1
|
Hong T, Park J, An G, Song J, Song G, Lim W. Evaluation of organ developmental toxicity of environmental toxicants using zebrafish embryos. Mol Cells 2024:100144. [PMID: 39489379 DOI: 10.1016/j.mocell.2024.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/04/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
There is increasing global concern about environmental pollutants, such as heavy metals, plastics, pharmaceuticals, personal care products (PPCPs), and pesticides, which have been detected in a variety of environments and are likely to be exposed to non-target organisms, including humans. Various animal models have been utilized for toxicity assessment, and zebrafish are particularly valuable for studying the toxicity of various compounds owing to their similarity to other aquatic organisms and 70% genetic similarity to humans. Their development is easy to observe, and transgenic models for organs such as the heart, liver, blood vessels, and nervous system enable efficient studies of organ-specific toxicity. This suggests that zebrafish are a valuable tool for evaluating toxicity in specific organs and forecasting the potential impacts on other non-target species. This review describes organ toxicity caused by various toxic substances and their mechanisms in zebrafish.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Elgendy SA, Shoeib O, Elgharbawy D, Abo El-Noor MM, Kabbash A. Assessment of B-type natriuretic peptide as an early predictor of mortality in acutely poisoned patients with cardiotoxicities. Toxicol Res (Camb) 2024; 13:tfae122. [PMID: 39105043 PMCID: PMC11297542 DOI: 10.1093/toxres/tfae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Background Cardiotoxicity is a major toxic effect induced by several types of drugs. An electrocardiogram is done routinely in cardiovascular drug exposures. Cardiac troponin I (cTnI) is the usual biomarker for diagnosing myocardial injury. B-type natriuretic peptide (BNP) is a well-established predictor of disease state in suspected heart failure. Aim The study aimed to assess BNP's role as an early predictor of mortality compared with cTnI and ECG changes in acutely poisoned patients with cardiotoxicities. Methodology This study enrolled 70 patients with acute cardiotoxicity by drugs and toxins known to cause cardiac injury admitted to Tanta University Poison Control Center (TUPCC). Collected data included socio-demographic data, toxicological history, vital signs, ECG changes, Poison Severity Score (PSS), BNP, and cTnI serum levels. Result Patients were classified as survivors and non-survivors. Significantly more delay time was recorded in non-survivors. Moreover, vital signs were significantly abnormal in non-survivors. There was no statistical significance regarding the initial ECG abnormalities between survivors and non-survivors. BNP and cTnI levels were significantly higher among non-survivors. For mortality prediction, BNP had good predictive power (AUC = 0.841) with 100% sensitivity and 79.7% specificity while cTnI had an acceptable predictive power (AUC = 0.786), with 83.3% sensitivity and 78.1% specificity with insignificant difference between both biomarkers. Conclusion BNP and cTnI levels can predict mortality in acute cardiotoxicity compared to ECG which has no statistically significant prediction. BNP has a higher discriminatory power than cTnI for the prediction of mortality.
Collapse
Affiliation(s)
- Shaimaa Ali Elgendy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Osama Shoeib
- Department of Cardiology, Faculty of Medicine, Medical collages complex, Al-Geish Street, Tanta, Gharbia 31527, Egypt
| | - Doaa Elgharbawy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mona M Abo El-Noor
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abdelmoty Kabbash
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Rasheed PA, Rasool K, Younes N, Nasrallah GK, Mahmoud KA. Ecotoxicity and environmental safety assessment of two-dimensional niobium carbides (MXenes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174563. [PMID: 38981534 DOI: 10.1016/j.scitotenv.2024.174563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Two-dimensional (2D) MXenes have gained great interest in water treatment, biomedical, and environmental applications. The antimicrobial activity and cell toxicity of several MXenes including Nb4C3Tx and Nb2CTx have already been explored. However, potential side effects related to Nb-MXene toxicity, especially on aquatic pneuma, have rarely been studied. Using zebrafish embryos, we investigated and compared the potential acute toxicity between two forms of Nb-MXene: the multilayer (ML-Nb4C3Tx, ML-Nb2CTx) and the delaminated (DL-Nb2CTx, and DL-Nb4C3Tx) Nb-MXene. The LC50 of ML-Nb4C3Tx, ML-Nb2CTx, DL-Nb2CTx, and DL-Nb4C3Tx were estimated to be 220, 215, 225, and 128 mg/L, respectively. Although DL-Nb2CTx, and DL-Nb4C3Tx derivatives have similar sizes, DL-Nb4C3Tx not only shows the higher mortality (LC50 = 128 mg/L Vs 225 mg/L), but also the highest teratogenic effect (NOEC = 100 mg/L Vs 200 mg/L). LDH release assay suggested more cell membrane damage and a higher superoxide anion production in DL-Nb4C3Tx than DL-Nb2CTx,. Interestingly, both DL-Nb-MXene nanosheets showed insignificant cardiac, hepatic, or behavioral toxic effects compared to the negative control. Embryos treated with the NOEC of DL-Nb2CTx presented hyperlocomotion, while embryos treated with the NOEC of DL-Nb4C3Tx presented hyperlocomotion, suggesting developmental neurotoxic effect and muscle impairment induced by both DL-Nb-MXene. According to the Fish and Wildlife Service (FSW) Acute Toxicity Rating Scale, all tested Nb-MXene nanosheets were classified as "Practically not toxic". However, DL-Nb4C3Tx should be treated with caution as it might cause a neurotoxic effect on fauna when it ends up in wastewater in high concentrations.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar
| | - Nadine Younes
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Zhang X, Shi J, Wang R, Ma J, Li X, Cai W, Li T, Zou W. Acute exposure to tris(2,4-di-tert-butylphenyl)phosphate elicits cardiotoxicity in zebrafish (Danio rerio) larvae via inducing ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134389. [PMID: 38669931 DOI: 10.1016/j.jhazmat.2024.134389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Tris(2,4-di-tert-butylphenyl)phosphate (AO168 =O), a novel organophosphate ester, is prevalent and abundant in the environment, posing great exposure risks to ecological and public health. Nevertheless, the toxicological effects of AO168 =O remain entirely unknown to date. The results in this study indicated that acute exposure to AO168 =O at 10 and 100 μg/L for 5 days obviously impaired cardiac morphology and function of zebrafish larvae, as proofed by decreased heartbeat, stroke volume, and cardiac output and the occurrence of pericardial edema and ventricular hypertrophy. Transcriptomics, polymerase chain reaction, and molecular docking revealed that the strong interaction of AO168 =O and transferrin receptor 1 activated the transportation of ferric iron into intracellular environment. The release of free ferrous ion to cytoplasmic iron pool also contributed to the iron overload in heart region, thus inducing ferroptosis in larvae via generation of excessive reactive oxygen species, glutathione peroxidase 4 inhibition, glutathione depletion and lipid peroxidation. Ferroptosis inhibitor (Fer-1) co-exposure effectively relieved the cardiac dysfunctions of zebrafish, verifying the dominant role of ferroptosis in the cardiotoxicity caused by AO168 =O. This research firstly reported the adverse impact and associated mechanisms of AO168 =O in cardiomyogenesis of vertebrates, underlining the urgency of concerning the health risks of AO168 =O.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Jing Shi
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Ruonan Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Wenwen Cai
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tengfei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
5
|
Bianchi M, Paravani EV, Acosta MG, Odetti LM, Simoniello MF, Poletta GL. Pesticide-induced alterations in zebrafish (Danio rerio) behavior, histology, DNA damage and mRNA expression: An integrated approach. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109895. [PMID: 38479676 DOI: 10.1016/j.cbpc.2024.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
To assess the impact of glyphosate and 2,4-D herbicides, as well as the insecticide imidacloprid, both individually and in combination, the gills of adult zebrafish were used due to their intimate interaction with chemicals diluted in water. Bioassays were performed exposing the animals to the different pesticides and their mixture for 96 h. The behavior of the fish was analyzed, a histological examination of the gills was carried out, and the genotoxic effects were also analyzed by means of the comet assay (CA) and the change in the expression profiles of genes involved in the pathways of the oxidative stress and cellular apoptosis. The length traveled and the average speed of the control fish, compared to those exposed to the pesticides and mainly those exposed to the mixture, were significantly greater. All the groups exposed individually exhibited a decrease in thigmotaxis time, indicating a reduction in the behavior of protecting themselves from predators. Histological analysis revealed significant differences in the structures of the gill tissues. The quantification of the histological lesions showed mild lesions in the fish exposed to imidacloprid, moderate to severe lesions for glyphosate, and severe lesions in the case of 2,4-D and the mixture of pesticides. The CA revealed the sensitivity of gill cells to DNA damage following exposure to glyphosate, 2,4-D, imidacloprid and the mixture. Finally, both genes involved in the oxidative stress pathway and those related to the cell apoptosis pathway were overexpressed, while the ogg1 gene, involved in DNA repair, was downregulated.
Collapse
Affiliation(s)
- M Bianchi
- Laboratorio de Química Ambiental, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina.
| | - E V Paravani
- Laboratorio de Química Ambiental, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - M G Acosta
- Laboratorio de Química Ambiental, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - L M Odetti
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
| | - G L Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
6
|
Techapichetvanich P, Sillapaprayoon S, Vivithanaporn P, Pimtong W, Khemawoot P. Assessing developmental and transcriptional effects of PM2.5 on zebrafish embryos. Toxicol Rep 2024; 12:397-403. [PMID: 38590343 PMCID: PMC10999492 DOI: 10.1016/j.toxrep.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Investigating fine particulate matter (PM2.5) toxicity is crucial for health risk assessment and pollution control. This study explores the developmental toxicity of two PM2.5 sources: standard reference material 2786 (NIST, USA) and PM2.5 from Chakri Naruebodindra Medical Institute (CNMI, Thailand) located in the Bangkok Metropolitan area. Zebrafish embryos exposed to these samples exhibited embryonic mortality, with 50% lethal concentration (LC50) values of 1476 µg/mL for standard PM2.5 and 512 µg/mL for CNMI PM2.5. Morphological analysis revealed malformations, including pericardial and yolk sac edema, and blood clotting in both groups. Gene expression analysis highlighted source-specific effects. Standard PM2.5 downregulated sod1 and cat while upregulating gstp2. Inflammatory genes tnf-α and il-1b were upregulated, and nfkbi-αa was downregulated. Apoptosis-related genes bax, bcl-2, and casp3a were downregulated. CNMI PM2.5 consistently downregulated all examined genes. These findings underscore PM2.5 source variability's significance in biological system impact assessment, providing insights into pollutant-gene expression interactions. The study emphasizes the need for source-specific risk assessment and interventions to address PM2.5 exposure's health impacts effectively.
Collapse
Affiliation(s)
- Pinnakarn Techapichetvanich
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| | - Siwapech Sillapaprayoon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| | - Pornpun Vivithanaporn
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| | - Wittaya Pimtong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| | - Phisit Khemawoot
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| |
Collapse
|
7
|
Guo Y, Zhang T, Wang X, Zhang J, Miao W, Li QX, Fan Y. Toxic effects of the insecticide tolfenpyrad on zebrafish embryos: Cardiac toxicity and mitochondrial damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2583-2595. [PMID: 38205909 DOI: 10.1002/tox.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.
Collapse
Affiliation(s)
- Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| |
Collapse
|
8
|
Ilbeigi K, Barata C, Barbosa J, Bertram MG, Caljon G, Costi MP, Kroll A, Margiotta-Casaluci L, Thoré ES, Bundschuh M. Assessing Environmental Risks during the Drug Development Process for Parasitic Vector-Borne Diseases: A Critical Reflection. ACS Infect Dis 2024; 10:1026-1033. [PMID: 38533709 PMCID: PMC11019539 DOI: 10.1021/acsinfecdis.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Parasitic vector-borne diseases (VBDs) represent nearly 20% of the global burden of infectious diseases. Moreover, the spread of VBDs is enhanced by global travel, urbanization, and climate change. Treatment of VBDs faces challenges due to limitations of existing drugs, as the potential for side effects in nontarget species raises significant environmental concerns. Consequently, considering environmental risks early in drug development processes is critically important. Here, we examine the environmental risk assessment process for veterinary medicinal products in the European Union and identify major gaps in the ecotoxicity data of these drugs. By highlighting the scarcity of ecotoxicological data for commonly used antiparasitic drugs, we stress the urgent need for considering the One Health concept. We advocate for employing predictive tools and nonanimal methodologies such as New Approach Methodologies at early stages of antiparasitic drug research and development. Furthermore, adopting progressive approaches to mitigate ecological risks requires the integration of nonstandard tests that account for real-world complexities and use environmentally relevant exposure scenarios. Such a strategy is vital for a sustainable drug development process as it adheres to the principles of One Health, ultimately contributing to a healthier and more sustainable world.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory
of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlos Barata
- Institute
of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - João Barbosa
- Blue
Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- School of
Biological Sciences, Monash University, 25 Rainforest Walk, 3800 Melbourne, Australia
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, 41125 Modena, Italy
| | - Alexandra Kroll
- Swiss
Centre for Applied Ecotoxicology, CH-8600 Dübendorf, Switzerland
| | - Luigi Margiotta-Casaluci
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, WC2R 2LS London, United Kingdom
| | - Eli S.J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- TRANSfarm - Science, Engineering,
& Technology Group, KU
Leuven, 3360 Lovenjoel, Belgium
| | - Mirco Bundschuh
- iES
Landau, Institute for Environmental Sciences,
RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829 Landau, Germany
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007 Uppsala, Sweden
| |
Collapse
|
9
|
Liu J, Li W, Sun S, Huang L, Wan M, Li X, Zhang L, Yang D, Liu F, Liao X, Lu H, Xiao J, Zhang S, Cao Z. Comparison of cardiotoxicity induced by alectinib, apatinib, lenvatinib and anlotinib in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109834. [PMID: 38218563 DOI: 10.1016/j.cbpc.2024.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Four tyrosine kinase inhibitors, alectinib, apatinib, lenvatinib and anlotinib, have been shown to be effective in the treatment of clinical tumors, but their cardiac risks have also raised concerns. In this study, zebrafish embryos at 6 h post fertilization (hpf) were exposed to the four drugs at concentrations of 0.05-0.2 mg/L until 72 hpf, and then the development of these embryos was quantified, including heart rate, body length, yolk sac area, pericardial area, distance between venous sinus and balloon arteriosus (SV-BA), separation of cardiac myocytes and endocardium, gene expression, vascular development and oxidative stress. At the same exposure concentrations, alectinib and apatinib had little effect on the cardiac development of zebrafish embryos, while lenvatinib and anlotinib could induce significant cardiotoxicity and developmental toxicity, including shortened of body length, delayed absorption of yolk sac, pericardial edema, prolonged SV-BA distance, separation of cardiomyocytes and endocardial cells, and downregulation of key genes for heart development. Heart rate decreased in all four drug treatment groups. In terms of vascular development, alectinib and apatinib did not inhibit the growth of embryonic intersegmental vessels (ISVs) and retinal vessels, while lenvatinib and anlotinib caused serious vascular toxicity, and the inhibition of anlotinib in vascular development was more obvious. Besides, the level of reactive oxygen species (ROS) in the lenvatinib and anlotinib treatment groups was significantly increased. Our results provide reference for comparing the cardiotoxicity of the four drugs.
Collapse
Affiliation(s)
- Jieping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, Fujian, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, Fujian, China
| | - Sujie Sun
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Ling Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, Fujian, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xue Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Li Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Dou Yang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
10
|
Hasan M, Zedan HT, Al-Fakhroo D, Elsayed Ibrahim H, Abiib SI, El-Sherbiny IM, Yalcin HC. In vivo testing of novel nitric oxide-releasing nanoparticles for alleviating heart failure using the zebrafish embryo model. Nitric Oxide 2024; 144:47-57. [PMID: 38307377 DOI: 10.1016/j.niox.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/27/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Heart failure (HF) is a multifactorial, heterogeneous systemic disease that is considered one of the leading causes of death and morbidity worldwide. It is well-known that endothelial dysfunction (ED) plays an important role in cardiac disease etiology. A reduction in the bioavailability of nitric oxide (NO) in the bloodstream leads to vasoconstriction and ED. Many studies indicated diminishment of peripheral arteries vasodilation that is mediated by the endothelium in the of patients with chronic HF. With the advancement of nanomedicine, nanotechnology can provide adequate solutions for delivering exogenous NO with the aid of nanoparticles (NPs) to treat ED. The properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable both passive and active delivery of drugs. This prompted us to investigate the efficacy of our newly-developed hydrogel nanoparticles (NO-RPs) for the delivery and sustained release of NO gas to alleviate cardiac failure and inflammation in the heart failure zebrafish model. The hydrogel NO-RPs incorporate SPIONS and NO precursor. The sustainend release of NO in the NO-RPs (4200 s), overcomes the problem of the short half life of NO in vivo which is expected to ameliorate the reduced NO bioavailabilty, and its consequences in endothelial and cardiac dysfunction. Zebrafish embryos were used as the animal model in this study to determine the effect of SPIONs-loaded NO-RPs on the cardiovascular system. Cardiac failure was induced in 24hpf embryos by exposure to aristolochic acid (AA)(0.25, 0.5 μM) for 8 h, followed by the SPIONs-loaded NO-RPs (0.25, 0.5 mg/ml) for 48 h, experimental groups included: control group which is healthy non treated zebrafish embryos, AA injured zebrafish embryos (HF) model,and NO-RP treated HF zebrafish embryos. Survival rate was assessed at 72hpf. Cardiac function was also evaluated by analyzing cardiac parameters including heartbeat, major blood vessels primordial cardinal vein and dorsal aorta (PCV &DA) diameter, blood flow velocity in PCV & DA vessels, cardiac output, and PCV & DA shear stresses. All cardiac parameters were analyzed with the aid of MicroZebraLab blood flow analysis software from Viewpoint. In addition, we studied the molecular effects of the developed NO-RPs on the mRNA expression of selected pro-inflammatory markers: IL-6, and Cox-2. Our findings demonstrated that the NO-RPs improved the survival rate in the heart failure zebrafish model and reversed heart failure by enhancing blood flow perfusion in Zebrafish embryos, significantly. In addition, RT-PCR results showed that the NO-RPs significantly reduced the expression of pro-inflammatory markers (lL-6&COX-2) in the heart failure zebrafish model. Our study confirmed that the developed SPIONs-loaded NO-RPs are effective tool to alleviate cardiac failure and inflammation in the HF zebrafish model.
Collapse
Affiliation(s)
- Maram Hasan
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hadeel T Zedan
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Dana Al-Fakhroo
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hend Elsayed Ibrahim
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sumaya Ibrahim Abiib
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
11
|
Verma SK, Nandi A, Sinha A, Patel P, Mohanty S, Jha E, Jena S, Kumari P, Ghosh A, Jerman I, Chouhan RS, Dutt A, Samal SK, Mishra YK, Varma RS, Panda PK, Kaushik NK, Singh D, Suar M. The posterity of Zebrafish in paradigm of in vivo molecular toxicological profiling. Biomed Pharmacother 2024; 171:116160. [PMID: 38237351 DOI: 10.1016/j.biopha.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The aggrandised advancement in utility of advanced day-to-day materials and nanomaterials has raised serious concern on their biocompatibility with human and other biotic members. In last few decades, understanding of toxicity of these materials has been given the centre stage of research using many in vitro and in vivo models. Zebrafish (Danio rerio), a freshwater fish and a member of the minnow family has garnered much attention due to its distinct features, which make it an important and frequently used animal model in various fields of embryology and toxicological studies. Given that fertilization and development of zebrafish eggs take place externally, they serve as an excellent model organism for studying early developmental stages. Moreover, zebrafish possess a comparable genetic composition to humans and share almost 70% of their genes with mammals. This particular model organism has become increasingly popular, especially for developmental research. Moreover, it serves as a link between in vitro studies and in vivo analysis in mammals. It is an appealing choice for vertebrate research, when employing high-throughput methods, due to their small size, swift development, and relatively affordable laboratory setup. This small vertebrate has enhanced comprehension of pathobiology and drug toxicity. This review emphasizes on the recent developments in toxicity screening and assays, and the new insights gained about the toxicity of drugs through these assays. Specifically, the cardio, neural, and, hepatic toxicology studies inferred by applications of nanoparticles have been highlighted.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | | | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Snehasmita Jena
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Puja Kumari
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 61137, Czech Republic
| | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| |
Collapse
|
12
|
Hussen E, Aakel N, Shaito AA, Al-Asmakh M, Abou-Saleh H, Zakaria ZZ. Zebrafish ( Danio rerio) as a Model for the Study of Developmental and Cardiovascular Toxicity of Electronic Cigarettes. Int J Mol Sci 2023; 25:194. [PMID: 38203365 PMCID: PMC10779276 DOI: 10.3390/ijms25010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024] Open
Abstract
The increasing popularity of electronic cigarettes (e-cigarettes) as an alternative to conventional tobacco products has raised concerns regarding their potential adverse effects. The cardiovascular system undergoes intricate processes forming the heart and blood vessels during fetal development. However, the precise impact of e-cigarette smoke and aerosols on these delicate developmental processes remains elusive. Previous studies have revealed changes in gene expression patterns, disruptions in cellular signaling pathways, and increased oxidative stress resulting from e-cigarette exposure. These findings indicate the potential for e-cigarettes to cause developmental and cardiovascular harm. This comprehensive review article discusses various aspects of electronic cigarette use, emphasizing the relevance of cardiovascular studies in Zebrafish for understanding the risks to human health. It also highlights novel experimental approaches and technologies while addressing their inherent challenges and limitations.
Collapse
Affiliation(s)
- Eman Hussen
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Nada Aakel
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.-A.); (H.A.-S.)
| | - Abdullah A. Shaito
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Maha Al-Asmakh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.-A.); (H.A.-S.)
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.-A.); (H.A.-S.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Zain Z. Zakaria
- Medical and Health Sciences Office, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
13
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
14
|
Fang C, Fang L, Di S, Yu Y, Wang X, Wang C, Jin Y. Characterization of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD)-induced cardiotoxicity in larval zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163595. [PMID: 37094682 DOI: 10.1016/j.scitotenv.2023.163595] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is a type of p-phenylenediamine (PPD), which is widely used in the manufacture of rubber tires owing to its excellent antiozonant properties. In this study, the developmental cardiotoxicity of 6PPD was evaluated in zebrafish larvae, and the LC50 was approximately 737 μg/L for the larvae at 96 h post fertilization (hpf). In the 6PPD treatment of 100 μg/L, the accumulation concentrations of 6PPD were up to 2658 ng/g in zebrafish larvae, and 6PPD induced significant oxidative stress and cell apoptosis in the early developmental stages of zebrafish. Transcriptome analysis showed that 6PPD exposure could potentially cause cardiotoxicity in larval zebrafish by affecting the transcription of the genes related to the calcium signal pathway and cardiac muscle contraction. The genes related to calcium signaling pathway (slc8a2b, cacna1ab, cacna1da, and pln) were verified by qRT-PCR, which were significantly downregulated in larval zebrafish after exposing to 100 μg/L of 6PPD. Simultaneously, the mRNA levels of the genes related to cardiac functions (myl7, sox9, bmp10, and myh71) also respond accordingly. H&E staining and heart morphology investigation indicated that cardiac malformation occurred in zebrafish larvae exposed to 100 μg/L of 6PPD. Furthermore, the phenotypic observation of transgenic Tg (myl7: EGFP) zebrafish also confirmed that 100 μg/L of 6PPD exposure could change the distance of atria and ventricles of the heart and inhibit some key genes (cacnb3a, ATP2a1l, ryr1b) related to cardiac function in larval zebrafish. These results revealed the toxic effects of 6PPD on the cardiac system of zebrafish larvae.
Collapse
Affiliation(s)
- Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liya Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yundong Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
15
|
Ben Chabchoubi I, Lam SS, Pane SE, Ksibi M, Guerriero G, Hentati O. Hazard and health risk assessment of exposure to pharmaceutical active compounds via toxicological evaluation by zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:120698. [PMID: 36435277 DOI: 10.1016/j.envpol.2022.120698] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts of these PhACs on aquatic organisms. In this review, efforts were made to reveal correlation between the occurrence in the environment, ecotoxicological and health risks of different PhACs via toxicological evaluation by zebrafish (Danio rerio). This animal model served as a bioindicator for any health impacts after the exposure to these contaminants and to better understand the responses in relation to human diseases. This review paper focused on the calculation of Risk Quotients (RQs) of 34 PhACs based on environmental and ecotoxicological data available in the literature and prediction from the ECOSAR V2.2 software. To the best of the authors' knowledge, this is the first report on the risk assessment of PhACs by the two different methods as mentioned above. RQs showed greater difference in potential environmental risks of the PhACs. These differences in risk values underline the importance of environmental and experimental factors in exposure conditions and the interpretation of RQ values. While the results showed high risk to Danio rerio of the majority of PhACs, risk qualification of the others varied between moderate to insignifiant. Further research is needed to assess pharmaceutical hazards when present in wastewater before discharge and monitor the effectiveness of treatment processes. The recent new advances in the morphological assessment of toxicant-exposed zebrafish larvae for the determination of test compounds effects on the developmental endpoints were also discussed. This review emphasizes the need for strict regulations on the release of PhACs into environmental media in order to minimize their toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia; Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Su Shiung Lam
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Stacey Ellen Pane
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Mohamed Ksibi
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Giulia Guerriero
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia; Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4.5, B.P 1175, 3038, Sfax, Tunisia.
| |
Collapse
|
16
|
Das NR, Sharma T, Toropov AA, Toropova AP, Tripathi MK, Achary PGR. Machine-learning technique, QSAR and molecular dynamics for hERG-drug interactions. J Biomol Struct Dyn 2023; 41:13766-13791. [PMID: 37021352 DOI: 10.1080/07391102.2023.2193641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/06/2023] [Indexed: 04/07/2023]
Abstract
One of the most well-known anti-targets defining medication cardiotoxicity is the voltage-dependent hERG K + channel, which is well-known for its crucial involvement in cardiac action potential repolarization. Torsades de Pointes, QT prolongation, and sudden death are all caused by hERG (the human Ether-à-go-go-Related Gene) inhibition. There is great interest in creating predictive computational (in silico) tools to identify and weed out potential hERG blockers early in the drug discovery process because testing for hERG liability and the traditional experimental screening are complicated, expensive and time-consuming. This study used 2D descriptors of a large curated dataset of 6766 compounds and machine learning approaches to build robust descriptor-based QSAR and predictive classification models for KCNH2 liability. Decision Tree, Random Forest, Logistic Regression, Ada Boosting, kNN, SVM, Naïve Bayes, neural network and stochastic gradient classification classifier algorithms were used to build classification models. If a compound's IC50 value was between 10 μM and less, it was classified as a blocker (hERG-positive), and if it was more, it was classified as a non-blocker (hERG-negative). Matthew's correlation coefficient formula and F1score were applied to compare and track the developed models' performance. Molecular docking and dynamics studies were performed to understand the cardiotoxicity relating to the hERG-gene. The hERG residues interacting after 100 ns are LEU:697, THR:708, PHE:656, HIS:674, HIS:703, TRP:705 and ASN:709 and the hERG-ligand-16 complex trajectory showed stable behaviour with lesser fluctuations in the entire simulation of 200 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nilima Rani Das
- Department of CA, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Tripti Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - P Ganga Raju Achary
- Department of Chemistry, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
17
|
Coppola A, Lombari P, Mazzella E, Capolongo G, Simeoni M, Perna AF, Ingrosso D, Borriello M. Zebrafish as a Model of Cardiac Pathology and Toxicity: Spotlight on Uremic Toxins. Int J Mol Sci 2023; 24:ijms24065656. [PMID: 36982730 PMCID: PMC10052014 DOI: 10.3390/ijms24065656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing health care problem. About 10% of the general population is affected by CKD, representing the sixth cause of death in the world. Cardiovascular events are the main mortality cause in CKD, with a cardiovascular risk 10 times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes with a negative effect on every organ, especially on the cardiovascular system. Mammalian models, sharing structural and functional similarities with humans, have been widely used to study cardiovascular disease mechanisms and test new therapies, but many of them are rather expensive and difficult to manipulate. Over the last few decades, zebrafish has become a powerful non-mammalian model to study alterations associated with human disease. The high conservation of gene function, low cost, small size, rapid growth, and easiness of genetic manipulation are just some of the features of this experimental model. More specifically, embryonic cardiac development and physiological responses to exposure to numerous toxin substances are similar to those observed in mammals, making zebrafish an ideal model to study cardiac development, toxicity, and cardiovascular disease.
Collapse
Affiliation(s)
- Annapaola Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
18
|
Branco MA, Nunes TC, Cabral JMS, Diogo MM. Developmental Toxicity Studies: The Path towards Humanized 3D Stem Cell-Based Models. Int J Mol Sci 2023; 24:ijms24054857. [PMID: 36902285 PMCID: PMC10002991 DOI: 10.3390/ijms24054857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Today, it is recognized that medicines will eventually be needed during pregnancy to help prevent to, ameliorate or treat an illness, either due to gestation-related medical conditions or pre-existing diseases. Adding to that, the rate of drug prescription to pregnant women has increased over the past few years, in accordance with the increasing trend to postpone childbirth to a later age. However, in spite of these trends, information regarding teratogenic risk in humans is often missing for most of the purchased drugs. So far, animal models have been the gold standard to obtain teratogenic data, but inter-species differences have limited the suitability of those models to predict human-specific outcomes, contributing to misidentified human teratogenicity. Therefore, the development of physiologically relevant in vitro humanized models can be the key to surpassing this limitation. In this context, this review describes the pathway towards the introduction of human pluripotent stem cell-derived models in developmental toxicity studies. Moreover, as an illustration of their relevance, a particular emphasis will be placed on those models that recapitulate two very important early developmental stages, namely gastrulation and cardiac specification.
Collapse
Affiliation(s)
- Mariana A. Branco
- Collaborative Laboratory to Foster Translation and Drug Discovery, Accelbio, 3030-197 Cantanhede, Portugal
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Tiago C. Nunes
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Margarida Diogo
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
19
|
Park J, Hong T, An G, Park H, Song G, Lim W. Triadimenol promotes the production of reactive oxygen species and apoptosis with cardiotoxicity and developmental abnormalities in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160761. [PMID: 36502969 DOI: 10.1016/j.scitotenv.2022.160761] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various types of fungicides, especially triazole fungicides, are used to prevent fungal diseases on farmlands. However, the developmental toxicity of one of the triazole fungicides, triadimenol, remains unclear. Therefore, we used the zebrafish animal model, a representative toxicological model, to investigate it. Triadimenol induced morphological alterations in the eyes and body length along with yolk sac and heart edema. It also stimulated the production of reactive oxygen species and expression of inflammation-related genes and caused apoptosis in the anterior regions of zebrafish, especially in the heart. The phosphorylation levels of Akt, ERK, JNK, and p38 proteins involved in the PI3K and MAPK pathways, which are important for the development process, were also reduced by triadimenol. These changes led to malformation of the heart and vascular structures, as observed in the flk1:eGFP transgenic zebrafish models and a reduction in the heart rate. In addition, the expression of genes associated with cardiac and vascular development was also reduced. Therefore, we elucidated the mechanisms associated with triadimenol toxicity that leads to various abnormalities and developmental toxicity in zebrafish.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
20
|
Wanting H, Jian Z, Chaoxin X, Cheng Y, Chengjian Z, Lin Z, Dan C. Using a zebrafish xenograft tumor model to compare the efficacy and safety of VEGFR-TKIs. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04560-7. [PMID: 36609710 DOI: 10.1007/s00432-022-04560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE We constructed a zebrafish xenograft tumor model to compare and quantify the antiangiogenic efficacy and safety of nine vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs), axitinib, lenvatinib, pazopanib, apatinib, cabozantinib, sunitinib, semaxanib, sorafenib, and regorafenib, in parallel. METHODS CT26 and GL261 tumor cells were implanted into the perivitelline space of Tg (flk1: eGFP) zebrafish to construct a xenograft tumor model. VEGFR-TKIs' antiangiogenic efficacy was quantified using AngioTool software, and the median effective dose (ED50) was calculated. The toxicity was evaluated by calculating the median lethal dose (LD50) and gross morphological changes. Cardiac toxicity was further assessed by heart rate, heart rhythm, the distance between the sinus venosus (SV) and bulbus arteriosus (BA), and pericardial edema. RESULTS Using the zebrafish xenograft tumor model, we found that all nine VEGFR-TKIs exhibited antiangiogenic abilities, but the effectiveness of semaxanib was worse than that of other VEGFR-TKIs. Meanwhile, the zebrafish toxicity assay showed that all tested VEGFR-TKIs were associated with cardiac-related toxicity, especially apatinib and axitinib, which caused serious pericardial edema in zebrafish at relatively low concentrations. A narrow therapeutic window was found for most VEGFR-TKIs, and the simultaneous occurrence of toxic effects of semaxanib was recognized. CONCLUSION Our findings showed the potential of using a zebrafish xenograft tumor model to accelerate VEGFR-TKI screening and further the development of more efficient and less toxic VEGFR-TKIs.
Collapse
Affiliation(s)
- Hou Wanting
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Zhong Jian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China
| | - Xiao Chaoxin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China
| | - Yi Cheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Zhao Chengjian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China
| | - Zhou Lin
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| | - Cao Dan
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
21
|
Qin JY, Jia W, Ru S, Xiong JQ, Wang J, Wang W, Hao L, Zhang X. Bisphenols induce cardiotoxicity in zebrafish embryos: Role of the thyroid hormone receptor pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106354. [PMID: 36423468 DOI: 10.1016/j.aquatox.2022.106354] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Bisphenols are frequently found in the environment and have been of emerging concern because of their adverse effects on aquatic animals and humans. In this study, we demonstrated that bisphenol A, S, and F (BPA, BPS, BPF) at environmental concentrations induced cardiotoxicity in zebrafish embryos. BPA decreased heart rate at 96 hpf (hours post fertilization) and increased the distance between the sinus venosus (SV) and bulbus arteriosus (BA), in zebrafish. BPF promoted heart pumping and stroke volume, shortened the SV-BAdistance, and increased body weight. Furthermore, we found that BPA increased the expression of the dio3b, thrβ, and myh7 genes but decreased the transcription of dio2. In contrast, BPF downregulated the expression of myh7 but upregulated that of thrβ. Molecular docking results showed that both BPA and BPF are predicted to bind tightly to the active pockets of zebrafish THRβ with affinities of -4.7 and -4.77 kcal/mol, respectively. However, BPS did not significantly affect dio3b, thrβ, and myh7 transcription and had a higher affinity for zebrafish THRβ (-2.13 kcal/mol). These findings suggest that although BPA, BPS, and BPF have similar structures, they may induce cardiotoxicity through different molecular mechanisms involving thyroid hormone systems. This investigation provides novel insights into the potential mechanism of cardiotoxicity from the perspective of thyroid disruption and offer a cautionary role for the use of BPA substitution.
Collapse
Affiliation(s)
- Jing-Yu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenyi Jia
- College of urban and environmental sciences, Peking University, Beijing 100871, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
22
|
Li Y, Wu F, Wu Q, Liu W, Li G, Yao B, Xiao R, Hu Y, Wang J. A novel open-source raspberry Pi-based behavioral testing in zebrafish. PLoS One 2022; 17:e0279550. [PMID: 36574388 PMCID: PMC9794099 DOI: 10.1371/journal.pone.0279550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
The zebrafish (Danio rerio) is widely used as a promising high-throughput model organism in neurobehavioral research. The mobility of zebrafish can be dissected into multiple behavior endpoints to assess its neurobehavioral performance. However, such facilities on the market are expensive and clumsy to be used in laboratories. Here, we designed a low-cost, automatic zebrafish behavior assay apparatus, barely without unintentional human operational errors. The data acquisition part, composed of Raspberry Pi and HQ Camera, automatically performs video recording and data storage. Then, the data processing process is also on the Raspberry Pi. Water droplets and inner wall reflection of multi-well cell culture plates (used for placing zebrafish) will affect the accuracy of object recognition. And during the rapid movement of zebrafish, the probability of zebrafish tracking loss increased significantly. Thus, ROI region and related thresholds were set, and the Kalman filter algorithm was performed to estimate the best position of zebrafish in each frame. In addition, all functions of this device are realized by the custom-written behavior analysis algorithm, which makes the optimization of the setup more efficient. Furthermore, this setup was also used to analyze the behavioral changes of zebrafish under different concentrations of alcohol exposure to verify the reliability and accuracy. The alcohol exposure induced an inverted U-shape dose-dependent behavior change in zebrafish, which was consistent with previous studies, showcasing that the data obtained from the setup proposed in this study are accurate and reliable. Finally, the setup was comprehensively assessed by evaluating the accuracy of zebrafish detection (precision, recall, F-score), and predicting alcohol concentration by XGBoost. In conclusion, this study provides a simple, and low-cost package for the determination of multiple behavioral parameters of zebrafish with high accuracy, which could be easily adapted for various other fields.
Collapse
Affiliation(s)
- Yunlin Li
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Fengye Wu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qinyan Wu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Wenya Liu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Guanghui Li
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Benxing Yao
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Ran Xiao
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yudie Hu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- * E-mail:
| |
Collapse
|
23
|
Li W, Guo S, Miao N. Transcriptional responses of fluxapyroxad-induced dysfunctional heart in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90034-90045. [PMID: 35864390 DOI: 10.1007/s11356-022-21981-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Fluxapyroxad (FLU) is a succinate dehydrogenase inhibitor (SDHI) fungicide used in controlling crop diseases. Potential toxicity to aquatic organisms is not known. We exposed zebrafish to 1, 2, and 4 μM FLU for 3 days. The embryonic zebrafish showed developmental cardiac defects, including heart malformation, pericardial edema, and heart rate reduction. Compared with the controls, cardiac-specific transcription factors (nkx2.5, myh7, myl7, and myh6) exhibited dysregulated expression patterns after FLU treatment. We next used transcriptome and qRT-PCR analyses to explore the molecular mechanism of FLU cardiotoxicity. The transcriptome analysis and interaction network showed that the downregulated genes were enriched in calcium signaling pathways, adrenergic signaling in cardiomyocytes, and cardiac muscle contraction. FLU exposure repressed the cardio-related calcium signaling pathway, associated with apoptosis in the heart and other manifestations of cardiotoxicity. Thus, the findings provide valuable evidence that FLU exposure causes disruption of cardiac development in zebrafish embryos. Our findings will help to promote a better understanding of the toxicity mechanisms of FLU and act as a reference to explore the rational use and safety of FLU in agriculture.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Shanshan Guo
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
24
|
Mostofa F, Yasid NA, Shamsi S, Ahmad SA, Mohd-Yusoff NF, Abas F, Ahmad S. In Silico Study and Effects of BDMC33 on TNBS-Induced BMP Gene Expressions in Zebrafish Gut Inflammation-Associated Arthritis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238304. [PMID: 36500396 PMCID: PMC9740523 DOI: 10.3390/molecules27238304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut-joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae.
Collapse
Affiliation(s)
- Farhana Mostofa
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Suhaili Shamsi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nur Fatihah Mohd-Yusoff
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science & Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-97696724
| |
Collapse
|
25
|
Poudel S, Martins G, Cancela ML, Gavaia PJ. Regular Supplementation with Antioxidants Rescues Doxorubicin-Induced Bone Deformities and Mineralization Delay in Zebrafish. Nutrients 2022; 14:4959. [PMID: 36500990 PMCID: PMC9739841 DOI: 10.3390/nu14234959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis is characterized by an abnormal bone structure with low bone mass and degradation of microarchitecture. Oxidative stress induces imbalances in osteoblast and osteoclast activity, leading to bone degradation, a primary cause of secondary osteoporosis. Doxorubicin (DOX) is a widely used chemotherapy drug for treating cancer, known to induce secondary osteoporosis. The mechanism underlying DOX-induced bone loss is still not fully understood, but one of the relevant mechanisms is through a massive accumulation of reactive oxygen and nitrogen species (i.e., ROS and NOS) leading to oxidative stress. We investigated the effects of antioxidants Resveratrol and MitoTEMPO on DOX-induced bone impairment using the zebrafish model. DOX was shown to increase mortality, promote skeletal deformities, induce alterations on intestinal villi, impair growth and mineralization and significantly downregulate osteoblast differentiation markers osteocalcin 2 and osterix/sp7. Lipid peroxidation was significantly increased in DOX-supplemented groups as compared to control and antioxidants, suggesting ROS formation as one of the key factors for DOX-induced bone loss. Furthermore, DOX affected mineral contents, suggesting an altered mineral metabolism. However, upon supplementation with antioxidants, DOX-induced effects on mineral content were rescued. Our data show that supplementation with antioxidants effectively improves the overall growth and mineralization in zebrafish and counteracts DOX-induced bone anomalies.
Collapse
Affiliation(s)
- Sunil Poudel
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
26
|
Silva Brito R, Canedo A, Farias D, Rocha TL. Transgenic zebrafish (Danio rerio) as an emerging model system in ecotoxicology and toxicology: Historical review, recent advances, and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157665. [PMID: 35907527 DOI: 10.1016/j.scitotenv.2022.157665] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Zebrafish (Danio rerio) is an alternative model system for drug screening, developing new products, and assessing ecotoxic effects of pollutants and biomonitor species in environmental risk assessment. However, the history and current use of transgenic zebrafish lines in ecotoxicology and toxicology studies remain poorly explored. Thus, the present study aimed to summarize and discuss the existing data in the literature about the applications of transgenic zebrafish lines in ecotoxicology and toxicology. The articles were analyzed according to publication year, journal, geographic distribution, and collaborations. Also, the bioassays were evaluated according to the tested chemical, transgenic lines, development stage, biomarkers, and exposure conditions (i.e., concentration, time, type, and route of exposure). Revised data showed that constitutive transgenic lines are the main type of transgenic used in the studies, besides most of uses embryos and larvae under static conditions. Tg(fli1: EGFP) was the main transgenic line, while the GFP and EGFP were the main reporter proteins. Transgenic zebrafish stands out in assessing vasotoxicity, neurotoxicity, systemic toxicity, hepatoxicity, endocrine disruption, cardiotoxicity, immunotoxicity, hematotoxicity, ototoxicity, and pancreotoxicity. This review showed that transgenic zebrafish lines are emerging as a suitable in vivo model system for assessing the mechanism of action and toxicity of chemicals and new biotechnology products, and the effects of traditional and emerging pollutants.
Collapse
Affiliation(s)
- Rafaella Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
27
|
OpenBloodFlow: A User-Friendly OpenCV-Based Software Package for Blood Flow Velocity and Blood Cell Count Measurement for Fish Embryos. BIOLOGY 2022; 11:biology11101471. [PMID: 36290375 PMCID: PMC9598615 DOI: 10.3390/biology11101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
Abstract
The transparent appearance of fish embryos provides an excellent assessment feature for observing cardiovascular function in vivo. Previously, methods to conduct vascular function assessment were based on measuring blood-flow velocity using third-party software. In this study, we reported a simple software, free of costs and skills, called OpenBloodFlow, which can measure blood flow velocity and count blood cells in fish embryos for the first time. First, videos captured by high-speed CCD were processed for better image stabilization and contrast. Next, the optical flow of moving objects was extracted from the non-moving background in a frame-by-frame manner. Finally, blood flow velocity was calculated by the Gunner Farneback algorithm in Python. Data validation with zebrafish and medaka embryos in OpenBloodFlow was consistent with our previously published ImageJ-based method. We demonstrated consistent blood flow alterations by either OpenBloodFlow or ImageJ in the dorsal aorta of zebrafish embryos when exposed to either phenylhydrazine or ractopamine. In addition, we validated that OpenBloodFlow was able to conduct precise blood cell counting. In this study, we provide an easy and fully automatic programming for blood flow velocity calculation and blood cell counting that is useful for toxicology and pharmacology studies in fish.
Collapse
|
28
|
Zhang J, Wang W, Li P, Li Z, Hao L, Zhang X, Ru S. Bisphenol S induces cardiovascular toxicity by disturbing the development of the common cardinal vein and myocardial contractility in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106294. [PMID: 36116344 DOI: 10.1016/j.aquatox.2022.106294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) has been widely used as a substitute for bisphenol A in industrial manufacturing. However, the safety of BPS is controversial, and the mechanism by which BPS exerts cardiovascular toxicity remains unclear. In this study, zebrafish embryos, including wild-type zebrafish and transgenic (flk1:eGFP), (gata1:DsRed) and (cmlc2:eGFP) zebrafish at 2 h postfertilization (hpf), were exposed to BPS at concentrations of 1, 10 and 100 μg/L for 24, 48 and 72 h, respectively. The data showed that BPS accelerated the expansion of the common cardinal vein and inhibited lumen formation between 24 hpf and 72 hpf. Moreover, low-dose BPS disturbed cardiac muscle contraction by breaking the calcium balance in cardiac muscle cells according to the RNA-seq results. As a consequence, increased heart rate and irregular blood circulation were observed in the BPS treatment groups. This result suggested that BPS at environmental relevant concentrations caused cardiovascular toxicity during the development of zebrafish embryos, possibly being an important inducer of cardiovascular injury later in life. These findings provide insight into the rational and safe application of BPS.
Collapse
Affiliation(s)
- Jie Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Peng Li
- Shandong Gold Group Co., Ltd, Jinan 250100, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
| |
Collapse
|
29
|
Zakaria ZZ, Mahmoud NN, Benslimane FM, Yalcin HC, Al Moustafa AE, Al-Asmakh M. Developmental Toxicity of Surface-Modified Gold Nanorods in the Zebrafish Model. ACS OMEGA 2022; 7:29598-29611. [PMID: 36061724 PMCID: PMC9434790 DOI: 10.1021/acsomega.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND nanotechnology is one of the fastest-growing areas, and it is expected to have a substantial economic and social impact in the upcoming years. Gold particles (AuNPs) offer an opportunity for wide-ranging applications in diverse fields such as biomedicine, catalysis, and electronics, making them the focus of great attention and in parallel necessitating a thorough evaluation of their risk for humans and ecosystems. Accordingly, this study aims to evaluate the acute and developmental toxicity of surface-modified gold nanorods (AuNRs), on zebrafish (Danio rerio) early life stages. METHODS in this study, zebrafish embryos were exposed to surface-modified AuNRs at concentrations ranging from 1 to 20 μg/mL. Lethality and developmental endpoints such as hatching, tail flicking, and developmental delays were assessed until 96 h post-fertilization (hpf). RESULTS we found that AuNR treatment decreases the survival rate in embryos in a dose-dependent manner. Our data showed that AuNRs caused mortality with a calculated LC50 of EC50,24hpf of AuNRs being 9.1 μg/mL, while a higher concentration of AuNRs was revealed to elicit developmental abnormalities. Moreover, exposure to high concentrations of the nanorods significantly decreased locomotion compared to untreated embryos and caused a decrease in all tested parameters for cardiac output and blood flow analyses, leading to significantly elevated expression levels of cardiac failure markers ANP/NPPA and BNP/NPPB. CONCLUSIONS our results revealed that AuNR treatment at the EC50 induces apoptosis significantly through the P53, BAX/BCL-2, and CASPASE pathways as a suggested mechanism of action and toxicity modality.
Collapse
Affiliation(s)
- Zain Zaki Zakaria
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Nouf N. Mahmoud
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | | | - Huseyin C. Yalcin
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Ala-Eddin Al Moustafa
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
- College
of Medicine, QU Health, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Maha Al-Asmakh
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| |
Collapse
|
30
|
Zakaria ZZ, Eisa-Beygi S, Benslimane FM, Ramchandran R, Yalcin HC. Design and Microinjection of Morpholino Antisense Oligonucleotides and mRNA into Zebrafish Embryos to Elucidate Specific Gene Function in Heart Development. J Vis Exp 2022:10.3791/63324. [PMID: 36036621 PMCID: PMC10388372 DOI: 10.3791/63324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
The morpholino oligomer-based knockdown system has been used to identify the function of various gene products through loss or reduced expression. Morpholinos (MOs) have the advantage in biological stability over DNA oligos because they are not susceptible to enzymatic degradation. For optimal effectiveness, MOs are injected into 1-4 cell stage embryos. The temporal efficacy of knockdown is variable, but MOs are believed to lose their effects due to dilution eventually. Morpholino dilution and injection amount should be closely controlled to minimize the occurrence of off-target effects while maintaining on-target efficacy. Additional complementary tools, such as CRISPR/Cas9 should be performed against the target gene of interest to generate mutant lines and to confirm the morphant phenotype with these lines. This article will demonstrate how to design, prepare, and microinject a translation-blocking morpholino against hand2 into the yolk of 1-4 cell stage zebrafish embryos to knockdown hand2 function and rescue these "morphants" by co-injection of mRNA encoding the corresponding cDNA. Subsequently, the efficacy of the morpholino microinjections is assessed by first verifying the presence of morpholino in the yolk (co-injected with phenol red) and then by phenotypic analysis. Moreover, cardiac functional analysis to test for knockdown efficacy will be discussed. Finally, assessing the effect of morpholino-induced blockage of gene translation via western blotting will be explained.
Collapse
Affiliation(s)
- Zain Zaki Zakaria
- Biomedical Research Center, Qatar University, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Shahram Eisa-Beygi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin
| | | | | | | |
Collapse
|
31
|
Reduced Cardiotoxicity of Ponatinib-Loaded PLGA-PEG-PLGA Nanoparticles in Zebrafish Xenograft Model. MATERIALS 2022; 15:ma15113960. [PMID: 35683259 PMCID: PMC9182153 DOI: 10.3390/ma15113960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are the new generation of anti-cancer drugs with high potential against cancer cells’ proliferation and growth. However, TKIs are associated with severe cardiotoxicity, limiting their clinical value. One TKI that has been developed recently but not explored much is Ponatinib. The use of nanoparticles (NPs) as a better therapeutic agent to deliver anti-cancer drugs and reduce their cardiotoxicity has been recently considered. In this study, with the aim to reduce Ponatinib cardiotoxicity, Poly(D,L-lactide-co-glycolide)-b-poly(ethyleneoxide)-b-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer was used to synthesize Ponatinib in loaded PLGA-PEG-PLGA NPs for chronic myeloid leukemia (CML) treatment. In addition to physicochemical NPs characterization (NPs shape, size, size distribution, surface charge, dissolution rate, drug content, and efficacy of encapsulation) the efficacy and safety of these drug-delivery systems were assessed in vivo using zebrafish. Zebrafish are a powerful animal model for investigating the cardiotoxicity associated with anti-cancer drugs such as TKIs, to determine the optimum concentration of smart NPs with the least side effects, and to generate a xenograft model of several cancer types. Therefore, the cardiotoxicity of unloaded and drug-loaded PLGA-PEG-PLGA NPs was studied using the zebrafish model by measuring the survival rate and cardiac function parameters, and therapeutic concentration for in vivo efficacy studies was optimized in an in vivo setting. Further, the efficacy of drug-loaded PLGA-PEG-PLGA NPs was tested on the zebrafish cancer xenograft model, in which human myelogenous leukemia cell line K562 was transplanted into zebrafish embryos. Our results demonstrated that the Ponatinib-loaded PLGA-PEG-PLGA NPs at a concentration of 0.001 mg/mL are non-toxic/non-cardio-toxic in the studied zebrafish xenograft model.
Collapse
|
32
|
Al-Ansari DE, Al-Badr M, Zakaria ZZ, Mohamed NA, Nasrallah GK, Yalcin HC, Abou-Saleh H. Evaluation of Metal-Organic Framework MIL-89 nanoparticles toxicity on embryonic zebrafish development. Toxicol Rep 2022; 9:951-960. [PMID: 35875258 PMCID: PMC9301604 DOI: 10.1016/j.toxrep.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/03/2022] Open
Abstract
Metal-Organic Framework MIL-89 nanoparticles garnered remarkable attention for their widespread use in technological applications. However, the impact of these nanomaterials on human and environmental health is still limited, and concerns regarding the potential risk of exposure during manipulation is constantly rising. Therefore, the extensive use of nanomaterials in the medical field necessitates a comprehensive assessment of their safety and interaction with different tissues of the body system. In this study, we evaluated the systemic toxicity of nanoMIL-89 using Zebrafish embryos as a model system to determine the acute developmental effect. Zebrafish embryos were exposed to a range of nanoMIL-89 concentrations (1 - 300 µM) at 4 h post-fertilization (hpf) for up to 120 hpf. The viability and hatching rate were evaluated at 24-72 hpf, whereas the cardiac function was assessed at 72 and 96 hpf, and the neurodevelopment and hepatic steatosis at 120 hpf. Our study shows that nanoMIL-89 exerted no developmental toxicity on zebrafish embryos at low concentrations (1-10 µM). However, the hatching time and heart development were affected at high concentrations of nanoMIL-89 (> 30 µM). Our findings add novel information into the available data about the in vivo toxicity of nanoMIL-89 and demonstrate its innocuity and safe use in biological, environmental, and medical applications.
Collapse
Affiliation(s)
- Dana E. Al-Ansari
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mashael Al-Badr
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Zain Z. Zakaria
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar
| | | | - Haissam Abou-Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
33
|
Poudel S, Izquierdo M, Cancela ML, Gavaia PJ. Reversal of Doxorubicin-Induced Bone Loss and Mineralization by Supplementation of Resveratrol and MitoTEMPO in the Early Development of Sparus aurata. Nutrients 2022; 14:nu14061154. [PMID: 35334811 PMCID: PMC8950850 DOI: 10.3390/nu14061154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin is a widely used chemotherapeutic drug known to induce bone loss. The mechanism behind doxorubicin-mediated bone loss is unclear, but oxidative stress has been suggested as a potential cause. Antioxidants that can counteract the toxic effect of doxorubicin on the bone would be helpful for the prevention of secondary osteoporosis. We used resveratrol, a natural antioxidant, and MitoTEMPO, a mitochondria-targeted antioxidant, to counteract doxorubicin-induced bone loss and mineralization on Sparus aurata larvae. Doxorubicin supplemented Microdiets increased bone deformities, decreased mineralization, and lipid peroxidation, whereas Resveratrol and MitoTEMPO supplemented microdiets improved mineralization, decreased bone deformities, and reversed the effects of doxorubicin in vivo and in vitro, using osteoblastic VSa13 cells. Partial Least-Squares Discriminant Analysis highlighted differences between groups on the distribution of skeletal anomalies and mineralization of skeleton elements. Calcium and Phosphorus content was negatively affected in the doxorubicin supplemented group. Doxorubicin reduced the mRNA expression of antioxidant genes, including catalase, glutathione peroxidase 1, superoxide dismutase 1, and hsp90 suggesting that ROS are central for Doxorubicin-induced bone loss. The mRNA expression of antioxidant genes was significantly increased on resveratrol alone or combined treatment. The length of intestinal villi was increased in response to antioxidants and reduced on doxorubicin. Antioxidant supplements effectively prevent bone deformities and mineralization defects, increase antioxidant response and reverse doxorubicin-induced effects on bone anomalies, mineralization, and oxidative stress. A combined treatment of doxorubicin and antioxidants was beneficial in fish larvae and showed the potential for use in preventing Doxorubicin-induced bone impairment.
Collapse
Affiliation(s)
- Sunil Poudel
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, FMCB, University of Algarve, 8005-139 Faro, Portugal
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain;
| | - Maria Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-800057 or +351-289-800900 (ext. 7057); Fax: +351-289-800069
| |
Collapse
|
34
|
Bailone RL, Fukushima HCS, de Aguiar LK, Borra RC. The endocannabinoid system in zebrafish and its potential to study the effects of Cannabis in humans. Lab Anim Res 2022; 38:5. [PMID: 35193700 PMCID: PMC8862295 DOI: 10.1186/s42826-022-00116-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Zebrafish is considered an unprecedented animal model in drug discovery. A review of the literature presents highlights and elucidates the biological effects of chemical components found in Cannabis sativa. Particular attention is paid to endocannabinoid system (eCB) and its main receptors (CB1 and CB2). The zebrafish model is a promising one for the study of cannabinoids because of the many similarities to the human system. Despite the recent advances on the eCB system, there is still the need to elucidate some of the interactions and, thus, the zebrafish model can be used for that purpose as it respects the 3Rs concept and reduced time and costs. In view of the relevance of cannabinoids in the treatment and prevention of diseases, as well as the importance of the zebrafish animal model in elucidating the biological effects of new drugs, the aim of this study was to bring to light information on the use of the zebrafish animal model in testing C. sativa-based medicines.
Collapse
|
35
|
Wang X, Yang X, Wang J, Li L, Zhang Y, Jin M, Chen X, Sun C, Wang R, Liu K. Cardiotoxicity of sanguinarine via regulating apoptosis and MAPK pathways in zebrafish and HL1 cardiomyocytes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109228. [PMID: 34744004 DOI: 10.1016/j.cbpc.2021.109228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Sanguinarine, a plant phytoalexin, possesses extensive biological activities including antimicrobial, insecticidal, antitumor, anti-inflammatory and anti-angiogenesis effect. But its cardiotoxicity has rarely been studied. Here, we assess the cardiotoxicity of sanguinarine in vivo using larval zebrafish from 48 hpf to 96 hpf. The results show that sanguinarine caused severe malformation and the dysfunction of the heart including reductions of heart rate, red blood cell number, blood flow dynamics, stroke volume and increase of SV-BA distance, subintestinal venous congestion. Further studies showed that apoptosis in the zebrafish heart region was observed after sanguinarine exposure using TUNEL assay and AO staining method. In addition, the genes, such as sox9b, myl7, nkx2.5 and bmp10, which play crucial parts in the development and the function of the heart, were changed after sanguinarine treatment. caspase3, caspase9, bax and bcl2, apoptosis-related genes, were also altered by sanguinarine. Further studies were performed to study the cardiotoxicity in vitro using cardiomyocytes HL1 cell line. The results showed that remarkable increase of apoptosis and ROS level in HL1 cells were induced by sanguinarine. Moreover, the MAPK pathway (JNK and P38) were notably enhanced and involved in the cardiotoxicity induced by sanguinarine. Our findings will provide better understanding of sanguinarine in the toxic effect on heart.
Collapse
Affiliation(s)
- Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Jiazhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
36
|
Ortega Vega MR, Baldin EK, Pereira DP, Martins MCS, Pranke P, Horn F, Pinheiro I, Vieira A, Espiña B, Mattedi S, Malfatti CDF. Toxicity of oleate-based amino protic ionic liquids towards Escherichia coli, Danio rerio embryos and human skin cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126896. [PMID: 34449326 DOI: 10.1016/j.jhazmat.2021.126896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Protic ionic liquids (PILs) have been widely employed with the label of "green solvents'' in different sectors of technology and industry. The studied PILs are promising for corrosion inhibition and lubrication applications in industry. Industrial use of the PILs can transform them in wastes, due to accidental spill or drag in water due to washing, that can reach water bodies. In addition, the handling of the product by the workers can expose them to accidental contact. Thus, the aim of this work is to evaluate the toxicity of PILs 2-hydroxyethylammonium oleate (2-HEAOl), N-methyl-2-hydroxyethylammonium oleate (m-2HEAOl) and bis-2-hydroxyethylammonium oleate (BHEAOl) towards Escherichia coli, zebrafish embryos, model organisms that can be present in water, and human skin cells. This is the first work reporting toxicity results for these PILs, which constitutes its novelty. Results showed that the studied PILs did not inhibit E. coli bacterial growth but could cause human skin cells death at the concentrations of use. LC50 values for zebrafish eggs were 40.21 mg/L for 2HEAOl, 12.92 mg/L for BHEAOl and 32.74 mg/L for m-2HEAOl, with sublethal effects at lower concentrations, such as hatching retarding, low heart rate and absence of free swimming.
Collapse
Affiliation(s)
- Maria Rita Ortega Vega
- Laboratório de Pesquisa em Corrosão - LAPEC, Department of Metallurgy, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, Block 4, BLDG 43 427, Porto Alegre, RS, Brazil.
| | - Estela Kerstner Baldin
- Laboratório de Pesquisa em Corrosão - LAPEC, Department of Metallurgy, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, Block 4, BLDG 43 427, Porto Alegre, RS, Brazil.
| | - Daniela Pavulack Pereira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga n. 2752, Room 304 G, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Patologia. Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil.
| | - Martha Cestari Silva Martins
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga n. 2752, Room 304 G, Porto Alegre, RS, Brazil.
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga n. 2752, Room 304 G, Porto Alegre, RS, Brazil.
| | - Fabiana Horn
- Laboratório de Microbiologia Celular, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, Block 4, Porto Alegre, RS, Brazil.
| | - Ivone Pinheiro
- Water Quality Research Group, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| | - Ana Vieira
- Water Quality Research Group, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal
| | - Begoña Espiña
- Water Quality Research Group, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| | - Silvana Mattedi
- Applied Thermodynamic Laboratory for a Sustainable Science, Graduate Program on Chemical Engineering, Universidade Federal da Bahia - UFBA, Rua Aristides Novis 2, Salvador, BA, Brazil.
| | - Célia de Fraga Malfatti
- Laboratório de Pesquisa em Corrosão - LAPEC, Department of Metallurgy, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, Block 4, BLDG 43 427, Porto Alegre, RS, Brazil.
| |
Collapse
|
37
|
Zhang Y, Xia Q, Wang J, Zhuang K, Jin H, Liu K. Progress in using zebrafish as a toxicological model for traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114638. [PMID: 34530096 DOI: 10.1016/j.jep.2021.114638] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been applied for more than 2000 years. However, modern basic research on the safety of TCMs is limited. Establishing safety evaluation technology in line with the characteristics of TCM and conducting large-scale basic toxicity research are keys to comprehensively understand the toxicity of TCMs. In recent years, zebrafish has been used as a model organism for toxicity assessment and is increasingly utilized for toxicity research of TCMs. Yet, a comprehensive review in using zebrafish as a toxicological model for TCMs is lacked. AIM OF THE STUDY We aim to summarize the progress and limitation in toxicity evaluation of TCMs using zebrafish and put forward the future research ideas. MATERIALS AND METHODS The scientific databases, including Springer, Science Direct, Wiley, Pubmed and China Knowledge Resource Integrated (CNKI) were searched using the key words of zebrafish, toxicology, traditional Chinese medicine, acute toxicity, liver injury, cardiotoxicity, kidney toxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, ototoxicity, and osteotoxicity. RESULTS Zebrafish assays are low experimental cost and short cycle, easily achieving high-throughput toxicity screening, and exemption from ethical legislation up to 5 dpf. It has been widely used to evaluate the acute toxicity, liver toxicity, cardiotoxicity, nephrotoxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, and ototoxicity caused by TCMs, although some physiological difference limited its application. CONCLUSIONS Zebrafish is a powerful model for TCMs toxicity evaluation, but it is not flawless. The toxicity testing criterion and high throughput assays are urgent to be established. This review provides references for future studies.
Collapse
Affiliation(s)
- Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Hongtao Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.
| |
Collapse
|
38
|
An Overview of Zebrafish Modeling Methods in Drug Discovery and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:145-169. [PMID: 34961915 DOI: 10.1007/5584_2021_684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animal studies are recognized as a significant step forward in the bridging between drug discovery and clinical applications. Animal models, due to their relative genetic, molecular, physiological, and even anatomical similarities to humans, can provide a suitable platform for unraveling the mechanisms underlying human diseases and discovering new therapeutic approaches as well. Recently, zebrafish has attracted attention as a valuable experimental and pharmacological model in drug discovery and development studies due to its prominent characteristics such as the high degree of genetic similarity with humans, genetic manipulability, and prominent clinical features. Since advancing a theory to a valid and reliable observation requires the manipulation of animals, it is, therefore, essential to use efficient modeling methods appropriate to the different aspects of experimental conditions. In this context, applying several various approaches such as using chemicals, pathogens, and genetic manipulation approaches allows zebrafish development into a preferable model that mimics some human disease pathophysiology. Thus, such modeling approaches not only can provide a framework for a comprehensive understanding of the human disease mechanisms that have a counterpart in zebrafish but also can pave the way for discovering new drugs that are accompanied by higher amelioration effects on different human diseases.
Collapse
|
39
|
Effect of Water-Pipe Smoking on the Normal Development of Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111659. [PMID: 34770174 PMCID: PMC8582815 DOI: 10.3390/ijerph182111659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Background: Among all types of tobacco consumption, Water-Pipe Smoking (WPS) is the most widely used in the Middle East and second-most in several other countries. The effect of WPS on normal development is not yet fully understood, thus the aim of this study is to explore the acute toxicity effects of WPS extract on zebrafish larvae. Methods: In this study, we compared the effects of WPS smoke condensates at concentrations varying from 50 to 200 µg/mL on developmental, cardiac, and behavioural (neurotoxicity) functions. Gene expression patterns of cardiac biomarkers were also evaluated by RT-qPCR. Results: Exposing zebrafish embryos to 50, 100, 150 and 200 µg/mL WPS for three days did not affect the normal morphology of Zebrafish embryos, as the tail flicking, behavioural and locomotion assays did not show any change. However, WPS deregulated cardiac markers including atrial natriuretic peptide (ANP/NPPA) and brain natriuretic peptide (BNP/NPPB). Furthermore, it induced apoptosis in a dose-dependent manner. Conclusion: Our data demonstrate that WPS can significantly affect specific cardiac parameters during the normal development of zebrafish. Further investigations are necessary to elucidate the pathogenic outcome of WPS on different aspects of human life, including pregnancy.
Collapse
|
40
|
Al-Kandari S, Abdullah AM, Al-Kandari H, Nasrallah GK, Sharaf MA, AlMarzouq DS, Mohamed AM, Younes N, Kafour N, Al-Tahtamouni T. Eco-friendly highly efficient BN/rGO/TiO 2 nanocomposite visible-light photocatalyst for phenol mineralization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62771-62781. [PMID: 34215986 PMCID: PMC8589756 DOI: 10.1007/s11356-021-15083-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/19/2021] [Indexed: 05/25/2023]
Abstract
Boron nitride (BN) and reduced graphene oxide (rGO) of different loadings were composited with commercial P25 TiO2 (Ti) through the hydrothermal method. The as-prepared nanocomposites were characterized using various techniques: X-ray photoelectron spectroscopy, X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared and Raman spectroscopies, and transmission and scanning electron microscopies. It was observed that 10% and 0.1% of BN and rGO, respectively, loaded on TiO2 (10BNr0.1GOTi) resulted in the best nanocomposite in terms of phenol degradation under simulated sunlight. A 93.4% degradation of phenol was obtained within 30 min in the presence of H2O2. Finally, to ensure the safe use of BNrGOTi nanoparticles in the aquatic environment, acute zebrafish toxicity (acutoxicity) assays were studied. The 96-h acute toxicity assays using the zebrafish embryo model revealed that the LC50 for the BNrGOTi nanoparticle was 677.8 mg L-1 and the no observed effect concentration (NOEC) was 150 mg L-1. Therefore, based on the LC50 value and according to the Fish and Wildlife Service Acute Toxicity Rating Scale, BNrGOTi is categorized as a "practically not toxic" photocatalyst for water treatment.
Collapse
Affiliation(s)
- Shekhah Al-Kandari
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969 Safat, 13060, Kuwait City, Kuwait
| | - Aboubakr M Abdullah
- Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar.
| | - Halema Al-Kandari
- Department of Health Environment, College of Health Sciences, PAAET, P.O. Box 1428, Faiha, 72853, Kuwait City, Kuwait.
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Mohammed A Sharaf
- Department of Maritime Transportation Management Engineering, İstanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Douaa S AlMarzouq
- Department of Health Environment, College of Health Sciences, PAAET, P.O. Box 1428, Faiha, 72853, Kuwait City, Kuwait
| | - Ahmed M Mohamed
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969 Safat, 13060, Kuwait City, Kuwait
| | - Nadin Younes
- Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nada Kafour
- Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Talal Al-Tahtamouni
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| |
Collapse
|
41
|
Ma X, Li W. Amisulbrom causes cardiovascular toxicity in zebrafish (Danio rerio). CHEMOSPHERE 2021; 283:131236. [PMID: 34182637 DOI: 10.1016/j.chemosphere.2021.131236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Amisulbrom (AML), a sulfonamide fungicide used to control oomycete diseases, is regarded as a threat to aquatic species. The objective of this study was to evaluate the potential effects of AML on fish using a zebrafish model. Zebrafish embryos were exposed to 0.0075 μM, 0.075 μM, and 0.75 μM AML. AML-treated zebrafish embryos exhibited severe developmental defects, including pericardial edema, blood-clot clustering, increased hatching rates, decreased heart rates, and abnormal hemoglobin distributions. Compared with controls, key marker genes associated with cardiovascular development (i.e., nkx2.5, myh6, myh7, myl7, alas2, hbbe1, hbbe2, and gata1a) were abnormally expressed in response to AML treatment, suggesting that AML might specifically affect cardiovascular development. These results provide a valuable reference for the effects of AML on zebrafish embryos and may help to further clarify the potential risks posed by AML to aquatic ecosystems.
Collapse
Affiliation(s)
- Xueying Ma
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China.
| |
Collapse
|
42
|
Embryotoxicity of Selective Serotonin Reuptake Inhibitors—Comparative Sensitivity of Zebrafish (Danio rerio) and African Clawed Frog (Xenopus laevis) Embryos. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past twenty years, the prescription of antidepressant drugs has increased all over the world. After their application, antidepressants, like other pharmaceuticals, are excreted and enter the aquatic environment. They are dispersed among surface waters mainly through waste water sources, typically at very low concentrations— from a tenth up to hundreds of ng/L. Frequently detected antidepressants include fluoxetine and citalopram—both selective serotonin reuptake inhibitors. The aim of our study was to assess the embryotoxicity of fluoxetine hydrochloride and citalopram hydrochloride on the early life stages of zebrafish (Danio rerio) and the African clawed frog (Xenopus laevis). The embryos were exposed to various concentrations of the individual antidepressants and of their mixtures for 96 h. The tested levels included both environmentally relevant and higher concentrations for the evaluation of dose-dependent effects. Our study demonstrated that even environmentally relevant concentrations of these psychiatric drugs influenced zebrafish embryos, which was proven by a significant increase (p < 0.01) in the embryos’ heart rates after fluoxetine hydrochloride exposure and in their hatching rate after exposure to a combination of both antidepressants, and thus revealed a potential risk to aquatic life. Despite these results, we can conclude that the African clawed frog is more sensitive, since exposure to the highest concentrations of fluoxetine hydrochloride (10,000 μg/L) and citalopram hydrochloride (100,000 μg/L) resulted in total mortality of the frog embryos.
Collapse
|
43
|
Williams A, Villamor L, Fussell J, Loveless R, Smeyne D, Philp J, Shaikh A, Sittaramane V. Discovery of Quinoline-Derived Trifluoromethyl Alcohols as Antiepileptic and Analgesic Agents That Block Sodium Channels. ChemMedChem 2021; 17:e202100547. [PMID: 34632703 DOI: 10.1002/cmdc.202100547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Indexed: 11/08/2022]
Abstract
The discovery of novel analgesic agents with high potency, low toxicity and low addictive properties remain a priority. This study aims to identify the analgesic potential of quinoline derived α-trifluoromethylated alcohols (QTA) and their mechanism of action. We synthesized and characterized several compounds of QTAs and screened them for antiepileptic and analgesic activity using zebrafish larvae in high thorough-put behavior analyses system. Toxicity and behavioral screening of 9 compounds (C1-C9) identified four candidates (C2, C3, C7 and C9) with antiepileptic properties that induces specific and reversible reduction in photomotor activity. Importantly, compounds C2 and C3 relieved the thermal pain response in zebrafish larvae indicating analgesic property. Further, using novel in vivo CoroNa green assay, we show that compounds C2 and C3 block sodium channels and reduce inflammatory sodium signals released by peripheral nerve and tissue damage. Thus, we have identified novel QTA compounds with antiepileptic and analgesic properties which could alleviate neuropathic pain.
Collapse
Affiliation(s)
- Ashley Williams
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Laurie Villamor
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Jake Fussell
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Reid Loveless
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Dylan Smeyne
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA30460, USA
| | - Jack Philp
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Abid Shaikh
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA30460, USA
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| |
Collapse
|
44
|
Yin Y, Shen H. Advances in Cardiotoxicity Induced by Altered Mitochondrial Dynamics and Mitophagy. Front Cardiovasc Med 2021; 8:739095. [PMID: 34616789 PMCID: PMC8488107 DOI: 10.3389/fcvm.2021.739095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the most abundant organelles in cardiac cells, and are essential to maintain the normal cardiac function, which requires mitochondrial dynamics and mitophagy to ensure the stability of mitochondrial quantity and quality. When mitochondria are affected by continuous injury factors, the balance between mitochondrial dynamics and mitophagy is broken. Aging and damaged mitochondria cannot be completely removed in cardiac cells, resulting in energy supply disorder and accumulation of toxic substances in cardiac cells, resulting in cardiac damage and cardiotoxicity. This paper summarizes the specific underlying mechanisms by which various adverse factors interfere with mitochondrial dynamics and mitophagy to produce cardiotoxicity and emphasizes the crucial role of oxidative stress in mitophagy. This review aims to provide fresh ideas for the prevention and treatment of cardiotoxicity induced by altered mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China
| | - Haitao Shen
- Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
Angom RS, Zhu J, Wu ATH, Sumitra MR, Pham V, Dutta S, Wang E, Madamsetty VS, Perez-Cordero GD, Huang HS, Mukhopadhyay D, Wang Y. LCC-09, a Novel Salicylanilide Derivative, Exerts Anti-Inflammatory Effect in Vascular Endothelial Cells. J Inflamm Res 2021; 14:4551-4565. [PMID: 34526801 PMCID: PMC8436973 DOI: 10.2147/jir.s305168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Endothelial cell (EC) activation facilitates leukocyte adhesion to vascular walls, which is implicated in a variety of cardiovascular diseases and is a target for prevention and treatment. Despite the development of anti-inflammatory medications, cost-effective therapies with significant anti-inflammatory effects and lower organ toxicity remain elusive. The goal of this study is to identify novel synthetic compounds that inhibit EC inflammatory response with minimal organ toxicity. METHODS AND RESULTS In this study, we discovered LCC-09, a salicylanilide derivative consisting of the functional fragment of magnolol, 2,4-difluorophenyl, and paeonol moiety of salicylate, as a novel anti-inflammatory compound in cultured ECs and zebrafish model. LCC-09 was shown to inhibit pro-inflammatory cytokine tumor necrosis factor-α (TNFα)-induced expression of adhesion molecules and inflammatory cytokines, leading to reduced leukocyte adhesion to ECs. Mechanistically, LCC-09 inhibits the phosphorylation of signal transducer and activator of transcription 1 (STAT1), TNFα-induced degradation of NF-κ-B Inhibitor-α (IκBα) and phosphorylation of NFκB p65, resulting in reduced NFκB transactivation activity and binding to E-selectin promoter. Additionally, LCC-09 attenuated TNFα-induced generation of reactive oxygen species in ECs. Molecular docking models suggest the binding of LCC-09 to NFκB essential modulator (NEMO) and Janus tyrosine kinase (JAK) may lead to dual inhibition of NFκB and STAT1. Furthermore, the anti-inflammatory effect of LCC-09 was validated in the lipopolysaccharides (LPS)-induced inflammation model in zebrafish. Our results demonstrated that LCC-09 significantly reduced the LPS-induced leukocyte recruitment and mortality of zebrafish embryos. Finally, LCC-09 was administered to cultured ECs and zebrafish embryos and showed minimal toxicities. CONCLUSION Our results support that LCC-09 inhibits EC inflammatory response but does not elicit significant toxicity.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jian Zhu
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Maryam Rachmawati Sumitra
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Victoria Pham
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Gabriel D Perez-Cordero
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hsu-Shan Huang
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ying Wang
- Department of Cardiovascular Medicine, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
46
|
Ramdas Nair A, Delaney P, Koomson AA, Ranjan S, Sadler KC. Systematic Evaluation of the Effects of Toxicant Exposure on Survival in Zebrafish Embryos and Larvae. Curr Protoc 2021; 1:e231. [PMID: 34491623 DOI: 10.1002/cpz1.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of whole animal models in toxicological studies is essential for understanding the physiological responses caused by chemical exposures. However, such studies can face reproducibility challenges due to unaccounted experimental parameters that can have a marked influence on toxicological outcomes. Zebrafish embryos and larvae are a popular vertebrate animal model for studying cellular, tissue, and organ responses to toxicant exposures. Despite the popularity of this system, standardized protocols that control for the influence of various experimental parameters and culture conditions on the toxicological response in these animals have not been widely adopted, making it difficult to compare findings from different laboratories. Here, we describe a detailed approach for designing and optimizing protocols to assess the impact of chemical exposures on the development and survival of zebrafish embryos and larvae. We first describe our standard procedure to determine two key toxicological thresholds, the maximum tolerable concentration (MTC) and the lethal concentration (LC50 , defined as that in which 50% of larvae die), in response to an exposure that persists from early development through larval maturation. We then describe two protocols to systematically test how key experimental parameters, including genetic background, culture media, animal density, volume, plate material, and developmental stage in which the embryos are exposed, alter the MTC and LC50 . Finally, we provide a step-by-step guide to assess the interaction between two chemicals using this model. These protocols will guide the standardization of toxicological studies using zebrafish and maximize reproducibility. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Zebrafish embryo collection and culture, and establishment of the MTC and LC50 Basic Protocol 2: Evaluation of the impact of culture conditions on toxicant responses of zebrafish embryo and larvae Basic Protocol 3: Identification of the developmental window of sensitivity to toxicant exposure Basic Protocol 4: Testing interaction between multiple toxicants.
Collapse
Affiliation(s)
- Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Abigail Ama Koomson
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Shashi Ranjan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| |
Collapse
|
47
|
Yuan M, Li W, Xiao P. Bixafen causes cardiac toxicity in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36303-36313. [PMID: 33694115 DOI: 10.1007/s11356-021-13238-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Bixafen (BIX) is a succinate dehydrogenase inhibitor (SDHI)-class fungicide that is used to control crop diseases. However, data on the toxicity of BIX to zebrafish are limited. Here, zebrafish embryos were exposed to 0.1, 0.3, and 0.9 μM BIX. After BIX exposure, zebrafish embryos exhibited cardiac dysplasia and dysfunction, including pericardial edema, reduced heart rate, and drastically decreased erythrocytes in the cardiac area; the severity of these negative effects increased with BIX concentration and the duration of BIX exposure. In addition, the transcription levels of erythropoiesis-related genes decreased significantly in BIX-treated embryos, as compared to untreated control embryos. Similarly, compared with the control, key genes responsible for cardiac development (myh6, nkx2.5, and myh7) also exhibited dysregulated expression patterns in response to BIX treatment, suggesting that BIX might specifically affect cardiac development. Finally, cell apoptosis was induced in embryos after BIX treatment. In combination, our results suggested that exposure to BIX induced cardiac toxicity in zebrafish. These data will be valuable for future evaluations of the environmental risks of BIX.
Collapse
Affiliation(s)
- Mingrui Yuan
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China.
| | - Peng Xiao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
48
|
Disner GR, Falcão MAP, Lima C, Lopes-Ferreira M. In Silico Target Prediction of Overexpressed microRNAs from LPS-Challenged Zebrafish ( Danio rerio) Treated with the Novel Anti-Inflammatory Peptide TnP. Int J Mol Sci 2021; 22:7117. [PMID: 34281170 PMCID: PMC8268205 DOI: 10.3390/ijms22137117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs regulate gene expression post-transcriptionally in various processes, e.g., immunity, development, and diseases. Since their experimental analysis is complex, in silico target prediction is important for directing investigations. TnP is a candidate peptide for anti-inflammatory therapy, first discovered in the venom of Thalassophryne nattereri, which led to miRNAs overexpression in LPS-inflamed zebrafish post-treatment. This work aimed to predict miR-21, miR-122, miR-731, and miR-26 targets using overlapped results of DIANA microT-CDS and TargetScanFish software. This study described 513 miRNAs targets using highly specific thresholds. Using Gene Ontology over-representation analysis, we identified their main roles in regulating gene expression, neurogenesis, DNA-binding, transcription regulation, immune system process, and inflammatory response. miRNAs act in post-transcriptional regulation, but we revealed that their targets are strongly related to expression regulation at the transcriptional level, e.g., transcription factors proteins. A few predicted genes participated concomitantly in many biological processes and molecular functions, such as foxo3a, rbpjb, rxrbb, tyrobp, hes6, zic5, smad1, e2f7, and npas4a. Others were particularly involved in innate immunity regulation: il17a/f2, pik3r3b, and nlrc6. Together, these findings not only provide new insights into the miRNAs mode of action but also raise hope for TnP therapy and may direct future experimental investigations.
Collapse
Affiliation(s)
| | | | | | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (G.R.D.); (M.A.P.F.); (C.L.)
| |
Collapse
|
49
|
Al-Thani HF, Shurbaji S, Yalcin HC. Zebrafish as a Model for Anticancer Nanomedicine Studies. Pharmaceuticals (Basel) 2021; 14:625. [PMID: 34203407 PMCID: PMC8308643 DOI: 10.3390/ph14070625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nanomedicine is a new approach to fight against cancer by the development of anticancer nanoparticles (NPs) that are of high sensitivity, specificity, and targeting ability to detect cancer cells, such as the ability of Silica NPs in targeting epithelial cancer cells. However, these anticancer NPs require preclinical testing, and zebrafish is a useful animal model for preclinical studies of anticancer NPs. This model affords a large sample size, optical imaging, and easy genetic manipulation that aid in nanomedicine studies. This review summarizes the numerous advantages of the zebrafish animal model for such investigation, various techniques for inducing cancer in zebrafish, and discusses the methods to assess cancer development in the model and to test for the toxicity of the anticancer drugs and NPs. In addition, it summarizes the recent studies that used zebrafish as a model to test the efficacy of several different anticancer NPs in treating cancer.
Collapse
Affiliation(s)
- Hissa F Al-Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
50
|
Narumanchi S, Wang H, Perttunen S, Tikkanen I, Lakkisto P, Paavola J. Zebrafish Heart Failure Models. Front Cell Dev Biol 2021; 9:662583. [PMID: 34095129 PMCID: PMC8173159 DOI: 10.3389/fcell.2021.662583] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Heart failure causes significant morbidity and mortality worldwide. The understanding of heart failure pathomechanisms and options for treatment remain incomplete. Zebrafish has proven useful for modeling human heart diseases due to similarity of zebrafish and mammalian hearts, fast easily tractable development, and readily available genetic methods. Embryonic cardiac development is rapid and cardiac function is easy to observe and quantify. Reverse genetics, by using morpholinos and CRISPR-Cas9 to modulate gene function, make zebrafish a primary animal model for in vivo studies of candidate genes. Zebrafish are able to effectively regenerate their hearts following injury. However, less attention has been given to using zebrafish models to increase understanding of heart failure and cardiac remodeling, including cardiac hypertrophy and hyperplasia. Here we discuss using zebrafish to study heart failure and cardiac remodeling, and review zebrafish genetic, drug-induced and other heart failure models, discussing the advantages and weaknesses of using zebrafish to model human heart disease. Using zebrafish models will lead to insights on the pathomechanisms of heart failure, with the aim to ultimately provide novel therapies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Suneeta Narumanchi
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Hong Wang
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Sanni Perttunen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Ilkka Tikkanen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|