently encountered in people with acute decompensated heart failure (ADHF) and is associated with increased morbidity and mortality. Early detection of a urinary biomarker of kidney injury might allow a prompt diagnosis and improve outcomes. Levels of urinary aquaporin 2 (UAQP2), which is also associated with several renal diseases, are increased with ADHF. We aimed to determine whether UAQP2 predicted AKI in patients with ADHF. We conducted a prospective observation study in the coronary care unit (CCU) in a tertiary care university hospital in Taiwan. Individuals with ADHF admitted to the CCU between November 2009 and November 2014 were enrolled, and serum and urinary samples were collected. AKI was diagnosed in 69 (36.5%) of 189 adult patients (mean age: 68 years). Area under the receiver operating characteristic curve (AUROC) of biomarkers was evaluated to evaluate the diagnostic power for AKI. Both brain natriuretic peptide and UAQP2 demonstrated acceptable AUROCs (0.759 and 0.795, respectively). A combination of the markers had an AUROC of 0.802. UAQP2 is a potential biomarker of AKI in CCU patients with ADHF. Additional research on this novel biomarker is required.
Collapse
Affiliation(s)
- Ming-Jen Chan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.-J.C.); (Y.-C.C.); (P.-C.F.); (C.-C.L.); (G.K.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.-J.C.); (Y.-C.C.); (P.-C.F.); (C.-C.L.); (G.K.)
| | - Pei-Chun Fan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.-J.C.); (Y.-C.C.); (P.-C.F.); (C.-C.L.); (G.K.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Chia Lee
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.-J.C.); (Y.-C.C.); (P.-C.F.); (C.-C.L.); (G.K.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - George Kou
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.-J.C.); (Y.-C.C.); (P.-C.F.); (C.-C.L.); (G.K.)
| | - Chih-Hsiang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.-J.C.); (Y.-C.C.); (P.-C.F.); (C.-C.L.); (G.K.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-(0)3-328-1200 (ext. 8181)
| |
Collapse
|
18
|
Extracellular Vesicles in Type 1 Diabetes: A Versatile Tool. Bioengineering (Basel) 2022; 9:bioengineering9030105. [PMID: 35324794 PMCID: PMC8945706 DOI: 10.3390/bioengineering9030105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is a chronic autoimmune disease affecting nearly 35 million people. This disease develops as T-cells continually attack the β-cells of the islets of Langerhans in the pancreas, which leads to β-cell death, and steadily decreasing secretion of insulin. Lowered levels of insulin minimize the uptake of glucose into cells, thus putting the body in a hyperglycemic state. Despite significant progress in the understanding of the pathophysiology of this disease, there is a need for novel developments in the diagnostics and management of type 1 diabetes. Extracellular vesicles (EVs) are lipid-bound nanoparticles that contain diverse content from their cell of origin and can be used as a biomarker for both the onset of diabetes and transplantation rejection. Furthermore, vesicles can be loaded with therapeutic cargo and delivered in conjunction with a transplant to increase cell survival and long-term outcomes. Crucially, several studies have linked EVs and their cargos to the progression of type 1 diabetes. As a result, gaining a better understanding of EVs would help researchers better comprehend the utility of EVs in regulating and understanding type 1 diabetes. EVs are a composition of biologically active components such as nucleic acids, proteins, metabolites, and lipids that can be transported to particular cells/tissues through the blood system. Through their varied content, EVs can serve as a flexible aid in the diagnosis and management of type 1 diabetes. In this review, we provide an overview of existing knowledge about EVs. We also cover the role of EVs in the pathogenesis, detection, and treatment of type 1 diabetes and the function of EVs in pancreas and islet β-cell transplantation.
Collapse
|
19
|
Ali H, Abu-Farha M, Hammad MM, Devarajan S, Bahbahani Y, Al-Khairi I, Cherian P, Alsairafi Z, Vijayan V, Al-Mulla F, Attar AA, Abubaker J. Potential Role of N-Cadherin in Diagnosis and Prognosis of Diabetic Nephropathy. Front Endocrinol (Lausanne) 2022; 13:882700. [PMID: 35712247 PMCID: PMC9194471 DOI: 10.3389/fendo.2022.882700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes affecting about half the people with diabetes and the leading cause of end stage renal disease (ESRD). Albuminuria and creatinine levels are currently the classic markers for the diagnosis of DN. However, many shortcomings are arising from the use of these markers mainly because they are not specific to DN and their levels are altered by multiple non-pathological factors. Therefore, the aim of this study is to identify better markers for the accurate and early diagnosis of DN. The study was performed on 159 subjects including 42 control subjects, 50 T2D without DN and 67 T2D subjects with DN. Our data show that circulating N-cadherin levels are significantly higher in the diabetic patients who are diagnosed with DN (842.6 ± 98.6 mg/l) compared to the diabetic patients who do not have DN (470.8 ± 111.5 mg/l) and the non-diabetic control group (412.6 ± 41.8 mg/l). We also report that this increase occurs early during the developmental stages of the disease since N-cadherin levels are significantly elevated in the microalbuminuric patients when compared to the healthy control group. In addition, we show a significant correlation between N-cadherin levels and renal markers including creatinine (in serum and urine), urea and eGFR in all the diabetic patients. In conclusion, our study presents N-cadherin as a novel marker for diabetic nephropathy that can be used as a valuable prognostic and diagnostic tool to slow down or even inhibit ESRD.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Maha M. Hammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Sriraman Devarajan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Yousif Bahbahani
- Medical Division, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Zahra Alsairafi
- Department of Pharmacy Practice, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Vidya Vijayan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Abdulnabi Al Attar
- Medical Division, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- Diabetology Unit, Amiri Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- *Correspondence: Jehad Abubaker,
| |
Collapse
|
20
|
Tao Y, Wei X, Yue Y, Wang J, Li J, Shen L, Lu G, He Y, Zhao S, Zhao F, Weng Z, Shen X, Zhou L. Extracellular vesicle-derived AEBP1 mRNA as a novel candidate biomarker for diabetic kidney disease. J Transl Med 2021; 19:326. [PMID: 34332599 PMCID: PMC8325821 DOI: 10.1186/s12967-021-03000-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A novel and improved methodology is still required for the diagnosis of diabetic kidney disease (DKD). The aim of the present study was to identify novel biomarkers using extracellular vesicle (EV)-derived mRNA based on kidney tissue microarray data. METHODS Candidate genes were identified by intersecting the differentially expressed genes (DEGs) and eGFR-correlated genes using the GEO datasets GSE30528 and GSE96804, followed by clinical parameter correlation and diagnostic efficacy assessment. RESULTS Fifteen intersecting genes, including 8 positively correlated genes, B3GALT2, CDH10, MIR3916, NELL1, OCLM, PRKAR2B, TREM1 and USP46, and 7 negatively correlated genes, AEBP1, CDH6, HSD17B2, LUM, MS4A4A, PTN and RASSF9, were confirmed. The expression level assessment results revealed significantly increased levels of AEBP1 in DKD-derived EVs compared to those in T2DM and control EVs. Correlation analysis revealed that AEBP1 levels were positively correlated with Cr, 24-h urine protein and serum CYC and negatively correlated with eGFR and LDL, and good diagnostic efficacy for DKD was also found using AEBP1 levels to differentiate DKD patients from T2DM patients or controls. CONCLUSIONS Our results confirmed that the AEBP1 level from plasma EVs could differentiate DKD patients from T2DM patients and control subjects and was a good indication of the function of multiple critical clinical parameters. The AEBP1 level of EVs may serve as a novel and efficacious biomarker for DKD diagnosis.
Collapse
Affiliation(s)
- Yiying Tao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xing Wei
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yue Yue
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jiaxin Wang
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lei Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 215123, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Shidi Zhao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fan Zhao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhen Weng
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 215123, China
- Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Xiahong Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
21
|
Kengkoom K, Angkhasirisap W, Kanjanapruthipong T, Tungtrakanpoung R, Tuentam K, Phansom N, Ampawong S. Streptozotocin induces alpha-2u globulin nephropathy in male rats during diabetic kidney disease. BMC Vet Res 2021; 17:105. [PMID: 33663503 PMCID: PMC7934450 DOI: 10.1186/s12917-021-02814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alpha-2u globulin nephropathy mainly shows toxicological pathology only in male rats induced by certain chemicals and drugs, such as levamisole (antiparasitic and anticancer drugs). Streptozotocin (STZ) is also an anticancer-antibiotic agent that has been used for decades to induce a diabetic kidney disease model in rodents. The purpose of this study is to determine if STZ causes alpha-2u globulin nephropathy in male rats during an advanced stage of diabetic kidney disease. Alpha-2u globulin nephropathy, water absorption and filtration capacities (via aquaporin [AQP]-1, - 2, - 4 and - 5) and mitochondrial function (through haloacid dehalogenase-like hydrolase domain-containing protein [HDHD]-3 and NADH-ubiquinone oxidoreductase 75 kDa subunit [NDUFS]-1 proteins) were examined in STZ-induced diabetic Wistar rat model. RESULTS More than 80% of severe clinical illness rats induced by STZ injection simultaneously exhibited alpha-2u globulin nephropathy with mitochondrial degeneration and filtration apparatus especially pedicels impairment. They also showed significantly upregulated AQP-1, - 2, - 4 and - 5, HDHD-3 and NDUFS-1 compared with those of the rats without alpha-2u globulin nephropathy. CONCLUSIONS STZ-induced alpha-2u globulin nephropathy during diabetic kidney disease in association with deterioration of pedicels, renal tubular damage with adaptation and mitochondrial driven apoptosis.
Collapse
Affiliation(s)
- Kanchana Kengkoom
- Academic Service Division, National Laboratory Animal Center, Mahidol University, 999, Salaya, Puttamonthon, Nakorn Pathom, 73170 Thailand
| | - Wannee Angkhasirisap
- Academic Service Division, National Laboratory Animal Center, Mahidol University, 999, Salaya, Puttamonthon, Nakorn Pathom, 73170 Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6, Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Rongdej Tungtrakanpoung
- Department of Biology, Faculty of Science, Naresuan University, 99, Moo 9, Phitsanulok-NakornSawan Road, Phitsanulok, 65000 Thailand
| | - Khwanchanok Tuentam
- Department of Biology, Faculty of Science, Naresuan University, 99, Moo 9, Phitsanulok-NakornSawan Road, Phitsanulok, 65000 Thailand
| | - Naphatson Phansom
- Department of Biology, Faculty of Science, Naresuan University, 99, Moo 9, Phitsanulok-NakornSawan Road, Phitsanulok, 65000 Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6, Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| |
Collapse
|
22
|
Xiao J, Zhang H, Yang F, Xiao M, Zhou L, Yu R, Shao X, Ea V, Su L, Zhang X, Li X. Proteomic Analysis of Plasma sEVs Reveals That TNFAIP8 Is a New Biomarker of Cell Proliferation in Diabetic Retinopathy. J Proteome Res 2021; 20:1770-1782. [PMID: 33594895 DOI: 10.1021/acs.jproteome.0c01048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small extracellular vesicles (sEVs) derived from the plasma have been increasingly recognized as important vehicles of intercellular communication and potential sources of new biomarkers for multiple diseases. In this study, proteomic profiles of plasma sEVs from normal subjects and diabetic patients with or without diabetic retinopathy (DR) were systematically compared using iTRAQ-based quantitative proteomics. Among a total of 901 identified proteins in plasma sEVs (false discovery rate (FDR) < 1%), 90 proteins were found to have significantly changed levels in DR. Based on the findings from the proteomic analysis, the role of tumor necrosis factor-α-induced protein 8 (TNFAIP8) in promoting human retinal microvascular endothelial cell (HRMEC) proliferation was investigated. The enzyme-linked immunosorbent assay (ELISA) showed that TNFAIP8 levels in plasma sEVs and vitreous are elevated in DR, whereas not statistically different in large EVs (lEVs) and plasma. In addition, in vitro experiments demonstrated that 4-hydroxynonenal (4-HNE) increased the expression of TNFAIP8 in HRMECs. TNFAIP8 significantly increased HRMECs cell viability and promote cell migration and tube formation, and the depletion of TNFAIP8 impaired HRMEC proliferation. We demonstrated that TNFAIP8 in plasma sEVs could be used as a potential biomarker of DR. Functional studies suggested that TNFAIP8 might be an important mediator of angiogenesis in DR.
Collapse
Affiliation(s)
- Jing Xiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Fuhua Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Mengran Xiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, 119077 Singapore
| | - Rongguo Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Xianfeng Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Vicki Ea
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| |
Collapse
|
23
|
Penna C, Femminò S, Alloatti G, Brizzi MF, Angelone T, Pagliaro P. Extracellular Vesicles in Comorbidities Associated with Ischaemic Heart Disease: Focus on Sex, an Overlooked Factor. J Clin Med 2021; 10:327. [PMID: 33477341 PMCID: PMC7830384 DOI: 10.3390/jcm10020327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are emerging early markers of myocardial damage and key mediators of cardioprotection. Therefore, EV are becoming fascinating tools to prevent cardiovascular disease and feasible weapons to limit ischaemia/reperfusion injury. It is well known that metabolic syndrome negatively affects vascular and endothelial function, thus creating predisposition to ischemic diseases. Additionally, sex is known to significantly impact myocardial injury and cardioprotection. Therefore, actions able to reduce risk factors related to comorbidities in ischaemic diseases are required to prevent maladaptive ventricular remodelling, preserve cardiac function, and prevent the onset of heart failure. This implies that early diagnosis and personalised medicine, also related to sex differences, are mandatory for primary or secondary prevention. Here, we report the contribution of EV as biomarkers and/or therapeutic tools in comorbidities predisposing to cardiac ischaemic disease. Whenever possible, attention is dedicated to data linking EV to sex differences.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy;
| | - Giuseppe Alloatti
- Uni-Astiss, Polo Universitario Rita Levi Montalcini, 14100 Asti, Italy;
| | - Maria F. Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
| |
Collapse
|
24
|
Chen A, Wang H, Su Y, Zhang C, Qiu Y, Zhou Y, Wan Y, Hu B, Li Y. Exosomes: Biomarkers and Therapeutic Targets of Diabetic Vascular Complications. Front Endocrinol (Lausanne) 2021; 12:720466. [PMID: 34456875 PMCID: PMC8387814 DOI: 10.3389/fendo.2021.720466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic vascular complications (DVC) including macrovascular and microvascular lesions, have a significant impact on public health, and lead to increased patient mortality. Disordered intercellular cascades play a vital role in diabetic systemic vasculopathy. Exosomes participate in the abnormal signal transduction of local vascular cells and mediate the transmission of metabolic disorder signal molecules in distant organs and cells through the blood circulation. They can store different signaling molecules in the membrane structure and release them into the blood, urine, and tears. In recent years, the carrier value and therapeutic effect of exosomes derived from stem cells have garnered attention. Exosomes are not only a promising biomarker but also a potential target and tool for the treatment of DVC. This review explored changes in the production process of exosomes in the diabetic microenvironment and exosomes' early warning role in DVC from different systems and their pathological processes. On the basis of these findings, we discussed the future direction of exosomes in the treatment of DVC, and the current limitations of exosomes in DVC research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hu
- *Correspondence: Yanan Li, ; Bo Hu,
| | - Yanan Li
- *Correspondence: Yanan Li, ; Bo Hu,
| |
Collapse
|
25
|
Li FXZ, Lin X, Xu F, Shan SK, Guo B, Lei LM, Zheng MH, Wang Y, Xu QS, Yuan LQ. The Role of Mesenchymal Stromal Cells-Derived Small Extracellular Vesicles in Diabetes and Its Chronic Complications. Front Endocrinol (Lausanne) 2021; 12:780974. [PMID: 34987478 PMCID: PMC8721875 DOI: 10.3389/fendo.2021.780974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are applied in regenerative medicine of several tissues and organs nowadays by virtue of their self-renewal capabilities, multiple differentiation capacity, potent immunomodulatory properties, and their ability to be favourably cultured and manipulated. With the continuous development of "cell-free therapy" research, MSC-derived small extracellular vesicles (MSC-sEVs) have increasingly become a research hotspot in the treatment of various diseases. Small extracellular vesicles (SEVs) are membrane vesicles with diameters of 30 to 150 nm that mediate signal transduction between adjacent or distal cells or organs by delivering non-coding RNA, protein, and DNA. The contents and effects of sEVs vary depending on the properties of the originating cell. In recent years, MSC-sEVs have been found to play an important role in the occurrence and development of diabetes mellitus as a new way of communication between cells. Diabetes mellitus is a common metabolic disease in clinic. Its complications of the heart, brain, kidney, eyes, and peripheral nerves are a serious threat to human health and has been a hot issue for clinicians. MSC-sEVs could be applied to repair or prevent damage from the complications of diabetes mellitus through anti-inflammatory effects, reduction of endoplasmic reticulum-related protein stress, polarization of M2 macrophages, and increasing autophagy. Therefore, we highly recommend that MSC-sEVs-based therapies to treat diabetes mellitus and its chronic complication be further explored. The analysis of the role and molecular mechanisms of MSC-sEVs in diabetes and its related complications will provide new idea and insights for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan,
| |
Collapse
|
26
|
Pang H, Luo S, Xiao Y, Xia Y, Li X, Huang G, Xie Z, Zhou Z. Emerging Roles of Exosomes in T1DM. Front Immunol 2020; 11:593348. [PMID: 33324409 PMCID: PMC7725901 DOI: 10.3389/fimmu.2020.593348] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a complex autoimmune disorder that mainly affects children and adolescents. The elevated blood glucose level of patients with T1DM results from absolute insulin deficiency and leads to hyperglycemia and the development of life-threatening diabetic complications. Although great efforts have been made to elucidate the pathogenesis of this disease, the precise underlying mechanisms are still obscure. Emerging evidence indicates that small extracellular vesicles, namely, exosomes, take part in intercellular communication and regulate interorgan crosstalk. More importantly, many findings suggest that exosomes and their cargo are associated with the development of T1DM. Therefore, a deeper understanding of exosomes is beneficial for further elucidating the pathogenic process of T1DM. Exosomes are promising biomarkers for evaluating the risk of developingty T1DM, monitoring the disease state and predicting related complications because their number and composition can reflect the status of their parent cells. Additionally, since exosomes are natural carriers of functional proteins, RNA and DNA, they can be used as therapeutic tools to deliver these molecules and drugs. In this review, we briefly introduce the current understanding of exosomes. Next, we focus on the relationship between exosomes and T1DM from three perspectives, i.e., the pathogenic role of exosomes in T1DM, exosomes as novel biomarkers of T1DM and exosomes as therapeutic tools for T1DM.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Javitt NB. Hepatic bile formation: bile acid transport and water flow into the canalicular conduit. Am J Physiol Gastrointest Liver Physiol 2020; 319:G609-G618. [PMID: 32935994 DOI: 10.1152/ajpgi.00078.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in molecular biology identifying the many carrier-mediated organic anion transporters and advances in microscopy that have provided a more detailed anatomy of the canalicular conduit make updating the concept of osmotically determined canalicular flow possible. For the most part water flow is not transmembrane but via specific pore proteins in both the hepatocyte and the tight junction. These pores independently regulate the rate at which water flows in response to an osmotic gradient and therefore are determinants of canalicular bile acid concentration. Review of the literature indicates that the initial effect on hepatic bile flow of cholestatic agents such as Thorazine and estradiol 17β-glucuronide are on water flow and not bile salt export pump-mediated bile acid transport and thus provides new approaches to the pathogenesis of drug-induced liver injury. Attaining a micellar concentration of bile acids in the canaliculus is essential to the formation of cholesterol-lecithin vesicles, which mostly occur in the periportal region of the canalicular conduit. The other regions, midcentral and pericentral, may transport lesser amounts of bile acid but augment water flow. Broadening the concept of how hepatic bile flow is initiated, provides new insights into the pathogenesis of canalicular cholestasis.
Collapse
Affiliation(s)
- Norman B Javitt
- Division of Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
28
|
Insights into predicting diabetic nephropathy using urinary biomarkers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140475. [DOI: 10.1016/j.bbapap.2020.140475] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/27/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
|
29
|
Li CJ, Fang QH, Liu ML, Lin JN. Current understanding of the role of Adipose-derived Extracellular Vesicles in Metabolic Homeostasis and Diseases: Communication from the distance between cells/tissues. Am J Cancer Res 2020; 10:7422-7435. [PMID: 32642003 PMCID: PMC7330853 DOI: 10.7150/thno.42167] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) including exosomes, microvesicles (MVs), and apoptotic bodies, are small membrane vesicular structures that are released during cell activation, senescence, or programmed cell death, including apoptosis, necroptosis, and pyroptosis. EVs serve as novel mediators for long-distance cell-to-cell communications and can transfer various bioactive molecules, such as encapsulated cytokines and genetic information from their parental cells to distant target cells. In the context of obesity, adipocyte-derived EVs are implicated in metabolic homeostasis serving as novel adipokines. In particular, EVs released from brown adipose tissue or adipose-derived stem cells may help control the remolding of white adipose tissue towards browning and maintaining metabolic homeostasis. Interestingly, EVs may even serve as mediators for the transmission of metabolic dysfunction across generations. Also, EVs have been recognized as novel modulators in various metabolic disorders, including insulin resistance, diabetes mellitus, and non-alcoholic fatty liver disease. In this review, we summarize the latest progress from basic and translational studies regarding the novel effects of EVs on metabolic diseases. We also discuss EV-mediated cross-talk between adipose tissue and other organs/tissues that are relevant to obesity and metabolic diseases, as well as the relevant mechanisms, providing insight into the development of new therapeutic strategies in obesity and metabolic diseases.
Collapse
|
30
|
Sinha N, Kumar V, Puri V, Nada R, Rastogi A, Jha V, Puri S. Urinary exosomes: Potential biomarkers for diabetic nephropathy. Nephrology (Carlton) 2020; 25:881-887. [PMID: 32323449 DOI: 10.1111/nep.13720] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022]
Abstract
Diabetic nephropathy is the most common diabetic complication culminating often into end-stage renal disease. Classically, it is defined by the presence of albuminuria which has limited ability to be detected at early stages but deterioration in kidney function generally precedes albuminuria. This necessitates the development of newer diagnostic assays for diabetic nephropathy to determine the progression of the disease. Kidney associated diseases with non-albuminuria further complicates a timely diagnosis and thus demands an early biomarker. Urinary exosomes, the nanovesicular entities are released by every epithelial cells of the nephron. Their protein or molecular cargo varies in the diseased state which may provide the pathophysiology of the kidney associated diseases. This drives them to be exploited as non-invasive biomarker. This review thus integrates the recent findings on the significance of the urinary exosomes as diagnostic biomarker in kidney-associated diseases, primarily in diabetic nephropathy.
Collapse
Affiliation(s)
- Nisha Sinha
- Centre for Stem Cell & Tissue Engineering and Excellence in Biomedical Sciences, Punjab University, Chandigarh, India.,Department of Nephrology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Vivek Kumar
- Department of Nephrology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Veena Puri
- Centre for Systems Biology & Bioinformatics, Punjab University, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Ashu Rastogi
- Department of Endocrinology and Metabolism, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, India. George Institute for Global Health, University of Oxford, Oxford, UK. Manipal Academy of Higher Education, Manipal, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering & Technology (UIET), Punjab University, Chandigarh, India
| |
Collapse
|
31
|
Thongboonkerd V. Roles for Exosome in Various Kidney Diseases and Disorders. Front Pharmacol 2020; 10:1655. [PMID: 32082158 PMCID: PMC7005210 DOI: 10.3389/fphar.2019.01655] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Exosome is a nanoscale vesicle with a size range of 30–100 nm. It is secreted from cell to extracellular space by exocytosis after fusion of multivesicular body (MVB) (formed by endocytic vesicles) with plasma membrane. Exosome plays several important roles in cellular homeostasis and intercellular communications. During the last two decades, exosome has acquired a wide attention to explore its additional roles in various aspects of cell biology and function in several organ systems. For the kidney, several lines of evidence have demonstrated 1that exosome is involved in the renal physiology and pathogenic mechanisms of various kidney diseases/disorders. This article summarizes roles of the exosome as the potential source of biomarkers, pathogenic molecules, and therapeutic biologics that have been extensively investigated in many kidney diseases/disorders, including lupus nephritis (LN), other glomerular diseases, acute kidney injury (AKI), diabetic nephropathy (DN), as well as in the process of renal fibrosis and chronic kidney disease (CKD) progression, in addition to polycystic kidney disease (PKD), kidney transplantation, and renal cell carcinoma (RCC). Moreover, the most recent evidence has shown its emerging role in kidney stone disease (or nephrolithiasis), involving inflammasome activation and inflammatory cascade frequently found in kidney stone pathogenesis.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
32
|
Liu J, Sun X, Zhang FL, Jin H, Yan XL, Huang S, Guo ZN, Yang Y. Clinical Potential of Extracellular Vesicles in Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:596811. [PMID: 33551993 PMCID: PMC7859486 DOI: 10.3389/fendo.2020.596811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) is a major public health disease which is increased in incidence and prevalence throughout the whole world. Insulin resistance (IR) in peripheral tissues and insufficient pancreatic β-cell mass and function have been recognized as primary mechanisms in the pathogenesis of T2D, while recently, systemic chronic inflammation resulting from obesity and a sedentary lifestyle has also gained considerable attention in T2D progression. Nowadays, accumulating evidence has revealed extracellular vesicles (EVs) as critical mediators promoting the pathogenesis of T2D. They can also be used in the diagnosis and treatment of T2D and its complications. In this review, we briefly introduce the basic concepts of EVs and their potential roles in the pathogenesis of T2D. Then, we discuss their diagnostic and therapeutic potentials in T2D and its complications, hoping to open new prospects for the management of T2D.
Collapse
Affiliation(s)
- Jie Liu
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xin Sun
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Fu-Liang Zhang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Hang Jin
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Xiu-Li Yan
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Shuo Huang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
- *Correspondence: Zhen-Ni Guo, ; Yi Yang, ; ; orcid.org/0000-0002-9729-8522
| | - Yi Yang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
- *Correspondence: Zhen-Ni Guo, ; Yi Yang, ; ; orcid.org/0000-0002-9729-8522
| |
Collapse
|
33
|
Su W, Cao R, Zhang XY, Guan Y. Aquaporins in the kidney: physiology and pathophysiology. Am J Physiol Renal Physiol 2019; 318:F193-F203. [PMID: 31682170 DOI: 10.1152/ajprenal.00304.2019] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The kidney is the central organ involved in maintaining water and sodium balance. In human kidneys, nine aquaporins (AQPs), including AQP1-8 and AQP11, have been found and are differentially expressed along the renal tubules and collecting ducts with distinct and critical roles in the regulation of body water homeostasis and urine concentration. Dysfunction and dysregulation of these AQPs result in various water balance disorders. This review summarizes current understanding of physiological and pathophysiological roles of AQPs in the kidney, with a focus on recent progress on AQP2 regulation by the nuclear receptor transcriptional factors. This review also provides an overview of AQPs as clinical biomarkers and therapeutic targets for renal diseases.
Collapse
Affiliation(s)
- Wen Su
- Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Rong Cao
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Xiao-Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
AQP1-Containing Exosomes in Peritoneal Dialysis Effluent As Biomarker of Dialysis Efficiency. Cells 2019; 8:cells8040330. [PMID: 30970608 PMCID: PMC6523141 DOI: 10.3390/cells8040330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 11/24/2022] Open
Abstract
The water channel Aquaporin 1 (AQP1) plays a fundamental role in water ultrafiltration during peritoneal dialysis (PD) and its reduced expression or function may be responsible for ultrafiltration failure (UFF). In humans, AQP1 is expressed in the endothelium of the peritoneal capillaries but its expression in mesothelial cells (MC) and its functional role in PD is still being debated. Here, we studied a cohort of 30 patients using PD in order to determine the presence of AQP1 in peritoneal biopsies, AQP1 release in the PD effluent through exosomes and the correlation of AQP1 abundance with the efficiency of peritoneal ultrafiltration. The experiments using immunofluorescence showed a strong expression of AQP1 in MCs. Immunoblotting analysis on vesicles isolated from PD effluents showed a consistent presence of AQP1, mesothelin and Alix and the absence of the CD31. Thus, this suggests that they have an exclusive mesothelial origin. The immunoTEM analysis showed a homogeneous population of nanovesicles and confirmed the immunoblotting results. Interestingly, the quantitative analysis by ELISA showed a positive correlation between AQP1 in the PD effluent and ultrafiltration (UF), free water transport (FWT) and Na-sieving. This evidence opens the discussion on the functional role of mesothelial AQP1 during PD and suggests that it may represent a potential non-invasive biomarker of peritoneal barrier integrity, with predictive potential of UFF in PD patients.
Collapse
|
35
|
Zhang B, Yang Y, Xiang L, Zhao Z, Ye R. Adipose-derived exosomes: A novel adipokine in obesity-associated diabetes. J Cell Physiol 2019; 234:16692-16702. [PMID: 30807657 DOI: 10.1002/jcp.28354] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023]
Abstract
Dysfunction of the adipose tissue is a central driver for obesity-associated diabetes. It is characterized by dysregulated adipokine secretion, which contributes to insulin resistance of key metabolic tissues, including the liver, skeletal muscles, and fat itself. The inter-organ cross talk between the adipose tissue and the other organs as well as the intra-organ cross talk between adipocytes and macrophages within the adipose tissue, traditionally mediated by hormones, was recently evidenced to be regulated by adipose-derived exosomes. Exosomes are nano-sized membrane-bound vesicles secreted by the donor cells to modify intercellular communication by translating constituent nucleic acids and proteins to the target cells. Herein, we reviewed the latest progress in understanding the role of adipose-derived exosomes in the development of insulin resistance, a key mechanism that underpins diabetes and diabetic complications, with a special focus on the role of exosomal miRNAs (micro RNAs) and proteins, and discusses the potential implications of targeting adipose tissue-derived exosomes for diabetic therapeutics.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Aquaporins in Renal Diseases. Int J Mol Sci 2019; 20:ijms20020366. [PMID: 30654539 PMCID: PMC6359174 DOI: 10.3390/ijms20020366] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Aquaporins (AQPs) are a family of highly selective transmembrane channels that mainly transport water across the cell and some facilitate low-molecular-weight solutes. Eight AQPs, including AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, and AQP11, are expressed in different segments and various cells in the kidney to maintain normal urine concentration function. AQP2 is critical in regulating urine concentrating ability. The expression and function of AQP2 are regulated by a series of transcriptional factors and post-transcriptional phosphorylation, ubiquitination, and glycosylation. Mutation or functional deficiency of AQP2 leads to severe nephrogenic diabetes insipidus. Studies with animal models show AQPs are related to acute kidney injury and various chronic kidney diseases, such as diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Experimental data suggest ideal prospects for AQPs as biomarkers and therapeutic targets in clinic. This review article mainly focuses on recent advances in studying AQPs in renal diseases.
Collapse
|
37
|
Histamine and diabetic nephropathy: an up-to-date overview. Clin Sci (Lond) 2019; 133:41-54. [PMID: 30606813 DOI: 10.1042/cs20180839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023]
Abstract
The classification of diabetic nephropathy (DN) as a vascular complication of diabetes makes the possible involvement of histamine, an endogenous amine that is well known for its vasoactive properties, an interesting topic for study. The aim of the present review is to provide an extensive overview of the possible involvement of histamine in the onset and progression of DN. The evidence collected on the role of histamine in kidney function together with its well-known pleiotropic action suggest that this amine may act simultaneously on glomerular hyperfiltration, tubular inflammation, fibrosis development and tubular hypertrophy.
Collapse
|
38
|
Xu WC, Qian G, Liu AQ, Li YQ, Zou HQ. Urinary Extracellular Vesicle: A Potential Source of Early Diagnostic and Therapeutic Biomarker in Diabetic Kidney Disease. Chin Med J (Engl) 2018; 131:1357-1364. [PMID: 29786051 PMCID: PMC5987509 DOI: 10.4103/0366-6999.232801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Diabetic kidney disease (DKD) has become one of the major causes of end-stage renal disease. Urinary extracellular vesicles (uEVs) contain rich biological information which could be the ideal source for noninvasive biomarkers of DKD. This review discussed the potential early diagnostic and therapeutic values of proteins and microRNAs in uEVs in DKD. DATA SOURCES This review was based articles published in PubMed, Embase, Cochrane, and Google Scholar databases up to November 20, 2017, with the following keywords: "Diabetic kidney disease", "Extracellular vesicle", and "Urine". STUDY SELECTION Relevant articles were carefully reviewed, with no exclusions applied to the study design and publication type. RESULTS There is no "gold standard" technology to separate and/or purify uEVs. The uEVs contain a variety of proteins and RNAs and participate in the physiological and pathological processes of the kidney. UEVs, especially urinary exosomes, may be useful biomarkers for early diagnosis and treatment to DKD. Furthermore, the uEVs has been used as a therapeutic target for DKD. CONCLUSION Proteins and nucleic acids in uEVs represent promising biomarker for the diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Wei-Cheng Xu
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Ge Qian
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Ai-Qun Liu
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Yong-Qiang Li
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - He-Qun Zou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
39
|
Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med 2018; 60:81-91. [DOI: 10.1016/j.mam.2017.11.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/21/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022]
|
40
|
Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, Chrousos GP, Papassotiriou I. Biomarkers of diabetic nephropathy: A 2017 update. Crit Rev Clin Lab Sci 2017; 54:326-342. [DOI: 10.1080/10408363.2017.1377682] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nektaria Papadopoulou-Marketou
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
- Department of Endocrinology, Department of Medical and Health Sciences, Linkoping University, Linkoping, Sweden
| | - Christina Kanaka-Gantenbein
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | | | - George P. Chrousos
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, Athens, Greece
| |
Collapse
|