1
|
DeMichele E, Sosnowski O, Buret AG, Allain T. Regulatory Functions of Hypoxia in Host-Parasite Interactions: A Focus on Enteric, Tissue, and Blood Protozoa. Microorganisms 2023; 11:1598. [PMID: 37375100 PMCID: PMC10303274 DOI: 10.3390/microorganisms11061598] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Body tissues are subjected to various oxygenic gradients and fluctuations and hence can become transiently hypoxic. Hypoxia-inducible factor (HIF) is the master transcriptional regulator of the cellular hypoxic response and is capable of modulating cellular metabolism, immune responses, epithelial barrier integrity, and local microbiota. Recent reports have characterized the hypoxic response to various infections. However, little is known about the role of HIF activation in the context of protozoan parasitic infections. Growing evidence suggests that tissue and blood protozoa can activate HIF and subsequent HIF target genes in the host, helping or hindering their pathogenicity. In the gut, enteric protozoa are adapted to steep longitudinal and radial oxygen gradients to complete their life cycle, yet the role of HIF during these protozoan infections remains unclear. This review focuses on the hypoxic response to protozoa and its role in the pathophysiology of parasitic infections. We also discuss how hypoxia modulates host immune responses in the context of protozoan infections.
Collapse
Affiliation(s)
- Emily DeMichele
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Rondello Bonatti T, Vidal Siqueira-Castro IC, Averaldo Guiguet Leal D, Durigan M, Pedroso Dias RJ, Bueno Franco RM. Molecular characterization of waterborne protozoa in surface water and sediment in Brazil: a taxonomic survey of ciliated protozoa and their correlation with Giardia duodenalis and Cryptosporidium spp. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:470. [PMID: 36922479 DOI: 10.1007/s10661-023-11065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The detection of Giardia duodenalis and Cryptosporidium spp. was performed, along with the identification of the ciliated protozoa biodiversity, to evaluate the correlation between these protozoa in freshwater quality monitoring. Water and sediment samples from two sites in the Atibaia River (Campinas, São Paulo, Brazil) were collected monthly for 2 years (n = 96). Pathogenic protozoa in water and sediment were detected by using immunomagnetic separation, followed by visualization by immunofluorescence assay (IFA). All positive aliquots in IFA were subjected to DNA extraction and subsequently nested PCR. Qualitative (in vivo observation and silver impregnation) and quantitative (in vivo enumeration) analyses were performed for the ciliated protozoa. Giardia cysts were detected in 62.5% of the surface water samples and Cryptosporidium spp. in 25.0%. In the sediment, cysts were detected in 35.4% samples and oocysts in 16.6%. A total of 57 samples positive for Giardia cysts were subjected to sequencing, 40 of which were harboring G. duodenalis (24 were characterized as sub-assemblage AII). For ciliated protozoa, 73 taxa belonging to 53 genera were identified over the period of the study. These results revealed a high degree of contamination by waterborne protozoa in the main water source which supplies drinking water for more than one million people in Campinas (São Paulo), highlighting the need for continuous monitoring of this catchment site. In addition, the present study provides important data regarding the sources of the water body degradation, i.e., fecal contamination of human origin, in addition to the survey of the ciliated protozoa.
Collapse
Affiliation(s)
- Taís Rondello Bonatti
- Laboratório de Protozoologia, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, PO Box: 6109, CEP: 13083-970, São Paulo, Brazil.
| | - Isabel Cristina Vidal Siqueira-Castro
- Laboratório de Protozoologia, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, PO Box: 6109, CEP: 13083-970, São Paulo, Brazil
| | | | - Maurício Durigan
- Laboratório de Protozoologia, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, PO Box: 6109, CEP: 13083-970, São Paulo, Brazil
| | | | - Regina Maura Bueno Franco
- Laboratório de Protozoologia, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, PO Box: 6109, CEP: 13083-970, São Paulo, Brazil
| |
Collapse
|
3
|
An allergist's approach to food poisoning. Ann Allergy Asthma Immunol 2022; 130:444-451. [PMID: 36334721 DOI: 10.1016/j.anai.2022.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Foodborne illnesses represent a significant global health concern. These preventable diseases lead to substantial mortality and morbidity worldwide. Substantial overlap with food allergy exists with similar clinical presentations and symptom onset. Knowledge of the typically implicated microorganisms and toxins can help properly identify these diseases. A thorough history is essential to differentiate between these 2 disorders. The types of food implicated may be similar including milk, egg, fish, and shellfish. The timing of symptom onset may overlap and lead to misdiagnosis of disorders such as food protein-induced enterocolitis syndrome. Classically, histamine-related food poisoning is also typically confused with true food allergy and may be seen as related to fish and cheese. Knowledge of epidemiology, patterns, and etiology of allergic conditions and foodborne illness may help the allergist differentiate among these common diseases.
Collapse
|
4
|
Mthethwa NP, Amoah ID, Reddy P, Bux F, Kumari S. Fluorescence and colorimetric LAMP-based real-time detection of human pathogenic Cryptosporidium spp. from environmental samples. Acta Trop 2022; 235:106606. [DOI: 10.1016/j.actatropica.2022.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022]
|
5
|
Luka GS, Najjaran H, Hoorfar M. On-chip-based electrochemical biosensor for the sensitive and label-free detection of Cryptosporidium. Sci Rep 2022; 12:6957. [PMID: 35484282 PMCID: PMC9051104 DOI: 10.1038/s41598-022-10765-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/08/2022] [Indexed: 01/14/2023] Open
Abstract
Cryptosporidium, an intestinal protozoan pathogen, is one of the leading causes of death in children and diarrhea in healthy adults. Detection of Cryptosporidium has become a high priority to prevent potential outbreaks. In this paper, a simple, easy to fabricate, and cost-effective on-chip-based electrochemical biosensor has been developed for the sensitive and label-free detection of Cryptosporidium oocysts in water samples. The sensor was fabricated using standard lithography using a mask with a 3-electrode design and modified by self-assembling a hybrid of a thiolated protein/G and the specific anti-Cryptosporidium monoclonal antibodies (IgG3). The electrochemical impedance spectroscopy (EIS) was employed to quantitate C. parvum in the range of 0 to 300 oocysts, with a detection limit of approximately 20 oocysts/5 µL. The high sensitivity and specificity of the developed label-free electrochemical biosensor suggest that this novel platform is a significant step towards the development of fast, real-time, inexpensive and label-free sensing tool for early warning and immediate on-site detection of C. parvum oocysts in water samples, as compared to the traditional methods (such as PCR and microscopy). Furthermore, under optimized conditions, this label-free biosensor can be extended to detect other analytes and biomarkers for environmental and biomedical analyses.
Collapse
Affiliation(s)
- George S Luka
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, BC, V1V1V7, Canada
| | - Homayoun Najjaran
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, BC, V1V1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, BC, V1V1V7, Canada.
| |
Collapse
|
6
|
Kahler AM, Mattioli MC, da Silva AJ, Hill V. Detection of Cyclospora cayetanensis in produce irrigation and wash water using large-volume sampling techniques. Food Waterborne Parasitol 2021; 22:e00110. [PMID: 33681488 PMCID: PMC7930117 DOI: 10.1016/j.fawpar.2021.e00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/02/2022] Open
Abstract
The recent increase of reported cyclosporiasis outbreaks associated with fresh produce has highlighted the need for understanding environmental transmission of Cyclospora cayetanensis in agricultural settings and facilities. Conducting such environmental investigations necessitates robust sample collection and analytical methods to detect C. cayetanensis in water samples. This study evaluated three sample collection methods for recovery of C. cayetanensis oocysts from water samples during seeded recovery experiments. Two filtration-based methods, dead-end ultrafiltration (DEUF) and USEPA Method 1623.1, were evaluated for oocyst recovery from irrigation water. A non-filter-based method, continuous flow centrifugation (CFC), was evaluated separately for recovery from creek water and spent produce wash water. Median C. cayetanensis recovery efficiencies were 17% for DEUF and 16-22% for Method 1623.1. The DEUF method proved to be more robust than Method 1623.1, as the recovery efficiencies were less variable and the DEUF ultrafilters were capable of filtering larger volumes of high-turbidity water without clogging. Median C. cayetanensis recovery efficiencies for CFC were 28% for wash water and 63% for creek water, making it a viable option for processing water with high turbidity or organic matter. The data from this study demonstrate the capability of DEUF and CFC as filter-based and non-filter-based options, respectively, for the recovery of C. cayetanensis oocysts from environmental and agricultural waters.
Collapse
Affiliation(s)
- Amy M Kahler
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mia C Mattioli
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Alexandre J da Silva
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Food and Environmental Microbiology, Laurel, MD 20708, USA
| | - Vincent Hill
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
7
|
Masangkay FR, Milanez GD, Tsiami A, Hapan FZ, Somsak V, Kotepui M, Tangpong J, Karanis P. Waterborne protozoan pathogens in environmental aquatic biofilms: Implications for water quality assessment strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113903. [PMID: 32023789 DOI: 10.1016/j.envpol.2019.113903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Biofilms containing pathogenic organisms from the water supply are a potential source of protozoan parasite outbreaks and a significant public health concern. The aim of the present study was to demonstrate the simultaneous and multi-spatial occurrence of waterborne protozoan pathogens (WBPP) in substrate-associated biofilms (SAB) and compare it to surface water (SW) and sediments with bottom water (BW) counterparts using manual filtration and elution from low-volume samples. For scenario purposes, simulated environmental biofilm contamination was created from in-situ grown one-month-old SAB (OM-SAB) that were spiked with Cryptosporidium parvum oocysts. Samples were collected from the largest freshwater reservoirs in Luzon, Philippines and a University Lake in Thailand. A total of 69 samples (23 SAB, 23 SW, and 23 BW) were evaluated using traditional staining techniques for Cryptosporidium, and Immunofluorescence staining for the simultaneous detection of Cryptosporidium and Giardia. WBPP were found in 43% SAB, 39% SW, and 39% BW of the samples tested in the present study with SAB results reflecting SW and BW results. Further highlights were demonstrated in the potential of using low-volume samples for the detection of parasites in source water. Scanning electron microscopy of OM-SAB samples revealed a naturally-associated testate amoeba shell, while Cryptosporidium oocysts spiked samples provided a visual profile of what can be expected from naturally contaminated biofilms. This study provides the first evidence for the simultaneous and multi-spatial occurrence of waterborne protozoan pathogens in low-volume aquatic matrices and further warrants SAB testing along with SW and BW matrices for improved water quality assessment strategies (iWQAS).
Collapse
Affiliation(s)
- Frederick R Masangkay
- Biomedical Sciences Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University Manila, 1015, Philippines.
| | - Giovanni D Milanez
- Biomedical Sciences Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University Manila, 1015, Philippines.
| | - Amalia Tsiami
- London Geller College of Hospitality and Tourism, University of West London, St Mary's Road, Ealing, London, W5 5RF, United Kingdom.
| | - Freida Z Hapan
- Department of Medical Technology, College of Pharmacy, The Pontifical and Royal University of Santo Tomas, España Blvd, Sampaloc, Manila, 1008, Philippines.
| | - Voravuth Somsak
- Biomedical Sciences Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| | - Manas Kotepui
- Biomedical Sciences Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| | - Jitbanjong Tangpong
- Biomedical Sciences Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| | - Panagiotis Karanis
- Medical Faculty and University Hospital of Cologne, Cologne, 50923, Germany; University of Nicosia Medical School, Nicosia, 2408, Cyprus.
| |
Collapse
|
8
|
Li J, Cui Z, Qi M, Zhang L. Advances in Cyclosporiasis Diagnosis and Therapeutic Intervention. Front Cell Infect Microbiol 2020; 10:43. [PMID: 32117814 PMCID: PMC7026454 DOI: 10.3389/fcimb.2020.00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cyclosporiasis is caused by the coccidian parasite Cyclospora cayetanensis and is associated with large and complex food-borne outbreaks worldwide. Associated symptoms include severe watery diarrhea, particularly in infants, and immune dysfunction. With the globalization of human food supply, the occurrence of cyclosporiasis has been increasing in both food growing and importing countries. As well as being a burden on the health of individual humans, cyclosporiasis is a global public health concern. Currently, no vaccine is available but early detection and treatment could result in a favorable clinical outcome. Clinical diagnosis is based on cardinal clinical symptoms and conventional laboratory methods, which usually involve microscopic examination of wet smears, staining tests, fluorescence microscopy, serological testing, or DNA testing for oocysts in the stool. Detection in the vehicle of infection, which can be fresh produce, water, or soil is helpful for case-linkage and source-tracking during cyclosporiasis outbreaks. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) can evidently cure C. cayetanensis infection. However, TMP-SMX is not suitable for patients having sulfonamide intolerance. In such case ciprofloxacin, although less effective than TMP-SMX, is a good option. Another drug of choice is nitazoxanide that can be used in the cases of sulfonamide intolerance and ciprofloxacin resistance. More epidemiological research investigating cyclosporiasis in humans should be conducted worldwide, to achieve a better understanding of its characteristics in this regard. It is also necessary to establish in vitro and/or in vivo protocols for cultivating C. cayetanensis, to facilitate the development of rapid, convenient, precise, and economical detection methods for diagnosis, as well as more effective tracing methods. This review focuses on the advances in clinical features, diagnosis, and therapeutic intervention of cyclosporiasis.
Collapse
Affiliation(s)
- Junqiang Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhaohui Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Cyclospora cayetanensis infection in humans: biological characteristics, clinical features, epidemiology, detection method and treatment. Parasitology 2019; 147:160-170. [PMID: 31699163 DOI: 10.1017/s0031182019001471] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclospora cayetanensis, a coccidian parasite that causes protracted and relapsing gastroenteritis, has a short recorded history. At least 54 countries have documented C. cayetanensis infections and 13 of them have recorded cyclosporiasis outbreaks. Cyclospora cayetanensis infections are commonly reported in developing countries with low-socioeconomic levels or in endemic areas, although large outbreaks have also been documented in developed countries. The overall C. cayetanensis prevalence in humans worldwide is 3.55%. Among susceptible populations, the highest prevalence has been documented in immunocompetent individuals with diarrhea. Infections are markedly seasonal, occurring in the rainy season or summer. Cyclospora cayetanensis or Cyclospora-like organisms have also been detected in food, water, soil and some other animals. Detection methods based on oocyst morphology, staining and molecular testing have been developed. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) effectively cures C. cayetanensis infection, whereas ciprofloxacin is less effective than TMP-SMX, but is suitable for patients who cannot tolerate co-trimoxazole. Here, we review the biological characteristics, clinical features, epidemiology, detection methods and treatment of C. cayetanensis in humans, and assess some risk factors for infection with this pathogen.
Collapse
|
10
|
Abstract
Cystoisospora belli is a coccidian parasite of humans, with a direct fecal-oral transmission cycle. It is globally distributed, but mainly found in tropical and subtropical areas. Many cases of C. belli infections have been reported in patients with HIV, and in patients undergoing immunosuppressive therapy for organ transplants or those treated for tumours worldwide. Unsporulated or partially sporulated oocysts of C. belli are excreted in feces. When sporulated oocysts in contaminated water or food are ingested, asexual and sexual stages of C. belli are confined to the epithelium of intestines, bile ducts and gallbladder. Monozoic tissue cysts are present in extra-intestinal organs (lamina propria of the small and large intestine, lymph nodes, spleen, and liver) of immunosuppressed humans. However, a paratenic host has not been demonstrated. Cystoisospora belli infections can be persistent, lasting for months, and relapses are common; the mechanism of relapse is unknown. Recently, the endogenous stages of C. belli were re-examined and attention was drawn to cases of misidentification of non-protozoal structures in the gallbladder of patients as C. belli. Here, we review all aspects of the biology of C. belli, including morphology, endogenous stages, prevalence, epidemiology, symptoms, diagnosis and control.
Collapse
Affiliation(s)
- J P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Service, Animal Parasitic Disease Laboratory, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA
| | - S Almeria
- Departmentof Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition, Office of Applied Research and Safety Assessment, Division of Virulence Assessment, Laurel, MD 20708, USA
| |
Collapse
|
11
|
Almeria S, Cinar HN, Dubey JP. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019; 7:E317. [PMID: 31487898 PMCID: PMC6780905 DOI: 10.3390/microorganisms7090317] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal-oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients. Trimetoprim-sulfamethoxazole is the antibiotic of choice for the treatment of cyclosporiasis, but relapses may occur. Further research is needed to understand many unknown epidemiological aspects of this parasitic disease. Here, we summarize the biology, epidemiology, outbreaks, clinical symptoms, diagnosis, treatment, control and prevention of C. cayetanensis; additionally, we outline future research needs for this parasite.
Collapse
Affiliation(s)
- Sonia Almeria
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Hediye N Cinar
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Jitender P Dubey
- Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
12
|
Omarova A, Tussupova K, Berndtsson R, Kalishev M, Sharapatova K. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E495. [PMID: 29534511 PMCID: PMC5877040 DOI: 10.3390/ijerph15030495] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
Improved water, sanitation and hygiene (WASH) are significant in preventing diarrhea morbidity and mortality caused by protozoa in low- and middle-income countries. Due to the intimate and complex relationships between the different WASH components, it is often necessary to improve not just one but all of these components to have sustainable results. The objective of this paper was to review the current state of WASH-related health problems caused by parasitic protozoa by: giving an overview and classification of protozoa and their effect on people's health, discussing different ways to improve accessibility to safe drinking water, sanitation services and personal hygiene behavior; and suggesting an institutional approach to ensure improved WASH. The findings indicate that Giardia and Cryptosporidium are more often identified during waterborne or water-washed outbreaks and they are less sensitive than most of the bacteria and viruses to conventional drinking water and wastewater treatment methods. There are various institutions of control and prevention of water-related diseases caused by protozoa in developed countries. Unfortunately, the developing regions do not have comparable systems. Consequently, the institutional and systems approach to WASH is necessary in these countries.
Collapse
Affiliation(s)
- Alua Omarova
- Department of Nutrition and General Hygiene, Karaganda State Medical University, Gogol Street 40, Karaganda 100008, Kazakhstan.
| | - Kamshat Tussupova
- Department of International Cooperation and Bologna Process, Karaganda State Medical University, Gogol Street 40, Karaganda 100008, Kazakhstan.
- Division of Water Resources Engineering & Center for Middle Eastern Studies, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
| | - Ronny Berndtsson
- Division of Water Resources Engineering & Center for Middle Eastern Studies, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
| | - Marat Kalishev
- Department of Nutrition and General Hygiene, Karaganda State Medical University, Gogol Street 40, Karaganda 100008, Kazakhstan.
| | - Kulyash Sharapatova
- Department of Surgery, Gynecology and Pediatry, Semey State Medical University, Pavlodar Branch, Toraigyrov Street 72/1, Pavlodar 140000, Kazakhstan.
| |
Collapse
|