1
|
Xu H, Brown JL, Bhaskaran S, Van Remmen H. Reactive oxygen species in the pathogenesis of sarcopenia. Free Radic Biol Med 2025; 227:446-458. [PMID: 39613046 DOI: 10.1016/j.freeradbiomed.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
One of the most critical factors impacting healthspan in the elderly is the loss of muscle mass and function, clinically referred to as sarcopenia. Muscle atrophy and weakness lead to loss of mobility, increased risk of injury, metabolic changes and loss of independence. Thus, defining the underlying mechanisms of sarcopenia is imperative to enable the development of effective interventions to preserve muscle function and quality in the elderly and improve healthspan. Over the past few decades, understanding the roles of mitochondrial dysfunction and oxidative stress has been a major focus of studies seeking to reveal critical molecular pathways impacted during aging. In this review, we will highlight how oxidative stress might contribute to sarcopenia by discussing the impact of oxidative stress on the loss of innervation and alteration in the neuromuscular junction (NMJ), on muscle mitochondrial function and atrophy pathways, and finally on muscle contractile function.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
2
|
Zampieri S, Bersch I, Smeriglio P, Barbieri E, Boncompagni S, Maccarone MC, Carraro U. Program with last minute abstracts of the Padua Days on Muscle and Mobility Medicine, 27 February - 2 March, 2024 (2024Pdm3). Eur J Transl Myol 2024; 34:12346. [PMID: 38305708 PMCID: PMC11017178 DOI: 10.4081/ejtm.2024.12346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
During the 2023 Padua Days on Muscle and Mobility Medicine the 2024 meeting was scheduled from 28 February to 2 March 2024 (2024Pdm3). During autumn 2023 the program was expanded with Scientific Sessions which will take place over five days (in 2024 this includes February 29), starting from the afternoon of 27 February 2024 in the Conference Rooms of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As per consolidated tradition, the second day will take place in Padua, for the occasion in the Sala San Luca of the Monastery of Santa Giustina in Prato della Valle, Padua, Italy. Confirming the attractiveness of the Padua Days on Muscle and Mobility Medicine, over 100 titles were accepted until 15 December 2023 (many more than expected), forcing the organization of parallel sessions on both 1 and 2 March 2024. The five days will include lectures and oral presentations of scientists and clinicians from Argentina, Austria, Belgium, Brazil, Bulgaria, Canada, Denmark, Egypt, France, Germany, Iceland, Ireland, Italy, Romania, Russia, Slovenia, Switzerland, UK and USA. Only Australia, China, India and Japan are missing from this edition. But we are confident that authors from those countries who publish articles in the PAGEpress: European Journal of Translational Myology (EJTM: 2022 ESCI Clarivate's Impact Factor: 2.2; SCOPUS Cite Score: 3.2) will decide to join us in the coming years. Together with the program established by 31 January 2024, the abstracts will circulate during the meeting only in the electronic version of the EJTM Issue 34 (1) 2024. See you soon in person at the Hotel Petrarca in Montegrotto Terme, Padua, for the inauguration scheduled the afternoon of 27 February 2024 or on-line for free via Zoom. Send us your email address if you are not traditional participants listed in Pdm3 and EJTM address books.
Collapse
Affiliation(s)
- Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy; Department of Biomedical Sciences, University of Padova, Padua, Italy; Interdepartmental Research Centre of Myology, University of Padova, Padua, Italy; Armando Carraro & Carmela Mioni-Carraro Foundation for Translational Myology, Padua.
| | - Ines Bersch
- Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland; International FES Centre®, Swiss Paraplegic Centre Nottwil, Nottwil.
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris.
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU).
| | - Simona Boncompagni
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti.
| | | | - Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Padua, Italy; Interdepartmental Research Centre of Myology, University of Padova, Padua, Italy; Armando Carraro & Carmela Mioni-Carraro Foundation for Translational Myology, Padua.
| |
Collapse
|
3
|
Marcucci L, Michelucci A, Reggiani C. Cytosolic Ca 2+ gradients and mitochondrial Ca 2+ uptake in resting muscle fibers: A model analysis. BIOPHYSICAL REPORTS 2023; 3:100117. [PMID: 37576797 PMCID: PMC10412765 DOI: 10.1016/j.bpr.2023.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Calcium ions (Ca2+) enter mitochondria via the mitochondrial Ca2+ uniporter, driven by electrical and concentration gradients. In this regard, transgenic mouse models, such as calsequestrin knockout (CSQ-KO) mice, with higher mitochondrial Ca2+ concentrations ([Ca2+]mito), should display higher cytosolic Ca2+ concentrations ([Ca2+]cyto). However, repeated measurements of [Ca2+]cyto in quiescent CSQ-KO fibers never showed a difference between WT and CSQ-KO. Starting from the consideration that fluorescent Ca2+ probes (Fura-2 and Indo-1) measure averaged global cytosolic concentrations, in this report we explored the role of local Ca2+ concentrations (i.e., Ca2+ microdomains) in regulating mitochondrial Ca2+ in resting cells, using a multicompartmental diffusional Ca2+ model. Progressively including the inward and outward fluxes of sarcoplasmic reticulum (SR), extracellular space, and mitochondria, we explored their contribution to the local Ca2+ distribution within the cell. The model predicts Ca2+ concentration gradients with hot spots or microdomains even at rest, minor but similar to those of evoked Ca2+ release. Due to their specific localization close to Ca2+ release units (CRU), mitochondria could take up Ca2+ directly from high-concentration microdomains, thus sensibly raising [Ca2+]mito, despite minor, possibly undetectable, modifications of the average [Ca2+]cyto.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
4
|
Marchioretti C, Zanetti G, Pirazzini M, Gherardi G, Nogara L, Andreotti R, Martini P, Marcucci L, Canato M, Nath SR, Zuccaro E, Chivet M, Mammucari C, Pacifici M, Raffaello A, Rizzuto R, Mattarei A, Desbats MA, Salviati L, Megighian A, Sorarù G, Pegoraro E, Belluzzi E, Pozzuoli A, Biz C, Ruggieri P, Romualdi C, Lieberman AP, Babu GJ, Sandri M, Blaauw B, Basso M, Pennuto M. Defective excitation-contraction coupling and mitochondrial respiration precede mitochondrial Ca 2+ accumulation in spinobulbar muscular atrophy skeletal muscle. Nat Commun 2023; 14:602. [PMID: 36746942 PMCID: PMC9902403 DOI: 10.1038/s41467-023-36185-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy (SBMA). Skeletal muscle is a primary site of toxicity; however, the current understanding of the early pathological processes that occur and how they unfold during disease progression remains limited. Using transgenic and knock-in mice and patient-derived muscle biopsies, we show that SBMA mice in the presymptomatic stage develop a respiratory defect matching defective expression of genes involved in excitation-contraction coupling (ECC), altered contraction dynamics, and increased fatigue. These processes are followed by stimulus-dependent accumulation of calcium into mitochondria and structural disorganization of the muscle triads. Deregulation of expression of ECC genes is concomitant with sexual maturity and androgen raise in the serum. Consistent with the androgen-dependent nature of these alterations, surgical castration and AR silencing alleviate the early and late pathological processes. These observations show that ECC deregulation and defective mitochondrial respiration are early but reversible events followed by altered muscle force, calcium dyshomeostasis, and dismantling of triad structure.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
- Dulbecco Telethon Institute (DTI) at the Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Giulia Zanetti
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
| | - Gaia Gherardi
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25121, Brescia, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Marta Canato
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Samir R Nath
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
| | - Mathilde Chivet
- Dulbecco Telethon Institute (DTI) at the Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Cristina Mammucari
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
| | - Marco Pacifici
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Anna Raffaello
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Maria A Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Leonardo Salviati
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
| | - Gianni Sorarù
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
- Department of Neuroscience (DNS), University of Padova, 35128, Padova, Italy
| | - Elena Pegoraro
- Department of Neuroscience (DNS), University of Padova, 35128, Padova, Italy
| | - Elisa Belluzzi
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Assunta Pozzuoli
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Carlo Biz
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
| | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Padova, 35100, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Marco Sandri
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy.
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy.
- Padova Neuroscience Center (PNC), Padova, 35100, Italy.
- Dulbecco Telethon Institute (DTI) at the Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| |
Collapse
|
5
|
Protasi F, Girolami B, Serano M, Pietrangelo L, Paolini C. Ablation of Calsequestrin-1, Ca 2+ unbalance, and susceptibility to heat stroke. Front Physiol 2022; 13:1033300. [PMID: 36311237 PMCID: PMC9598425 DOI: 10.3389/fphys.2022.1033300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction: Ca2+ levels in adult skeletal muscle fibers are mainly controlled by excitation-contraction (EC) coupling, a mechanism that translates action potentials in release of Ca2+ from the sarcoplasmic reticulum (SR) release channels, i.e. the ryanodine receptors type-1 (RyR1). Calsequestrin (Casq) is a protein that binds large amounts of Ca2+ in the lumen of the SR terminal cisternae, near sites of Ca2+ release. There is general agreement that Casq is not only important for the SR ability to store Ca2+, but also for modulating the opening probability of the RyR Ca2+ release channels. The initial studies: About 20 years ago we generated a mouse model lacking Casq1 (Casq1-null mice), the isoform predominantly expressed in adult fast twitch skeletal muscle. While the knockout was not lethal as expected, lack of Casq1 caused a striking remodeling of membranes of SR and of transverse tubules (TTs), and mitochondrial damage. Functionally, CASQ1-knockout resulted in reduced SR Ca2+ content, smaller Ca2+ transients, and severe SR depletion during repetitive stimulation. The myopathic phenotype of Casq1-null mice: After the initial studies, we discovered that Casq1-null mice were prone to sudden death when exposed to halogenated anaesthetics, heat and even strenuous exercise. These syndromes are similar to human malignant hyperthermia susceptibility (MHS) and environmental-exertional heat stroke (HS). We learned that mechanisms underlying these syndromes involved excessive SR Ca2+ leak and excessive production of oxidative species: indeed, mortality and mitochondrial damage were significantly prevented by administration of antioxidants and reduction of oxidative stress. Though, how Casq1-null mice could survive without the most important SR Ca2+ binding protein was a puzzling issue that was not solved. Unravelling the mystery: The mystery was finally solved in 2020, when we discovered that in Casq1-null mice the SR undergoes adaptations that result in constitutively active store-operated Ca2+ entry (SOCE). SOCE is a mechanism that allows skeletal fibers to use external Ca2+ when SR stores are depleted. The post-natal compensatory mechanism that allows Casq1-null mice to survive involves the assembly of new SR-TT junctions (named Ca2+ entry units) containing Stim1 and Orai1, the two proteins that mediate SOCE.
Collapse
Affiliation(s)
- Feliciano Protasi
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Barbara Girolami
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Serano
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Cecilia Paolini
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
6
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
7
|
Serano M, Pietrangelo L, Paolini C, Guarnier FA, Protasi F. Oxygen Consumption and Basal Metabolic Rate as Markers of Susceptibility to Malignant Hyperthermia and Heat Stroke. Cells 2022; 11:2468. [PMID: 36010545 PMCID: PMC9406760 DOI: 10.3390/cells11162468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/28/2022] Open
Abstract
Calsequestrin 1 (CASQ1) and Ryanodine receptor 1 (RYR1) are two of the main players in excitation-contraction (EC) coupling. CASQ1-knockout mice and mice carrying a mutation in RYR1 (Y522S) linked to human malignant hyperthermia susceptibility (MHS) both suffer lethal hypermetabolic episodes when exposed to halothane (MHS crises) and to environmental heat (heat stroke, HS). The phenotype of Y522S is more severe than that of CASQ1-null mice. As MHS and HS are hypermetabolic responses, we studied the metabolism of adult CASQ1-null and Y522S mice using wild-type (WT) mice as controls. We found that CASQ1-null and Y522S mice have increased food consumption and higher core temperature at rest. By indirect calorimetry, we then verified that CASQ1-null and Y522S mice show an increased oxygen consumption and a lower respiratory quotient (RQ). The accelerated metabolism of CASQ1-null and Y522S mice was also accompanied with a reduction in body fat. Moreover, both mouse models displayed increased oxygen consumption and a higher core temperature during heat stress. The results collected suggest that metabolic rate, oxygen consumption, and body temperature at rest, all more elevated in Y522S than in CASQ1-null mice, could possibly be used as predictors of the level of susceptibility to hyperthermic crises of mice (and possibly humans).
Collapse
Affiliation(s)
- Matteo Serano
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Cecilia Paolini
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Flavia A. Guarnier
- Department of General Pathology, Londrina State University, Londrina 86057-970, Brazil
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
García-Castañeda M, Michelucci A, Zhao N, Malik S, Dirksen RT. Postdevelopmental knockout of Orai1 improves muscle pathology in a mouse model of Duchenne muscular dystrophy. J Gen Physiol 2022; 154:213383. [PMID: 35939054 PMCID: PMC9365874 DOI: 10.1085/jgp.202213081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), an X-linked disorder caused by loss-of-function mutations in the dystrophin gene, is characterized by progressive muscle degeneration and weakness. Enhanced store-operated Ca2+ entry (SOCE), a Ca2+ influx mechanism coordinated by STIM1 sensors of luminal Ca2+ within the sarcoplasmic reticulum (SR) and Ca2+-permeable Orai1 channels in the sarcolemma, is proposed to contribute to Ca2+-mediated muscle damage in DMD. To directly determine the impact of Orai1-dependent SOCE on the dystrophic phenotype, we crossed mdx mice with tamoxifen-inducible, muscle-specific Orai1 knockout mice (mdx-Orai1 KO mice). Both constitutive and SOCE were significantly increased in flexor digitorum brevis fibers from mdx mice, while SOCE was absent in fibers from both Orai1 KO and mdx-Orai1 KO mice. Compared with WT mice, fibers from mdx mice exhibited (1) increased resting myoplasmic Ca2+ levels, (2) reduced total releasable Ca2+ store content, and (3) a prolonged rate of electrically evoked Ca2+ transient decay. These effects were partially normalized in fibers from mdx-Orai1 KO mice. Intact extensor digitorum longus muscles from mdx mice exhibited a significant reduction of maximal specific force, which was rescued in muscles from mdx-Orai1 KO mice. Finally, during exposure to consecutive eccentric contractions, muscles from mdx mice displayed a more pronounced decline in specific force compared with that of WT mice, which was also significantly attenuated by Orai1 ablation. Together, these results indicate that enhanced Orai1-dependent SOCE exacerbates the dystrophic phenotype and that Orai1 deficiency improves muscle pathology by both normalizing Ca2+ homeostasis and promoting sarcolemmal integrity/stability.
Collapse
Affiliation(s)
- Maricela García-Castañeda
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Antonio Michelucci
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
9
|
Serano M, Paolini C, Michelucci A, Pietrangelo L, Guarnier FA, Protasi F. High-Fat Diet Impairs Muscle Function and Increases the Risk of Environmental Heatstroke in Mice. Int J Mol Sci 2022; 23:5286. [PMID: 35563676 PMCID: PMC9104075 DOI: 10.3390/ijms23095286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental heat-stroke (HS) is a life-threatening response often triggered by hot and humid weather. Several lines of evidence indicate that HS is caused by excessive heat production in skeletal muscle, which in turn is the result of abnormal Ca2+ leak from the sarcoplasmic reticulum (SR) and excessive production of oxidative species of oxygen and nitrogen. As a high fat diet is known to increase oxidative stress, the objective of the present study was to investigate the effects of 3 months of high-fat diet (HFD) on the HS susceptibility of wild type (WT) mice. HS susceptibility was tested in an environmental chamber where 4 months old WT mice were exposed to heat stress (41 °C for 1 h). In comparison with mice fed with a regular diet, mice fed with HFD showed: (a) increased body weight and accumulation of adipose tissue; (b) elevated oxidative stress in skeletal muscles; (c) increased heat generation and oxygen consumption during exposure to heat stress; and finally, (d) enhanced sensitivity to both temperature and caffeine of isolated muscles during in-vitro contracture test. These data (a) suggest that HFD predisposes WT mice to heat stress and (b) could have implications for guidelines regarding food intake during periods of intense environmental heat.
Collapse
Affiliation(s)
- Matteo Serano
- CAST, Center for Advanced Studies and Technology, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (C.P.); (A.M.); (L.P.)
- DMSI, Department of Medicine and Aging Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Cecilia Paolini
- CAST, Center for Advanced Studies and Technology, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (C.P.); (A.M.); (L.P.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Michelucci
- CAST, Center for Advanced Studies and Technology, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (C.P.); (A.M.); (L.P.)
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (C.P.); (A.M.); (L.P.)
- DMSI, Department of Medicine and Aging Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Flavia A. Guarnier
- Department of General Pathology, Londrina State University, Londrina 86057-970, Brazil;
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (C.P.); (A.M.); (L.P.)
- DMSI, Department of Medicine and Aging Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
O'Connor TN, Kallenbach JG, Orciuoli HM, Paris ND, Bachman JF, Johnston CJ, Hernady E, Williams JP, Dirksen RT, Chakkalakal JV. Endurance exercise attenuates juvenile irradiation-induced skeletal muscle functional decline and mitochondrial stress. Skelet Muscle 2022; 12:8. [PMID: 35414122 PMCID: PMC9004104 DOI: 10.1186/s13395-022-00291-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/05/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Radiotherapy is commonly used to treat childhood cancers and can have adverse effects on muscle function, but the underlying mechanisms have yet to be fully elucidated. We hypothesized that endurance exercise following radiation treatment would improve skeletal muscle function. METHODS We utilized the Small Animal Radiation Research Platform (SARRP) to irradiate juvenile male mice with a clinically relevant fractionated dose of 3× (every other day over 5 days) 8.2 Gy X-ray irradiation locally from the knee to footpad region of the right hindlimb. Mice were then singly housed for 1 month in cages equipped with either locked or free-spinning voluntary running wheels. Ex vivo muscle contractile function, RT-qPCR analyses, resting cytosolic and sarcoplasmic reticulum (SR) store Ca2+ levels, mitochondrial reactive oxygen species levels (MitoSOX), and immunohistochemical and biochemical analyses of muscle samples were conducted to assess the muscle pathology and the relative therapeutic impact of voluntary wheel running (VWR). RESULTS Irradiation reduced fast-twitch extensor digitorum longus (EDL) muscle-specific force by 27% compared to that of non-irradiated mice, while VWR post-irradiation improved muscle-specific force by 37%. Radiation treatment similarly reduced slow-twitch soleus muscle-specific force by 14% compared to that of non-irradiated mice, while VWR post-irradiation improved specific force by 18%. We assessed intracellular Ca2+ regulation, oxidative stress, and mitochondrial homeostasis as potential mechanisms of radiation-induced pathology and exercise-mediated rescue. We found a significant reduction in resting cytosolic Ca2+ concentration following irradiation in sedentary mice. Intriguingly, however, SR Ca2+ store content was increased in myofibers from irradiated mice post-VWR compared to mice that remained sedentary. We observed a 73% elevation in the overall protein oxidization in muscle post-irradiation, while VWR reduced protein nitrosylation by 35% and mitochondrial reactive oxygen species (ROS) production by 50%. Finally, we found that VWR significantly increased the expression of PGC1α at both the transcript and protein levels, consistent with an exercise-dependent increase in mitochondrial biogenesis. CONCLUSIONS Juvenile irradiation stunted muscle development, disrupted proper Ca2+ handling, damaged mitochondria, and increased oxidative and nitrosative stress, paralleling significant deficits in muscle force production. Exercise mitigated aberrant Ca2+ handling, mitochondrial homeostasis, and increased oxidative and nitrosative stress in a manner that correlated with improved skeletal muscle function after radiation.
Collapse
Affiliation(s)
- Thomas N O'Connor
- Department of Biomedical Genetics, Genetics, Development and Stem Cells Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacob G Kallenbach
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Haley M Orciuoli
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biology, Biological Sciences, University of Rochester, Rochester, NY, USA
| | - Nicole D Paris
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - John F Bachman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Carl J Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Eric Hernady
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedic Surgery and Cell Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Masuda Y, Wam R, Paik B, Ngoh C, Choong AM, Ng JJ. Clinical characteristics and outcomes of exertional rhabdomyolysis after indoor spinning: a systematic review. PHYSICIAN SPORTSMED 2022:1-12. [PMID: 35254210 DOI: 10.1080/00913847.2022.2049645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES An increasing number of patients are diagnosed with exertional rhabdomyolysis secondary to indoor spinning. We performed a systematic review to characterize the clinical features of this new clinical entity. METHODS We conducted a thorough literature search on PubMed, Embase, Web of Science, Scopus, and The Cumulative Index to Nursing and Allied Health Literature (CINAHL). Articles published from inception to 23 June 2021 were considered. A two-stage article selection process was performed. Articles that reported clinical characteristics and outcomes in patients with spin-induced exertional rhabdomyolysis (SIER) were included. Quality assessment was performed using the Joanna Briggs Institute checklists. RESULTS There were a total of 22 articles and 97 patients with SIER. Most patients were healthy females who had attended their first spinning session. The mean time to clinical presentation was 3.1 ± 1.5 days. The most common presenting symptoms were myalgia, dark urine, and muscle weakness in the thighs. Seven patients (7.2%) developed acute kidney injury, and two patients (2.1%) required temporary inpatient hemodialysis. Four patients (4.1%) developed thigh compartment syndrome and required fasciotomies. No long-term sequelae or mortality were observed. The mean length of stay was 5.6 ± 2.9 days. CONCLUSIONS Healthcare professionals must have a high index of suspicion for SIER when a patient presents with myalgia, dark urine, or weakness after a recent episode of indoor spinning. Fitness center owners, spinning instructors, and participants should also be better educated about the clinical features and manifestations of SIER.
Collapse
Affiliation(s)
- Yoshio Masuda
- SingVaSC, Singapore Vascular Surgical Collaborative, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rachel Wam
- Yale-NUS College, National University of Singapore, Singapore
| | - Benjamin Paik
- SingVaSC, Singapore Vascular Surgical Collaborative, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Clara Ngoh
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrew Mtl Choong
- SingVaSC, Singapore Vascular Surgical Collaborative, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Vascular and Endovascular Surgery, National University Heart Centre, Singapore.,Cardiovascular Research Institute, National University of Singapore, Singapore
| | - Jun Jie Ng
- SingVaSC, Singapore Vascular Surgical Collaborative, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Vascular and Endovascular Surgery, National University Heart Centre, Singapore
| |
Collapse
|
12
|
Lamboley CR, Pearce L, Seng C, Meizoso-Huesca A, Singh DP, Frankish BP, Kaura V, Lo HP, Ferguson C, Allen PD, Hopkins PM, Parton RG, Murphy RM, van der Poel C, Barclay CJ, Launikonis BS. Ryanodine receptor leak triggers fiber Ca 2+ redistribution to preserve force and elevate basal metabolism in skeletal muscle. SCIENCE ADVANCES 2021; 7:eabi7166. [PMID: 34705503 PMCID: PMC8550231 DOI: 10.1126/sciadv.abi7166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Muscle contraction depends on tightly regulated Ca2+ release. Aberrant Ca2+ leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca2+ leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca2+ leak initiates a cascade of events that cause precise redistribution of Ca2+ among the SR, cytoplasm, and mitochondria through altering the Ca2+ permeability of the transverse tubular system membrane. This redistribution of Ca2+ allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations.
Collapse
Affiliation(s)
- Cedric R. Lamboley
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Luke Pearce
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Crystal Seng
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aldo Meizoso-Huesca
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel P. Singh
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Barnaby P. Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Vikas Kaura
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Harriet P. Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Paul D. Allen
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Robyn M. Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Chris van der Poel
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Christopher J. Barclay
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bradley S. Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Corresponding author.
| |
Collapse
|
13
|
Brennan S, Garcia-Castañeda M, Michelucci A, Sabha N, Malik S, Groom L, Wei LaPierre L, Dowling JJ, Dirksen RT. Mouse model of severe recessive RYR1-related myopathy. Hum Mol Genet 2020; 28:3024-3036. [PMID: 31107960 DOI: 10.1093/hmg/ddz105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Ryanodine receptor type I (RYR1)-related myopathies (RYR1 RM) are a clinically and histopathologically heterogeneous group of conditions that represent the most common subtype of childhood onset non-dystrophic muscle disorders. There are no treatments for this severe group of diseases. A major barrier to therapy development is the lack of an animal model that mirrors the clinical severity of pediatric cases of the disease. To address this, we used CRISPR/Cas9 gene editing to generate a novel recessive mouse model of RYR1 RM. This mouse (Ryr1TM/Indel) possesses a patient-relevant point mutation (T4706M) engineered into 1 allele and a 16 base pair frameshift deletion engineered into the second allele. Ryr1TM/Indel mice exhibit an overt phenotype beginning at 14 days of age that consists of reduced body/muscle mass and myofibre hypotrophy. Ryr1TM/Indel mice become progressively inactive from that point onward and die at a median age of 42 days. Histopathological assessment shows myofibre hypotrophy, increased central nuclei and decreased triad number but no clear evidence of metabolic cores. Biochemical analysis reveals a marked decrease in RYR1 protein levels (20% of normal) as compared to only a 50% decrease in transcript. Functional studies at end stage show significantly reduced electrically evoked Ca2+ release and force production. In summary, Ryr1TM/Indel mice exhibit a post-natal lethal recessive form of RYR1 RM that pheno-copies the severe congenital clinical presentation seen in a subgroup of RYR1 RM children. Thus, Ryr1TM/Indel mice represent a powerful model for both establishing the pathomechanisms of recessive RYR1 RM and pre-clinical testing of therapies for efficacy.
Collapse
Affiliation(s)
- Stephanie Brennan
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada
| | - Maricela Garcia-Castañeda
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Antonio Michelucci
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Lan Wei LaPierre
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada.,Division of Neurology, Hospital for Sick Children, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
14
|
Sessa F, Messina G, Russo R, Salerno M, Castruccio Castracani C, Distefano A, Li Volti G, Calogero AE, Cannarella R, Mongioi' LM, Condorelli RA, La Vignera S. Consequences on aging process and human wellness of generation of nitrogen and oxygen species during strenuous exercise. Aging Male 2020; 23:14-22. [PMID: 29950140 DOI: 10.1080/13685538.2018.1482866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Impairment of antioxidant defense system and increase in metabolic rate and production of reactive oxygen species have been demonstrated in strenuous exercise. Both at rest and during contractile activity, skeletal muscle generates a very complex set of reactive nitrogen and oxygen species; the main generated are superoxide and nitric oxide. The nature of the contractile activity influences the pattern and the magnitude of this reactive oxygen and nitrogen species (ROS) generation. The intracellular pro-oxidant/antioxidant homeostasis undergoes alteration owing to strenuous exercise and the major identified sources of intracellular free radical generation during physical activity are the mitochondrial electron transport chain, polymorphoneutrophil, and xanthine oxidase. Reactive oxygen species increased tissue susceptibility to oxidative damage and pose a serious threat to the cellular antioxidant defense system. The possible dangerous consequences of the aging process and human wellness are emphasized in this review.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Raffaele Russo
- Department of Orthopaedic and Traumatology, Pellegrini Hospital, Naples, Italy
| | - Monica Salerno
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioi'
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Cheng H, Wang H, Wu C, Zhang Y, Bao T, Tian Z. Proteomic analysis of sex differences in hyperoxic lung injury in neonatal mice. Int J Med Sci 2020; 17:2440-2448. [PMID: 33029086 PMCID: PMC7532490 DOI: 10.7150/ijms.42073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Sex-specific differences in the severity of bronchopulmonary dysplasia (BPD) are due to different susceptibility to hyperoxic lung injury, but the mechanism is unclear. In this study, neonatal male and female mouse pups (C57BL/6J) were exposed to hyperoxia and lung tissues were excised on postnatal day 7 for histological analysis and tandem mass tags proteomic analysis. We found that the lung sections from the male mice following postnatal hyperoxia exposure had increased alveolar simplification, significant aberrant pulmonary vascularization and arrest in angiogenesis compared with females. Comparison of differentially expressed proteins revealed 377 proteins unique to female and 425 unique to male as well as 750 proteins in both male and female. Bioinformatics analysis suggested that several differentially expressed proteins could contribute to the differences in sex-specific susceptibility to hyperoxic lung injury. Our results may help identify sex-specific biomarkers and therapeutic targets of BPD.
Collapse
Affiliation(s)
- Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Huifang Wang
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Chantong Wu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Yuan Zhang
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| |
Collapse
|
16
|
Zhao XJ, Chen L, Zhao Y, Pan Y, Yang YZ, Sun Y, Jiao RQ, Kong LD. Polygonum cuspidatum extract attenuates fructose-induced liver lipid accumulation through inhibiting Keap1 and activating Nrf2 antioxidant pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152986. [PMID: 31310912 DOI: 10.1016/j.phymed.2019.152986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Polygonum cuspidatum has been used in traditional Chinese medicine to treat liver disorders associated with oxidative stress, inflammation and lipid accumulation for centuries in patients. PURPOSE The aim of this study was to examine whether P. cuspidatum extract (PCE) prevented against fructose-induced liver lipid accumulation via regulating Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. METHOD PCE was administered orally to male Sprague-Dawley rats given 10% fructose drinking water for 6 weeks at 80 and 160 mg/kg once daily for 11 weeks. RESULTS PCE significantly alleviated liver lipid accumulation in fructose-fed rats with metabolic syndrome. It also inhibited Keap1, activated Nrf2 antioxidant pathway, resulting in the suppression of oxidative stress, evidenced by reducing hydrogen peroxide (H2O2), malondialdehyde (MDA) and hydroxy radical (OH•) levels, and increasing glutathione (GSH)/oxidized glutathione (GSSG) ratio as well as superoxidase dismutase (SOD) and catalase (CAT) activity in the liver of fructose-fed rats. Additionally, PCE up-regulated peroxisome proliferator activated receptor-α (PPAR-α), and down-regulated sterol regulatory element binging protein 1 (SREBP-1), fatty acid synthetase (FAS) and stearoyl-CoA desaturase-1 (SCD-1) in this animal model, being consistent with its reduction of triglyceride (TG) levels. CONCLUSION These results demonstrate that PCE reduces oxidative stress, and prevent lipid accumulation in the liver of fructose-fed rats possibly by targeting the Keap1/Nrf2 pathway. PCE may be a promising therapeutic strategy for fructose-associated liver lipid accumulation.
Collapse
Affiliation(s)
- Xiao-Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yan-Zi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
17
|
Changes in Redox Signaling in the Skeletal Muscle with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4617801. [PMID: 30800208 PMCID: PMC6360032 DOI: 10.1155/2019/4617801] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
Abstract
Reduction in muscle strength with aging is due to both loss of muscle mass (quantity) and intrinsic force production (quality). Along with decreased functional capacity of the muscle, age-related muscle loss is associated with corresponding comorbidities and healthcare costs. Mitochondrial dysfunction and increased oxidative stress are the central driving forces for age-related skeletal muscle abnormalities. The increased oxidative stress in the aged muscle can lead to altered excitation-contraction coupling and calcium homeostasis. Furthermore, apoptosis-mediated fiber loss, atrophy of the remaining fibers, dysfunction of the satellite cells (muscle stem cells), and concomitant impaired muscle regeneration are also the consequences of increased oxidative stress, leading to a decrease in muscle mass, strength, and function of the aged muscle. Here we summarize the possible effects of oxidative stress in the aged muscle and the benefits of physical activity and antioxidant therapy.
Collapse
|
18
|
Maani N, Sabha N, Rezai K, Ramani A, Groom L, Eltayeb N, Mavandadnejad F, Pang A, Russo G, Brudno M, Haucke V, Dirksen RT, Dowling JJ. Tamoxifen therapy in a murine model of myotubular myopathy. Nat Commun 2018; 9:4849. [PMID: 30451841 PMCID: PMC6242823 DOI: 10.1038/s41467-018-07057-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Myotubular myopathy (MTM) is a severe X-linked disease without existing therapies. Here, we show that tamoxifen ameliorates MTM-related histopathological and functional abnormalities in mice, and nearly doubles survival. The beneficial effects of tamoxifen are mediated primarily via estrogen receptor signaling, as demonstrated through in vitro studies and in vivo phenotypic rescue with estradiol. RNA sequencing and protein expression analyses revealed that rescue is mediated in part through post-transcriptional reduction of dynamin-2, a known MTM modifier. These findings demonstrate an unexpected ability of tamoxifen to improve the murine MTM phenotype, providing preclinical evidence to support clinical translation.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Dynamin II/genetics
- Dynamin II/metabolism
- Estradiol/metabolism
- Estradiol/pharmacology
- Excitation Contraction Coupling/drug effects
- Female
- Gene Expression/drug effects
- High-Throughput Nucleotide Sequencing
- Humans
- Longevity/drug effects
- Male
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/ultrastructure
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Protective Agents/pharmacology
- Protein Tyrosine Phosphatases, Non-Receptor/deficiency
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Nika Maani
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
- Department of Paediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON, CAN M5G 1X8, Canada
| | - Kamran Rezai
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
| | - Arun Ramani
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Pratt Building Room 286C, 6 King's College Rd, Toronto, ON, CAN M5S 3G4, Canada
- Centre for Computational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Nadine Eltayeb
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Faranak Mavandadnejad
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Andrea Pang
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Giulia Russo
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Michael Brudno
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Pratt Building Room 286C, 6 King's College Rd, Toronto, ON, CAN M5S 3G4, Canada
- Centre for Computational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada.
- Department of Paediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON, CAN M5G 1X8, Canada.
| |
Collapse
|
19
|
Aerobic Training Prevents Heatstrokes in Calsequestrin-1 Knockout Mice by Reducing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4652480. [PMID: 29849896 PMCID: PMC5903204 DOI: 10.1155/2018/4652480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
Calsequestrin-1 knockout (CASQ1-null) mice suffer lethal episodes when exposed to strenuous exercise and environmental heat, crises known as exertional/environmental heatstroke (EHS). We previously demonstrated that administration of exogenous antioxidants (N-acetylcysteine and trolox) reduces CASQ1-null mortality during exposure to heat. As aerobic training is known to boost endogenous antioxidant protection, we subjected CASQ1-null mice to treadmill running for 2 months at 60% of their maximal speed for 1 h, 5 times/week. When exposed to heat stress protocol (41°C/1 h), the mortality rate of CASQ1-null mice was significantly reduced compared to untrained animals (86% versus 16%). Protection from heatstrokes was accompanied by a reduced increase in core temperature during the stress protocol and by an increased threshold of response to caffeine of isolated extensor digitorum longus muscles during in vitro contracture test. At cellular and molecular levels, aerobic training (i) improved mitochondrial function while reducing their damage and (ii) lowered calpain activity and lipid peroxidation in membranes isolated from sarcoplasmic reticulum and mitochondria. Based on this evidence, we hypothesize that the protective effect of aerobic training is essentially mediated by a reduction in oxidative stress during exposure of CASQ1-null mice to adverse environmental conditions.
Collapse
|