1
|
Zhang W, Wang X, Zhang H, Pan Y, Ma W, Xu Y, Tian Z, Xia C, Fu L, Wang Y. Comparison of pathogenicity and host responses of emerging porcine reproductive and respiratory syndrome virus variants in piglets. J Virol 2024; 98:e0154223. [PMID: 39445829 PMCID: PMC11575335 DOI: 10.1128/jvi.01542-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly variable virus with genetic diversity. This study comparatively examines the pathogenicity and immunological impact of two emergent PRRSV strains, SD53 and HuN4, in piglets. Our results indicate that SD53 strain induces milder clinical syndromes and less severe tissue damage than HuN4, despite similar replication rates. Hematological tests showed less perturbations in peripheral blood cell profiles after SD53 infection, suggesting a less systemic impact. The neutrophil-to-lymphocyte ratio was notably lower in SD53-infected piglets, suggesting a less intense inflammatory reaction. Moreover, SD53 infection led to lower levels of pro-inflammatory cytokines, further supporting a less pronounced inflammatory profile. Both strains induced the production of PRRSV-specific antibodies. However, transcriptomic analysis of lung and lymph node tissues from infected piglets disclosed a more moderate up-regulation of core genes, including ISGs, in the SD53 group. Further analysis indicated that SD53 primarily enhanced immune-related signaling, particularly in T cell response modules, while HuN4 caused a more robust pro-inflammatory reaction and a dampening of T cell functionality. Flow cytometry analyses confirmed these findings, showing higher CD4/CD8 ratios and increased CD4+ T cell percentages in SD53-infected piglets, implying a more robust T cell response. Collectively, these findings broaden our comprehension of PRRSV pathogenesis and may inform the development of future therapeutic or prophylactic strategies for controlling PRRSV infections more effectively. IMPORTANCE The high mutation rate of porcine reproductive and respiratory syndrome virus (PRRSV) poses significant challenges to its accurate diagnosis and the implementation of effective control measures. This research explores the pathogenic profiles of two emerging PRRSV stains: the NADC30-like strain SD53 and the highly pathogenic strain HuN4. Our investigation reveals that SD53 initiates distinct immunopathological responses in vivo compared with those provoked by HuN4. By conducting a transcriptome analysis of differential gene expression in the lungs and lymph nodes of infected piglets, we unveil the intricate molecular mechanisms underlying the contrasting pathogenicity of these two strains. The comprehensive insights yielded by this study are instrumental in advancing our understanding of the dominant NADC30-like PRRSV strain, which has become increasingly prevalent in China's swine industry.
Collapse
Affiliation(s)
- Wenli Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - He Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yunfei Xu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
2
|
Song K, Yu JY, Li J, Li M, Peng LY, Yi PF. Astragaloside IV Regulates cGAS-STING Signaling Pathway to Alleviate Immunosuppression Caused by PRRSV Infection. Viruses 2023; 15:1586. [PMID: 37515271 PMCID: PMC10383485 DOI: 10.3390/v15071586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a global threat to pig health and results in significant economic losses. Impaired innate and adaptive immune responses are evident during PRRSV infection. Cyclic GMP-AMP synthase (cGAS), a classical pattern recognition receptor recognizing mainly intracytoplasmic DNA, induces type I IFN responses through the cGAS-STING signaling pathway. It has also been demonstrated that cGAS-STING is involved in PRRSV infection. This study utilized the qRT-PCR, ELISA, and WB methods to examine the effects of Astragaloside IV (AS-IV) on the regulation of innate immune function and cGAS-STING signaling pathway in porcine alveolar macrophages. The results showed that AS-IV attenuated the decreased innate immune function caused by PRRSV infection, restored the inhibited cGAS-STING signaling pathway, and increased the expression of interferon, ultimately exerting antiviral effects. Moreover, these results suggest that AS-IV may be a promising candidate for a new anti-PRRSV antiviral, and its mechanism of action may provide insights for developing novel antiviral agents.
Collapse
Affiliation(s)
- Ke Song
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jia-Ying Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiang Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Miao Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Tan S, Wu W, Ge X, Zhang Y, Han J, Guo X, Zhou L, Yang H. A novel strategy to attenuate porcine reproductive and respiratory syndrome virus by inhibiting viral replication in the target pulmonary alveolar macrophages via hematopoietic-specific miR-142. ONE HEALTH ADVANCES 2023; 1:3. [PMID: 37521530 PMCID: PMC10060136 DOI: 10.1186/s44280-023-00002-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 08/01/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen for the global pork industry. Although modified live virus (MLV) vaccines are commonly used for PRRSV prevention and control, they still carry a risk of infecting the host and replicating in target cells, thereby increasing the likehood of virus recombination and reversion to virulence. In this study, we inserted the target sequence of miR-142 into the nsp2 hypervariable region of PRRSV to inhibit viral replication in its host cells of pigs, with the aim of achieving virus attenuation. The chimeric virus RvJX-miR-142t was successfully rescued and retained its growth characteristics in MARC-145 cells. Furthermore, it did not replicate in MARC-145 cells transfected with miRNA-142 mimic. We also observed limited replication ability of RvJX-miR-142t in pulmonary alveolar macrophages, which are the main cell types that PRRSV infects. Our animal inoculation study showed that pigs infected with RvJX-miR-142t displayed less severe clinical symptoms, lower viremia titers, lighter lung lesions, and significantly lower mortality rates during the first 7 days post-inoculation, in comparison to pigs infected with the backbone virus RvJXwn. We detected a partially deletion of the miR-142 target sequence in the RvJX-miR-142t genome at 14 dpi. It is highly possible that the reversion of viral virulence observed in the later timepoints of our animal experiment was caused by that. Our study provided a new strategy for attenuating PRRSV and confirmed its effectiveness. However, further studies are necessary to increase the stability of this virus under host selection pressure.
Collapse
Affiliation(s)
- Shaoyuan Tan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Weixin Wu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Wang P, Ma X, Zhang R, Zhao Y, Hu R, Luo C, Zeshan B, Yang Z, Qiu L, Wang J, Liu H, Zhou Y, Wang X. The transcriptional characteristics of NADC34-like PRRSV in porcine alveolar macrophages. Front Microbiol 2022; 13:1022481. [PMID: 36338035 PMCID: PMC9629508 DOI: 10.3389/fmicb.2022.1022481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
The widespread and endemic circulation of porcine reproductive and respiratory syndrome virus (PRRSV) cause persistent financial losses to the swine industry worldwide. In 2017, NADC34-like PRRSV-2 emerged in northeastern China and spread rapidly. The dynamics analysis of immune perturbations associated with novel PRRSV lineage is still incomplete. This study performed a time-course transcriptome sequencing of NADC34-like PRRSV strain YC-2020-infected porcine alveolar macrophages (PAMs) and compared them with JXA1-infected PAMs. The results illustrated dramatic changes in the host’s differentially expressed genes (DEGs) presented at different timepoints after PRRSV infection, and the expression profile of YC-2020 group is distinct from that of JXA1 group. Functional enrichment analysis showed that the expression of many inflammatory cytokines was up-regulated following YC-2020 infection but at a significantly lower magnitude than JXA1 group, in line with the trends for most interferon-stimulated genes (ISGs) and their regulators. Meanwhile, numerous components of histocompatibility complex (MHC) class II and phagosome presented a stronger transcription suppression after the YC-2020 infection. All results imply that YC-2020 may induce milder inflammatory responses, weaker antiviral processes, and more severe disturbance of antigen processing and presentation compared with HP-PRRSV. Additionally, LAPTM4A, GLMP, and LITAF, which were selected from weighted gene co-expression network analysis (WGCNA), could significantly inhibit PRRSV proliferation. This study provides fundamental data for understanding the biological characteristics of NADC34-like PRRSV and new insights into PRRSV evolution and prevention.
Collapse
Affiliation(s)
- Peixin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongxin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chen Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Basit Zeshan
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah, Malaysia
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
- *Correspondence: Yefei Zhou,
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Xinglong Wang,
| |
Collapse
|
5
|
Cook GM, Brown K, Shang P, Li Y, Soday L, Dinan AM, Tumescheit C, Mockett APA, Fang Y, Firth AE, Brierley I. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022; 11:e75668. [PMID: 35226596 PMCID: PMC9000960 DOI: 10.7554/elife.75668] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1β. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.
Collapse
Affiliation(s)
- Georgia M Cook
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Katherine Brown
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Lior Soday
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Adam M Dinan
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | | | | | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Andrew E Firth
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Ian Brierley
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
6
|
Highly Pathogenic PRRSV-Infected Alveolar Macrophages Impair the Function of Pulmonary Microvascular Endothelial Cells. Viruses 2022; 14:v14030452. [PMID: 35336858 PMCID: PMC8948932 DOI: 10.3390/v14030452] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV), especially the highly pathogenic strains, can cause serious acute lung injury (ALI), characterized by extensive hemorrhage, inflammatory cells and serous fluid infiltration in the lung vascular system. Meanwhile, the pulmonary microvascular endothelial cells (PMVECs) are essential for forming the air–blood barrier and keeping the water–salt balance to prevent leakage of circulating nutrients, solutes, and fluid into the underlying tissues. As well, they tightly regulate the influx of immune cells. To determine the possible relationship between the PMVECs’ function changes and lung vascular permeability during PRRSV infection, the PMVECs were co-cultured with HP-PRRSV-inoculated primary pulmonary alveolar macrophages (PAMs) in transwell model, and then the RNA sequencing (RNA-seq) and comprehensive bioinformatics analysis were carried out to characterize the dynamic transcriptome landscapes of PMVECs. In total, 16,489 annotated genes were identified, with 275 upregulated and 270 downregulated differentially expressed genes (DEGs) were characterized at both 18 and 24 h post PRRSV inoculation. The GO terms and KEGG pathways analysis indicated that the immune response, metabolic pathways, cell death, cytokine–cytokine receptor interaction, viral responses, and apoptotic process are significantly regulated upon co-culture with PRRSV-infected PAMs. Moreover, according to the TERR and dextran flux assay results, dysregulation of TJ proteins, including CLDN1, CLDN4, CLDN8, and OCLN, is further confirmed to correlate with the increased permeability of PMVECs. These transcriptome profiles and DEGs will provide valuable clues for further exploring the roles of PMVECs in PRRSV-induced ALI in the future.
Collapse
|
7
|
Porcine reproductive and respiratory syndrome virus infection upregulates negative immune regulators and T-cell exhaustion markers. J Virol 2021; 95:e0105221. [PMID: 34379512 DOI: 10.1128/jvi.01052-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine alveolar macrophage (PAM) is one of the primary cellular targets for PRRSV, but less than 2% of PAMs are infected with the virus during the acute stage of infection. To comparatively analyze the host transcriptional response between PRRSV-infected PAMs and bystanders PAMs that remained uninfected but were exposed to the inflammatory milieu of an infected lung, pigs were infected with a PRRSV strain expressing green fluorescent protein (PRRSV-GFP) and GFP+ (PRRSV infected) and GFP- (bystander) cells were sorted for RNA-sequencing (RNA-seq). Approximately 4.2% of RNA reads from GFP+ and 0.06% reads from GFP- PAMs mapped to the PRRSV genome, indicating that PRRSV-infected PAMs were effectively separated from bystander PAMs. Further analysis revealed that inflammatory cytokines, interferon-stimulated genes, and antiviral genes were highly upregulated in GFP+ as compared to GFP- PAMs. Importantly, negative immune regulators including NF-κB inhibitors (NFKBIA, NFKBID, NFKBIZ, and TNFAIP3), and T-cell exhaustion markers (PD-L1, PD-L2, IL10, IDO1, and TGFB2) were highly upregulated in GFP+ cells as compared to GFP- cells. By using in situ hybridization assay, RNA transcripts of TNF and NF-κB inhibitors were detected in PRRSV-infected PAMs cultured ex vivo and lung sections of PRRSV-infected pigs during the acute stage of infection. Collectively, the results suggest that PRRSV infection upregulates expression of negative immune regulators and T-cell exhaustion markers in PAMs to modulate the host immune response. Our findings provide further insight into PRRSV immunopathogenesis. Importance PRRSV is widespread in many swine producing countries, causing substantial economic loses to the swine industry. PAM is considered the primary target for PRRSV replication in pigs. However, less than 2% of PAM from an acutely infected pigs are infected with the virus. In the present study, we utilized a PRRSV-GFP strain to infect pigs and sorted infected- and bystander- PAMs from the pigs during the acute stage of infection for transcriptome analysis. PRRSV infected PAMs showed a distinctive gene expression profile and contained many uniquely activated pathways compared to bystander PAMs. Interestingly, upregulated expression of and NF-κB signaling inhibitors and T-cell exhaustion molecules were observed in PRRSV-infected PAMs. Our findings provide additional knowledge on the mechanisms that PRRSV employs to modulate the host immune system.
Collapse
|
8
|
Gao J, Pan Y, Xu Y, Zhang W, Zhang L, Li X, Tian Z, Chen H, Wang Y. Unveiling the long non-coding RNA profile of porcine reproductive and respiratory syndrome virus-infected porcine alveolar macrophages. BMC Genomics 2021; 22:177. [PMID: 33711920 PMCID: PMC7953715 DOI: 10.1186/s12864-021-07482-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Long noncoding RNA (lncRNA) is highly associated with inflammatory response and virus-induced interferon production. By far the majority of studies have focused on the immune-related lncRNAs of mice and humans, but the function of lncRNAs in porcine immune cells are poorly understood. Porcine reproductive and respiratory syndrome virus (PRRSV) impairs local immune responses in the lungs of nursery and growing pigs, whereas the virus triggers the inflammatory responses. Porcine alveolar macrophage (PAM) is the primary target cell of PRRSV, thus PRRSV is used as an in vitro model of inflammation. Here, we profiled lncRNA and mRNA repertories from PRRSV-infected PAMs to explore the underlying mechanism of porcine lncRNAs in regulating host immune responses. Results In this study, a total of 350 annotated lncRNAs and 1792 novel lncRNAs in PAMs were identified through RNA-seq analysis. Among them 86 differentially expressed (DE) lncRNAs and 406 DE protein-coding mRNAs were identified upon PRRSV incubation. GO category and KEGG pathway enrichment analyses revealed that these DE lncRNAs and mRNAs were mainly involved in inflammation- and pathogen infection-induced pathways. The results of dynamic correlated expression networks between lncRNAs and their predicted target genes uncovered that numerous lncRNAs, such as XLOC-022175, XLOC-019295, and XLOC-017089, were correlated with innate immune genes. Further analysis validated that these three lncRNAs were positively correlated with their predicted target genes including CXCL2, IFI6, and CD163. This study suggests that porcine lncRNAs affect immune responses against PRRSV infection through regulating their target genes in PAMs. Conclusion This study provides both transcriptomic and epigenetic status of porcine macrophages. In response to PRRSV infection, comprehensive DE lncRNAs and mRNAs were profiled from PAMs. Co-expression analysis demonstrated that lncRNAs are emerging as the important modulators of immune gene activities through their critical influence upon PRRSV infection in porcine macrophages. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07482-9.
Collapse
Affiliation(s)
- Junxin Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfei Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenli Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xi Li
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
9
|
Transcriptome analysis of pig macrophages expressing porcine reproductive and respiratory syndrome virus non-structural protein 1. Vet Immunol Immunopathol 2020; 231:110147. [PMID: 33249263 DOI: 10.1016/j.vetimm.2020.110147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a causative pathogen of PRRS, one of the most economically disastrous swine diseases. Non-structural protein 1 (NSP1) of PRRSV consists of NSP1α and NSP1β which exhibit papain like cysteine protease activity. Recent evidence demonstrates that PRRSV NSP1 may be participated in modulating host immunity, but very few host proteins were discovered as targets for NSP1. In this study, we used RNA-seq to investigate the functional role of PRRSV NSP1 in porcine alveolar macrophages, 3D4/31 cells. Compared to empty vector (mock) transfectant, NSP1, NSP1α, and NSP1β expressing 3D4/31 cells displayed a total of 60 genes, 63 genes, and 80 genes as differentially expressed genes (DEGs), respectively. Most of DEGs are involved in early inflammatory responses including interleukin (IL)-17 signaling pathway, chemokine signaling pathway, tumor necrosis factor (TNF)-α signaling pathway, and cell adhesion molecules. Interestingly, PRRSV NSP1 expression in 3D4/31 cells decreased mRNA transcripts of Fosb and Gdf15 known to be involved in host cell signaling or host cell protection during inflammation. Therefore, PRRSV NSP1 might block the signaling involved in host immune surveillance. Further study is required to define the mechanism on how PRRSV NSP1 protein represses mRNA transcripts of specific host genes.
Collapse
|
10
|
Wu J, Peng X, Qiao M, Zhao H, Li M, Liu G, Mei S. Genome-wide analysis of long noncoding RNA and mRNA profiles in PRRSV-infected porcine alveolar macrophages. Genomics 2019; 112:1879-1888. [PMID: 31682919 DOI: 10.1016/j.ygeno.2019.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/07/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), which is caused by PRRS virus (PRRSV), is one of the most globally devastating swine diseases. It is essential to develop new strategy to control PRRS via an understanding of mechanisms that PRRSV utilizes to interfere with the host's innate immunity. In this study, we deeply sequenced and analyzed long noncoding RNA (lncRNA) and mRNA expression profiles of the porcine alveolar macrophages (PAMs) after PRRSV infection. 126 lncRNAs and 753 mRNAs were differentially expressed between PRRSV-infected and control PAMs. The co-expressed genes of down-regulated lncRNAs were significantly enriched within NF-kappa B and toll-like receptor signaling pathways. Co-expression network analysis indicated that part of the dysregulated lncRNAs associated with the interferon-induced genes. These dysregulated lncRNAs may play an important role in the host's innate immune responses to PRRSV infection. However, further research is required to characterize the function of these lncRNAs.
Collapse
Affiliation(s)
- Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Haizhong Zhao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mingbo Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guisheng Liu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
11
|
Characterizing the PRRSV nsp2 Deubiquitinase Reveals Dispensability of Cis-Activity for Replication and a Link of nsp2 to Inflammation Induction. Viruses 2019; 11:v11100896. [PMID: 31561412 PMCID: PMC6832237 DOI: 10.3390/v11100896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The papain-like cysteine protease 2 (PLP2) within the N-terminus of the porcine reproductive and respiratory syndrome virus (PRRSV) nsp2 replicase protein specifies a deubiquitinating enzyme (DUB), but its biochemical properties and the role in infection have remained poorly defined. By using in vitro assays, we found that the purified PLP2 could efficiently cleave K63 and K48 linked polyubiquitin chains Ub3-7 in vitro although displaying a differential activity in converting the respective ubiquitin dimers to monomer. The subsequent mutagenesis analyses revealed that the requirement for PLP2 DUB activity surprisingly resembled that for cis-cleavage activity, as several mutations (e.g., D91R, D85R, etc.) that largely ablated the DUB function also blocked the cis- but not trans-proteolytic cleavage of nsp2/3 polyprotein. Moreover, the analyses identified key mutations that could differentiate DUB from PLP2 cis- and trans-cleavage activities. Further reverse genetics analyses revealed the following findings: (i) mutations that largely blocked the DUB activity were all lethal to the virus, (ii) a point mutation T88G that selectively blocked the cis-cleavage activity of PLP2 did not affect viral viability in cell culture, and (iii) an E90Q mutation that did not affect either of the PLP2 activities led to rescue of WT-like virus but displayed significantly reduced ability to induce TNF-α production. Our findings support the possibility that the PLP2 DUB activity, but not cis-cleavage activity, is essential for PRRSV replication. The data also establish a strong link of nsp2 to pro-inflammatory cytokine induction during infection that operates in a manner independent of PLP2 DUB activity.
Collapse
|
12
|
Zhang K, Ge L, Dong S, Liu Y, Wang D, Zhou C, Ma C, Wang Y, Su F, Jiang Y. Global miRNA, lncRNA, and mRNA Transcriptome Profiling of Endometrial Epithelial Cells Reveals Genes Related to Porcine Reproductive Failure Caused by Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2019; 10:1221. [PMID: 31231376 PMCID: PMC6559286 DOI: 10.3389/fimmu.2019.01221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) can cause respiratory disease and reproductive failure in pregnant pigs. Previous transcriptome analyses in susceptive cells have mainly concentrated on pulmonary alveolar macrophages (PAM) and Marc-145 cells, and on the respiratory system. Some studies reported that apoptosis of placental cells and pig endometrial epithelial cells (PECs) is an obvious sign linked to reproductive failure in pregnant sows, but the mechanism is still unknown. In this study, Sn-positive PECs were isolated and apoptosis rates were assessed by flow cytometry. PRRSV-infected PECs exhibited apoptosis, indicative of their susceptibility to PRRSV. Subsequently, the whole transcriptome was compared between mock- and PRRSV-infected PECs and 54 differentially expressed microRNAs (DEmiRNAs), 104 differentially expressed genes (DEGs), 22 differentially expressed lncRNAs (DElncRNAs), and 109 isoforms were obtained, which were mainly enriched in apoptosis, necroptosis, and p53 signal pathways. Integration analysis of DEmiRNA and DEG profiles revealed two microRNAs (ssc-miR-339-5p and ssc-miR-181d-5p) and five genes (SLA-DQB1, THBS1, SLC3A1, ZFP37, and LOC100517161) participating in the apoptosis signal, of which THBS1 and SLC3A1 were mainly linked to the p53 pathway. Integration analysis of DEGs with DElncRNA profiles identified genes involved in apoptosis signal pathway are regulated by LTCONS_00010766 and LTCONS_00045988. Pathway enrichment revealed that the phagosome and p53 pathways are the two main signals causing apoptosis of PECs, and functional analysis revealed a role of miR-339-5p in regulating apoptosis of PECs after PRRSV inoculation.
Collapse
Affiliation(s)
- Kang Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Lijiang Ge
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Shasha Dong
- Department of Cardiology, Shandong First Medical University and Shandong Academy of Medical Science, Taian, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Chunyan Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yanchao Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Feng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
13
|
Kumar H, Srikanth K, Park W, Lee SH, Choi BH, Kim H, Kim YM, Cho ES, Kim JH, Lee JH, Jung JY, Go GW, Lee KT, Kim JM, Lee J, Lim D, Park JE. Transcriptome analysis to identify long non coding RNA (lncRNA) and characterize their functional role in back fat tissue of pig. Gene 2019; 703:71-82. [PMID: 30954676 DOI: 10.1016/j.gene.2019.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Long non coding RNAs (lncRNA) have been previously found to be involved in important cellular activities like epigenetics, implantation, cell growth etc. in pigs. However, comprehensive analysis of lncRNA in back fat tissues at different developmental stages in pigs is still lacking. In this study we conducted transcriptome analysis in the back fat tissue of a F1 crossbred Korean Native Pig (KNP) × Yorkshire Pig to identify lncRNA. We investigated their role in 16 pigs at two different growth stages; stage 1 (10 weeks, n = 8) and stage 2 (26 weeks, n = 8). After quality assessment of sequencing reads, we got a total of 1,641,165 assembled transcripts out of eight paired end read from each stage. Among them, 6808 lncRNA transcripts were identified by filtering on the basis of multiple parameters like read length ≥ 200 nucleotides, exon numbers ≥2, FPKM ≥0.5, coding potential score < 0 etc. PFAM and RFAM were used to filter out all possible protein coding genes and housekeeping RNAs respectively. A total of 103 lncRNAs and 1057 mRNAs were found to be differentially expressed (DE) between the two stages (|log2FC| > 2, q < 0.05). We also identified 306 genes located around 100 kb upstream and 234 genes downstream around these DE lncRNA transcripts. The expression of top eleven DE lncRNAs (COL4A6, LY7S, MYH2, OXCT1, SMPDL3A, TMEM182, TTC36, RFOOOO4, RFOOO15, RFOOO45, CADM2) had been validating by qRT-PCR. Pathway and GO terms analysis showed that, positive regulation of biosynthetic process, Wnt signaling pathway, cellular protein modification process, and positive regulation of nitrogen compound were differentially enriched. Our results suggested that, KEGG pathways such as protein digestion and absorption, Arrhythmogenic right ventricular cardiomyopathy (ARVC) to be significantly enriched in both DE lncRNAs as well as DE mRNAs and involved in back fat tissues development. It also suggests that, identified lncRNAs are involved in regulation of important adipose tissues development pathways.
Collapse
Affiliation(s)
- Himansu Kumar
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Woncheol Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Seung-Hoon Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hana Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Yong-Min Kim
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jin Hyoung Kim
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jang Hee Lee
- Department of Companion Animal, Seoul Hoseo Occupational Training College, Seoul 07583, Republic of Korea
| | - Ji Yeon Jung
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jungjae Lee
- Jung P& C Institute, Inc., 1504 U-Tower, Yongin-si, Gyeonggi-do 16950, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| |
Collapse
|
14
|
Cellular Innate Immunity against PRRSV and Swine Influenza Viruses. Vet Sci 2019; 6:vetsci6010026. [PMID: 30862035 PMCID: PMC6466325 DOI: 10.3390/vetsci6010026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Porcine respiratory disease complex (PRDC) is a polymicrobial syndrome that results from a combination of infectious agents, such as environmental stressors, population size, management strategies, age, and genetics. PRDC results in reduced performance as well as increased mortality rates and production costs in the pig industry worldwide. This review focuses on the interactions of two enveloped RNA viruses—porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus (SwIV)—as major etiological agents that contribute to PRDC within the porcine cellular innate immunity during infection. The innate immune system of the porcine lung includes alveolar and parenchymal/interstitial macrophages, neutrophils (PMN), conventional dendritic cells (DC) and plasmacytoid DC, natural killer cells, and γδ T cells, thus the in vitro and in vivo interactions between those cells and PRRSV and SwIV are reviewed. Likewise, the few studies regarding PRRSV-SwIV co-infection are illustrated together with the different modulation mechanisms that are induced by the two viruses. Alterations in responses by natural killer (NK), PMN, or γδ T cells have not received much attention within the scientific community as their counterpart antigen-presenting cells and there are numerous gaps in the knowledge regarding the role of those cells in both infections. This review will help in paving the way for future directions in PRRSV and SwIV research and enhancing the understanding of the innate mechanisms that are involved during infection with these viruses.
Collapse
|
15
|
Fang M, Yang Y, Wang N, Wang A, He Y, Wang J, Jiang Y, Deng Z. Genome-wide analysis of long non-coding RNA expression profile in porcine circovirus 2-infected intestinal porcine epithelial cell line by RNA sequencing. PeerJ 2019; 7:e6577. [PMID: 30863688 PMCID: PMC6408913 DOI: 10.7717/peerj.6577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Porcine circovirus-associated disease (PCVAD), which is induced by porcine circovirus type 2 (PCV2), is responsible for severe economic losses. Recently, the role of noncoding RNAs, and in particular microRNAs, in PCV2 infection has received great attention. However, the role of long noncoding RNA (lncRNA) in PCV2 infection is unclear. Here, for the first time, we describe the expression profiles of lncRNAs in an intestinal porcine epithelial cell line (IPEC-J2) after PCV2 infection, and analyze the features of differently expressed lncRNAs and their potential target genes. After strict filtering of approximately 150 million reads, we identified 13,520 lncRNAs, including 199 lncRNAs that were differentially expressed in non-infected and PCV2-infected cells. Furthermore, trans analysis found lncRNA-regulated target genes enriched for specific Gene Ontology terms (P < 0.05), such as DNA binding, RNA binding, and transcription factor activity, which are closely associated with PCV2 infection. In addition, we analyzed the predicted target genes of differentially expressed lncRNAs, including SOD2, TNFAIP3, and ARG1, all of which are involved in infectious diseases. Our study identifies many candidate lncRNAs involved in PCV2 infection and provides new insight into the mechanisms underlying the pathogenesis of PCVAD.
Collapse
Affiliation(s)
- Manxin Fang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Yi Yang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Naidong Wang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Aibing Wang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Yanfeng He
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Jiaoshun Wang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - You Jiang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Zhibang Deng
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| |
Collapse
|