1
|
Liu YY, Tien TY, Hung CL, Wu YJ, Su CH, Yeh HI. Transdermal Nicotine Patch Increases the Number and Function of Endothelial Progenitor Cells in Young Healthy Nonsmokers without Adverse Hemodynamic Effects. Clin Pharmacol Ther 2024; 116:128-135. [PMID: 38529793 DOI: 10.1002/cpt.3249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/03/2024] [Indexed: 03/27/2024]
Abstract
Transdermal nicotine patches (TNPs), administering nicotine into the bloodstream through skin, have been widely used as nicotine replacement therapy, and exposure to nicotine can be detected by measurement of plasma cotinine concentration. In animal studies, nicotine treatment could increase the number of endothelial progenitor cells (EPCs), but the effect of TNPs on circulating EPCs and their activity in humans remained unclear. This study aimed to explore the influence of TNPs on circulating EPCs with surface markers of CD34, CD133, and/or KDR, and colony-forming function plus migration activity of early EPCs derived from cultured peripheral blood mononuclear cells before and after TNP treatments in young healthy nonsmokers. In parallel, pulse wave analysis (PWA) was applied to evaluate the vascular effect of TNP treatments. Twenty-one participants (25.8 ± 3.6 years old, 10 males) used TNP (nicotine: 4.2 mg/day) for 7 consecutive days. During the treatment, the CD34+ EPCs progressively increased in number. In addition, the number of EPCs positive for CD34/KDR, CD133, and CD34/CD133 were also increased on day 7 of the treatment. Furthermore, the early EPC colony-forming function and migration activity were increased with the plasma cotinine level positively correlating with change in colony-forming unit number. PWA analyses on day 7, compared with pretreatment, did not show significant change except diastolic pressure time index, which was prolonged and implied potential vascular benefit. In conclusion, 7-day TNP treatments could be a practical strategy to enhance angiogenesis of circulating EPCs to alleviate tissue ischemia without any hemodynamic concern.
Collapse
Affiliation(s)
- Yen-Yu Liu
- Cardiovascular Center, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ting-Yi Tien
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chung-Lieh Hung
- Cardiovascular Center, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yih-Jer Wu
- Cardiovascular Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Cheng-Huang Su
- Cardiovascular Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hung-I Yeh
- Cardiovascular Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
2
|
Marshall AJ, Gaubert A, Kapoor A, Tan A, McIntosh E, Jang JY, Yew B, Ho JK, Blanken AE, Dutt S, Sible IJ, Li Y, Rodgers K, Nation DA. Blood-Derived Progenitor Cells Are Depleted in Older Adults with Cognitive Impairment: A Role for Vascular Resilience? J Alzheimers Dis 2023; 93:1041-1050. [PMID: 37154177 PMCID: PMC10258882 DOI: 10.3233/jad-220269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Depletion of blood-derived progenitor cells, including so called "early endothelial progenitor cells", has been observed in individuals with early stage Alzheimer's disease relative to matched older control subjects. These findings could implicate the loss of angiogenic support from hematopoietic progenitors or endothelial progenitors in cognitive dysfunction. OBJECTIVE To investigate links between progenitor cell proliferation and mild levels of cognitive dysfunction. METHODS We conducted in vitro studies of blood-derived progenitor cells using blood samples from sixty-five older adults who were free of stroke or dementia. Peripheral blood mononuclear cells from venous blood samples were cultured in CFU-Hill media and the number of colony forming units were counted after 5 days in vitro. Neuropsychological testing was administered to all participants. RESULTS Fewer colony forming units were observed in samples from older adults with a Clinical Dementia Rating global score of 0.5 versus 0. Older adults whose samples developed fewer colony forming units exhibited worse performance on neuropsychological measures of memory, executive functioning, and language ability. CONCLUSION These data suggest blood progenitors may represent a vascular resilience marker related to cognitive dysfunction in older adults.
Collapse
Affiliation(s)
- Anisa J. Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Aimee Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Alick Tan
- Department of Clinical Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Elissa McIntosh
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Belinda Yew
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean K. Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function. Stem Cell Res Ther 2022; 13:325. [PMID: 35850692 PMCID: PMC9290268 DOI: 10.1186/s13287-022-03013-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background Flap transplantation is commonly used in reconstructive surgery. A prerequisite for skin flap survival is sufficient blood supply. However, such approaches remain unclear. This study aimed to explore the underlying mechanisms of exosomes derived from human umbilical vascular endothelial cells (HUVECs) exposed to oxidative stress on endothelial progenitor cells (EPCs) and their subsequent influence on the survival of skin flaps. Methods HUVECs were treated with various concentrations of H2O2 to establish an oxidative stress model. To investigate the effects of H2O2-HUVEC-Exos and HUVEC-Exos, Cell Counting Kit-8, tube formation, invasion assays, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed in EPCs. Microarray analysis was used to reveal the differentially expressed long non-coding RNAs (lncRNAs) in the H2O2-HUVEC-Exos and HUVEC-Exos. In addition, gene silencing and western blotting were employed to determine the mechanism behind lncRNA nuclear enrichment enriched transcript 1 (Lnc NEAT1) in EPCs. Further, a rat skin flap model was used to determine the role of the exosomes in skin flap survival in vivo. Results HUVECs were stimulated with 100 μmol/L H2O2 for 12 h to establish an oxidative stress model. H2O2-HUVEC-Exos promoted the proliferation, tube formation, and invasion of EPCs and remarkably increased skin flap survival compared to the HUVEC-Exos and control groups. Sequencing of exosome RNAs revealed that the Lnc NEAT1 level was dramatically increased in the H2O2-HUVEC-Exos, leading to activation of the Wnt/β-catenin signaling pathway. Comparatively, knockdown of Lnc NEAT1 in HUVEC-Exos and H2O2-HUVEC-Exos significantly inhibits the angiogenic capacity of EPCs, reduced the survival area of skin flap and downregulated the expression levels of Wnt/β-catenin signaling pathway proteins, whereas Wnt agonist partly reversed the negative effect of NEAT1 downregulation on EPCs through the Wnt/β-catenin signaling pathway. Conclusions Exosomes derived from HUVECs stimulated by oxidative stress significantly promoted the pro-angiogenic ability of EPCs through the Wnt/β-catenin signaling pathway mediated by Lnc NEAT1 and hence enhanced random flap survival in vivo. Therefore, the application of H2O2-HUVEC-Exos may serve as an alternative therapy for improving random skin flap survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03013-9.
Collapse
|
4
|
Gori T. Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells 2022; 11:cells11132094. [PMID: 35805178 PMCID: PMC9265311 DOI: 10.3390/cells11132094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Coronary stents are among the most common therapies worldwide. Despite significant improvements in the biocompatibility of these devices throughout the last decades, they are prone, in as many as 10–20% of cases, to short- or long-term failure. In-stent restenosis is a multifactorial process with a complex and incompletely understood pathophysiology in which inflammatory reactions are of central importance. This review provides a short overview for the clinician on the cellular types responsible for restenosis with a focus on the role of endothelial progenitor cells. The mechanisms of restenosis are described, along with the cell-based attempts made to prevent it. While the focus of this review is principally clinical, experimental evidence provides some insight into the potential implications for prevention and therapy of coronary stent restenosis.
Collapse
Affiliation(s)
- Tommaso Gori
- German Center for Cardiac and Vascular Research (DZHK) Standort Rhein-Main, Department of Cardiology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
5
|
Engagement of the CXCL12-CXCR4 Axis in the Interaction of Endothelial Progenitor Cell and Smooth Muscle Cell to Promote Phenotype Control and Guard Vascular Homeostasis. Int J Mol Sci 2022; 23:ijms23020867. [PMID: 35055054 PMCID: PMC8776104 DOI: 10.3390/ijms23020867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are involved in vascular repair and modulate properties of smooth muscle cells (SMCs) relevant for their contribution to neointima formation following injury. Considering the relevant role of the CXCL12-CXCR4 axis in vascular homeostasis and the potential of EPCs and SMCs to release CXCL12 and express CXCR4, we analyzed the engagement of the CXCL12-CXCR4 axis in various modes of EPC-SMC interaction relevant for injury- and lipid-induced atherosclerosis. We now demonstrate that the expression and release of CXCL12 is synergistically increased in a CXCR4-dependent mechanism following EPC-SMC interaction during co-cultivation or in response to recombinant CXCL12, thus establishing an amplifying feedback loop Additionally, mechanical injury of SMCs induces increased release of CXCL12, resulting in enhanced CXCR4-dependent recruitment of EPCs to SMCs. The CXCL12-CXCR4 axis is crucially engaged in the EPC-triggered augmentation of SMC migration and the attenuation of SMC apoptosis but not in the EPC-mediated increase in SMC proliferation. Compared to EPCs alone, the alliance of EPC-SMC is superior in promoting the CXCR4-dependent proliferation and migration of endothelial cells. When direct cell-cell contact is established, EPCs protect the contractile phenotype of SMCs via CXCL12-CXCR4 and reverse cholesterol-induced transdifferentiation toward a synthetic, macrophage-like phenotype. In conclusion we show that the interaction of EPCs and SMCs unleashes a CXCL12-CXCR4-based autoregulatory feedback loop promoting regenerative processes and mediating SMC phenotype control to potentially guard vascular homeostasis.
Collapse
|
6
|
Associations between increased circulating endothelial progenitor cell levels and anxiety/depressive severity, cognitive deficit and function disability among patients with major depressive disorder. Sci Rep 2021; 11:18221. [PMID: 34521977 PMCID: PMC8440504 DOI: 10.1038/s41598-021-97853-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
The association of major depressive disorder (MDD) with cardiovascular diseases (CVDs) through endothelial dysfunction is bidirectional. Circulating endothelial progenitor cells (cEPCs), essential for endothelial repair and function, are associated with risks of various CVDs. Here, the relationship of cEPC counts with MDD and the related clinical presentations were investigated in 50 patients with MDD and 46 healthy controls. In patients with MDD, a battery of clinical domains was analysed: depressed mood with Hamilton Depression Rating Scale (HAMD) and Montgomery–Åsberg Depression Rating Scale (MADRS), anxiety with Hamilton Anxiety Rating Scale (HAMA), cognitive dysfunction and deficit with Digit Symbol Substitution Test (DSST) and Perceived Deficits Questionnaire-Depression (PDQ-D), somatic symptoms with Depressive and Somatic Symptom Scale (DSSS), quality of life with 12-Item Short Form Health Survey (SF-12) and functional disability with Sheehan Disability Scale (SDS). Immature and mature cEPC counts were measured through flow cytometry. Increased mature and immature cEPC counts were significantly associated with higher anxiety after controlling the confounding effect of systolic blood pressure, and potentially associated with more severe depressive symptoms, worse cognitive performance and increased cognitive deficit, higher social disability, and worse mental health outcomes. Thus, cEPCs might have pleiotropic effects on MDD-associated symptoms and psychosocial outcomes.
Collapse
|
7
|
Chen L, Dai L, Yan D, Zhou B, Zheng W, Yin J, Zhou T, Liu Z, Deng J, Wang R, Ding X, Chen J. Gleevec and Rapamycin Synergistically Reduce Cell Viability and Inhibit Proliferation and Angiogenic Function of Mouse Bone Marrow-Derived Endothelial Progenitor Cells. J Vasc Res 2021; 58:330-342. [PMID: 34247157 DOI: 10.1159/000515816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study investigates the synergistic effects of Gleevec (imatinib) and rapamycin on the proliferative and angiogenic properties of mouse bone marrow-derived endothelial progenitor cells (EPCs). MATERIALS AND METHODS EPCs were isolated from mouse bone marrow and treated with different concentrations of Gleevec or rapamycin individually or in combination. The cell viability and proliferation were examined using the MTT assay. An analysis of cell cycle and apoptosis was performed using flow cytometry. Formation of capillary-like tubes was examined in vitro, and the protein expression of cell differentiation markers was determined using Western blot analysis. RESULTS Gleevec significantly reduced cell viability, cell proliferation, and induced cell apoptosis in EPCs. Rapamycin had similar effects on EPCs, but it did not induce cell apoptosis. The combination of Gleevec and rapamycin reduced the cell proliferation but increased cell apoptosis. Although rapamycin had no demonstratable effect on tube formation, the combined therapy of Gleevec and rapamycin significantly reduced tube formation when compared with Gleevec alone. Mechanistically, Gleevec, but not rapamycin, induced a significant elevation in caspase-3 activity in EPCs, and it attenuated the expression of the endothelial protein marker platelet-derived growth factor receptor α. Functionally, rapamycin, but not Gleevec, significantly enhanced the expression of endothelial differentiation marker proteins, while attenuating the expression of mammalian target of rapamycin signaling-related proteins. CONCLUSIONS Gleevec and rapamycin synergistically suppress cell proliferation and tube formation of EPCs by inducing cell apoptosis and endothelial differentiation. Mechanistically, it is likely that rapamycin enhances the proapoptotic and antiangiogenic effects of Gleevec by promoting the endothelial differentiation of EPCs. Given that EPCs are involved in the pathogenesis of some cardiovascular diseases and critical to angiogenesis, pharmacological inhibition of EPC proliferation by combined Gleevec and rapamycin therapy may be a promising approach for suppressing cardiovascular disease pathologies associated with angiogenesis.
Collapse
Affiliation(s)
- Ling Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Luping Dai
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
| | - Boya Zhou
- Department of Ultrasound, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wei Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jia Yin
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zehua Liu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jianxin Deng
- Department of Endocrinology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
| | - Rehua Wang
- Department of Cardiology, Fujian Provincial Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaorong Ding
- Nursing Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
8
|
Jin L, Hong N, Ai X, Wang J, Li Z, Han Z, Zhang Q, Yu Y, Sun K. LncRNAs as Therapeutic Targets for Autophagy-involved Cardiovascular Diseases: A Review of Molecular Mechanism and T herapy Strategy. Curr Med Chem 2021; 28:1796-1814. [PMID: 32196441 DOI: 10.2174/0929867327666200320161835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. The concept of precision medicine in CVD therapy today requires the incorporation of individual genetic and environmental variability to achieve personalized disease prevention and tailored treatment. Autophagy, an evolutionarily conserved intracellular degradation process, has been demonstrated to be essential in the pathogenesis of various CVDs. Nonetheless, there have been no effective treatments for autophagy- involved CVDs. Long noncoding RNAs (lncRNAs) are noncoding RNA sequences that play versatile roles in autophagy regulation, but much needs to be explored about the relationship between lncRNAs and autophagy-involved CVDs. SUMMARY Increasing evidence has shown that lncRNAs contribute considerably to modulate autophagy in the context of CVDs. In this review, we first summarize the current knowledge of the role lncRNAs play in cardiovascular autophagy and autophagy-involved CVDs. Then, recent developments of antisense oligonucleotides (ASOs) designed to target lncRNAs to specifically modulate autophagy in diseased hearts and vessels are discussed, focusing primarily on structure-activity relationships of distinct chemical modifications and relevant clinical trials. PERSPECTIVE ASOs are promising in cardiovascular drug innovation. We hope that future studies of lncRNA-based therapies would overcome existing technical limitations and help people who suffer from autophagy-involved CVDs.
Collapse
Affiliation(s)
- Lihui Jin
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhenyuan Han
- Department of Oral Pathology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Qi Zhang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
9
|
Jiang C, Li R, Xiu C, Ma X, Hu H, Wei L, Tang Y, Tao M, Zhao J. Upregulating CXCR7 accelerates endothelial progenitor cell-mediated endothelial repair by activating Akt/Keap-1/Nrf2 signaling in diabetes mellitus. Stem Cell Res Ther 2021; 12:264. [PMID: 33941256 PMCID: PMC8091720 DOI: 10.1186/s13287-021-02324-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/02/2021] [Indexed: 11/15/2022] Open
Abstract
Background Endothelial progenitor cell (EPC) dysfunction contributes to vascular disease in diabetes mellitus. However, the molecular mechanism underlying EPC dysfunction and its contribution to delayed reendothelialization in diabetes mellitus remain unclear. Our study aimed to illustrate the potential molecular mechanism underlying diabetic EPC dysfunction in vivo and in vitro. Furthermore, we assessed the effect of EPC transplantation on endothelial regeneration in diabetic rats. Methods Late outgrowth EPCs were isolated from the bone marrow of rats for in vivo and in vitro studies. In vitro functional assays and Western blotting were conducted to reveal the association between C-X-C chemokine receptor type 7 (CXCR7) expression and diabetic EPC dysfunction. To confirm the association between cellular CXCR7 levels and EPC function, CXCR7 expression in EPCs was upregulated and downregulated via lentiviral transduction and RNA interference, respectively. Western blotting was used to reveal the potential molecular mechanism by which the Stromal-Derived Factor-1 (SDF-1)/CXCR7 axis regulates EPC function. To elucidate the role of the SDF-1/CXCR7 axis in EPC-mediated endothelial regeneration, a carotid artery injury model was established in diabetic rats. After the model was established, saline-treated, diabetic, normal, or CXCR7-primed EPCs were injected via the tail vein. Results Diabetic EPC dysfunction was associated with decreased CXCR7 expression. Furthermore, EPC dysfunction was mimicked by knockdown of CXCR7 in normal EPCs. However, upregulating CXCR7 expression reversed the dysfunction of diabetic EPCs. The SDF-1/CXCR7 axis positively regulated EPC function by activating the AKT-associated Kelch-like ECH-associated protein 1 (keap-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis, which was reversed by blockade of AKT and Nrf2. Transplantation of CXCR7-EPCs accelerated endothelial repair and attenuated neointimal hyperplasia in diabetes mellitus more significantly than transplantation of diabetic or normal EPCs. However, the therapeutic effect of CXCR7-EPC transplantation on endothelial regeneration was reversed by knockdown of Nrf2 expression. Conclusions Dysfunction of diabetic EPCs is associated with decreased CXCR7 expression. Furthermore, the SDF-1/CXCR7 axis positively regulates EPC function by activating the AKT/keap-1/Nrf2 axis. CXCR7-primed EPCs might be useful for endothelial regeneration in diabetes-associated vascular disease.
Collapse
Affiliation(s)
- Chunyu Jiang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200233, People's Republic of China
| | - Ruiting Li
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China
| | - Chaoyang Xiu
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China
| | - Xu Ma
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China
| | - Hui Hu
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China
| | - Liming Wei
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China
| | - Yihan Tang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Mingyang Tao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Jungong Zhao
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
10
|
Jiang C, Li R, Ma X, Hu H, Wei L, Zhao J. Plerixafor stimulates adhesive activity and endothelial regeneration of endothelial progenitor cells via elevating CXCR7 expression. J Diabetes Complications 2020; 34:107654. [PMID: 32741660 DOI: 10.1016/j.jdiacomp.2020.107654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 01/28/2023]
Abstract
AIMS To assess the effects of plerixafor on function and endothelial regeneration of endothelial progenitor cells (EPCs). METHODS The proliferation and adhesion capacity of EPCs were evaluated in vitro. Furthermore, the expression levels of CXC chemokine receptor-7 (CXCR7) were detected before and after treatment with plerixafor. The CXCR7 expression of EPCs was knocked-down by RNA interference to evaluate the role of CXCR7 in regulating function of EPCs. A rat carotid artery injury model was established to assess the influences of plerixafor on endothelial regeneration. RESULTS Plerixafor stimulated adhesion capacity of EPCs, associating with upregulation of CXCR7 and activation of LFA-1 and VLA-4 molecules. Knockdown of CXCR7 slightly impaired proliferation capacity but significantly attenuated adhesion capacity of EPCs. Plerixafor facilitated endothelial repair at 7 days, while reduced neointimal hyperplasia at 7 and 14 days via recruiting more EPCs participating in endothelial reparation. CONCLUSIONS Plerixafor can positively regulate adhesion capacity of EPCs to HUVECs via elevating the expression level of CXCR7 and stimulating LFA-1 and VLA-4 molecules activation. Treatment with plerixafor accelerated re-endothelialization and inhibited neointimal hyperplasia after endoth elial injury, indicating that it can to be used for endothelial regeneration.
Collapse
Affiliation(s)
- Chunyu Jiang
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China
| | - Ruiting Li
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China
| | - Xu Ma
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China
| | - Hui Hu
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China
| | - Liming Wei
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China
| | - Jungong Zhao
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, 600 Yi-Shan Road, Shanghai 200233, PR China..
| |
Collapse
|
11
|
Wei H, Tan T, Cheng L, Liu J, Song H, Li L, Zhang K. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 2020; 22:3327-3337. [PMID: 32945451 PMCID: PMC7453557 DOI: 10.3892/mmr.2020.11431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been discovered to be relevant to the prognosis of cardiovascular diseases. Previous research has demonstrated that EPCs serve vital roles in the occurrence and development of atherosclerosis. Significant improvements have been made in MRI technology and in the experimental use of EPCs for therapeutic angiogenesis and vascular repair. Nevertheless, the migratory, adhesive, proliferative and angiogenic properties of EPCs remain unknown. The aims of the present study were to investigate the potential of using non-invasive monitoring with ultrasmall superparamagnetic iron oxide nanoparticle (USPION)-labeled endothelial progenitor cells (EPCs) after transplantation, and to assess the treatment outcomes in an atherosclerotic rabbit model. EPCs derived from rabbit peripheral blood samples were labeled with USPION-poly-l-lysine (USPION-PLL). The morphology, proliferation, adhesive ability and labeling efficiency of the EPCs were determined by optical and electron microscopy. Moreover, biological activity was assessed by flow cytometry. In addition, T2-weighted image fast spin-echo MRI was used to detect cell labeling. USPION content in the labeled EPCs was determined by Prussian blue staining and scanning electron microscopy. Rabbit atherosclerosis model was established using a high-fat diet. USPION-labeled EPCs were transplanted into rabbits, and in vivo MRI was performed 1 and 7 days after transplantation. It was found that EPCs cultured on Matrigel formed capillary-like structures, and expressed the surface markers CD133, CD31, CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). The optimal USPION concentration was 32 µg/ml, as determined by adhesion and proliferation assays. It was identified that USPION-PLL nanoparticles were 10–20 nm in diameter. Histopathological analysis results indicated that 1 day after transplantation of the labeled EPCs, blue-stained granules were observed in the intima of vascular lesions in rabbit models after Prussian blue staining. Therefore, the present results suggest that USPION-labeled EPCs may play a role in repairing endothelial injury and preventing atherosclerosis in vivo.
Collapse
Affiliation(s)
- Hongxia Wei
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Tingting Tan
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Li Cheng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Jiapeng Liu
- Department of Medical Imaging, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
| | - Hongyan Song
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Li
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Kui Zhang
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
12
|
Jiang C, Li R, Ma X, Hu H, Guo J, Zhao J. AMD3100 and SDF‑1 regulate cellular functions of endothelial progenitor cells and accelerate endothelial regeneration in a rat carotid artery injury model. Mol Med Rep 2020; 22:3201-3212. [PMID: 32945467 PMCID: PMC7453604 DOI: 10.3892/mmr.2020.11432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/22/2020] [Indexed: 11/12/2022] Open
Abstract
The present study was conducted to assess the effects of AMD3100 and stromal cell-derived factor 1 (SDF-1) on cellular functions and endothelial regeneration of endothelial progenitor cells (EPCs). The cell proliferation and adhesion capacity of EPCs were evaluated in vitro following treatment with AMD3100 and SDF-1 using a Cell Counting Kit-8 assay. Furthermore, the expression levels of C-X-C motif chemokine receptor 4 (CXCR4) and C-X-C motif chemokine receptor 7 (CXCR7) were detected before and after treatment with AMD3100 and SDF-1 to elucidate their possible role in regulating the cellular function of EPCs. A rat carotid artery injury model was established to assess the influences of AMD3100 and SDF-1 on endothelial regeneration. AMD3100 reduced the proliferation and adhesion capacity of EPCs to fibronectin (FN), whereas it increased the adhesion capacity of EPCs to human umbilical vein endothelial cells (HUVECs). However, SDF-1 stimulated the proliferation and cell adhesion capacity of EPCs to HUVECs and FN. Additionally, the expression levels of CXCR7 but not CXCR4 were upregulated following AMD3100 treatment, whereas the expression levels of both CXCR4 and CXCR7 were upregulated after SDF-1 treatment. In vivo results demonstrated that AMD3100 increased the number of EPCs in the peripheral blood and facilitated endothelial repair at 7 days after treatment. However, local administration of SDF-1 alone did not enhance reendothelialization 7 and 14 days after treatment. Importantly, the combination of AMD3100 with SDF-1 exhibited superior therapeutic effects compared with AMD3100 treatment alone, accelerated reendothelialization 7 days after treatment, and attenuated neointimal hyperplasia at day 7 and 14 by recruiting more EPCs to the injury site. In conclusion, AMD3100 could positively regulate the adhesion capacity of EPCs to HUVECs via elevation of the expression levels of CXCR7 but not CXCR4, whereas SDF-1 could stimulate the proliferation and adhesion capacity of EPCs to FN and HUVECs by elevating the expression levels of CXCR4 and CXCR7. AMD3100 combined with SDF-1 outperformed AMD3100 alone, promoted early reendothelialization and inhibited neointimal hyperplasia, indicating that early reendothelialization attenuated neointimal hypoplasia following endothelial injury.
Collapse
Affiliation(s)
- Chunyu Jiang
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Ruiting Li
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xu Ma
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Hui Hu
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Juan Guo
- Department of Hematology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Jungong Zhao
- Department of Radiology, The Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
13
|
Adjunctive Cilostazol to Dual Antiplatelet Therapy to Enhance Mobilization of Endothelial Progenitor Cell in Patients with Acute Myocardial Infarction: A Randomized, Placebo-Controlled EPISODE Trial. J Clin Med 2020; 9:jcm9061678. [PMID: 32492942 PMCID: PMC7356664 DOI: 10.3390/jcm9061678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Endothelial progenitor cells (EPCs) have the potential to protect against atherothrombotic event occurrences. There are no data to evaluate the impact of cilostazol on EPC levels in high-risk patients. Methods: We conducted a randomized, double-blind, placebo-controlled trial to assess the effect of adjunctive cilostazol on EPC mobilization and platelet reactivity in patients with acute myocardial infarction (AMI). Before discharge, patients undergoing percutaneous coronary intervention (PCI) were randomly assigned to receive cilostazol SR capsule (200-mg) a day (n = 30) or placebo (n = 30) on top of dual antiplatelet therapy (DAPT) with clopidogrel and aspirin. Before randomization (baseline) and at 30-day follow-up, circulating EPC levels were analyzed using flow cytometry and hemostatic measurements were evaluated by VerifyNow and thromboelastography assays. The primary endpoint was the relative change in EPC levels between baseline and 30-day. Results: At baseline, there were similar levels of EPC counts between treatments, whereas patients with cilostazol showed higher levels of EPC counts compared with placebo after 30 days. Cilostazol versus placebo treatment displayed significantly higher changes in EPC levels between baseline and follow-up (ΔCD133+/KDR+: difference 216%, 95% confidence interval (CI) 44~388%, p = 0.015; ΔCD34+/KDR+: difference 183%, 95% CI 25~342%, p = 0.024). At 30-day follow-up, platelet reactivity was lower in the cilostazol group compared with the placebo group (130 ± 45 versus 169 ± 62 P2Y12 Reaction Unit, p = 0.009). However, there were no significant correlations between the changes of EPC levels and platelet reactivity. Conclusion: Adjunctive cilostazol on top of clopidogrel and aspirin versus DAPT alone is associated with increased EPC mobilization and decreased platelet reactivity in AMI patients, suggesting its pleiotropic effects against atherothrombotic events (NCT04407312).
Collapse
|
14
|
Jia J, Ma B, Wang S, Feng L. Therapeutic Potential of Endothelial Colony Forming Cells Derived from Human Umbilical Cord Blood. Curr Stem Cell Res Ther 2020; 14:460-465. [PMID: 30767752 DOI: 10.2174/1574888x14666190214162453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) are implicated in multiple biologic processes such as vascular homeostasis, neovascularization and tissue regeneration, and tumor angiogenesis. A subtype of EPCs is referred to as endothelial colony-forming cells (ECFCs), which display robust clonal proliferative potential and can form durable and functional blood vessels in animal models. In this review, we provide a brief overview of EPCs' characteristics, classification and origins, a summary of the progress in preclinical studies with regard to the therapeutic potential of human umbilical cord blood derived ECFCs (CB-ECFCs) for ischemia repair, tissue engineering and tumor, and highlight the necessity to select high proliferative CB-ECFCs and to optimize their recovery and expansion conditions.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R., China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Ling Feng
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| |
Collapse
|
15
|
Bradbury C, Buckley T, Sun YZ, Rose P, Fitzmaurice D. Patients with high levels of circulating endothelial progenitor cells (EPC) following at least three months of anticoagulation for unprovoked venous thromboembolism (VTE) are at low risk of recurrent VTE-Results from the ExACT randomised controlled trial. EClinicalMedicine 2019; 17:100218. [PMID: 31891148 PMCID: PMC6933150 DOI: 10.1016/j.eclinm.2019.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND There is clinical need for a laboratory biomarker to identify patients who, following an unprovoked venous thrombosis (VTE), are at low VTE recurrence risk and can discontinue anticoagulation after a limited treatment duration (3-6 m). This secondary analysis of the ExACT study aimed to evaluate whether quantitation of peripheral blood endothelial progenitor cells (EPCs) could improve prediction of VTE recurrence risk. METHODS The ExACT study was a non-blinded, multicentre RCT comparing extended vs discontinued anticoagulation following a first unprovoked VTE. Adult patients were eligible if they had completed ≥3 months anticoagulation and remained anticoagulated. The primary outcome was time to first recurrent VTE from randomisation. Blood samples were taken at baseline and results correlated with clinical outcome over 2 years follow up. (Trial registration: ISRCTN:73819751 and EUDRACT:2101-022119-20). FINDINGS 281 patients were recruited, randomised (between July 2011 and February 2015) and followed up for 24 months (Male:Female 2:1, mean age 63). Of these, 273 patients were included in the final analysis. Blood samples were received at baseline for Full Blood Count(n = 216), d-dimers(n = 205) and endothelial progenitor cell (EPC) quantitation by flow cytometry(n = 193). VTE recurrence was lower in the extended vs discontinued anticoagulation arms (5% vs 23%, HR 0.20(95%CI:0.09-0.46,p < 0.001)). Level of EPCs were lower in patients who later developed VTE recurrence (43.41 ± 7.69 cells/ml vs 87.1 ± 7.15 cells/ml, p = 0.02). Survival free from VTE recurrence was significantly improved in patients with EPCs ≥ 100 cells/ml vs EPCs < 100 cells/ml (HR 0.10(95%CI:0.01-0.75,p = 0.025)). INTERPRETATION If confirmed, EPC quantitation may represent a novel biomarker that identifies patients at low VTE recurrence risk who are suitable for limited duration anticoagulation.
Collapse
Affiliation(s)
- Charlotte Bradbury
- School of Cellular and Molecular Medicine, University of Bristol, United Kingdom
- University Hospitals Bristol, United Kingdom
- Corresponding author.
| | | | | | - Peter Rose
- University Hospitals Coventry and Warwickshire, United Kingdom
| | | |
Collapse
|
16
|
Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Rev Port Cardiol 2019; 38:817-827. [DOI: 10.1016/j.repc.2019.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/30/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
|
17
|
Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.repce.2019.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Floris A, Piga M, Pinna S, Angioni MM, Congia M, Mascia P, Chessa E, Cangemi I, Mathieu A, Cauli A. Assessment Of Circulating Endothelial Cells And Their Progenitors As Potential Biomarkers Of Disease Activity And Damage Accrual In Behçet's Syndrome. Open Access Rheumatol 2019; 11:219-227. [PMID: 31632164 PMCID: PMC6790121 DOI: 10.2147/oarrr.s225168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose To explore the potential role of circulating endothelial cells (CECs) and their progenitors (EPCs) as biomarkers of disease activity and damage accrual in patients with Behçet’s syndrome (BS), by using a standardised and reliable flow cytometry protocol. Patients and methods CECs and EPCs were assessed in 32 BS patients and 11 gender/age/smoking habits matched healthy controls (HC). They were identified by flow cytometry as alive/nucleated/CD45-negative/CD34-bright/CD146-positive and alive/nucleated/CD45-negative/CD34-bright/CD309-positive events, respectively. In BS patients, demographic and clinical features, including disease activity (assessed by Behçet’s disease current disease activity form, BDCAF) and irreversible damage accrual (by the vasculitis damage index, VDI) were recorded. Uni- and multivariate analysis were performed to compare the CECs and EPCs concentrations in BS vs HC and to identify potential associations with demographic or clinical features. Results The CECs concentration was significantly higher in the BS patients than HCs [median (IQR) 15.0 (7.5–23.0) vs 6.0 (2.0–13.0) CECs/mL, p=0.024]. In BS patients, no significant associations were found between CECs and demographic features, present and past clinical manifestations, BDCAF score and ongoing treatment. A significant association was observed between CECs and organ damage, as assessed by the VDI (rho 0.356, p=0.045). Higher levels of CECs were especially associated with vascular damage [median (IQR) 23.0 (14.0–47.0) vs 13.0 (6.0–19.0) CECs/mL, p=0.011], including arterial aneurysm and stenosis, complicated venous thrombosis, cerebrovascular accident. The concentration of EPCs did not significantly differ between the BS and HC [median 26.5 (13.0–46.0) vs 19.0 (4.0–42.0) EPCs/mL, p=0.316] and no significant associations were observed between their levels and any clinical characteristic. Conclusion Our study suggests that the CECs concentration is significantly higher in BS than healthy subjects, and it mainly correlates with vascular damage. A longitudinal extension of the present study on a wider cohort would be useful to validate the potential role of CECs as a marker or, hopefully, predictor of vascular damage in BS.
Collapse
Affiliation(s)
- Alberto Floris
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Matteo Piga
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Silvia Pinna
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | | | - Mattia Congia
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Piero Mascia
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Elisabetta Chessa
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Ignazio Cangemi
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Alberto Cauli
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| |
Collapse
|
19
|
Zhang BF, Jiang H, Chen J, Hu Q, Yang S, Liu XP. Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. J Cell Physiol 2019; 234:18544-18559. [PMID: 30982985 PMCID: PMC6617719 DOI: 10.1002/jcp.28492] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/03/2023]
Abstract
Low retention of endothelial progenitor cells (EPCs) in the infarct area has been suggested to be responsible for the poor clinical efficacy of EPC therapy for myocardial infarction (MI). This study aimed to evaluate whether magnetized EPCs guided through an external magnetic field could augment the aggregation of EPCs in an ischemia area, thereby enhancing therapeutic efficacy. EPCs from male rats were isolated and labeled with silica‐coated magnetic iron oxide nanoparticles to form magnetized EPCs. Then, the proliferation, migration, vascularization, and cytophenotypic markers of magnetized EPCs were analyzed. Afterward, the magnetized EPCs (1 × 106) were transplanted into a female rat model of MI via the tail vein at 7 days after MI with or without the guidance of an external magnet above the infarct area. Cardiac function, myocardial fibrosis, and the apoptosis of cardiomyocytes were observed at 4 weeks after treatment. In addition, EPC retention and the angiogenesis of ischemic myocardium were evaluated. Labeling with magnetic nanoparticles exhibited minimal influence to the biological functions of EPCs. The transplantation of magnetized EPCs guided by an external magnet significantly improved the cardiac function, decreased infarction size, and reduced myocardial apoptosis in MI rats. Moreover, enhanced aggregations of magnetized EPCs in the infarcted border zone were observed in rats with external magnet‐guided transplantation, accompanied by the significantly increased density of microvessels and upregulated the expression of proangiogenic factors, when compared with non‐external‐magnet‐guided rats. The magnetic field‐guided transplantation of magnetized EPCs was associated with the enhanced aggregation of EPCs in the infarcted border zone, thereby improving the therapeutic efficacy of MI.
Collapse
Affiliation(s)
- Bo-Fang Zhang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Chen
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Qi Hu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Shuo Yang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Xiao-Pei Liu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Li WD, Zhou DM, Sun LL, Xiao L, Liu Z, Zhou M, Wang WB, Li XQ. LncRNA WTAPP1 Promotes Migration and Angiogenesis of Endothelial Progenitor Cells via MMP1 Through MicroRNA 3120 and Akt/PI3K/Autophagy Pathways. Stem Cells 2018; 36:1863-1874. [PMID: 30171660 DOI: 10.1002/stem.2904] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Wen-Dong Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Dong-Ming Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Li-Li Sun
- Department of Vascular Surgery; The Second Affiliated Hospital of Soochow University; Suzhou JiangSu People's Republic of China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Zhao Liu
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Min Zhou
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Wen-Bin Wang
- Department of General Surgery; The Fourth Affiliated Hospital of Anhui Medical University; HeFei People's Republic of China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| |
Collapse
|
21
|
Edwards N, Langford-Smith AWW, Wilkinson FL, Alexander MY. Endothelial Progenitor Cells: New Targets for Therapeutics for Inflammatory Conditions With High Cardiovascular Risk. Front Med (Lausanne) 2018; 5:200. [PMID: 30042945 PMCID: PMC6048266 DOI: 10.3389/fmed.2018.00200] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, we have witnessed an exponential growth of interest into the role of endothelial progenitor cells (EPCs) in cardiovascular disease. While the major thinking revolves around EPC angiogenic repair properties, we have used a hypothesis-driven approach to discover disease-related defects in their characteristics and based on these findings, have identified opportunities for functional enhancement, which offer an exciting avenue for translation into clinical intervention. In this review, we focus on two groups; circulating myeloid angiogenic cells (MACs) and late outgrowth endothelial colony forming cells (ECFCs), and will discuss the unique properties and defects of each population, as new insights have been gained into the potential function of each sub-type using current techniques and multiomic technology. We will discuss their role in inflammatory disorders and alterations in mitochondrial function. In addition, we share key insights into the glycocalyx, and propose this network of membrane-bound proteoglycans and glycoproteins, covering the endothelium warrants further investigation in order to clarify its significance in ECFC regulation of vascularization and angiogenesis and ultimately for potential translational therapeutic aspects.
Collapse
Affiliation(s)
- Nicola Edwards
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alexander W W Langford-Smith
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Fiona L Wilkinson
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - M Yvonne Alexander
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
22
|
Sapp RM, Hagberg JM. Rebuttal from Ryan M. Sapp and James M. Hagberg. J Physiol 2018; 596:547. [DOI: 10.1113/jp275554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ryan M. Sapp
- Department of Kinesiology; School of Public Health; University of Maryland; College Park MD USA
| | - James M. Hagberg
- Department of Kinesiology; School of Public Health; University of Maryland; College Park MD USA
| |
Collapse
|
23
|
Devetzi M, Goulielmaki M, Khoury N, Spandidos DA, Sotiropoulou G, Christodoulou I, Zoumpourlis V. Genetically‑modified stem cells in treatment of human diseases: Tissue kallikrein (KLK1)‑based targeted therapy (Review). Int J Mol Med 2018; 41:1177-1186. [PMID: 29328364 PMCID: PMC5819898 DOI: 10.3892/ijmm.2018.3361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
The tissue kallikrein-kinin system (KKS) is an endogenous multiprotein metabolic cascade which is implicated in the homeostasis of the cardiovascular, renal and central nervous system. Human tissue kallikrein (KLK1) is a serine protease, component of the KKS that has been demonstrated to exert pleiotropic beneficial effects in protection from tissue injury through its anti-inflammatory, anti-apoptotic, anti-fibrotic and anti-oxidative actions. Mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs) constitute populations of well-characterized, readily obtainable multipotent cells with special immunomodulatory, migratory and paracrine properties rendering them appealing potential therapeutics in experimental animal models of various diseases. Genetic modification enhances their inherent properties. MSCs or EPCs are competent cellular vehicles for drug and/or gene delivery in the targeted treatment of diseases. KLK1 gene delivery using adenoviral vectors or KLK1 protein infusion into injured tissues of animal models has provided particularly encouraging results in attenuating or reversing myocardial, renal and cerebrovascular ischemic phenotype and tissue damage, thus paving the way for the administration of genetically modified MSCs or EPCs with the human tissue KLK1 gene. Engraftment of KLK1-modified MSCs and/or KLK1-modified EPCs resulted in advanced beneficial outcome regarding heart and kidney protection and recovery from ischemic insults. Collectively, findings from pre-clinical studies raise the possibility that tissue KLK1 may be a novel future therapeutic target in the treatment of a wide range of cardiovascular, cerebrovascular and renal disorders.
Collapse
Affiliation(s)
- Marina Devetzi
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Nicolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
24
|
Nation DA, Tan A, Dutt S, McIntosh EC, Yew B, Ho JK, Blanken AE, Jang JY, Rodgers KE, Gaubert A. Circulating Progenitor Cells Correlate with Memory, Posterior Cortical Thickness, and Hippocampal Perfusion. J Alzheimers Dis 2018; 61:91-101. [PMID: 29103037 PMCID: PMC5924766 DOI: 10.3233/jad-170587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Bone marrow-derived progenitor cells survey the vasculature and home to sites of tissue injury where they can promote repair and regeneration. It has been hypothesized that these cells may play a protective role neurodegenerative and vascular cognitive impairment. OBJECTIVE To evaluate progenitor cell levels in older adults with and without mild cognitive impairment (MCI), and to relate circulating levels to memory, brain volume, white matter lesion volume, and cerebral perfusion. METHOD Thirty-two older adults, free of stroke and cardiovascular disease, were recruited from the community and evaluated for diagnosis of MCI versus cognitively normal (CN). Participants underwent brain MRI and blood samples were taken to quantify progenitor reserve using flow cytometry (CD34+, CD34+CD133+, and CD34+CD133+CD309+ cells). RESULTS Participants with MCI (n = 10) exhibited depletion of all CPC markers relative to those who were CN (n = 22), after controlling for age, sex, and education. Post-hoc age, sex, and education matched comparisons (n = 10 MCI, n = 10 CN) also revealed the same pattern of results. Depletion of CD34+ cells correlated with memory performance, left posterior cortical thickness, and bilateral hippocampal perfusion. Participants exhibited low levels of vascular risk and white matter lesion burden that did not correlate with progenitor levels. CONCLUSIONS Circulating progenitor cells are associated with cognitive impairment, memory, cortical atrophy, and hippocampal perfusion. We hypothesize that progenitor depletion contributes to, or is triggered by, cognitive decline and cortical atrophy. Further study of progenitor cell depletion in older adults may benefit efforts to prevent or delay dementia.
Collapse
Affiliation(s)
- Daniel A. Nation
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Alick Tan
- Department of Clinical Pharmacy, University of Southern California, Los Angeles CA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Elissa C. McIntosh
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Belinda Yew
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Jean K. Ho
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Jung Yun Jang
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Kathleen E. Rodgers
- Department of Clinical Pharmacy, University of Southern California, Los Angeles CA
| | - Aimée Gaubert
- Department of Psychology, University of Southern California, Los Angeles, CA
| |
Collapse
|
25
|
Functionally Incomplete Re-Endothelialization of Stents and Neoatherosclerosis. JACC Cardiovasc Interv 2017; 10:2388-2391. [DOI: 10.1016/j.jcin.2017.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022]
|
26
|
Potz BA, Scrimgeour LA, Feng J, Sellke FW. Diabetes and Cardioplegia. JOURNAL OF NATURE AND SCIENCE 2017; 3:e394. [PMID: 28758150 PMCID: PMC5533287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cardiac surgery with cardiopulmonary bypass and cardioplegic arrest is associated with injury to the vasculature and microcirculation leading to coronary microvascular dysfunction, permeability changes and cardiac dysfunction. In the setting of cardiopulmonary bypass with cardioplegia, poorly-controlled diabetes is associated with significant changes in endothelium-dependent and independent vascular dysfunction, vascular reactivity, vascular permeability, protein expression, cell death, coronary/peripheral microcirculation and reduced vasomotor tone leading to hypotension and impaired endothelial function. The gene expression profiles after cardiopulmonary bypass with cardioplegic arrest is quantitatively and qualitatively different in patients with diabetes. Gene expression profiling capitalizing on the differences between patients with and without diabetes is a good place to identify potential medical targets.
Collapse
Affiliation(s)
- Brittany A. Potz
- Alpert Warren Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI 02905, USA
| | - Laura A. Scrimgeour
- Alpert Warren Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI 02905, USA
| | - Jun Feng
- Alpert Warren Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI 02905, USA
| | - Frank W. Sellke
- Alpert Warren Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI 02905, USA
| |
Collapse
|