1
|
Li Y, Xu H, Zhao W, Zhang L, Wu S. Electrospun robust, biodegradable, bioactive, and nanostructured sutures to accelerate the chronic wound healing. Biofabrication 2025; 17:025006. [PMID: 39837084 DOI: 10.1088/1758-5090/adacaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
The design and development of advanced surgical sutures with appropriate structure and abundant bio-functions are urgently required for the chronic wound closure and treatment. In this study, an integrated technique routine combining modified electrospinning with hot stretching process was proposed and implemented to fabricate poly(L-lactic acid) (PLLA) nanofiber sutures, and the Salvia miltiorrhiza Bunge-Radix Puerariae herbal compound (SRHC) was encapsulated into PLLA nanofibers during the electrospinning process to enrich the biofunction of as-generated sutures. All the PLLA sutures loading without or with SRHC were found to exhibit bead-free and highly-aligned nanofiber structure. The addition of SRHC was found to have no significant influences on the fiber morphology, diameter, and the crystallinity of as-prepared PLLA sutures. Importantly, all the SRHC-contained PLLA nanofiber sutures possessed excellent tensile and knot strength, which were of significant importance for the surgical suture applications. Besides, the antioxidant and anti-inflammatory properties of these sutures obviously enhanced with the increasing of SRHC concentration. Furthermore, thein vitrocell tests illustrated that the high fiber orientation of the sutures was able to efficiently induce the human dermal fibroblasts (HDFs) to migrate in a rapid manner, and the sutures loaded with high content of SRHC could significantly promote the attachment and proliferation of HDFs in comparison. Thein vivodiabetic mouse model experiments revealed that all the as-developed PLLA sutures could effectively close the wound, but the PLLA sutures containing high content of SRHC could dramatically promote the wound healing with high quality by shortening the healing time, improving the collagen deposition, neovascularization, and the regeneration of hair follicles, especially compared with commercial polyester (PET) suture. This study offers a simple and easily-handling strategy to develop robust, biodegradable, bioactive, and nanostructured PLLA sutures, which shows huge potential for the treatment of hard-to-heal diabetic wounds.
Collapse
Affiliation(s)
- Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Hongxing Xu
- Textile and Clothing College Experimental Teaching Center, Qingdao University, Qingdao 266071, People's Republic of China
| | - Wenwen Zhao
- School of Basic Medical Science, Qingdao University, Qingdao 266071, People's Republic of China
| | - Li Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
2
|
Zhang D, Jiang H, Yang X, Zheng S, Li Y, Liu S, Xu X. Traditional Chinese Medicine and renal regeneration: experimental evidence and future perspectives. Chin Med 2024; 19:77. [PMID: 38831435 PMCID: PMC11149241 DOI: 10.1186/s13020-024-00935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Repair of acute kidney injury (AKI) is a typical example of renal regeneration. AKI is characterized by tubular cell death, peritubular capillary (PTC) thinning, and immune system activation. After renal tubule injury, resident renal progenitor cells, or renal tubule dedifferentiation, give rise to renal progenitor cells and repair the damaged renal tubule through proliferation and differentiation. Mesenchymal stem cells (MSCs) also play an important role in renal tubular repair. AKI leads to sparse PTC, affecting the supply of nutrients and oxygen and indirectly aggravating AKI. Therefore, repairing PTC is important for the prognosis of AKI. The activation of the immune system is conducive for the body to clear the necrotic cells and debris generated by AKI; however, if the immune activation is too strong or lengthy, it will cause damage to renal tubule cells or inhibit their repair. Macrophages have been shown to play an important role in the repair of kidney injury. Traditional Chinese medicine (TCM) has unique advantages in the treatment of AKI and a series of studies have been conducted on the topic in recent years. Herein, the role of TCM in promoting the repair of renal injury and its molecular mechanism is discussed from three perspectives: repair of renal tubular epithelial cells, repair of PTC, and regulation of macrophages to provide a reference for the treatment and mechanistic research of AKI.
Collapse
Affiliation(s)
- Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huihui Jiang
- Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianzhen Yang
- Urinary Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sanxia Zheng
- Pediatric Department, The Second Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Yi Li
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Xu T, Li X, Sun G, Wei W, Huo J, Wang W. Identifying chemical markers in wine-processed Salvia miltiorrhiza using ultrahigh-performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry. Biomed Chromatogr 2024; 38:e5842. [PMID: 38354732 DOI: 10.1002/bmc.5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
To find the chemical markers of wine-processed Salvia miltiorrhiza (WSM), 76 constituents, including diterpenoid quinones and phenolic acids in Salvia miltiorrhiza (SM) and WSM, were profiled using ultrahigh-performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry (UPLC-Q-TOF-MS/MS) in positive- and the negative-ion modes. Thirty compounds were screened out as candidate differential components using chemometrics analysis, and the concentration of most compounds increased after processing with wine. Seven compounds, namely tanshinone IIA, magnesium lithospermate B, salvianolic acid G, cryptotanshinone, isocryptotanshinone, salvianolic acid B, and rosmarinic acid, were selected as chemical markers of WSM using variable importance of the project. This study revealed the chemical markers of WSM and confirmed that WSM can improve the extraction and solubility effect of chemical constituents.
Collapse
Affiliation(s)
- Tingting Xu
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Xiuwei Li
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Guodong Sun
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Wenfeng Wei
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Jinhai Huo
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Weiming Wang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Xiao HH, Zhang FR, Li S, Guo FF, Hou JL, Wang SC, Yu J, Li XY, Yang HJ. Xinshubao tablet rescues cognitive dysfunction in a mouse model of vascular dementia: Involvement of neurogenesis and neuroinflammation. Biomed Pharmacother 2024; 172:116219. [PMID: 38310654 DOI: 10.1016/j.biopha.2024.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
Vascular dementia (VaD) represents a severe cognitive dysfunction syndrome closed linked to cardiovascular function. In the present study, we assessed the potential of Xinshubao tablet (XSB), a traditional Chinese prescription widely used for cardiovascular diseases, to mitigate neuropathological damage in a mouse model of VaD and elucidated the underlying mechanisms. Our findings revealed that oral administration of XSB rescued the cardiac dysfunction resulting from bilateral common carotid artery stenosis (BCAS), improved the cerebral blood flow (CBF) and cognitive function, reduced white matter injury, inhibited excessive microglial and astrocytic activation, stimulated hippocampal neurogenesis, and reduced neural apoptosis in the brains of BCAS mice. Mechanistically, RNA-seq analysis indicated that XSB treatment was significantly associated with neuroinflammation, vasculature development, and synaptic transmission, which were further confirmed by q-PCR assays. Western blot results revealed that XSB treatment hindered the nuclear translocation of nuclear factor-κB (NF-κB), thereby suppressing the NF-κB signaling pathway. These results collectively demonstrated that XSB could ameliorate cognitive dysfunction caused by BCAS through regulating CBF, reducing white matter lesions, suppressing glial activation, promoting neurogenesis, and mitigating neuroinflammation. Notably, the NF-κB signaling pathway emerged as a pivotal player in this mechanism.
Collapse
Affiliation(s)
- Hong-He Xiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China
| | - Feng-Rong Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei-Fei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jin-Li Hou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shi-Cong Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China.
| | - Xian-Yu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Chen Q, Xu Q, Zhu H, Wang J, Sun N, Bian H, Li Y, Lin C. Salvianolic acid B promotes angiogenesis and inhibits cardiomyocyte apoptosis by regulating autophagy in myocardial ischemia. Chin Med 2023; 18:155. [PMID: 38017536 PMCID: PMC10685573 DOI: 10.1186/s13020-023-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Myocardial ischemia (MI) can cause angina, myocardial infarction, and even death. Angiogenesis is beneficial for ensuring oxygen and blood supply to ischemic tissue, promoting tissue repair, and reducing cell damage. In this study, we evaluated the effects of Salvianolic acid B (Sal B) against myocardial ischemia and explored its underlying mechanism on autophagy. METHODS The anti-apoptosis effect of Sal B was conducted by staining Annexin V-FITC/PI and Hoechst as well as evaluating apoptosis bio-markers at protein level in H9c2 cells at glucose deprivation condition. HUVECs were co-cultured with H9c2, and the tube formation assay was used to monitor Sal B's impact on angiogenesis. The MI model of mice was induced by intraperitoneal injection of isoproterenol (ISO). The effect of Sal B on MI mice was evaluated by HE, Masson, immunohistochemistry, WB and kits. In addition, Atg5 siRNA was applied to verify whether the protective effect of Sal B was regulated to autophagy. RESULTS In H9c2, Sal B reduced the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA) and reactive oxygen species (ROS), improved the levels of superoxide dismutase (SOD) and mitochondrial membrane potential, downregulated the expressions of Bax and cleaved-Caspase3, upregulated the expression of Bcl-2. Therefore, Sal B could significantly inhibit the damage of H9c2 caused by glucose deprivation. In the co-culture system of H9c2 and HUVECs, vascular endothelial growth factor (VEGF) level in the supernatant was dramatically raised by Sal B. Sal B upregulated the expressions of VEGF, platelet derived growth factor (PDGF) and endothelial marker CD31. It implied that Sal B exerted a significant pro-angiogenic effect. Moreover, Sal B increased the expression of LC3, Atg5, and Beclin1, while reducing the level of P62. When the expression of Atg5 was inhibited, the protective effects of Sal B on apoptosis and angiogenesis was reversed. CONCLUSIONS Sal B inhibited cardiomyocyte apoptosis and promoted angiogenesis by regulating autophagy, thereby improving MI.
Collapse
Affiliation(s)
- Qi Chen
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214013, China
| | - QingYang Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Huilin Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junyi Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214013, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Xianlin Avenue, Qixia District, 210023, China.
| | - Yu Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Xianlin Avenue, Qixia District, 210023, China.
| | - Chao Lin
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med 2023; 21:519. [PMID: 37533007 PMCID: PMC10394930 DOI: 10.1186/s12967-023-04361-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to exert a significant impact on global mortality rates, encompassing conditions like pulmonary arterial hypertension (PAH), atherosclerosis (AS), and myocardial infarction (MI). Oxidative stress (OS) plays a crucial role in the pathogenesis and advancement of CVDs, highlighting its significance as a contributing factor. Maintaining an equilibrium between reactive oxygen species (ROS) and antioxidant systems not only aids in mitigating oxidative stress but also confers protective benefits on cardiac health. Herbal monomers can inhibit OS in CVDs by activating multiple signaling pathways, such as increasing the activity of endogenous antioxidant systems and decreasing the level of ROS expression. Given the actions of herbal monomers to significantly protect the normal function of the heart and reduce the damage caused by OS to the organism. Hence, it is imperative to recognize the significance of herbal monomers as prospective therapeutic interventions for mitigating oxidative damage in CVDs. This paper aims to comprehensively review the origins and mechanisms underlying OS, elucidate the intricate association between CVDs and OS, and explore the therapeutic potential of antioxidant treatment utilizing herbal monomers. Furthermore, particular emphasis will be placed on examining the cardioprotective effects of herbal monomers by evaluating their impact on cardiac signaling pathways subsequent to treatment.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care, Changsha, People's Republic of China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Tan
- Department of Nephrology, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
7
|
Zhu PC, Shen J, Qian RY, Xu J, Liu C, Hu WM, Zhang Y, Lv LC. Effect of tanshinone IIA for myocardial ischemia/reperfusion injury in animal model: preclinical evidence and possible mechanisms. Front Pharmacol 2023; 14:1165212. [PMID: 37261285 PMCID: PMC10228700 DOI: 10.3389/fphar.2023.1165212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Tanshinone IIA (Tan IIA), the major active lipophilic ingredient of Radix Salviae Miltiorrhizae, exerts various therapeutic effects on the cardiovascular system. We aimed to identify the preclinical evidence and possible mechanisms of Tan IIA as a cardioprotective agent in the treatment of myocardial ischemia/reperfusion injury. Methods: The study quality scores of twenty-eight eligible studies and data analyses were separately assessed using the CAMARADES 10-item checklist and Rev-Man 5.3 software. Results: The study quality score ranged from 3/10 to 7/10 points. The present study provided preliminary preclinical evidence that Tan IIA could significantly decrease the myocardial infarct size, cardiac enzyme activity and troponin levels compared with those in the control group (p < 0.05). Discussion: Tan IIA alleviated myocardial I/R injury via antioxidant, anti-inflammatory, anti-apoptosis mechanisms and improved circulation and energy metabolism. Thus, Tan IIA is a promising cardioprotective agent for the treatment of myocardial ischemia/reperfusion injury and should be further investigated in clinical trials.
Collapse
Affiliation(s)
- Peng-Chong Zhu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Jiayi Shen
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Ren-Yi Qian
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Jian Xu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Chong Liu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Wu-Ming Hu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Ying Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Ling-Chun Lv
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
8
|
Song W, Tang Q, Teng L, Zhang M, Sha S, Li B, Zhu L. Exercise for myocardial ischemia-reperfusion injury: A systematic review and meta-analysis based on preclinical studies. Microvasc Res 2023; 147:104502. [PMID: 36746363 DOI: 10.1016/j.mvr.2023.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The main pathological manifestation of coronary artery disease is myocardial injury caused by ischemia-reperfusion (IR) injury. Regular exercise reduces the risk of death during myocardial IR injury. The aim of this study was to describe the effects of various types of exercise on myocardial IR injury. Four electronic databases PubMed, Web of Science, Embase, and Cochrane Library were comprehensively searched from inception until February 2022, to identify studies relevant to the current review, using the method of combining subject and free words. Finally, 16 articles were included in the meta-analysis. Results showed that exercise training decreases the Myocardial infarct size compared to the control group (SMD = -2.6, 95 % CI [-3.53 to -1.67], P < 0.01); increasing the coronary blood flow (MD = 2.93, 95 % CI [2.41 to 3.44], P < 0.01), left ventricular developed pressure (SMD = 2.28, 95 % CI [0.12 to 4.43], P < 0.05), cardiac output (SMD = 1.22, 95 % CI [0.61 to 1.83], P < 0.01) compared to the control group. According to the descriptive analysis results also showed that exercise training increases the left ventricular ejection fraction, superoxide dismutase, manganese superoxide dismutase, glutathione peroxidase, copper-zinc superoxide dismutase, glutathione peroxidase, and decrease the creatine kinase, creatine kinase-MB, lactate dehydrogenase, Malondialdehyde, cardiac troponins T. Exercise can improve myocardial function after myocardial IR injury; however, further research is needed in combination with specific issues such as exercise mode, intensity, duration, and model issues.
Collapse
Affiliation(s)
- Wenjing Song
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Qiang Tang
- Brain Function and Neurorehabilitation Laboratory, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150000, Heilongjiang, China
| | - Lili Teng
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Mei Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Sha Sha
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Bingyao Li
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Luwen Zhu
- Brain Function and Neurorehabilitation Laboratory, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150000, Heilongjiang, China; Hospital of Heilongjiang University of Chinese Medicine, Harbin 15000, China.
| |
Collapse
|
9
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
10
|
The Efficacy and Safety of a Qiliqiangxin Capsule Combined with Sacubitril/Valsartan in the Treatment of Chronic Heart Failure: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:2701314. [PMID: 36777628 PMCID: PMC9918363 DOI: 10.1155/2023/2701314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/06/2022] [Accepted: 08/20/2022] [Indexed: 02/05/2023]
Abstract
Background Qiliqiangxin (QLQX) capsules are a commonly used proprietary Chinese medicine for the adjuvant treatment of chronic heart failure (CHF) in China. In recent years, several randomized controlled trials (RCTs) have reported on the efficacy and safety of QLQX combined with sacubitril/valsartan for CHF. Objective The purpose of this study was to systematically analyze the clinical efficacy and safety of QLQX combined with sacubitril/valsartan in the management of CHF and to provide clinicians as well as scientists with optimal evidence-based medical evidence. Methods We searched RCTs to evaluate the efficacy and safety of QLQX combined with sacubitril/valsartan in the treatment of CHF in the Wanfang Database, China National Knowledge Infrastructure, China Science and Technology Journal Database, PubMed, Embase, and Cochrane Library databases from their inception until January 8, 2022. RCTs on QLQX in combination with sacubitril/valsartan for CHF were included. The outcome measures considered were total effective rate, left ventricular ejection fraction (LVEF), left ventricular end-diastolic dimension (LVEDD), 6-minute walking distance (6-MWD), and adverse events. The quality of the included RCTs was assessed thereafter using the Cochrane risk of bias tool. RevMan 5.3 software was used to conduct the meta-analysis. Results The meta-analysis included 17 trials involving 1427 CHF patients. The results indicated that with sacubitril/valsartan administration combined with QLQX treatment, the total effective rate (relative risk (RR) = 1.24; 95% confidence interval (CI) (1.17, 1.31); p < 0.01), LVEF (mean difference (MD) = 6.20; 95% CI (5.36, 7.05; p < 0.01)), and 6-MWD (MD = 55.87; 95% CI (40.66, 71.09); p < 0.01) of CHF patients were significantly increased, and the LVEDD value of CHF patients was noted to be significantly reduced (MD = -3.98; 95% CI (-4.47, -3.48); p < 0.01). Moreover, there was no increase in the number of adverse events during treatment (RR = 0.67; 95% CI (0.33, 1.34); p < 0.01). Conclusions This study indicated that in CHF patients, on the basis of sacubitril/valsartan treatment, combination with QLQX can potentially enhance the total effective rate, improve LVEF and 6-MWD, and reduce LVEDD values, with good safety. However, considering the poor quality of the included studies, a multicenter, randomized, double-blind controlled study is needed for further confirmation.
Collapse
|
11
|
Wu C, Chen F, Huang S, Zhang Z, Wan J, Zhang W, Liu X. Progress on the role of traditional Chinese medicine in therapeutic angiogenesis of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115770. [PMID: 36191661 DOI: 10.1016/j.jep.2022.115770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular diseases are still the leading cause of death worldwide. Heart failure (HF), as the terminal stage of many cardiovascular diseases, has brought a heavy burden to the global medical system. Microvascular rarefaction (decreased myocardial capillary density) with reduced coronary flow reserve is a hallmark of HF and therapeutic myocardial angiogenesis is now emerging as a promising approach for the prevention and treatment in HF. Traditional Chinese medicine (TCM) has made remarkable achievements in the treatment of many cardiovascular diseases. Growing evidence have shown that their protective effect in HF is closely related to therapeutic angiogenesis. AIM OF THE STUDY This review is to enlighten the therapeutic effect and pro-angiogenic mechanism of TCM in HF, and provide valuable hints for the development of pro-angiogenic drugs for the treatment of HF. MATERIALS AND METHODS The relevant information about cardioprotective TCM was collected from electronic scientific databases such as PubMed, Web of Science, ScienceDirect, and China National Knowledge Infrastructure (CNKI). RESULTS The studies showed that TCM formulas, extracts, and compounds from herbal medicines can provide therapeutic effect in HF with their pro-angiogenic activity. Their actions are achieved mainly by regulating the key angiogenesis factors particularly VEGF, as well as related regulators including signal molecules and pathways, non-coding miRNAs and stem cells. CONCLUSION TCM and their active components might be promising in therapeutic angiogenesis for the treatment of HF.
Collapse
Affiliation(s)
- Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Fei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Si Huang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Jingjing Wan
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; Academy of Interdisciplinary Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
12
|
Wu R, Zhou Y, Xu H, Zhao W, Zhou L, Zhao Y, Cui Q, Ning J, Chen H, An S. Aqueous extract of Salvia miltiorrhiza Bunge reduces blood pressure through inhibiting oxidative stress, inflammation and fibrosis of adventitia in primary hypertension. Front Pharmacol 2023; 14:1093669. [PMID: 36925635 PMCID: PMC10011461 DOI: 10.3389/fphar.2023.1093669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Background: Hypertension is a major risk factor for cardiovascular diseases and the leading cause of mortality worldwide. Despite the availability of antihypertensive drugs, alternative treatments are needed due to the adverse events associated with their use. Previous studies have shown that SABP, a combination of aqueous active metabolites of Salvia Miltiorrhiza Bunge DSS, Sal-A, Sal-B and PAL, has a significant antihypertensive effect. However, the underlying mechanisms remain unknown. Objective: This study aimed to determine the effects of SABP on vascular inflammation, oxidative stress, and vascular remodeling in spontaneously hypertensive rats (SHRs). Additionally, the response of adventitial fibroblasts in SHRs to SABP treatment was also studied, including their proliferation, differentiation, and migration. Methods: SABP or perindopril (positive control) were administered intraperitoneally to SHRs, and systolic blood pressure was measured using a tail-cuff approach. The effects of SABP on oxidative stress, inflammation, and vascular remodeling were investigated by transmission electron microscopy, histochemical staining, and Western blot. Adventitial fibroblasts were isolated and cultured from the adventitia of thoracic aorta in SHR and WKY rats. CCK8 assay, wound healing method and immunostaining were used to observe the effect of SABP on fibroblasts proliferation, migration and transformation into myofibroblasts. Moreover, Western blot analysis was also performed to detect the proteins related to oxidative stress, inflammation and fibrosis in adventitial fibroblasts. Results: SHRs displayed higher blood pressure with significant vascular remodeling compared to WKY rats. The thoracic aorta and adventitial fibroblasts of SHRs exhibited significant oxidative stress, inflammation and fibrosis. SABP treatment repressed oxidative stress, inflammatory reaction and vascular remodeling of thoracic aorta in SHR through the ROS/TLR4/NF-κB signaling pathway, and inhibited fibrosis of thoracic aorta. Additionally, SABP inhibited the proliferation and migration of adventitial fibroblasts and their transformation to myofibroblasts in vitro through the TGFβ/Smad3 signaling pathway. Conclusion: These findings suggest that SABP have potential as an alternative treatment for hypertension by ameliorating oxidative stress, inflammation and fibrosis. Further research is needed to fully understand the mechanisms underlying the effects of SABP.
Collapse
Affiliation(s)
- Ruoyu Wu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Integrated Chinese and western medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yongjie Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Integrated Chinese and western medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Hongjun Xu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Integrated Chinese and western medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Wei Zhao
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Integrated Chinese and western medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Medical College, Hebei University of Engineering, Handan Economoc and Technological Development Zone, Handan, Hebei, China
| | - Luyang Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Integrated Chinese and western medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yilin Zhao
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Integrated Chinese and western medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qingzhuo Cui
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Integrated Chinese and western medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Junda Ning
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Integrated Chinese and western medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Hongxu Chen
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Integrated Chinese and western medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,College of Integrated Chinese and western medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
13
|
Wang R, Li S, Chen P, Yue X, Wang S, Gu Y, Yuan Y. Salvianolic acid B suppresses hepatic stellate cell activation and liver fibrosis by inhibiting the NF-κB signaling pathway via miR-6499-3p/LncRNA-ROR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154435. [PMID: 36155216 DOI: 10.1016/j.phymed.2022.154435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Long non-coding RNA (LncRNAs) have been reported to play an important role in liver fibrosis and are closely associated with hepatic stellate cell (HSC) activation. We previously found that salvianolic acid B (Sal B) improves liver fibrosis by regulating the NF-κB signaling pathway. However, whether the LncRNA, regulator of reprogramming (LncRNA-ROR) plays a role in Sal B-mediated anti-fibrosis effects via the NF-κB signaling pathway remain unclear. PURPOSE This study aimed to evaluate the effects of Sal B on HSC activation and liver fibrosis and investigate its mechanism from the perspective of LncRNA-ROR-mediated NF-κB signaling pathways. METHODS LX-2 and T6 cell lines were cultured. Animal models of liver fibrosis were established using CCl4 in male BALB/c mice. Primary HSCs were isolated from mice and cultured. Serum biochemical and liver histological analyses were performed to evaluate the effects of Sal B on liver fibrosis. The index of HSC activation and the expression of LncRNA-ROR, microRNAs (miRNAs), and inflammatory factors were determined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) or immunofluorescence staining. Cell proliferation was measured by a Cell Counting Kit-8 (CCK-8). NF-κB signaling-associated protein levels were assessed using western blotting or immunofluorescence staining. A luciferase reporter assay was used to detect transcription activity. RESULTS In this study, a lower level of LncRNA-ROR was found during Sal B attenuating HSC activation in HSCs. Mechanistically, Sal B impeded the NF-κB signaling pathway to inhibit HSC proliferation and activation by downregulating LncRNA-ROR. Additionally, Sal B upregulated miR-6499-3p to target LncRNA-ROR for degradation. Functionally, Sal B treatment ameliorated CCl4-induced liver fibrosis in mice by inhibiting HSC activation. CONCLUSION Sal B suppresses HSC activation and liver fibrosis via regulation of miR-6499-3p/LncRNA-ROR-mediated NF-κB signaling pathway. These results reveal a new molecular mechanism of Sal B on liver fibrosis from the insight of LncRNAs.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Panpan Chen
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Xin Yue
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shaozhan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China.
| |
Collapse
|
14
|
Huang Q, Zhang C, Tang S, Wu X, Peng X. Network Pharmacology Analyses of the Pharmacological Targets and Therapeutic Mechanisms of Salvianolic Acid A in Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8954035. [PMID: 36248430 PMCID: PMC9556248 DOI: 10.1155/2022/8954035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/05/2022]
Abstract
Objective Salvianolic acid A, a natural polyphenolic ingredient extracted from traditional Chinese medicine, possesses an excellent pharmacological activity against cardiovascular diseases. Herein, therapeutic mechanisms of salvianolic acid A in myocardial infarction were explored through systematic and comprehensive network pharmacology analyses. Methods The chemical structure of salvianolic acid A was retrieved from PubChem database. Targets of salvianolic acid A were estimated through SwissTargetPrediction, HERB, and TargetNet databases. Additionally, by GeneCards, OMIM, DisGeNET, and TTD online tools, myocardial infarction-relevant targets were predicted. Following intersection, therapeutic targets were determined. The interaction of their products was evaluated with STRING database, and hub therapeutic targets were selected. GO and KEGG enrichment analyses of therapeutic targets were then implemented. H9C2 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic myocardial infarction and administrated with salvianolic acid A. Cellular proliferation was assayed via CCK-8 assay, and hub therapeutic targets were verified with RT-qPCR. Results In total, 120 therapeutic targets of salvianolic acid A in myocardial infarction were identified. There were close interactions between their products. Ten hub therapeutic targets were determined, covering SRC, CTNNB1, PIK3CA, AKT1, RELA, EGFR, FYN, ITGB1, MAPK8, and NFKB1. Therapeutic targets were significantly correlated to myocardial infarction-relevant pathways, especially PI3K-Akt signaling pathway. Salvianolic acid A administration remarkably ameliorated the viability of OGD/R-induced H9C2 cells, and altered the expression of hub therapeutic targets. Conclusion Our work uncovers therapeutic mechanisms of salvianolic acid A for the treatment of myocardial infarction, providing a new insight into further research on salvianolic acid A.
Collapse
Affiliation(s)
- Qing Huang
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Chao Zhang
- Heart Function Testing Center of Cardiovascular Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shaoyong Tang
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiong Peng
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
15
|
Li N, Hang W, Shu H, Wen Z, Ceesay BM, Zhou N. Salvianolic Acid Ameliorates Pressure Overload-Induced Cardiac Endothelial Dysfunction via Activating HIF1[Formula: see text]/HSF1/CD31 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1869-1885. [PMID: 36121714 DOI: 10.1142/s0192415x22500793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pressure overload is a major risk factor for various cardiovascular diseases. Disorders of the endothelium are involved in the pathological mechanisms of pressure, and maintaining endothelial function is a practical strategy to alleviate pressure overload-induced cardiac injury. In this study, we provided evidence that salvianolic acid, the active component of Danshen, a traditional Chinese herb medicine, preserved pressure overload-induced cardiac dysfunction via protecting endothelium. Male C57BL/6J mice were imposed with transverse aortic constriction to mimic pressure overload and treated with salvianolic acid (200[Formula: see text]mg/kg/day) or vehicle for 6 weeks. The hemodynamic and cardiac functional parameters were detected by the cardiac catheter and transthoracic echocardiography. The pathological measurements were conducted by heart hematoxylin-eosin, wheat germ agglutinin staining, Masson's trichrome staining, and immunofluorescence staining. Endothelial cell (EC) proliferation was estimated using the Cell Counting Kit-8, EC migration was evaluated by scratched assay, and EC integrity was observed by electron microscope. Salvianolic acid notably inhibited cardiac chamber enlargement, restrained cardiac contractile dysfunction, and repressed cardiac fibrosis caused by chronic pressure overload. Salvianolic acid maintained endothelial tight junction integrity by boosting the expression of CD31. Furthermore, the endothelial protective effect of salvianolic acid against pressure overload is dependent on the activation of hypoxia-inducible factor 1[Formula: see text], which consequently activated heat shock factor 1 and promoted CD31 expression. Our study uncovered that salvianolic acid protected cardiac ECs against pressure overload via a HIF1[Formula: see text]/HSF1/CD31 pathway, indicating a potential appliance of salvianolic acid in hypertensive heart disease.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Bala Musa Ceesay
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| |
Collapse
|
16
|
Li Q, Zuo Z, Pan Y, Zhang Q, Xu L, Jiang B. Salvianolic Acid B Alleviates Myocardial Ischemia Injury by Suppressing NLRP3 Inflammasome Activation via SIRT1-AMPK-PGC-1α Signaling Pathway. Cardiovasc Toxicol 2022; 22:842-857. [PMID: 35809215 DOI: 10.1007/s12012-022-09760-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Salvianolic acid B (SalB) has been extensively investigated in our laboratory for myocardial ischemia (MI) disease. This study mainly aimed to illustrate the relationship between SIRT1 and the therapeutic effect of SalB on MI in rats and hypoxia damage in H9c2 cells. Furthermore, whether the antagonism of NLRP3 by SalB in the injuries mentioned above is related to SIRT1-AMPK-PGC-1α pathway-mediated mitochondrial biogenesis was further investigated. In vivo, 24 h after MI surgery, we found that SalB effectively reduced ST-segment elevation, myocardial infarct size enlargement, cardiac injury markers, myocardial structural abnormalities, and myocardial apoptotic cells in MI injury rats. In vitro, after 4 h of hypoxia exposure, SalB alleviated cell injury, inhibited the production of ROS and IL-1β, and prevented the loss of mitochondrial membrane potential (MMP). Besides, SalB downregulated the critical components of the NLRP3 inflammasome and upregulated the SIRT1-AMPK-PGC-1α signaling pathway-related molecules in myocardial tissues and H9c2 cells. However, all the above protective effects of SalB on MI could be offset by EX527. Taken together, our findings indicated that SalB could attenuate MI injury by targeting NLRP3, which is at least partially dependent on the SIRT1/AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Qingju Li
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.,Department of Central Laboratory, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huaian, 223400, China
| | - Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, 210029, China
| | - Yunzheng Pan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Qi Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Li Xu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Baoping Jiang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Zhang YG, Liu XX, Zong JC, Zhang YTJ, Dong R, Wang N, Ma ZH, Li L, Wang SL, Mu YL, Wang SS, Liu ZM, Han LW. Investigation Driven by Network Pharmacology on Potential Components and Mechanism of DGS, a Natural Vasoprotective Combination, for the Phytotherapy of Coronary Artery Disease. Molecules 2022; 27:molecules27134075. [PMID: 35807320 PMCID: PMC9268537 DOI: 10.3390/molecules27134075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Phytotherapy offers obvious advantages in the intervention of Coronary Artery Disease (CAD), but it is difficult to clarify the working mechanisms of the medicinal materials it uses. DGS is a natural vasoprotective combination that was screened out in our previous research, yet its potential components and mechanisms are unknown. Therefore, in this study, HPLC-MS and network pharmacology were employed to identify the active components and key signaling pathways of DGS. Transgenic zebrafish and HUVECs cell assays were used to evaluate the effectiveness of DGS. A total of 37 potentially active compounds were identified that interacted with 112 potential targets of CAD. Furthermore, PI3K-Akt, MAPK, relaxin, VEGF, and other signal pathways were determined to be the most promising DGS-mediated pathways. NO kit, ELISA, and Western blot results showed that DGS significantly promoted NO and VEGFA secretion via the upregulation of VEGFR2 expression and the phosphorylation of Akt, Erk1/2, and eNOS to cause angiogenesis and vasodilation. The result of dynamics molecular docking indicated that Salvianolic acid C may be a key active component of DGS in the treatment of CAD. In conclusion, this study has shed light on the network molecular mechanism of DGS for the intervention of CAD using a network pharmacology-driven strategy for the first time to aid in the intervention of CAD.
Collapse
Affiliation(s)
- You-Gang Zhang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Xia-Xia Liu
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030000, China
| | - Jian-Cheng Zong
- Chenland Research Institute, Irvine, CA 92697, USA; (J.-C.Z.); (L.L.); (S.-L.W.)
| | - Yang-Teng-Jiao Zhang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Rong Dong
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Na Wang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030000, China
| | - Zhi-Hui Ma
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Li Li
- Chenland Research Institute, Irvine, CA 92697, USA; (J.-C.Z.); (L.L.); (S.-L.W.)
| | - Shang-Long Wang
- Chenland Research Institute, Irvine, CA 92697, USA; (J.-C.Z.); (L.L.); (S.-L.W.)
| | - Yan-Ling Mu
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Song-Song Wang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Zi-Min Liu
- Chenland Nutritionals Inc., Irvine, CA 92697, USA
- Correspondence: (Z.-M.L.); (L.-W.H.)
| | - Li-Wen Han
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- Correspondence: (Z.-M.L.); (L.-W.H.)
| |
Collapse
|
18
|
Zhao H, Han B, Li X, Sun C, Zhai Y, Li M, Jiang M, Zhang W, Liang Y, Kai G. Salvia miltiorrhiza in Breast Cancer Treatment: A Review of Its Phytochemistry, Derivatives, Nanoparticles, and Potential Mechanisms. Front Pharmacol 2022; 13:872085. [PMID: 35600860 PMCID: PMC9117704 DOI: 10.3389/fphar.2022.872085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is one of the most deadly malignancies in women worldwide. Salvia miltiorrhiza, a perennial plant that belongs to the genus Salvia, has long been used in the management of cardiovascular and cerebrovascular diseases. The main anti-breast cancer constituents in S. miltiorrhiza are liposoluble tanshinones including dihydrotanshinone I, tanshinone I, tanshinone IIA, and cryptotanshinone, and water-soluble phenolic acids represented by salvianolic acid A, salvianolic acid B, salvianolic acid C, and rosmarinic acid. These active components have potent efficacy on breast cancer in vitro and in vivo. The mechanisms mainly include induction of apoptosis, autophagy and cell cycle arrest, anti-metastasis, formation of cancer stem cells, and potentiation of antitumor immunity. This review summarized the main bioactive constituents of S. miltiorrhiza and their derivatives or nanoparticles that possess anti-breast cancer activity. Besides, the synergistic combination with other drugs and the underlying molecular mechanisms were also summarized to provide a reference for future research on S. miltiorrhiza for breast cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yi Liang
- *Correspondence: Yi Liang, ; Guoyin Kai,
| | - Guoyin Kai
- *Correspondence: Yi Liang, ; Guoyin Kai,
| |
Collapse
|
19
|
Han X, Zhang G, Chen G, Wu Y, Xu T, Xu H, Liu B, Zhou Y. Buyang Huanwu Decoction promotes angiogenesis in myocardial infarction through suppression of PTEN and activation of the PI3K/Akt signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114929. [PMID: 34952189 DOI: 10.1016/j.jep.2021.114929] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial infarction (MI) is the most severe subtype of coronary artery disease. Recent studies have demonstrated that the repair process and prognosis of MI are closely related to microcirculatory function in myocardial tissue. Buyang Huanwu Decoction (BYHWD) has shown great potential in the treatment of MI. However, the effects and mechanisms of BYHWD on angiogenesis post-MI remain unclear. AIM OF THE STUDY The study aimed to explore the promotion of angiogenesis by BYHWD post-MI and the potential mechanisms in vivo and in vitro. MATERIALS AND METHODS MI in mice was induced by permanent ligature of the coronary artery. The sample was divided into sham, model, and BYHWD treatment groups. After four weeks, the effects of BYHWD treatment on cardiac function were evaluated by echocardiography and HE and Masson staining. Angiogenesis was detected by CD 31 immunofluorescence staining in vivo. Then, various databases were searched to identify the corresponding targets of BYHWD in order to explore the molecular mechanisms underlying its effects in MI. Moreover, Western blot and immunohistochemistry were employed to measure the PTEN/PI3K/Akt/GSK3β signalling pathway and VEGFA expression in MI mice. Finally, the effects of BYHWD on cell angiogenesis and the activation of the PTEN/PI3K/Akt/GSK3β pathway in primary HUVECs were investigated. Overexpression of PTEN was achieved by an adenovirus vector encoding PTEN. RESULTS BYHWD significantly promoted angiogenesis and improved cardiac function in MI mice. Target prediction analysis suggested that BYHWD ameliorates MI via the PI3K/Akt pathway. BYHWD promoted angiogenesis post-MI by suppressing PTEN and activating the PI3K/Akt/GSK3β signalling pathway in vivo and in vitro. Moreover, the effects of BYHWD on HUVEC angiogenesis and the expression of PI3K/Akt/GSK3β signalling pathway-associated proteins were partially abrogated by the overexpression of PTEN. CONCLUSION Collectively, this study demonstrates that BYHWD exerts cardioprotective effects against MI by targeting angiogenesis. These effects are related to suppressing PTEN and activating the PI3K/Akt/GSK3β signalling pathway by BYHWD.
Collapse
Affiliation(s)
- Xin Han
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Guoyong Zhang
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Guanghong Chen
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Tong Xu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Bin Liu
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Zhang Y, Feng X, Du M, Ding J, Liu P. Salvianolic acid B attenuates the inflammatory response in atherosclerosis by regulating MAPKs/ NF-κB signaling pathways in LDLR-/- mice and RAW264.7 cells. Int J Immunopathol Pharmacol 2022; 36:3946320221079468. [PMID: 35285334 PMCID: PMC9118216 DOI: 10.1177/03946320221079468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives: Salvianolic acid B (Sal B) is the main effective water-soluble
component of Salvia miltiorrhiza. In this study, the anti-inflammatory
effect of Sal B was explored in high-fat-diet (HFD)-induced LDLR-/- mice and oxidized
low-density-lipoprotein (ox-LDL)-induced or lipopolysaccharide (LPS)-induced RAW264.7
cells. Methods: The LDLR-/- mice were randomly divided into four groups after
12 weeks of high-fat diet. Then, the mice were administrated with 0.9% saline or Sal B
(25 mg/kg) or Atorvastatin (1.3 mg/kg) for 12 weeks. RAW 264.7 cells were induced with
ox-LDL/LPS, or ox-LDL/LPS plus different concentrations of Sal B (1.25 μg/mL, 2.5 μg/mL,
5 μg/mL), or ox-LDL plus Sal B plus MAPKs activators. ELISA was used for detecting serum
lipid profiles and inflammatory cytokines, RT-qPCR used for gene expression, Oil Red O
used for plaque sizes, and immunofluorescence staining used for NF-κB p65 and TNF-α
production. Inflammation-related proteins and MAPKs pathways were detected by Western
Blot. Results: The results showed that Sal B decreased the levels of serum
lipids (TC, TG, and LDL-C), attenuated inflammatory cytokines, and improved lipid
accumulation in the aorta. Sal B also attenuated the elevation of inflammatory cytokines
induced by ox-LDL or LPS in RAW264.7 cells, and the phosphorylation of MAPKs/NF-κB
pathways in the aorta and RAW264.7 cells, resulting in a significant decrease in the
contents of p-JNK, p-ERK 1/2, p-P38, p-IκB, and p-NF-κB p65. Conclusions: Sal
B could exert anti-inflammatory effects on atherosclerosis via MAPKs/NF-κB signaling
pathways in vivo and in vitro.
Collapse
Affiliation(s)
- Yifan Zhang
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoteng Feng
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Du
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ding
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Pan X, Wan R, Wang Y, Liu S, He Y, Deng B, Luo S, Chen Y, Wen L, Hong T, Xu H, Bian Y, Xia M, Li J. Salvianolic acid B inhibiting chemically and mechanically activated Piezo1 channels as a mechanism for ameliorating atherosclerosis. Br J Pharmacol 2022; 179:3778-3814. [PMID: 35194776 DOI: 10.1111/bph.15826] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Salvianolic acid B (SalB) is effective for treating cardiovascular diseases. However, its therapeutic molecular mechanisms remain unclear. Mechanosensitive Piezo1 channels play important roles in vascular biology, although its pharmacological properties are poorly defined. Here, we aimed to identify novel Piezo1 inhibitors and gain insights into their mechanisms of action. EXPERIMENTAL APPROACH Intracellular Ca2+ ions were measured in human umbilical vein endothelial cells (HUVECs), murine liver endothelial cells (MLECs), THP-1 and RAW264.7 cell lines, and bone marrow-derived macrophages (BMDMs). Isometric tensions in mouse thoracic aorta were recorded. Shear-stress assays with HUVECs were conducted. Patch-clamp recordings with mechanical stimulation were performed with HUVECs in whole-cell mode. Foam cell formation was induced by treating BMDMs with oxidised low-density lipoprotein (oxLDL). Atherosclerotic plaque assays were performed with Ldlr-/- and Piezo1 genetically depleted mice on a high-fat diet. KEY RESULTS We discovered that SalB inhibited Yoda1-induced Ca2+ influx in HUVECs and MLECs. Similar results were observed in macrophage cell lines and BMDMs. Furthermore, we demonstrated that SalB inhibited Yoda1 and mechanically activated currents. SalB restrained Yoda1-induced aortic ring relaxation and inhibited HUVECs alignment in the direction of shear stress. Additionally, we found that Yoda1 enhanced the formation of foam cells, which was reversed by SalB and SalB inhibited the formation of atherosclerotic plaques and was insensitive to Piezo1 genetically depletion. CONCLUSION AND IMPLICATIONS Our study provides novel mechanistic insights into the inhibitory role of SalB against Piezo1 channels and improves our understanding of SalB in preventing atherosclerotic lesions.
Collapse
Affiliation(s)
- Xianmei Pan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Rentao Wan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuman Wang
- Medical Research Center, Shandong University of Chinese Medicine, Jinan, China
| | - Silin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangfei Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhen Wen
- Medical Research Center, Shandong University of Chinese Medicine, Jinan, China
| | - Tianying Hong
- Medical Research Center, Shandong University of Chinese Medicine, Jinan, China
| | - Han Xu
- Medical Research Center, Shandong University of Chinese Medicine, Jinan, China
| | - Yifei Bian
- Medical Research Center, Shandong University of Chinese Medicine, Jinan, China
| | - Mingfeng Xia
- Medical Research Center, Shandong University of Chinese Medicine, Jinan, China
| | - Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
22
|
Shear-thinning hydrogels containing reactive oxygen species-responsive nanoparticles for salvianolic acid B delivery to rescue oxidative damaged HUVECs. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Chen J, Wang Y, Wang S, Zhao X, Zhao L, Wang Y. Salvianolic acid B and ferulic acid synergistically promote angiogenesis in HUVECs and zebrafish via regulating VEGF signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114667. [PMID: 34597652 DOI: 10.1016/j.jep.2021.114667] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Induced vascular growth in the myocardium has been widely acknowledged as a promising intervention strategy for patients with ischemic coronary artery disease. Yet despite long-term efforts on gene, protein or cell-based pro-angiogenic therapies, the clinical translation remains challenging. Noticeably, multiple medicinal herbs have long-term documented effects in promoting blood circulation. Salvia miltiorrhiza and Ligusticum stratum are two representative traditional Chinese medicine herbs with suggested roles in enhancing organ blood supply, and Guanxinning Tablet (GXNT), a botanical drug which is formulated with these two herbs, exhibited significant efficacy against angina pectoris in clinical practices. AIM OF THE STUDY This study aimed to examine the pro-angiogenic activity of GXNT and its major components, as well as to explore their pharmacological mechanism in promoting angiogenesis. MATERIALS AND METHODS In vitro, the pro-angiogenic effects of GXNT and its major components were examined on human umbilical vein endothelial cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), scratch assay, and endothelial cell tube formation assay. In vivo, the pro-angiogenic effects were examined on the ponatinib-induced angiogenesis defective zebrafish model. The active compounds were identified through phenotype-based screening in zebrafish, and their pharmacological mechanism was explored in both in vitro and in vivo models by immunofluorescent staining, cell cycle analysis, quantitative PCR and whole embryo in-situ hybridization. RESULTS We demonstrated strong pro-angiogenic effects of GXNT in both human umbilical vein endothelial cells and zebrafish model. Moreover, through phenotype-based screening in zebrafish for active compounds, pro-angiogenic effects was discovered for salvianolic acid B (Sal B), a major component of Salvia miltiorrhiza, and its activity was further enhanced when co-administered with ferulic acid (FA), which is contained in Ligusticum stratum. On the cellular level, Sal B and FA cotreatment increased endothelial cell proliferation of sprouting arterial intersomitic vessels in zebrafish, as well as largely restored G1-S cell cycle progression and cyclin D1 expression in angiogenic defective HUVECs. Through quantitative transcriptional analysis, increased expression of vegfr2 (kdr, kdrl) and vegfr1 was detected after GXNT or SalB/FA treatment, together with upregulated transcription of their ligands including vegf-a, vegf-b, and pgfb. Bevacizumab, an anti-human VEGF-A monoclonal antibody, was able to significantly, but not completely, block the pro-angiogenic effects of GXNT or SalB/FA, suggesting their multi-targeting properties. CONCLUSIONS In conclusion, from a traditional Chinese medicine with effects in enhancing blood circulation, we demonstrated the synergistic pro-angiogenic effects of Sal B and FA via both in vitro and in vivo models, which function at least partially through regulating the expression of VEGF receptors and ligands. Future studies are warranted to further elaborate the molecular interaction between these two compounds and the key regulators in the process of neovascularization.
Collapse
Affiliation(s)
- Jing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoping Zhao
- College of Preclinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China.
| |
Collapse
|
24
|
Effect of Pericytes on Cerebral Microvasculature at Different Time Points of Stroke. BIOMED RESEARCH INTERNATIONAL 2022; 2021:5281182. [PMID: 34977241 PMCID: PMC8716223 DOI: 10.1155/2021/5281182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023]
Abstract
Pericyte, as an important component of the blood-brain barrier, has received increasing attention in the study of cerebrovascular diseases. However, the mechanism of pericytes after the occurrence of cerebral ischemia is controversial. On the one hand, the expression of pericytes increases after cerebral ischemia, constricting the blood vessels to restrict blood supply and aggravating the damage caused by ischemia; on the other hand, pericytes participate in capillary angiogenesis in the ischemic area, which facilitates the repair of the ischemic injury area. The multifunctionality of pericytes is an important reason for this phenomenon, but the different time points of observation for the outcome indicators in each study are also an important factor that leads to the controversy of pericytes. Based on the review of a large database of original studies, the authors' team summarized the effects of pericytes on cerebral microvasculature at different time points after stroke, searched the possible markers, and explored possible therapeutic.
Collapse
|
25
|
Buyang Huanwu Decoction Enhances Revascularization via Akt/GSK3 β/NRF2 Pathway in Diabetic Hindlimb Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1470829. [PMID: 34900083 PMCID: PMC8664534 DOI: 10.1155/2021/1470829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022]
Abstract
Background Peripheral arterial disease (PAD) is a typical disease of atherosclerosis, most commonly influencing the lower extremities. In patients with PAD, revascularization remains a preferred treatment strategy. Buyang Huanwu decoction (BHD) is a popular Chinese herbal prescription which has showed effects of cardiovascular protection through conducting antioxidant, antiapoptotic, and anti-inflammatory effects. Here, we intend to study the effect of BHD on promoting revascularization via the Akt/GSK3β/NRF2 pathway in diabetic hindlimb ischemia (HLI) model of mice. Materials and Methods All db/db mice (n = 60) were randomly divided into 6 groups by table of random number. (1) Sham group (N = 10): 7-0 suture thread passed through the underneath of the femoral artery and vein without occlusion. The remaining 5 groups were treated differently on the basis of the HLI (the femoral artery and vein from the inguinal ligament to the knee joint were transected and the vascular stump was ligated with 7-0 silk sutures) model: (2) HLI+NS group (N = 15): 0.2 ml NS was gavaged daily for 3 days before modeling and 14 days after occlusion; (3) HLI+BHD group (N = 15): 0.2 ml BHD (20 g/kg/day) was gavaged daily for 3 days before modeling and 14 days after occlusion; (4) HLI+BHD+sh-NC group (N = 8): local injection of adenovirus vector carrying the nonsense shRNA (Ad-GFP) in the hindlimbs of mice before treatment; (5) HLI+BHD+sh-NRF2 group (N = 8): knockdown of NRF2 in the hindlimbs of mice by local intramuscular injection of adenovirus vector carrying NRF2 shRNA (Ad-NRF2-shRNA) before treatment; and (6) HLI+BHD+LY294002 group (N = 4): intravenous injection of LY294002 (1.5 mg/kg) once a day for 14 days on the basis of the HLI+BHD group. Laser Doppler examination, vascular cast, and immunofluorescence staining were applied to detect the revascularization of lower limbs in mice. Western blot analysis was used to detect the expression of vascular endothelial growth factor (VEGF), interleukin-1beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor- (TNF-) α, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase quinone-1 (NQO-1), catalase (CAT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphorylated protein kinase B (p-AKT), and phosphorylated glycogen synthase kinase-3 beta (p-GSK3β). HE staining was used to assess the level of muscle tissue damage and inflammation in the lower extremities. Local multipoint injection of Ad-NRF2-shRNA was used to knock down NRF2, and qPCR was applied to detect the mRNA level of NRF2. The blood glucose, triglyceride, cholesterol, MDA, and SOD levels of mice were tested using corresponding kits. The SPSS 20.0 software and GraphPad Prism 6.05 were used to do all statistics. Values of P < 0.05 were considered as statistically significant. Results and Conclusions. BHD could enhance the revascularization of lower limbs in HLI mice, while BHD has no effect on blood glucose and lipid level in db/db mice (P > 0.05). BHD could elevate the protein expression of VEGF, HO-1, NQO-1, and CAT (P < 0.05) and decrease the expression of IL-1β, IL-6, and TNF-α (P < 0.05) in HLI mice. Meanwhile, BHD could activate NRF2 and promote the phosphorylation of AKT/GSK3β during revascularization (P < 0.05). In contrast, knockdown of NRF2 impaired the protective effects of BHD on HLI (P < 0.05). LY294002 inhibited the upregulation of NRF2 activated by BHD through inhibiting the phosphorylation of the AKT/GSK3β pathway (P < 0.05). The present study demonstrated that BHD could promote revascularization on db/db mice with HLI through targeting antioxidation, anti-inflammation, and angiogenesis via the AKT/GSK3β/NRF2 pathway.
Collapse
|
26
|
Zhang B, Zhang CY, Zhang XL, Sun GB, Sun XB. Guan Xin Dan Shen formulation protects db/db mice against diabetic cardiomyopathy via activation of Nrf2 signaling. Mol Med Rep 2021; 24:531. [PMID: 34036388 PMCID: PMC8170264 DOI: 10.3892/mmr.2021.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Guan Xin Dan Shen formulation (GXDSF) is a widely used treatment for the management of coronary heart disease in China and is composed of three primary components: Dalbergiae odoriferae Lignum, Salviae miltiorrhizae Radix et Rhizoma and Panax notoginseng Radix et Rhizoma. However, the potential use of GXDSF for the management of diabetic cardiomyopathy (DCM) has not been previously assessed. The present study aimed to assess the effects of GXDSF on DCM, as well as the underlying mechanism. In the present study, db/db mice were used. Following treatment with GXDSF for 10 weeks, fasting blood glucose, insulin sensitivity, serum lipid levels and cardiac enzyme levels were detected. Cardiac pathological alterations and cardiac function were assessed by performing hematoxylin and eosin staining and echocardiograms, respectively. TUNEL assays were conducted to assess cardiomyocyte apoptosis. Additionally, reverse transcription‑quantitative PCR and western blotting were performed to evaluate the expression of apoptosis‑associated genes and proteins, respectively. In the model group, the db/db mice displayed obesity, hyperlipidemia and hyperglycemia, accompanied by noticeable myocardial hypertrophy and diastolic dysfunction. Following treatment with GXDSF for 10 weeks, serum triglyceride levels were lower and insulin sensitivity was enhanced in db/db mice compared with the model group, which indicated improvement in condition. Cardiac hypertrophy and dysfunction were also improved in db/db mice following treatment with GXDSF, resulting in significantly increased left ventricular ejection fraction and fractional shortening compared with the model group. Following treatment with metformin or GXDSF, model‑induced increases in levels of myocardial enzymes were decreased in the moderate and high dose groups. Moreover, the results indicated that, compared with the model group, GXDSF significantly inhibited cardiomyocyte apoptosis in diabetic heart tissues by increasing Bcl‑2 expression and decreasing the expression levels of Bax, cleaved caspase‑3 and cleaved caspase‑9. Mechanistically, GXDSF enhanced Akt phosphorylation, which upregulated antioxidant enzymes mediated by nuclear factor erythroid 2‑related factor 2 (Nrf2) signaling. Collectively, the results of the present study indicated that GXDSF attenuated cardiac dysfunction and inhibited cardiomyocyte apoptosis in diabetic mice via activation of Akt/Nrf2 signaling. Therefore, GXDSF may serve as a potential therapeutic agent for the management of DCM.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Chen-Yang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Xue-Lian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| |
Collapse
|
27
|
Koon CM, Wing-Shing Cheung D, Wong PH, Wat E, Ng SK, Cheung WH, Fu-Yuen Lam F, Chook P, Fung KP, Leung PC, Yan BP. Salviae miltiorrhizae radix and puerariae lobatae radix herbal formula improves circulation, vascularization and gait function in a peripheral arterial disease rat model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113235. [PMID: 32777518 DOI: 10.1016/j.jep.2020.113235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE DG is a herbal formula, containing the root of Salvia miltiorrhiza Bunge (Danshen) and the root of Pueraria lobate (Willd.) Ohwi (Gegen), has a history of usage in China for cardiovascular protection and anti-atherosclerosis. AIM OF THE STUDY The present study aims to determine the beneficial effect of DG on the hind-limb ischemia rat model which mimics peripheral arterial disease (PAD) and its vasodilative effect on isolated femoral artery. MATERIALS AND METHODS The vasodilatory effects were assessed by contractile responses to DG in the isolated femoral artery and its underlying mechanisms were evaluated by the involvement of endothelium, potassium channel and calcium channel. For hind-limb ischemia study, treatment outcomes were assessed by evaluating hind-limb blood flow, functional limb recovery, muscle histology and angiogenesis. RESULTS Our results demonstrated positive dose-dependent vasodilatory response to DG via an endothelium-independent mechanism that involved inwardly rectifying K+ channels and Ca2+ channels. We also demonstrated significant improvement in blood perfusion and micro-vessel density in the ischemic limb and positive effects in functional limb recovery. CONCLUSION In conclusion, our study supported the potential use of DG as a novel treatment for symptomatic PAD.
Collapse
Affiliation(s)
- Chi-Man Koon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
| | - David Wing-Shing Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Pui-Han Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Elaine Wat
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
| | - Sau-Kuen Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Francis Fu-Yuen Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ping Chook
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
| | - Kwok-Pui Fung
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; CUHK-Zhejiang University Joint Laboratory on Natural Products and Toxicology Research, Hong Kong, China.
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
| | - Bryan P Yan
- Division of Cardiology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Nandi SS, Katsurada K, Sharma NM, Anderson DR, Mahata SK, Patel KP. MMP9 inhibition increases autophagic flux in chronic heart failure. Am J Physiol Heart Circ Physiol 2020; 319:H1414-H1437. [PMID: 33064567 DOI: 10.1152/ajpheart.00032.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased matrix metalloprotease 9 (MMP9) after myocardial infarction (MI) exacerbates ischemia-induced chronic heart failure (CHF). Autophagy is cardioprotective during CHF; however, whether increased MMP9 suppresses autophagic activity in CHF is unknown. This study aimed to determine whether increased MMP9 suppressed autophagic flux and MMP9 inhibition increased autophagic flux in the heart of rats with post-MI CHF. Sprague-Dawley rats underwent either sham surgery or coronary artery ligation 6-8 wk before being treated with MMP9 inhibitor for 7 days, followed by cardiac autophagic flux measurement with lysosomal inhibitor bafilomycin A1. Furthermore, autophagic flux was measured in vitro by treating H9c2 cardiomyocytes with two independent pharmacological MMP9 inhibitors, salvianolic acid B (SalB) and MMP9 inhibitor-I, and CRISPR/cas9-mediated MMP9 genetic ablation. CHF rats showed cardiac infarct, significantly increased left ventricular end-diastolic pressure (LVEDP), and increased MMP9 activity and fibrosis in the peri-infarct areas of left ventricular myocardium. Measurement of the autophagic markers LC3B-II and p62 with lysosomal inhibition showed decreased autophagic flux in the peri-infarct myocardium. Treatment with SalB for 7 days in CHF rats decreased MMP9 activity and cardiac fibrosis but increased autophagic flux in the peri-infarct myocardium. As an in vitro corollary study, measurement of autophagic flux in H9c2 cardiomyocytes and fibroblasts showed that pharmacological inhibition or genetic ablation of MMP9 upregulates autophagic flux. These data are consistent with our observations that MMP9 inhibition upregulates autophagic flux in the heart of rats with CHF. In conclusion, the results in this study suggest that the beneficial outcome of MMP9 inhibition in pathological cardiac remodeling is in part mediated by improved autophagic flux.NEW & NOTEWORTHY This study elucidates that the improved cardiac extracellular matrix (ECM) remodeling and cardioprotective effect of matrix metalloprotease 9 (MMP9) inhibition in chronic heart failure (CHF) are via increased autophagic flux. Autophagy is cardioprotective; however, the mechanism of autophagy suppression in CHF is unknown. We for the first time demonstrated here that increased MMP9 suppressed cardiac autophagy and ablation of MMP9 increased cardiac autophagic flux in CHF rats. Restoring the physiological level of autophagy in the failing heart is a challenge, and our study addressed this challenge. The novelty and highlights of this report are as follows: 1) MMP9 regulates cardiomyocyte and fibroblast autophagy, 2) MMP9 inhibition protects CHF after myocardial infarction (MI) via increased cardiac autophagic flux, 3) MMP9 inhibition increased cardiac autophagy via activation of AMP-activated protein kinase (AMPK)α, Beclin-1, Atg7 pathway and suppressed mechanistic target of rapamycin (mTOR) pathway.
Collapse
Affiliation(s)
- Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Daniel R Anderson
- Department of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil K Mahata
- Department of Medicine, Metabolic Physiology and Ultrastructural Biology Laboratory, University of California, San Diego, California.,Department of Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
29
|
Distribution Analysis of Salvianolic Acids in Myocardial Ischemic Pig Tissues by Automated Liquid Extraction Surface Analysis Coupled with Tandem Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8476794. [PMID: 33005204 PMCID: PMC7509547 DOI: 10.1155/2020/8476794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Abstract
The distribution of active compounds of traditional Chinese medicine Salvia miltiorrhiza Bunge (Chinese name: Danshen) in vivo was determined by establishing a liquid extraction surface analysis coupled with the tandem mass spectrometry (LESA-MS/MS) method. Stability analysis and distribution analysis were designed in the present study using normal animals or a myocardial ischemia model. The model assessment was performed four weeks after surgery, and then three groups were created: a normal-dose group, a model-blank group, and a model-dose group. Meanwhile, Danshen decoction administration began in dose groups and lasted for four weeks. In stability analysis, four salvianolic acids—Danshensu (DSS), caffeic acid (CAA), rosmarinic acid (RA), and salvianolic acid A (SAA)—in kidney tissues from the normal-dose group were detected by LESA-MS/MS under four conditions, and then distribution analysis was conducted in different tissues using the same method. Ejection fraction (EF) and fractional shortening (FS) in animals from two model groups decreased significantly four weeks after surgery (P < 0.01) and were improved after four weeks of Danshen decoction administration (P < 0.01). Results of stability analysis demonstrated that this method was basically stable since there were no significant differences in signal intensities of DSS, CAA, and SAA under four conditions (P > 0.05). Distribution analysis showed the signal intensities of DSS in the liver and kidney and SAA in the heart were higher in the model-dose group than in the normal-dose group (P < 0.05 or P < 0.01). Signal intensities of RA in the liver and kidney, and SAA in the liver were lower in the model-dose group compared with the normal-dose group (P < 0.05 or P < 0.01). In conclusion, Danshen decoction has the effect of improving the ischemic condition in a chronic myocardial ischemia model, and the content of two active compounds increased in the targets. These findings contribute to an understanding of the therapeutic role of Danshen in cardiovascular disease.
Collapse
|
30
|
Wan Q, Qian S, Huang Y, Zhang Y, Peng Z, Li Q, Shu B, Zhu L, Wang M. Drug Discovery for Coronary Artery Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1177:297-339. [PMID: 32246449 DOI: 10.1007/978-981-15-2517-9_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Cardiovascular disease is the number one cause of human morbidity and mortality worldwide. Although cholesterol-lowering drugs, including statins and recently approved PCSK9 inhibitors, together with antithrombotic drugs have been historically successful in reducing the occurrence of coronary artery disease (CAD), the high incidence of CAD remains imposing the largest disease burden on our healthcare systems. We reviewed cardiovascular drugs recently approved or under clinical development, with a particular focus on their pharmacology and limitations. New agents targeting cholesterol/triglyceride lowering bear promise of further cardiovascular risk reduction. Some new antidiabetic agents show cardiovascular benefit in patients with diabetes. Improved antithrombotic agents with diminished bleeding risk are in clinical development. The recent clinical success of the IL-1β antibody in reducing atherothrombosis opens a new era of therapeutic discovery that targets inflammation. Chinese traditional medicine and cardiac regeneration are also discussed. Human genetics studies of CAD and further delineation of key determinants/pathways underlying the residual risk of CAD under current standard therapy will continue to fuel the pipeline of cardiovascular drug discovery.
Collapse
Affiliation(s)
- Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Siyuan Qian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yonghu Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yuze Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zekun Peng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qiaoling Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Bingyan Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Liyuan Zhu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China. .,Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
31
|
Omar AM, Meleis AE, Arfa SA, Zahran NM, Mehanna RA. Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells Derived from Adipose Tissue and Bone Marrow on Acute Myocardial Infarction Model. Oman Med J 2019; 34:534-543. [PMID: 31745418 PMCID: PMC6851069 DOI: 10.5001/omj.2019.97] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Stem cell therapy is a promising approach in the treatment of acute myocardial infarction (AMI). Mesenchymal stem cells (MSC) from bone marrow (BM-MSC) and adipose tissue (AT-MSC) are attractive and feasible for preclinical and clinical trials. In this study, we compared the therapeutic potential of BM-MSC and AT-MSC in repairing the hearts of rats with isoproterenol (ISO)-induced AMI. METHODS Forty-two female rats were assigned into two groups; the optimization and the experimental group. The optimization groups were further subdivided into control group and the AMI induced group (using ISO). The experimental group was subdivided into AMI+cell-free media injected in the tail vein, AMI+BM-MSC, and AMI+AT-MSC groups treated with the intravenous injection of their respective cell types. Twenty-eight days after induction, electrocardiogram (ECG) was performed, and heart tissue samples were collected for histological assessment and cells tracing. RESULTS MSC therapy repaired cardiac functions shown by the restoration of ST segment, QT and QRS intervals in the ECG when compared to the AMI group. Infarct area was significantly decreased, and cardiac tissue regeneration signs were shown on histopathological examination. CONCLUSIONS Both MSC sources proved to be equally efficient in the assessed parameters.
Collapse
Affiliation(s)
- Amira M Omar
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Anisa E Meleis
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samia A Arfa
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha M Zahran
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Tarapatskyy M, Kapusta I, Gumienna A, Puchalski C. Assessment of the Bioactive Compounds in White and Red Wines Enriched with a Primula veris L. Molecules 2019; 24:molecules24224074. [PMID: 31717958 PMCID: PMC6891480 DOI: 10.3390/molecules24224074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022] Open
Abstract
The aim of this paper was to analyze selected physicochemical properties and the pro-health potential of wines produced in southeastern Poland, in the Subcarpathian region, and commercial Carlo Rossi wines enhanced with cowslip (Primula veris L.). This study used ultra-performance reverse-phase liquid chromatography (UPLC)-PDA-MS/MS to perform most of the analysis, including the polyphenolic compounds and saponin content in wines enriched by Primula veris L. The initial anthocyanin content in Subcarpathian (Regional) red wine samples increased four times to the level of 1956.85 mg/L after a 10% addition of Primula veris L. flowers. For white wines, a five-fold increase in flavonol content was found in Subcarpathian (Regional) and wine samples, and an almost 25-fold increase in flavonol content was found in Carlo Rossi (Commercial) wine samples at the lowest (2.5%) Primula veris L. flower addition. Qualitative analysis of the regional white wines with a 10% Primula veris L. flower enhancement demonstrated the highest kaempferol content (197.75 mg/L) and a high quercetin content (31.35 mg/L). Thanks to wine enrichment in triterpenoid saponins and in polyphenolic compounds from Primula veris L. flowers, which are effectively extracted to wine under mild conditions, both white and red wines can constitute a highly pro-health component of diets, which is valuable in preventing chronic heart failure.
Collapse
Affiliation(s)
- Maria Tarapatskyy
- Department of Bioenergetics and Food Analysis, Faculty of Biology and Agriculture, University of Rzeszów, 35-601 Rzeszów, Poland; (A.G.); (C.P.)
- Correspondence:
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Faculty of Biology and Agriculture, University of Rzeszów, 35-601 Rzeszów, Poland;
| | - Aleksandra Gumienna
- Department of Bioenergetics and Food Analysis, Faculty of Biology and Agriculture, University of Rzeszów, 35-601 Rzeszów, Poland; (A.G.); (C.P.)
| | - Czesław Puchalski
- Department of Bioenergetics and Food Analysis, Faculty of Biology and Agriculture, University of Rzeszów, 35-601 Rzeszów, Poland; (A.G.); (C.P.)
| |
Collapse
|
33
|
Zhang Y, Zhu M, Zhang F, Zhang S, Du W, Xiao X. Integrating Pharmacokinetics Study, Network Analysis, and Experimental Validation to Uncover the Mechanism of Qiliqiangxin Capsule Against Chronic Heart Failure. Front Pharmacol 2019; 10:1046. [PMID: 31619994 PMCID: PMC6759796 DOI: 10.3389/fphar.2019.01046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives: The purpose of this study was to propose an integrated strategy for investigating the mechanism of Qiliqiangxin capsule (QLQX) to treat chronic heart failure (CHF). Methods: Pharmacokinetics analysis was performed to screen the active components of QLQX using high-performance liquid chromatography-tandem mass spectrometry techniques. We then constructed the component-target network between the targets of active components in QLQX and CHF using Cytoscape. A network analysis, including topological parameters, clustering, and pathway enrichment, was established to identify the hub targets and pathways. Finally, some of the predicted hub targets were validated experimentally in human cardiac microvascular endothelial cell (HCMEC). Results: We identified 29 active components in QLQX, and 120 consensus potential targets were determined by the pharmacokinetics analysis and network pharmacology approach. Further network analysis indicated that 6 target genes, namely, VEGFA, CYP1A1, CYP2B6, ATP1A1, STAT3, and STAT4, and 10 predicted functional genes, namely, KDR, FLT1, NRP2, JAK2, EGFR, IL-6, AHR, ATP1B1, JAK1, and HIF1A, may be the primary targets regulated by QLQX for the treatment of CHF. Among these targets, VEGFA, IL-6, p-STAT3, and p-JAK2 were selected for validation in the HCMEC. The results indicated that QLQX may inhibit inflammatory processes and promote angiogenesis in CHF via the JAK/STAT signaling pathway. Conclusions: This study provides a strategy for understanding the mechanism of QLQX against CHF by combining pharmacokinetics study, network pharmacology, and experimental validation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingdan Zhu
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fugeng Zhang
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Shaoqiang Zhang
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wuxun Du
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuefeng Xiao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
34
|
Cheng S, Zhang X, Feng Q, Chen J, Shen L, Yu P, Yang L, Chen D, Zhang H, Sun W, Chen X. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci 2019; 227:82-93. [DOI: 10.1016/j.lfs.2019.04.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
|
35
|
Zhao XS, Zheng B, Wen Y, Sun Y, Wen JK, Zhang XH. Salvianolic acid B inhibits Ang II-induced VSMC proliferation in vitro and intimal hyperplasia in vivo by downregulating miR-146a expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152754. [PMID: 31009837 DOI: 10.1016/j.phymed.2018.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Salvianolic acid B (Sal B), a water-soluble compound extracted from Salvia miltiorrhiza that has been widely used to treat cardiovascular diseases for hundreds of years in China, exerts cardiovascular protection by multiple mechanisms. miR-146a is involved in vascular smooth muscle cell (VSMC) phenotypic modulation and proliferation. However, it has yet to be investigated whether the cardiovascular protective effect of Sal B is mediated by miR-146a. PURPOSE To determine the relationship among the cardiovascular protective effect of Sal B, miR-146a expression, and VSMC proliferation. METHODS MTS assay and cell counting were performed to evaluate the effect of Ang II, Sal B and miR-146a on VSMC proliferation. The neointima hyperplasia was assessed by hematoxylin/eosin staining. qRT-PCR was used to detect the expression of miR-146a, KLF5, cyclin D1 and PCNA. Western blot analysis was used to detect the expressions of KLF5, cyclin D1 and PCNA after miR-20b-5p was knocked down or overexpressed in VSMC. RESULTS Sal B suppressed intimal hyperplasia induced by carotid artery ligation and decreased Ang II-induced VSMC proliferation by down-regulating the positive cell-cycle regulators KLF5 and cyclin D1. Further experiments showed that VSMC proliferation and upregulation of KLF5 and cyclin D1 induced by Ang II were accompanied by elevated miR-146a level. Furthermore, overexpression of miR-146a promoted and knockdown of miR-146a reduced Ang II-induced VSMC proliferation and ameliorated intimal hyperplasia induced by carotid artery ligation. Sal B inhibited Ang II-induced VSMC proliferation by suppressing miR-146a expression. CONCLUSION Sal B inhibited Ang II-induced VSMC proliferation in vitro and intimal hyperplasia in vivo by downregulating miR-146a expression.
Collapse
Affiliation(s)
- Xue-Shan Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Ya Wen
- Department of Neurology, the Second Hospital of Hebei Medical University, Hebei Key Laboratory for Neurology, Shijiazhuang, Hebei 050000, China
| | - Yan Sun
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
36
|
Buyang Huanwu Decoction Exerts Cardioprotective Effects through Targeting Angiogenesis via Caveolin-1/VEGF Signaling Pathway in Mice with Acute Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4275984. [PMID: 31178960 PMCID: PMC6501136 DOI: 10.1155/2019/4275984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 11/18/2022]
Abstract
Background Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The idea of therapeutic angiogenesis in ischemic myocardium is a promising strategy for MI patients. Buyang Huanwu decoction (BHD), a famous Chinese herbal prescription, exerted antioxidant, antiapoptotic, and anti-inflammatory effects, which contribute to cardio-/cerebral protection. Here, we aim to investigate the effects of BHD on angiogenesis through the caveolin-1 (Cav-1)/vascular endothelial growth factor (VEGF) pathway in MI model of mice. Materials and Methods C57BL/6 mice were randomly divided into 3 groups by the table of random number: (1) sham-operated group (sham, n = 15), (2) AMI group (AMI+sham, n = 20), and (3) BHD-treated group (AMI+BHD, n = 20). 2,3,5-Triphenyltetrazolium chloride solution stain was used to determine myocardial infarct size. Myocardial histopathology was tested using Masson staining and hematoxylin-eosin staining. CD31 immunofluorescence staining was used to analyze the angiogenesis in the infarction border zone. Western blot analysis, immunofluorescence staining, and/or real-time quantitative reverse transcription polymerase chain reaction was applied to test the expression of Cav-1, VEGF, vascular endothelial growth factor receptor 2 (VEGFR2), and/or phosphorylated extracellular signal-regulated kinase (p-ERK). All statistical analyses were performed using the SPSS 20.0 software and GraphPad Prism 6.05. Values of P < 0.05 were considered as statistically significant. Results and Conclusion Compared with the AMI group, the BHD-treated group showed a significant improvement in the heart weight/body weight ratio, echocardiography images, cardiac function, infarct size, Mason staining of the collagen deposition area, and density of microvessel in the infarction border zone (P < 0.05). Compared with the AMI group, BHD promoted the expression of Cav-1, VEGF, VEGFR2, and p-ERK in the infarction border zone after AMI. BHD could exert cardioprotective effects on the mouse model with AMI through targeting angiogenesis via Cav-1/VEGF signaling pathway.
Collapse
|
37
|
Latypova GM, Bychenkova MA, Katayev VA, Perfilova VN, Tyurenkov IN, Mokrousov IS, Prokofiev II, Salikhov SM, Iksanova GR. Composition and cardioprotective effects of Primula veris L. solid herbal extract in experimental chronic heart failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:17-26. [PMID: 30668367 DOI: 10.1016/j.phymed.2018.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 07/15/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND High interest in chronic heart failure (CHF) is accounted for by its high incidence, poor prognosis, growing number of hospital admissions due to the heart failure relapse, and inadequate treatment. These facts necessitate a search for new pharmacological agents for the CHF correction. Herbal medicinal products appear to be very promising as they have a noticeable therapeutic effect and tend to be more harmless in comparison to the most of synthesized medications. PURPOSE Our aim was to study the composition of the Primula veris L. solid herbal extract (PVSHE) and its effects on the myocardial contractile function in animals with experimental CHF. STUDY DESIGN The study design involved the identification of the raw material composition of the P. veris L. extract. For the experimental part of our research, we used the model of CHF to elucidate the cardioprotective properties of PVSHE. METHODS The active extract constituents were isolated by thin-layer chromatography and column chromatography; the extract components were identified by high-performance liquid chromatography, ultraviolet spectroscopy (UVS), and nuclear magnetic resonance spectroscopy (NMRS). To model CHF, L-isoproterenol at a dose of 2.5 mg/kg was intraperitoneally injected to the experimental rats twice a day for 21 days. Cardiac output was assessed with the loading test, adrenoreactivity test, and maximum isometric loading test; CHF markers adrenomedullin and copeptin were detected in blood plasma with ELISA kit for adrenomedullin and copeptin (Coud-Clone Corp., USA). RESULTS P. veris L. solid herbal extract contains flavonoid aglycons (apigenin, quercetine, kaemferol), flavonoid glycosides (cinarozid, rutin, hyperozid), as well as polymethoxylated flavonoids acting as chemotaxonomic markers for the genus Primula (8-methoxy-flavone; 3',4'methylenedioxy-5'-methoxyflavone). The substance 3',4'methylenedioxy-5'-methoxyflavone has been isolated from the primrose herb for the first time. We showed that the PVSHE has a cardioprotective effect when it was administered at a dose of 30 mg/kg in the experimental CHF, as evidenced by a lower number of animal death, lower level of CHF markers in the blood plasma of the experimental animals, the higher increase in rate of myocardial contraction and relaxation, the higher level of left ventricular pressure (LVP) and of maximum intensity of structural performance (MISP), as compared to the control group. CONCLUSION P. veris L. solid herbal extract contains flavonoid aglycons, flavonoid glycosides, and polymethoxylated flavonoids. The herbal agent increases the myocardial contractility in experimental CHF.
Collapse
Affiliation(s)
- G M Latypova
- FSBEE HE Bashkirsky State Medical University, Lenina st., 8, Ufa 540008, Russia
| | - M A Bychenkova
- FSBEE HE Bashkirsky State Medical University, Lenina st., 8, Ufa 540008, Russia
| | - V A Katayev
- FSBEE HE Bashkirsky State Medical University, Lenina st., 8, Ufa 540008, Russia
| | - V N Perfilova
- FSBEE HE Volgograd State Medical University, Pavshikh Bortsov sq., 1, Volgograd 400131, Russia.
| | - I N Tyurenkov
- FSBEE HE Volgograd State Medical University, Pavshikh Bortsov sq., 1, Volgograd 400131, Russia
| | - I S Mokrousov
- FSBEE HE Volgograd State Medical University, Pavshikh Bortsov sq., 1, Volgograd 400131, Russia
| | - I I Prokofiev
- FSBEE HE Volgograd State Medical University, Pavshikh Bortsov sq., 1, Volgograd 400131, Russia
| | - Sh M Salikhov
- Ufa Institute of the Chemistry of the Russian Academy of Sciences, Oktyabrya av., 71, Ufa 450054, Russia
| | - G R Iksanova
- FSBEE HE Bashkirsky State Medical University, Lenina st., 8, Ufa 540008, Russia
| |
Collapse
|
38
|
Jiao S, Tang B, Wang Y, Li C, Zeng Z, Cui L, Zhang X, Shao M, Guo D, Wang Q. Pro-angiogenic Role of Danqi Pill Through Activating Fatty Acids Oxidation Pathway Against Coronary Artery Disease. Front Pharmacol 2018; 9:1414. [PMID: 30564122 PMCID: PMC6289089 DOI: 10.3389/fphar.2018.01414] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Coronary artery disease (CAD) is one of the leading causes of deaths worldwide. Energy metabolism disorders, including a reduction in fatty acids oxidation and upregulation of glycolysis pathway, are involved in the process of CAD. Therapeutic angiogenesis has become a promising treatment for CAD. Traditional Chinese medicines, such as Danqi Pill (DQP), have been proven to be effective in treating CAD in China for many years. However, the pro-angiogenic effects of DQP based on fatty acids oxidation are still unknown and the mechanism is worthy of investigation. In this study, left anterior descending (LAD) coronary artery was ligated to induce the CAD models in vivo, and cardiac functions were examined using echocardiography. Human umbilical vein endothelial cells (HUVEC) were subjected to H2O2-induced oxidative stress in vitro. The effects of DQP on CAD rat models and in vitro HUVEC were detected. Our results showed that DQP had cardio-protective effects in rat model. The intensity of capillaries in the marginal area of infarction of the rat heart was increased remarkably in DQP group, and the expression of PPARα and VEGF-2 were increased. The key enzymes involved in the transportation and intake of fatty acids, including CPT1A and CD36, both increased. In H2O2-induced endothelial cells injury models, DQP also showed protective roles and promoted capillary-like tube formation. DQP up-regulated key enzymes in fatty acids oxidation in H2O2-treated HUVEC. In addition, inhibition of CPT1A compromised the pro-angiogenic effects of DQP. In conclusion, fatty acids oxidation axis PPARα-CD36-CPT1A was involved in the pro-angiogenic roles of DQP against CAD. Cardiac CPT1A may serve as a target in therapeutic angiogenesis in clinics.
Collapse
Affiliation(s)
- Shihong Jiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Binghua Tang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zifan Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lixia Cui
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xuefeng Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyan Shao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Zheng Q, Huang YY, Zhu PC, Tong Q, Bao XY, Zhang QH, Zheng GQ, Wang Y. Ligustrazine Exerts Cardioprotection in Animal Models of Myocardial Ischemia/Reperfusion Injury: Preclinical Evidence and Possible Mechanisms. Front Pharmacol 2018; 9:729. [PMID: 30090062 PMCID: PMC6068386 DOI: 10.3389/fphar.2018.00729] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Ligustrazine (Lig) is one of the main effective components of Ligusticum Chuanxiong Hort, which possesses a variety of biological activities in the cardiovascular system. Here, we conducted a preclinical systematic review to investigate the efficacy of Lig for animal models of myocardial ischemia/reperfusion injury and its possible mechanisms. Twenty-five studies involving 556 animals were identified by searching 6 databases from inception to August 2017. The methodological quality was assessed by using Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) 10-item checklist. All the data were analyzed using Rev-Man 5.3 software. As a result, the score of study quality ranged from 2 to 6 points. Meta-analyses showed Lig can significantly decrease the myocardial infarct size, cardiac enzymes and troponin compared with control (P < 0.01). The possible mechanisms of Lig for myocardial infarction are antioxidant, anti-inflammatory, anti-apoptosis activities and improving coronary blood flow and myocardial metabolism. In conclusion, the findings indicated that Lig exerts cardio protection through multiple signaling pathways in myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Qun Zheng
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue-Yue Huang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Chong Zhu
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Tong
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yi Bao
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi-Hao Zhang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Zheng Q, Zhu JZ, Bao XY, Zhu PC, Tong Q, Huang YY, Zhang QH, Zhang KJ, Zheng GQ, Wang Y. A Preclinical Systematic Review and Meta-Analysis of Astragaloside IV for Myocardial Ischemia/Reperfusion Injury. Front Physiol 2018; 9:795. [PMID: 30018562 PMCID: PMC6038775 DOI: 10.3389/fphys.2018.00795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
Astragaloside IV (AS-IV), the major pharmacological extract from Astragalus membranaceus Bunge, possesses a variety of biological activities in the cardiovascular systems. Here, we aimed to evaluate preclinical evidence and possible mechanism of AS-IV for animal models of myocardial ischemia/reperfusion (I/R) injury. Studies of AS-IV in animal models with myocardial I/R injury were identified from 6 databases from inception to May, 2018. The methodological quality was assessed by using CAMARADES 10-item checklist. All the data were analyzed using Rev-Man 5.3 software. As a result, 22 studies with 484 animals were identified. The quality score of studies ranged from 3 to 6 points. Meta-analyses showed AS-IV can significantly decrease the myocardial infarct size and left ventricular ejection fraction, and increase shortening fraction compared with control group (P < 0.01). Significant decreasing of cardiac enzymes and cardiac troponin and increasing of decline degree in ST-segment were reported in one study each (P < 0.05). Additionally, the possible mechanisms of AS-IV for myocardial I/R injury are promoting angiogenesis, improving the circulation, antioxidant, anti-inflammatory and anti-apoptosis. Thus, AS-IV is a potential cardioprotective candidate for further clinical trials of myocardial infarction.
Collapse
Affiliation(s)
- Qun Zheng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Zhen Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yi Bao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Chong Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Tong
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue-Yue Huang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi-Hao Zhang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke-Jian Zhang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
42
|
Guo D, Murdoch CE, Liu T, Qu J, Jiao S, Wang Y, Wang W, Chen X. Therapeutic Angiogenesis of Chinese Herbal Medicines in Ischemic Heart Disease: A Review. Front Pharmacol 2018; 9:428. [PMID: 29755358 PMCID: PMC5932161 DOI: 10.3389/fphar.2018.00428] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022] Open
Abstract
Ischemic heart disease (IHD) is one of the primary causes of death around the world. Therapeutic angiogenesis is a promising innovative approach for treating IHD, improving cardiac function by promoting blood perfusion to the ischemic myocardium. This treatment is especially important for targeting patients that are unable to undergo angioplasty or bypass surgery. Chinese herbal medicines have been used for more than 2,500 years and they play an important role alongside contemporary medicines in China. Growing evidence in animal models show Chinese herbal medicines can provide therapeutic effect on IHD by targeting angiogenesis. Identifying the mechanism in which Chinese herbal medicines can promote angiogenesis in IHD is a major topic in the field of traditional Chinese medicine, and has the potential for advancing therapeutic treatment. This review summarizes the progression of research and highlights potential pro-angiogenic mechanisms of Chinese herbal medicines in IHD. In addition, an outline of the limitations of Chinese herbal medicines and challenges they face will be presented.
Collapse
Affiliation(s)
- Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Colin E Murdoch
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Tianhua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shihong Jiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
43
|
Ginsenoside Rb1 for Myocardial Ischemia/Reperfusion Injury: Preclinical Evidence and Possible Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6313625. [PMID: 29430282 PMCID: PMC5753014 DOI: 10.1155/2017/6313625] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/01/2017] [Accepted: 11/12/2017] [Indexed: 11/18/2022]
Abstract
Ginseng is an important herbal drug that has been used worldwide for many years. Ginsenoside Rb1 (G-Rb1), the major pharmacological extract from ginseng, possesses a variety of biological activities in the cardiovascular systems. Here, we conducted a preclinical systematic review to investigate the efficacy of G-Rb1 for animal models of myocardial ischemia/reperfusion injury and its possible mechanisms. Ten studies involving 211 animals were identified by searching 6 databases from inception to May 2017. The methodological quality was assessed by using the CAMARADES 10-item checklist. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 7 points. Meta-analyses showed that G-Rb1 can significantly decrease the myocardial infarct size and cardiac enzymes (including lactate dehydrogenase, creatine kinase, and creatine kinase-MB) when compared with control group (P < 0.01). Significant decrease in cardiac troponin T and improvement in the degree of ST-segment depression were reported in one study (P < 0.05). Additionally, the possible mechanisms of G-Rb1 for myocardial infarction are antioxidant, anti-inflammatory, antiapoptosis, promoting angiogenesis and improving the circulation. Thus, G-Rb1 is a potential cardioprotective candidate for further clinical trials of myocardial infarction.
Collapse
|