1
|
Zhang J, Chen Z, Lao Y, Pan X, Zhang X, Xiao J, He L, Cao Y, Liu X. Cluster of Differentiation 36 (CD36) Preferentially Mediates Intestinal Absorption of Dietary Z-Astaxanthin and Especially 9- Z-Isomer via Higher Binding Affinity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16287-16297. [PMID: 38986018 DOI: 10.1021/acs.jafc.4c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Variances in the biological functions of astaxanthin geometric isomers (i.e., all-E, Z) are related to their intestinal absorption, but the mechanism of isomer absorption mediated by transporters remains unclear. Here, models of in vitro cell overexpression, in situ intestinal perfusion, and in vivo mouse inhibition were employed to investigate the impact of cluster of differentiation 36 (CD36) on the absorption of astaxanthin isomers. Cells overexpressing CD36 notably enhanced the uptake of Z-astaxanthin, particularly the 9-Z-isomer (47.76%). The absorption rate and permeability of Z-astaxanthin surpassed that of the all-E-isomer by the in situ model. Furthermore, the addition of the CD36-specific inhibitor sulfo-N-succinimidyl oleate significantly reduced the absorption of Z-astaxanthin in the mouse duodenum and jejunum, especially the 9-Z-isomer (57.66%). Molecular docking and surface plasmon resonance techniques further validated that 9-Z-astaxanthin binds to more amino acids of CD36 with higher affinity and in a fast-binding, fast-dissociating mode, thus favoring transport. Our findings elucidate, for the first time, the mechanism of the CD36-mediated transmembrane transport of astaxanthin geometric isomers.
Collapse
Affiliation(s)
- Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulu Lao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xuan Pan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xuan Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Liping He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Instrumental Analysis & Research Center of South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
2
|
ZHU W, GUO C, DU M, MA Y, CUI Y, CHEN X, GUO C. Acupotomy alleviates knee osteoarthritis in rabbit by regulating chondrocyte mitophagy Pink1-Parkin pathway. J TRADIT CHIN MED 2024; 44:468-477. [PMID: 38767630 PMCID: PMC11077155 DOI: 10.19852/j.cnki.jtcm.20240402.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/19/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE To investigate the effect of acupotomy, on mitophagy and the Pink1-Parkin pathway in chondrocytes from rabbits with knee osteoarthritis (KOA). METHODS A KOA model was established via the modified Videman method. Rabbits were randomly divided into a control group (CON), KOA group and KOA + acupotomy group (Acu). Rabbits in the acupotomy group were subjected to acupotomy for 4 weeks after model establishment. The behavior of the rabbits before and after intervention was recorded. Cartilage degeneration was evaluated by optical microscopy and fluorescence microscopy. The level of mitophagy was evaluated by transmission electron microscopy, immunofluorescence and enzyme-linked immunosorbent assay (ELISA). The expression of phosphatase and tensin homolog (PTEN)-induced kinase 1 (Pink1)-Parkin mitophagy pathway components was evaluated by immunofluorescence, Western blotting and real-time polymerase chain reaction. RESULTS In rabbits with KOA, joint pain, mobility disorders and cartilage degeneration were observed, the Mankin score was increased, collagen type Ⅱ (Col-Ⅱ) expression was significantly decreased, mitophagy was inhibited, mitochondrial function was impaired, and factors associated with the Pink1-Parkin pathway were inhibited. Acupotomy regulated the expression of Pink1-Parkin pathway-related proteins, the mitophagy-related protein microtubule-associated protein-1 light chain-3, the translocase of the outer membrane, and the inner mitochondrial membrane 23; increased the colocalization of mitochondria and autophagosomes; promoted the removal of damaged mitochondria; restored mitochondrial adenosine-triphosphate (ATP) production; and alleviated cartilage degeneration in rabbits with KOA. CONCLUSIONS Acupotomy played a role in alleviating KOA in rabbits by activating mitophagy in chondrocytes via the regulation of proteins that are related to the Pink1-Parkin pathway.
Collapse
Affiliation(s)
- Wenting ZHU
- 1 the Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changqing GUO
- 2 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mei DU
- 2 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunxuan MA
- 2 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yongqi CUI
- 2 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xilin CHEN
- 2 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changqing GUO
- 3 Department of Medical Technology, Shijiazhuang Medical College, Hebei 050599, China
| |
Collapse
|
3
|
Liu ZF, Zhang Y, Liu J, Wang YY, Chen M, Liu EY, Guo JM, Wang YH, Weng ZW, Liu CX, Yu CH, Wang XY. Effect of Traditional Chinese Non-Pharmacological Therapies on Knee Osteoarthritis: A Narrative Review of Clinical Application and Mechanism. Orthop Res Rev 2024; 16:21-33. [PMID: 38292459 PMCID: PMC10826518 DOI: 10.2147/orr.s442025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Knee osteoarthritis (KOA) stands as a degenerative ailment with a substantial and escalating prevalence. The practice of traditional Chinese non-pharmacological therapy has become a prevalent complementary and adjunctive approach. A mounting body of evidence suggests its efficacy in addressing KOA. Recent investigations have delved into its underlying mechanism, yielding some headway. Consequently, this comprehensive analysis seeks to encapsulate the clinical application and molecular mechanism of traditional Chinese non-pharmacological therapy in KOA treatment. The review reveals that various therapies, such as acupuncture, electroacupuncture, warm needle acupuncture, tuina, and acupotomy, primarily target localized knee components like cartilage, subchondral bone, and synovium. Moreover, their impact extends to the central nervous system and intestinal flora. More perfect experimental design and more comprehensive research remain a promising avenue in the future.
Collapse
Affiliation(s)
- Zhi-Feng Liu
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Yang Zhang
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Jing Liu
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Yu-Yan Wang
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Mo Chen
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Er-Yang Liu
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Jun-Ming Guo
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Yan-Hua Wang
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Zhi-Wen Weng
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Chang-Xin Liu
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Chang-He Yu
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Xi-You Wang
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Chen X, GUO Y, LU J, QIN L, HU T, ZENG X, WANG X, ZHANG A, ZHUANG Y, ZHONG H, GUO C. Acupotomy ameliorates subchondral bone absorption and mechanical properties in rabbits with knee osteoarthritis by regulating bone morphogenetic protein 2-Smad1 pathway. J TRADIT CHIN MED 2023; 43:734-743. [PMID: 37454258 PMCID: PMC10320461 DOI: 10.19852/j.cnki.jtcm.20230404.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To investigate the effects of acupotomy on the subchondral bone absorption and mechanical properties in rabbits with knee osteoarthritis (KOA). METHODS The rabbits were divided into blank control, model, acupotomy and electroacupuncture (EA) groups, with 12 rabbits in each. Modified Videman's method was used to prepare KOA model. The acupotomy and EA group were given indicated intervention for 3 weeks. The behavior of rabbits in each group was recorded. Subsequently, cartilage-subchondral bone units were obtained and morphological changes were observed by optical microscope and micro computed tomography. Compression test was used to detect the mechanical properties of subchondral bone, Western blot and real-time polymerase chain reaction (RT-PCR) were applied to detect the expression of bone morphogenetic protein 2-Smad1 (BMP2-Smad1) pathway in subchondral bone. RESULTS Compared with the control group, rabbits in the KOA group showed lameness, knee pain, and cartilage degradation; the subchondral bone showed active resorption, the mechanical properties decreased significantly and the BMP2-Smad1 pathway downregulated significantly. Both acupotomy and EA intervention could increase the thickness of trabecular bone (Tb. Th), the bone volume fraction (BV/TV) and the thickness of subchondral bone plate, reduce the separation of trabecular bone (Tb. Sp), improve the maximum load and elastic modulus of subchondral bone, and effectively delay cartilage degeneration in KOA rabbits. This process may be achieved through upregulation the related proteins of BMP2-Smad1 pathway. The maximum load and elastic modulus of subchondral bone in the acupotomy group were slightly better than those in the EA group. CONCLUSIONS Acupotomy could effectively protect cartilage by inhibiting abnormal bone resorption and improving mechanical properties of subchondral bone thorough the related proteins of BMP2-Smad1 pathway in KOA rabbits.
Collapse
Affiliation(s)
- Xilin Chen
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan GUO
- 2 Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University, Beijing 100010, China
| | - Juan LU
- 3 Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| | - Luxue QIN
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tingyao HU
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xin ZENG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyue WANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Anran ZHANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxin ZHUANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Honggang ZHONG
- 4 Institute of Bone Injury, China Academy of Chinese Medical Sciences, Beijing 100010, China
| | - Changqing GUO
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
5
|
Chen S, He T, Zhong Y, Chen M, Yao Q, Chen D, Shao Z, Xiao G. Roles of focal adhesion proteins in skeleton and diseases. Acta Pharm Sin B 2023; 13:998-1013. [PMID: 36970189 PMCID: PMC10031257 DOI: 10.1016/j.apsb.2022.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
The skeletal system, which contains bones, joints, tendons, ligaments and other elements, plays a wide variety of roles in body shaping, support and movement, protection of internal organs, production of blood cells and regulation of calcium and phosphate metabolism. The prevalence of skeletal diseases and disorders, such as osteoporosis and bone fracture, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, increases with age, causing pain and loss of mobility and creating a huge social and economic burden globally. Focal adhesions (FAs) are macromolecular assemblies that are composed of the extracellular matrix (ECM), integrins, intracellular cytoskeleton and other proteins, including kindlin, talin, vinculin, paxillin, pinch, Src, focal adhesion kinase (FAK) and integrin-linked protein kinase (ILK) and other proteins. FA acts as a mechanical linkage connecting the ECM and cytoskeleton and plays a key role in mediating cell-environment communications and modulates important processes, such as cell attachment, spreading, migration, differentiation and mechanotransduction, in different cells in skeletal system by impacting distinct outside-in and inside-out signaling pathways. This review aims to integrate the up-to-date knowledge of the roles of FA proteins in the health and disease of skeletal system and focuses on the specific molecular mechanisms and underlying therapeutic targets for skeletal diseases.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Ye JN, Su CG, Jiang YQ, Zhou Y, Sun WX, Zheng XX, Miao JT, Li XY, Zhu J. Effects of acupuncture on cartilage p38MAPK and mitochondrial pathways in animal model of knee osteoarthritis: A systematic evaluation and meta-analysis. Front Neurosci 2023; 16:1098311. [PMID: 36711149 PMCID: PMC9875597 DOI: 10.3389/fnins.2022.1098311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Background Most previous studies on acupuncture in the treatment of knee osteoarthritis (KOA) have focused on improving functional efficacy and safety, while related mechanisms have not been systematically reviewed. Acupuncture modulates cytokines to attenuate cartilage extracellular matrix degradation and apoptosis, key to the pathogenesis of KOA, but the mechanisms are complex. Objectives The purpose of this study is to assess the efficacy of acupuncture quantitatively and summarily in animal studies of KOA. Methods Nine databases including PubMed, Embase, Web of Science (including Medline), Cochrane library, Scopus, CNKI, Wan Fang, and VIP were searched to retrieve animal studies on acupuncture interventions in KOA published since the inception of the journal. Relevant literature was screened, and information extracted. Meta-analysis was performed using Revman 5.4 and Stata 17.0 software. Results The 35 included studies involved 247 animals, half of which were in acupuncture groups and half in model groups. The mean quality level was 6.7, indicating moderate quality. Meta-analysis showed that acupuncture had the following significant effects on cytokine levels in p38MAPK and mitochondrial pathways: (1) p38MAPK pathway: It significantly inhibits p38MAPK, interleukin-1beta (IL-1β), tumor necrosis factor alpha (TNF-α), phosphorylated (p)-p38MAPK, matrix metalloproteinase-13 (MMP-13), MMP-1, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMST-5) expression, and significantly increased the expression of collagen II and aggrecan. (2) mitochondrial pathway: It significantly inhibited the expression of Bcl-2-associated X protein (Bax), cysteine protease-3 (caspase-3), caspase-9, and Cytochrome-c (Cyt-c). And significantly increased the expression of B cell lymphocytoma-2 (Bcl-2). In addition, acupuncture significantly reduced chondrocyte apoptosis, Mankin's score (a measure of cartilage damage), and improved cartilage morphometric characteristics. Conclusion Acupuncture may inhibit cytokine expression in the p38MAPK pathway to attenuate cartilage extracellular matrix degradation, regulate cytokines in the mitochondrial pathway to inhibit chondrocyte apoptosis, and improve cartilage tissue-related phenotypes to delay cartilage degeneration. These findings provide possible explanations for the therapeutic mechanisms and clinical benefits of acupuncture for KOA. Systematic review registration https://inplasy.com, identifier INPLASY20 2290125.
Collapse
Affiliation(s)
- Jiang-nan Ye
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng-guo Su
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-qing Jiang
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Zhou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-xi Sun
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-xia Zheng
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-tao Miao
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-yue Li
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Zhu
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Guo Y, Xu Y, He M, Chen X, Xing L, Hu T, Zhang Y, Du M, Zhang D, Zhang Q, Li B. Acupotomy Improves Synovial Hypoxia, Synovitis and Angiogenesis in KOA Rabbits. J Pain Res 2023; 16:749-760. [PMID: 36919160 PMCID: PMC10008338 DOI: 10.2147/jpr.s396955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Purpose Knee osteoarthritis (KOA) is a chronic inflammatory disease highly associated with intra-articular hypertension, hypoxia and angiogenesis of synovial tissue. Our previous studies showed that acupotomy could treat KOA in a variety of ways, including reducing cartilage deterioration and enhancing biomechanical qualities. However, the mechanism of hypoxia and angiogenesis induced by acupotomy in KOA synovium remains unclear. This study looked for the benign intervention of acupotomy in synovial pathology. Methods The rabbits were divided into 3 groups, Normal group, KOA group, and KOA + Acupotomy (Apo) group, with 11 rabbits in each group. The KOA rabbit model was established by the modified Videman method with six weeks. The KOA + Apo group performed the intervention. The tendon insertion of vastus medialis, vastus lateralis, rectus femoris, biceps femoris, and anserine bursa were selected as treatment points in rabbits. Rabbits were treated once every 7 days for 3 weeks. We observed the intra-articular pressure and oxygen partial pressure (BOLD MRI). The synovial morphology was monitored by Hematoxylin-Eosin Staining (HE Staining). The expression of hypoxia-inducible transcription factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) was detected using Immunohistochemical (IHC), Western Blot and Enzyme-Linked Immunosorbent Assay (ELISA). Results Acupotomy reduced intra-articular hypertension and improved the synovial oxygen situation, synovial inflammatory and angiogenesis. HIF-1α, VEGF, IL-1β and TNF-α expression were downregulated by acupotomy. Conclusion Acupotomy may reduce inflammation and angiogenesis in KOA rabbit by reducing abnormally elevated intra-articular pressure and improving synovial oxygen environment. The above may provide a new theoretical foundation for acupotomy treatment of KOA.
Collapse
Affiliation(s)
- Yan Guo
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Yue Xu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Meng He
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xilin Chen
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Longfei Xing
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Tingyao Hu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yi Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mei Du
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Dian Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qian Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| |
Collapse
|
8
|
Zhang S, Wang Y, Zhou M, Jia S, Liu Y, Zhang X, Tai X. A bibliometric analysis of traditional Chinese non-pharmacological therapies in the treatment of knee osteoarthritis from 2012 to 2022. Front Neurosci 2023; 17:1097130. [PMID: 36937664 PMCID: PMC10014606 DOI: 10.3389/fnins.2023.1097130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Objective The benefits of traditional Chinese non-pharmacological therapies in the treatment of Knee osteoarthritis (KOA) are receiving increasing attention. Therefore, this study aims to systematically analyze the global research on the treatment of KOA by Chinese traditional non-pharmacological therapies using bibliometric analysis and present the results with a knowledge map form. Methods Literature related to traditional Chinese non-pharmacological therapies used in the treatment of KOA from 2012 to 2022 was searched from the Web of Science core database and PubMed database. CiteSpace, SCImago Graphica and VOSviewer were used to extract nations, institutions, journals, authors, references, keywords, as well as the most widely used acupoints, therapies and evaluation indexes. Results A total of 375 literature have been included. 32 countries around the world have participated in the research. China, the United States, and Europe were at the center of the global cooperation network. The most prolific institutions and authors were from China represented by Cun-zhi Liu and Jian-feng Tu of Beijing University of Chinese Medicine, the institution with the highest cited frequency was University of York, and "Osteoarthritis Cartilage" was the most frequently cited journal. The most frequently cited literature was "OARSI guidelines for the non-surgical management of knee, hip, and poly articular osteoarthritis." 22 kinds of Chinese non-pharmacological therapies were used to treat KOA, among which acupuncture was the most commonly used one, and ST36 (Zusanli) and WOMAC were the most commonly selected acupoint and evaluation index. Conclusion In the past decade, the value of Chinese non-pharmacological therapies in the treatment of KOA has received widespread attention. It was a common concern of global researchers to relieve the pain of KOA patients and restore the quality of life. Under the background that acupuncture accounts for a relatively high proportion, the next step may consider how to make the balanced development of a variety of Chinese non-pharmacological therapies. In addition, the problem of how to eliminate the placebo effect maybe the direction of future research.
Collapse
|
9
|
QIN L, GUO C, ZHAO R, WANG T, WANG J, GUO Y, ZHANG W, HU T, CHEN X, ZHANG Q, ZHANG D, XU Y. Acupotomy inhibits aberrant formation of subchondral bone through regulating osteoprotegerin/receptor activator of nuclear factor-κB ligand pathway in rabbits with knee osteoarthritis induced by modified Videman method. J TRADIT CHIN MED 2022; 42:389-399. [PMID: 35610008 PMCID: PMC9924767 DOI: 10.19852/j.cnki.jtcm.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate the effects of acupotomy on inhibiting abnormal formation of subchondral bone in rabbits with knee osteoarthritis (KOA). METHODS A total of 24 New Zealand rabbits were randomly divided into four groups of 6 rabbits each [control, model, electroacupuncture (EA) and acupotomy]. Eighteen KOA model rabbits were established using a modified Videman method. Rabbits in EA and acupotomy groups received the intervention for 3 weeks. Then, the cartilage and subchondral bone unit were obtained and the histomorphological changes were recorded. Osteo-protegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) in subchondral bone were evaluated by Western blotting, real-time polymerase chain reaction and immunohistochemistry. RESULTS Compared with the model group, both the acupotomy and EA groups showed a significant decrease in the Lequesne index (both 0.01) and Mankin score ( 0.01, < 0.05). In addition, both EA and acupotomy groups had a higher expression of total articular cartilage (TAC) ( 0.05, < 0.01) and lower expression of articular calcified cartilage (ACC)/TAC ( 0.05, < 0.05) compared with the model group. The thickness of the subchondral bone plate in EA and acupotomy groups were decreased (both 0.01) compared to the model group. Moreover, trabecular bone volume (BV/TV), protein and relative expression of OPG and the ratio of OPG/RANKL in the subchondral bone of acupotomy group were decreased statistically significant, while these parameters were not significantly changed in the EA group compared with the model group. CONCLUSIONS In the rabbit model of KOA, acupotomy inhibits aberrant formation of subchondral bone by suppressing OPG/RANKL ratio as a potential therapy for KOA.
Collapse
Affiliation(s)
- Luxue QIN
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changqing GUO
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
- Prof. GUO Changqing, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China. ,Telephone: +86-10-64286687
| | - Ruili ZHAO
- 2 the First People's Hospital of Dongcheng District, Beijing 100050, China
| | - Tong WANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junmei WANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan GUO
- 3 Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Wei ZHANG
- 4 the Third Affiliated Hospital of Beijing Universality of Chinese Medicine, Beijing 100029, China
| | - Tingyao HU
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xilin CHEN
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian ZHANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dian ZHANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue XU
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
10
|
Li SM, Li TL, Guo R, Chen P, Du WS, Kang SB, Yan MZ, Cheng WZ. Effectiveness and safety of acupotomy for knee osteoarthritis: study protocol for a randomized controlled trial. Trials 2021; 22:824. [PMID: 34801083 PMCID: PMC8606077 DOI: 10.1186/s13063-021-05786-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023] Open
Abstract
Background Knee osteoarthritis (KOA) is one of the most common musculoskeletal disorders. Acupotomy may be effective for KOA, but the evidence is limited. This trial aims to determine the effectiveness and safety of acupotomy for KOA. Methods/design This is a parallel-group, assessor-blinded randomized controlled trial. Two hundred patients with KOA will be recruited and randomly assigned to two groups (group A or group D) in a 1:1 ratio. Patients in group A will receive acupotomy and topical diclofenac diethylamine for 4 weeks, while patients in group D will receive topical diclofenac diethylamine alone for 4 weeks. The primary outcome will be the response rate—the proportion of patients who achieve the minimal clinically important improvement in pain and function at week 4 compared with baseline. Secondary outcomes will include pain, function, quality of life, the use of rescue medicine (loxoprofen sodium), and adverse events at weeks 4, 8, and 24 after randomization. Besides, joint fluid and serum will be collected to assess the level of inflammatory cytokines, like TNF-α, IL-1β, and MMP-3. Discussion This study will contribute to a better understanding of the effectiveness and safety of acupotomy in combination with topical nonsteroidal anti-inflammatory drugs. If the hypothesis is confirmed, acupotomy may be recommended as adjunctive therapy for patients with KOA. Results of the study will be of great importance for the guidelines of clinical therapy. Trial registration Chinese Clinical Trial Registry ChiCTR2100043005 Registered on 4 February 2021. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05786-5.
Collapse
Affiliation(s)
- Shu-Ming Li
- Department of Pain, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District, Beijing, China.
| | - Tian-Li Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing, China
| | - Ren Guo
- Department of Pain, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District, Beijing, China
| | - Ping Chen
- Department of Pain, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District, Beijing, China
| | - Wei-Shuai Du
- Department of Pain, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District, Beijing, China
| | - Si-Bo Kang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Ming-Zhe Yan
- Department of Pain, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District, Beijing, China
| | - Wu-Zhong Cheng
- Department of Tuina, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District, Beijing, China.
| |
Collapse
|
11
|
Wang T, Guo Y, Shi XW, Gao Y, Zhang JY, Wang CJ, Yang X, Shu Q, Chen XL, Fu XY, Xie WS, Zhang Y, Li B, Guo CQ. Acupotomy Contributes to Suppressing Subchondral Bone Resorption in KOA Rabbits by Regulating the OPG/RANKL Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8168657. [PMID: 34335838 PMCID: PMC8298142 DOI: 10.1155/2021/8168657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/11/2020] [Accepted: 04/11/2021] [Indexed: 01/19/2023]
Abstract
Subchondral bone lesions, as the crucial inducement for accelerating cartilage degeneration, have been considered as the initiating factor and the potential therapeutic target of knee osteoarthritis (KOA). Acupotomy, the biomechanical therapy guided by traditional Chinese meridians theory, alleviates cartilage deterioration by correcting abnormal mechanics. Whether this mechanical effect of acupotomy inhibits KOA subchondral bone lesions is indistinct. This study aimed to investigate the effects of acupotomy on inhibiting subchondral bone resorption and to define the possible mechanism in immobilization-induced KOA rabbits. After KOA modeling, 8 groups of rabbits (4w/6w acupotomy, 4w/6w electroacupuncture, 4w/6w model, and 4w/6w control groups) received the indicated intervention for 3 weeks. Histological and bone histomorphometry analyses revealed that acupotomy prevented both cartilage surface erosion and subchondral bone loss. Further, acupotomy suppressed osteoclast activity and enhanced osteoblast activity in KOA subchondral bone, showing a significantly decreased expression of tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinases-9 (MMP-9), and cathepsin K (Ctsk) and a significantly increased expression of osteocalcin (OCN); this regulation may be mediated by blocking the decrease in osteoprotegerin (OPG) and the increase in NF-κB receptor activated protein ligand (RANKL). These findings indicated that acupotomy inhibited osteoclast activity and promoted osteoblast activity to ameliorate hyperactive subchondral bone resorption and cartilage degeneration in immobilization-induced KOA rabbits, which may be mediated by the OPG/RANKL signaling pathway. Taken together, our results indicate that acupotomy may have therapeutic potential in KOA by restoring the balance between bone formation and bone resorption to attenuate subchondral bone lesions.
Collapse
Affiliation(s)
- Tong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Guo
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University, Beijing 100010, China
| | - Xiao-Wei Shi
- Massage Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Gao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Yi Zhang
- Traditional Chinese Medicine Department, Beijing Nankou Hospital, Beijing 102200, China
| | - Chun-Jiu Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Shu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xi-Lin Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xin-Yi Fu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Shan Xie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University, Beijing 100010, China
| | - Chang-Qing Guo
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
12
|
Xu D, Lee M, Huang C, Wei J, Zhou M, Yao T, Lu J, Zhao W, Xu N, Huang R, He J, Zheng L. Effect of acupotomy in knee osteoarthritis patients: study protocol for a randomized controlled trial. Trials 2021; 22:295. [PMID: 33879221 PMCID: PMC8056725 DOI: 10.1186/s13063-021-05247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 04/02/2021] [Indexed: 12/05/2022] Open
Abstract
Background Symptomatic knee osteoarthritis (KOA) is common in China. Pharmacological therapy is not the first recommendation because of its safety issues. Nonpharmacological therapy, such as lifestyle adjustments, weight loss, muscle strengthening, and aerobic exercise programs, is strongly recommended for KOA. However, these approaches may fail due to poor patient compliance. There is a lack of high-quality randomized controlled trials of acupotomy, an effective treatment for KOA. This study was designed to investigate the efficacy of acupotomy in patients with KOA. Methods A total of 136 patients will be enrolled at the First Affiliated Hospital of Guangzhou University of Chinese Medicine and assigned to the acupotomy group or sham acupotomy group according to the block randomization scheme. Patients in the acupotomy group will receive 2 sessions of acupotomy for 2 weeks (once a week). Patients in the sham group will receive 2 sessions of sham stimulation for 2 weeks (once a week). All patients will use indomethacin cream externally. The primary outcome will be the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the secondary outcomes will be the visual analog scale (VAS) score, plantar pressure distribution test result, X-ray examination findings, musculoskeletal ultrasound findings, maximum knee circumference, joint mobility, and quality of life. Measurements will be taken at baseline, 1 week after the end of treatment, and at the 3- and 6-month follow-ups. Discussion To the best of our knowledge, this will be the first single-blind, sham-controlled study of acupotomy. The outcome assessors will also be blinded. The aim of this work is to demonstrate the efficacy of acupotomy in treating KOA. Trial registration Chinese Clinical Trial Registry ChiCTR2000033047. Registered on 18 May 2020. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05247-z.
Collapse
Affiliation(s)
- Danghan Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minghui Lee
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cihui Huang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Wei
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxue Zhou
- Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taotao Yao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Lu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjing Zhao
- Shenzhen Pingle Orthopaedic Hospital, Shenzhen, China
| | - Nuo Xu
- The University of Alabama at Birmingham, Birmingham, USA
| | - Ruina Huang
- The Eighth Affiliated Hospital of Sun Yat Sen University, Shenzhen, China
| | - Jun He
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Liang Zheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Acupotomy Therapy for Knee Osteoarthritis Pain: Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2168283. [PMID: 33178308 PMCID: PMC7648689 DOI: 10.1155/2020/2168283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 11/23/2022]
Abstract
Methods We performed a comprehensive search on PubMed, the Cochrane Library, EMBASE, and four Chinese databases for articles published prior to June 2020. We included only randomized controlled trials (RCTs) that used acupotomy therapy as the major intervention in adults with knee OA, were published in either Chinese and English, included more than 20 subjects in each group, and included pain and function in the outcome measures. Knee OA was defined by the American College of Rheumatology or Chinese Orthopedic Association criteria in all studies. We extracted the visual analogue scale (VAS) pain score, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score, the total effectiveness rate, the modified Japanese Orthopedic Association (JOA) activities of daily living score, and Lysholm's score. We calculated the mean difference (MD) or risk ratio (RR) for all relevant outcomes. Meta-analyses were conducted using random-effects models when appropriate. Results We identified 1317 potentially relevant studies, thirty-two of which met the eligibility criteria and were conducted in China between 2007 and 2020. A total of 3021 knee OA patients (62.96% female, median age: 57 years, and median disease duration: 33 months) were included. The treatment duration ranged from 1 week to 5 weeks (median: 3 weeks). The typical acupotomy treatment involved releasing soft tissue adhesions and was performed once a week for 1–5 weeks until the pain was relieved. The control group treatments included acupuncture (8 studies), electroacupuncture (10 studies), sodium hyaluronate (8 studies), radiofrequency electrotherapy (1 study), and nonsteroidal anti-inflammatory drugs (NSAIDs, 5 studies). The results from the meta-analysis showed that acupotomy led to superior improvements in the VAS pain score (MD = −1.11; 95% confidence interval (CI), −1.51 to −0.71; p < 0.00001) and WOMAC pain score (MD = −2.32; 95% CI, −2.94 to −1.69; p < 0.00001), a higher total effectiveness rate (RR = 1.15; 95% CI, 1.09–1.21; p < 0.00001), and superior improvements in the JOA score (MD = 6.39; 95% CI, 4.11–9.76; p < 0.00001) and Lysholm's score (MD = 12.75; 95% CI, 2.61–22.89; p = 0.01) for overall pain and function. No serious adverse events were reported. Conclusion Chinese acupotomy therapy may relieve pain and improve function in patients with knee OA. Furthermore, rigorously designed and well-controlled RCTs are warranted.
Collapse
|
14
|
Mechanism of Action of Acupotomy in Inhibiting Chondrocyte Apoptosis in Rabbits with KOA through the PI3K/Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4241917. [PMID: 33224251 PMCID: PMC7673938 DOI: 10.1155/2020/4241917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Objective We examined the effects of acupotomy on the PI3K/Akt signaling pathway to elucidate the mechanism of action of acupotomy on articular chondrocyte apoptosis among rabbits with knee osteoarthritis (KOA). Methods New Zealand rabbits were randomly assigned to a healthy control group, placebo group, acupotomy group, and drug group, with 10 rabbits in each group. Changes in chondrocytes were examined by hematoxylin and eosin staining, and articular chondrocyte apoptosis was measured by electron microscopy and immunofluorescence. The mRNA and protein expression levels of PI3K and Akt were measured by real-time quantitative PCR and Western blot. Results In contrast, less chromatin margination and clear and smooth nuclear envelope boundary were visible in the acupotomy group and drug group. The number of apoptotic chondrocytes in the knee joint of rabbits was significantly higher in the placebo group than that in the acupotomy group and drug group (P < 0.05). The acupotomy group had a nonsignificantly lower number of apoptotic chondrocytes than the drug group (P > 0.05). Furthermore, the mRNA and protein expression levels of PI3K and Akt were significantly higher in the acupotomy group and drug group than those in the placebo group (P < 0.05) and were closer to normal levels in the acupotomy group than those in the drug group (P < 0.05). PI3K and Akt expression levels were negatively correlated with chondrocyte apoptosis in the knee joint of rabbits in all groups. Conclusion Inhibiting chondrocyte apoptosis in the knee joint of KOA rabbits by upregulating the PI3K/Akt signaling pathway may be a possible mechanism of acupotomy in treating KOA.
Collapse
|
15
|
An X, Wang T, Zhang W, Yu H, Chunhua Zhao R, Guo Y, Wang C, Qin L, Guo C. Chondroprotective Effects of Combination Therapy of Acupotomy and Human Adipose Mesenchymal Stem Cells in Knee Osteoarthritis Rabbits via the GSK3β-Cyclin D1-CDK4/CDK6 Signaling Pathway. Aging Dis 2020; 11:1116-1132. [PMID: 33014527 PMCID: PMC7505269 DOI: 10.14336/ad.2019.1104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are highly chondrogenic and can be used to treat knee osteoarthritis (KOA) by alleviating cartilage defects. Acupotomy, a biomechanical therapy guided by traditional Chinese medicine theory, alleviates cartilage degradation and is widely used in the clinic to treat KOA by correcting abnormal mechanics. However, whether combining acupotomy with ASCs will reverse cartilage degeneration by promoting chondrocyte proliferation in KOA rabbits is unknown. The present study aimed to investigate the effects of combination therapy of acupotomy and ASCs on chondrocyte proliferation and to determine the underlying mechanism in rabbits with KOA induced by knee joint immobilization for 6 weeks. After KOA modeling, five groups of rabbits (acupotomy, ASCs, acupotomy + ASCs, model and control groups) received the indicated intervention for 4 weeks. The combination therapy significantly restored the KOA-induced decrease in passive range of motion (PROM) in the knee joint and reduced the elevated serum level of cartilage oligomeric matrix protein (COMP), a marker for cartilage degeneration. Furthermore, magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) images showed that the combination therapy inhibited cartilage injury. The combination therapy also significantly blocked increases in the mRNA and protein expression of glycogen synthase kinase-3β (GSK3β) and decreases in the mRNA and protein expression of cyclin D1/CDK4 and cyclin D1/CDK6 in cartilage. These findings indicated that the combination therapy mitigated knee joint immobility, promoted chondrocyte proliferation and alleviated cartilage degeneration in KOA rabbits, and these effects may be mediated by specifically regulating the GSK3β-cyclin D1-CDK4/CDK6 pathway.
Collapse
Affiliation(s)
- Xingyan An
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Yu
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Robert Chunhua Zhao
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Yan Guo
- 3Acupuncture and Moxibustion Department, Beijing Traditional Chinese Medicine Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chunjiu Wang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Luxue Qin
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Changqing Guo
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Acupotomy Therapy for Shoulder Adhesive Capsulitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2010816. [PMID: PMID: 31915443 PMCID: PMC6930748 DOI: 10.1155/2019/2010816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/03/2019] [Accepted: 11/22/2019] [Indexed: 11/24/2022]
Abstract
Objective Acupotomy therapy is widely used for pain management. However, the efficacy of acupotomy on shoulder adhesive capsulitis (SAC) is still uncertain. The aim of this study was to determine the effectiveness and safety of acupotomy therapy for SAC. Methods We searched seven electronic databases to collect randomized controlled trials (RCTs) of acupotomy for SAC published before April 2019. A meta-analysis was performed according to the Cochrane systematic review method by using RevMan 5.3 software. Results A total of eight RCTs involving 501 patients were enrolled. Meta-analysis showed that acupotomy was significantly better than the control group in debasing the Visual Analogue Scale (VAS) score (MD = −0.97, 95% CI = [−1.49, −0.45], P=0.0003) and improving the Constant–Murley Score (CMS) (MD = 8.46, 95% CI = [1.04, 15.87], P=0.03), and there was no significant difference in adverse events (OR = 1.24, 95% CI = [0.34, 4.52], P=0.74) between the two groups. Conclusion Acupotomy therapy is an effective and safe treatment for SAC, and this treatment can be recommended for the management of SAC. Due to the low quality and small sample size of the included studies, more rigorously designed RCTs with high quality and large-scale are recommended in future.
Collapse
|
17
|
Effect of acupotomy on chondrocyte proliferation and expression of CyclinD1, CDK4 and CDK6 in rabbits with knee osteoarthritis. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
18
|
Kyongha Cho, Yoonsik Kim, Sang-Hoon Yoon. The effect of miniscalpel acupuncture and splint treatment for joint deformity of hand osteoarthritis: a case report. Integr Med Res 2019; 8:120-122. [PMID: 31193567 PMCID: PMC6536742 DOI: 10.1016/j.imr.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 11/25/2022] Open
Abstract
We are reporting the combined therapeutic effect of miniscalpel acupuncture and splint therapy on osteoarthritis of the hand accompanying severe joint deformity. The patient, female, 55 years of age, was diagnosed with symptomatic osteoarthritis of hand based on radiological examination and the American College of Rheumatology classification criteria. The patient was classified a grade 4 of Kellgren-Lawrence (KL) scale upon initial consultation. Over five months, the patient was treated with miniscalpel acupuncture with splint therapy. The patient's pain, decreased from 6-2 on numeral rating score (NRS) scale. The combined therapeutic effect of miniscalpel acupuncture and splint therapy seems to have positive results on OA of hand accompanying joint deformity, albeit being limited to a single case.
Collapse
Affiliation(s)
- Kyongha Cho
- Baros Korean Medicine Clinic, 4, Muwang-ro 16-gil, Iksan-si, Jeollabuk-do, Republic of Korea
| | - Yoonsik Kim
- Lee-Geonmok Wonli Korean Medicine Hospital, 196 Dongjak-daero, Seocho-gu, Seoul, Republic of Korea
| | - Sang-Hoon Yoon
- Chung-Yeon Central Institute, 64 Sangmujungang-ro, Seo-gu, Gwangju, Republic of Korea
| |
Collapse
|
19
|
Liu G, Zhang L, Zhou X, Zhang BL, Guo GX, Xu P, Wang GY, Fu SJ. Selection and Investigation of a Primate Model of Spontaneous Degenerative Knee Osteoarthritis, the Cynomolgus Monkey (Macaca Fascicularis). Med Sci Monit 2018; 24:4516-4527. [PMID: 29961076 PMCID: PMC6057266 DOI: 10.12659/msm.908913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The aim of this study was to identify a primate model of degenerative knee osteoarthritis (KOA) that may be more relevant for research studies on degenerative KOA in humans. MATERIAL AND METHODS Sixteen specific-pathogen-free (SPF) male cynomolgus monkeys (Macaca fascicularis) were divided into group A (n=8), an old group (22.0-25.3 years of age), and group B (n=8), a young group (3.0-5.2 years of age). For each primate, the behavior was observed, knee circumference was measured, knee joint X-rays were performed, and peripheral blood white blood cell (WBC) counts were measured, and the Kellgren and Lawrence (K-L) system was used for the classification of osteoarthritis. An enzyme-linked immunoassay (ELISA) was performed on knee joint fluid to measure levels of interleukin (IL)-1β, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)13. Changes in articular cartilage were evaluated using the Brittberg score and the Mankin histopathology grading score, respectively. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot were used to measure the expression of the NOTCH3, JAG1, and ACAN genes in knee cartilage specimens, and the findings in the two groups of primates were compared. RESULTS Seven old aged primates in group A were compared with group B, and showed significant differences in WBC count, synovial fluid IL-1β, TGF-β1, and MMP13 levels, expression levels of the NOTCH3, JAG1, and ACAN genes in knee cartilage specimens, and in the Brittberg and Mankin scores (all, P<0.05). CONCLUSIONS Cynomolgus monkeys (Macaca fascicularis) might be a model for age-related degenerative KOA.
Collapse
Affiliation(s)
- Gang Liu
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Lei Zhang
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Xin Zhou
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Bao L Zhang
- College of Nursing, Affiliated to Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Guang X Guo
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Ping Xu
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Guo Y Wang
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Shi J Fu
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|